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Abstract: For the symmetrical mixture model and mixture test area, the lattice point set is used
to partition, and then the corresponding test statistics can be constructed. In this paper, we first
propose the partition methods under the lattice point sets and obtain several sub-simplexes without
common interior points. Furthermore, we present a method for constructing a uniform design on
the simplex using the center points of these sub-simplexes. The designs satisfy the uniformity of
maximum distance deviation and provide good results for the mean square error deviation. Finally,
the uniformity test on the mixture region is considered and illustrated by examples.
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1. Introduction

For production and scientific experiments, it is necessary to constantly improve the
quality of products and develop new products. However, it is a challenge to arrange the
experiments effectively and analyze scientifically the results. Experimental designs provide
various practical methods for solving these challenges, closely related to production and
scientific research, enriching and developing theoretically and methodologically. Mixture
experimental design is an essential part of experimental design and is widely used in
many fields.

Since Scheff (1958) [1] first introduced the notion and theory of mixture experimental
designs, it has developed substantially and led to numerous theoretical results in this
field with the development of experimental design theory. However, there are two main
designs in this direction. The first is the optimal design for the mixture experiments based
on various optimality criteria. The second is uniform designs for mixture experiments
concerning uniformity and robustness. The optimal design for mixture experiments is to
study the optimization problems on irregular mixture experimental regions based on the
optimal design theory.

The theory of optimal design aims to present a criterion for statistically evaluating the
quality of designs and constructing optimal designs by these criteria. Kiefer [2,3] organized
the previous results and extended the concept of discrete experimental designs to contin-
uous designs. Furthermore, Kiefer [2,3] presented various optimal design criteria (e.g.,
D−optimal, A−optimal, and Iλ−optimal) and also proved the optimal design equivalence
theorem, which is the foundation for establishing and developing optimal design theory.
Moreover, many statisticians have proposed different optimal design criteria based on the
factual background.

However, as Fang and Wang (1994) [4] pointed out, the optimal design has drawbacks
such as a lack of robustness and many points distributed at the boundary. To improve
the design, Fang and Wang (1994) [4] constructed a uniform design by using the number-
theoretic methods. Further, Wang and Fang (1996) [5] presented uniform designs for
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mixture experiments by extending the idea of uniform design to mixture experiments.
These designs consider evenly distributed n experimental points on the mixture domain and
do not allow replication. There are two commonly used methods for obtaining uniformly
distributed design points on the mixture region, which are the inverse permutation method
proposed by Wang and Fang (1990) [6] and the numerical optimization method. Moreover,
numerous pieces of literature have extended these methods; see [7,8]. Li and Zhang
(2017) [9] proposed a pseudo-component transform design based on the Scheffé-type
design, which combines optimality and uniformity, and discussed the uniformity of the
lattice point sets. Kim and Kim (2020) [10] proved that the conjecture proposed by Li and
Zhang (2017) [9] on a property of the proposed component transform is not true in the
general case, and further refined the conjecture and gave a proof of the result.

Lattice design is an essential method for mixture experimental design, which mainly
considers arranging experiments on two classes of lattice point sets of the simplex region,
i.e., central lattice point sets and q-component m-order lattice point sets. The goal of the
simplex lattice design is to reasonably assign the weights of each component to distribute
each weight of the mixture components evenly in the design space and then test each
weight separately based on its distribution to find the best formula for production. It has
been widely used in agriculture, biology, medicine, engineering, etc.; see [11–15], among
other related literature. Moreover, it is also mentioned in Li et al. (2021) [16] that lattice
point sets can be used for non-parametric modeling and uniformity testing. However,
when the test domain is an irregular convex polyhedron, the simplex lattice point design
based on Scheff(1958) [1] is not feasible, and it is, therefore, a challenge to efficiently arrange
the experimental points on the region. We now propose to partition the irregular convex
polyhedra to obtain the experimental points inside the convex polyhedra by applying
the theory of lattice point design for mixture experiments. However, there are issues
such as how to effectively partition the test region and how to ensure that the number of
experimental points is as small as possible and the amount of information obtained from
the experiment is maximized. For this purpose, we consider the problem of the uniformity
test of experimental points in the symmetric experimental region, make the experimental
points distributed as uniformly as possible in the experimental region, and construct the
uniformity test on the symmetric experimental region with the following three advantages:
(1) the uniformity test statistic of the test point distribution on a simple shaped experimental
region can be constructed; (2) the resulting test statistic can be used to measure the degree
of uniformity of a design; (3) under this method, a uniform partitioning of a symmetric
experimental domain can be obtained.

Li et al. (2020) [17] proposed a graph checking method to verify the optimality of
the symmetrical design of a mixture. The effectiveness of this method can be shown
by case analysis. Lattice point sets are essential tools for mixture experiments, which
provide an optimal design for a given model, uniformly distribute on the simplex region,
and have good space-filling properties; see He [18,19]. Therefore, in this paper, we first
consider the method of partitioning for the symmetrical mixture region to obtain several
sub-simplexes without common interior points and construct a uniform design for the
mixture experiments under this partitioning method. Further, the uniformity of the design
points on the mixture experimental region is tested, the method’s effectiveness is verified
with examples, and further research questions are suggested.

The rest of the paper is organized as follows. Elementary concepts of mixture experi-
ment and uniform design, notation, and definitions are given in Section 2. In Section 3, the
method of the partitioning of mixture experimental regions is given. Section 4 provides a
method and steps for constructing a uniform design using a lattice point partition design.
The uniformity test statistic on the mixture experimental region is constructed, and the
steps for the detailed test are given in Section 5. In Section 6, two examples show that the
lattice point partitioning method is feasible and valid for uniformity testing of the design
point distribution using the uniformity test statistic.
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2. Preliminaries

Mixture experiments (see Cornell (2002) [11]) are experiments in which two or more
components are blended in the same or different proportions, and their response of interest
is recorded for each blend. For the q-component mixture system, the response is a function
of each component x1, x2, · · · , xq. The mixture region determined by the proportion of each
component can be expressed as

X =

{(
x1, x2, · · · , xq

)T :
q

∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, · · · , q, C′s

}
,

where the C′s is an additional constraint condition. In addition, we denote X as Sq−1 if the
component is without any constraints.

However, there are additional constraints on the mixture components besides the
primary constraints for many practical situations. The additional constraint C′s commonly
exists in mixture experiments as follows.

1. Single-Component Constraints (SCCs)

C′s : 0 ≤ aj ≤ xj ≤ bj ≤ 1, j = 1, 2, · · · , q.

2. Multiple-Component Constraints (MCCs)

C′s : 0 ≤ aj ≤
q

∑
i=1

cjixi ≤ bj, j = 1, 2, · · · , m.

3. Nonlinear Component Constraints (NCCs)

C′s : aj ≤ φj
(
x1, x2, · · · , xq

)
≤ bj, j = 1, 2, · · · , l,

where aj, bj and cji are known constants, and φj
(
x1, x2, · · · , xq

)
are nonlinear functions for

each component.
Let a = (a1, a2, · · · , aq)T, b = (b1, b2, · · · , bq)T; for convenience, we denote

Sq−1
[a,b] =

{
x =

(
x1, · · · , xq

)
: x ∈ Sq−1, 0 ≤ ai ≤ xi ≤ bi ≤ 1, i = 1, · · · , q

}
(1)

as the mixture experimental regions with upper and lower bound constraints. Then,

Sq−1 = Sq−1
[0,1], (2)

where 0 and 1 are vectors of 0s and 1s, respectively.

Definition 1. Let m ≤ q be a positive integer, if there exists α1, α2, · · · , αq ∈ Z+, such that
α1 + α2 + · · ·+ αq = m. Then, the q components m-order lattice point sets can be defined as

L{q, m} =
{
(

α1

m
,

α2

m
, · · · ,

αq

m
)T :

q

∑
i=1

αi = m, αj ∈ Z+, j = 1, 2, · · · , q

}
. (3)

From Definition 1, we obtain that the lattice point set L{q, m} contains (q+m−1
m ) points

which uniformly distribute on the mixture region Sq−1. To present the construction method
for uniform designs under the lattice point sets, we firstly provide three common criteria
for measuring the uniformity distribution of design points.

Suppose that Pn = {x1, x2, · · · , xn} ⊂ X ⊆ Sq−1 is a set. Then, the distance between a
point x and the point set Pn can be defined as

d2(x,Pn) = min
1≤i≤n

{
d2(x, xi)

}
, (4)
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where d2(x, xi) = ‖x− xi‖2.
Therefore, there are three deviation criteria that are commonly used to measure the

uniformity of the point set Pn, which can be given as follows.
1. Mean Square Error Deviation (MSED)

MSED(Pn) = E
(

d2(x,Pn)
)
=

1
Vol(X )

∫
X

min
1≤j≤n

{
d2(x, xj)

}
dx,

where Vol(X ) is the volume of X .
2. Root Mean Square Error Deviation (RMSD)

RMSD(Pn) =
√

E(d2(x,Pn)).

3. Maximum Distance Deviation (MD)

MD(Pn) = max
x∈X

{
d2(x,Pn)

}
.

However, the calculation of the above three deviations is complicated when there are
more components in the mixture experiments, and an approximation is used instead in
practice. Let

msed(Pn) =
1
N ∑

tk∈L
d2(tk,Pn),

rmsd(Pn) =
√

1
N ∑

tk∈L
d2(tk,Pn),

md(Pn) = max
tk∈L

{
d2(tk,Pn)

}
,

(5)

where L = {t1, t2, · · · , tN} is a NT-net in X , which is composed of the set of random
mixture points obeying a uniform distribution.

3. Partition Methods for the Mixture Region

Now, to construct a uniform design for mixture experiments, we first need to partition
for the mixture region X . Since the NCC mixture region is not a convex polyhedron,
there may be no extreme vertices existing on the boundary. The MCC and SCC mixture
region X ⊂ Sq−1 both are convex polyhedra interior to the Sq−1. Here, we only discuss the
partition of MCC and SCC mixture regions and first briefly describe the two partitioning
methods presented by Li et al. (2020) [17], and the method of lattice point set partition for
the SCC mixture region will also be presented.

First, we give the following notations where sk
i is the ith k−dimensional cell of a

convex polyhedron. Then,

(1) s0
i represents the ith vertex of a convex polyhedron;

(2) s1
j represents the jth edge of a convex polyhedron;

(3) s2
k represents the kth surface of a convex polyhedron;

(4) sq−2
l represents the lth q− 2 dimensional boundary of a convex polyhedron;

(5) sq−1
1 = X represents a convex polyhedron of the mixture region.

Based on the above notations, there are two main partition methods of mixture regions
as presented by Li et al. (2020) [17].

3.1. Vertex Partitioning Method

Step 1. Let N points s0
1, s0

2, · · · , s0
N on the X = sq−1

1 , the convex polyhedron sq−1
1 =

{s0
1, s0

2, · · · , s0
N}.
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Step 2. Starting from the first vertex s0
1, we then obtain all the q − 2-dimensional

cells do not contain the vertex s0
1. That is, sq−2

i =
{

s0
i1

, s0
i2

, · · · , s0
ik

}
, i = 1, 2, · · · , l, and

i1 < i2 < · · · < ik; the k may be unequal for different i.
Step 3. From each of the sq−2

i , find each of the q− 3-dimensional cell cavities that do
not contain s0

i1
, and work out the branching step by step until the low-dimensional cell

cavities are reached.
Step 4. Suppose that there are g cell sequences satisfying the above steps. Then,

s0
i ⊂ s1

i ⊂ · · · ⊂ sq−2
i ⊂ sq−1

1 , i = 1, 2, · · · , g. (6)

Take the first vertex of each of the q cells from (6), and these q vertices compose a q− 1
dimensional sub-simplex. Such g sub-simplexes have no common interior points with each
other, which is a partition for the given mixture convex polyhedron.

3.2. Central Partition Method

Step 1. Let s0
0 be the center of the mixture convex polyhedron.

Step 2. We obtain several q− 1-dimensional simplexes without common interior points,
which are composed of s0

0 and all vertices of each q− 2-dimensional edge.
Step 3. Suppose that sq−2

i has ni vertexes that are connected by a one-dimensional
edge of ni; then, find the vertices on both ends of each one-dimensional edge. Renumber
the vertices of ni, such that s1

i1
= {s0

i1
, s0

i2
}, s1

i2
= {s0

i2
, s0

i3
}, · · · , s1

ni
= {s0

ni
, s0

i1
}, and obtain

the ni one-dimensional edge of sq−2
i .

Step 4. Divide sq−2
i into ni − q + 2 sub-simplex without a common interior point

{s0
i1 , s0

i2 , · · · , s0
iq−1
}, {s0

i1 , s0
i3 , · · · , s0

iq}, · · · , {s0
i1 , s0

ni−q−2, · · · , s0
ni
}. (7)

The combination of s0
0 and each of (7) constitutes ni − q + 2 sub-simplexes with (q− 1)-

dimensions. It is noted that these ∑l
i=1 (ni − q + 2) sub-simplexes have no common interior

points with each other and this is a partition of the given convex polyhedron.

3.3. Partition Method of Lattice Point Sets for the Simplex Sq−1

Now, we will provide a partition method by using the lattice point sets L{q, m}. As
shown in Algorithm 1.

For example, using the above method, the simplex S3−1 can be partitioned into 4
sub-simplexes under the L{3, 2} and partitioned into 9 sub-simplexes under the L{3, 3}.
In particular, the simplex S3−1 can be partitioned into m2 sub-simplexes under the L{q, m},
and these sub-simplexes are congruent. Furthermore, for q = 4, the case of partitioning is
more complex, but S4−1 also can be partitioned into 8 sub-simplexes under the L{4, 2} and
we can find that the sub-region S4−1

[0,0.5] contains 4 sub-simplexes and 6 extreme vertices, as

shown in Figure 1. In addition, for q = 5, S5−1 also can be partitioned into 16 sub-simplexes
under the L{5, 2} and the sub-region S5−1

[0,0.5] contains 11 sub-simplexes, but we find that the
volumes of these 11 sub-simplexes and the other 5 sub-simplexes are not congruent. It is
more complex when the order of the lattice point set is higher.
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Algorithm 1 Partition for simplex Sq−1

Step 1. Let Sq−1
[a,b] = {x = (x1, x2, · · · , xq)T : 0 ≤ ai ≤ xi ≤ bi ≤ 1, i = 1, 2, · · · , q, x ∈

Sq−1} be a mixture region with upper constraints bT = (b1, b2, · · · , bq) and lower
constraints aT = (a1, a2, · · · , aq).
Step 2. Suppose that 0, 1

m , · · · , m−1
m are the m levels of the q-factor and let lm =

(0, 1
m , · · · , m−1

m )T. Construct two fully factorial design matrices with q-factor m levels

L̄ =
(
lm ⊗ 1mq−1 , 1m ⊗ lm ⊗ 1mq−2 , 1m2 ⊗ lm ⊗ 1mq−3 , · · · , 1mq−1 ⊗ lm

)
,

Ū = 1
m JN0×q + L̄, where N0 = mq, 1m is a m-dimensional vector with all elements of 1, and

JN0×q is a N0 × q matrix with all elements of 1.

Step 3. Let L̄1q =
(
l̄1, l̄2, · · · , l̄N0

)T, Ū1q =
(
ū1, ū2, · · · , ūN0

)T, where l̄i is the ith element
in L̄1q, and ūj is the jth element in Ū1q, i, j = 1, 2, · · · , N0. If I(l̄ij < 1)I(ūij > 1) =

1, j = 1, 2, · · · , r and let Er =
(
eN0(i1), eN0(i2), · · · , eN0(ir)

)T. Then, the upper and lower
bound matrices within the simplex are L = ErL̄ = (a1, a2, · · · , ar)

T and U = ErŪ =

(b1, b2, · · · , br)
T, respectively.

Step 4. Obtain a partition for the simplex Sq−1. That is,

Sq−1 =
r
∪

j=1
Sq−1
[aj ,bj ]

, (8)

where a =
(
aj1, aj2, · · · , ajq

)
and b =

(
bj1, bj2, · · · , bjq

)
are the elements of the j row of

the matrix L and U, respectively.

Figure 1. The sub-simplex under the partition of L{4, 2}.

Moreover, if the Sq−1
[aj ,bj ]

, j = 1, 2, · · · , r is a mixture simplex, then it can be further

partitioned using the method above.
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Theorem 1. Suppose that x1, x2, · · · , xq ∈ Sq−1 are q linearly independent design points,
Vq = V{x1, x2, · · · , xq} ⊂ Sq−1 is a q− 1 dimensional sub-simplex composed of these q design
points and X =

[
x1, x2, · · · , xq

]T is a matrix consisting of these vertices arranged in rows. Let

H =



(q− 1)h1 0 0 · · · 0 0 hq
−h1 (q− 2)h2 0 · · · 0 0 hq
−h1 −h2 (q− 3)h3 · · · 0 0 hq
−h1 −h2 −h3 · · · 0 0 hq

...
...

...
. . .

...
...

...
−h1 −h2 −h3 · · · 2hq−2 0 hq
−h1 −h2 −h3 · · · −hq−2 hq−1 hq
−h1 −h2 −h3 · · · −hq−2 −hq−1 hq


, (9)

where hi = 1/
√
(q− i)(q− i + 1), i = 1, 2, · · · , q − 1, hq = 1/

√
q. Denote W = XH[

Iq−1, 0
]T

= {ωij}
q, q−1
i, j=1 and W̄ = {ωij −ω1j}

q, q−1
i=2, j=1. Then, the volume of the sub-simplex V is

Vol(Vq) =
1

(q− 1)!
det(W̄).

Proof of Theorem 1. Let

W
′
= (q− 1)(qX− Jq)H

(
Iq−1

0

)
= {w′ij}

q,q−1
i,j=1 ,

and we first map the simplex V to Iq−1 by using the independent transformation method
of simplex vertices. Denote ω

′
i = (ω

′
i1, ω

′
i2, · · · , ω

′
i2)

T, i = 1, 2, · · · , q are q points
in Iq−1. For any two points xi, xj ∈ Sq−1, there exist two image points ωi, ωj ∈ Iq−1

corresponding to xi and xj, respectively. Then,

dS = d(xi, xj) =
1

q(q− 1)
d(ωi, ωj) = dw.

Let λ = ds
dw

= q
q−1 , and we have

W = λW
′
= q(q− 1)W

′
= {ωij}

q, q−1
i, j=1 .

Further, we obtain that the convex polyhedron W is composed of these points ωi =
(ωi1, ωi2, · · · , ωi2)

T, i = 1, 2, · · · , q in Iq−1 and the sub-simplex V ∈ Sq−1, which are
congruent. Then,

Vol(V) = Vol(W) =
1

(q− 1)!
|det

(
[0, Iq−1]W− 1q−1(eT

1 W)
)
| = 1

(q− 1)!
det(W̄).

We note that each sub-simplex in the partitioned simplex is composed of q adjacent
lattice points, and if x ∈ L{q, m} ⊂ Sq−1, then the lattice points that are adjacent to x can
be defined as

x′ = x +
1
m

eq(i)−
1
m

eq(j), i, j = 1, 2, · · · , q,

where eq(i) is a q-dimensional column vector with the ith element being 1 and all other
elements 0, and i 6= j, x′ ∈ L{q, m}.
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Therefore, it is found that in the simplex Sq−1, the matrix V1 consisting of the vertices
of the sub-simplex V1 with (1, 0, 0, · · · , 0) vertices arranged in rows is

V1 =
[
x1

1, x1
2, · · · , x1

q

]T
=


1 0 · · · 0

m−1
m

1
m · · · 0

...
...

. . .
...

m−1
m 0 · · · 1

m

.

We call a sub-simplex of the form consisting of vertices connected to adjacent lattice
points of a simplex a vertex sub-simplex. The following calculation can obtain the volume
of the vertex sub-simplex V1. Firstly, we have

W1 = V1H
(

Iq−1
0

)
=



(q− 1)h1 0 0 · · · 0 0
mq−q−m

m h1
(q−2)h2

m 0 · · · 0 0
mq−q−m

m h1 − h2
m

(q−3)h3
m · · · 0 0

...
...

...
. . .

...
...

mq−q−m
m h1 − h2

m − h3
m · · · − hq−2

m
hq−1

m
mq−q−m

m h1 − h2
m − h3

m · · · − hq−2
m − hq−1

m


.

Then, subtracting the elements of the first from the second row to the q− 1th row
of the matrix V1, respectively, and followed by the primary transformation of the matrix,
we have

W̄1 =
1
m

diag
{

qh1, (q− 1)h2, (q− 2)h3, · · · , 3hq−2, 2hq−1
}

.

Then,

Vol(V1) =
1

(q− 1)!
det(W̄1) =

√
q

mq−1(q− 1)!
,

and Vol(Sq−1)
Vol(V1)

= mq−1.
From the above discussion, we find a multiplier relation between the total volume and

the volume of the restricted region of a single sub-simplex. The following theorem provides
an exact result of the relation between Sq−1 and the sub-simplex under the L{q, m}.

Theorem 2. Under the lattice point sets L{q, m}, the simplex Sq−1 can be partitioned into mq−1

sub-simplexes without common interior points.

Proof of Theorem 2. Let

Tq−1 =

{
t = (x1, x2, · · · , xq−1)

T :
q−1

∑
i=1

xi ≤ 1, t ∈ [0, 1]q−1

}
.

We note that the point in Tq−1 can be viewed as the projection of the point in Sq−1

onto the q− 1-dimensional plane O− x1x2 · · · xq−1 and it provides a one-to-one mapping
between the points in Tq−1 and Sq−1.

Now, we take the points 0, 1
m , 2

m , · · · , 1 for each dimension in [0, 1]q−1. Then, the
[0, 1]q−1 can be partitioned into mq−1 lattices as given by{

t = (x1, x2, · · · , xq−1)
T : ‖t− τ‖ ≤ 1

2m

}
,

where ‖t− τ‖=
√
(t− τ)T(t− τ), τ=

(
i1

2m , i2
2m , · · · ,

iq−1
2m

)T
and ik ∈ {1, 2, · · · , 2m− 1}, k =

1, 2, · · · , q− 1.
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Furthermore, by intersecting the partitioned Tq−1 with the plane
q−1
∑

i=1
xi =

1
m , 2

m , · · · , 1,

there will be mq−1 sub-simplexes in total.

4. Construction of Uniform Designs under the Lattice Point Sets

From the result in (5), the following theorem will show that the deviation of MSED
and MD will converge to 0 if the lattice point is set with a sufficiently large order.

Theorem 3. Let L{q, m} be a lattice point sets with order m in the simplex Sq−1; then,

lim
m→∞

MSED(L{q, m}) = lim
m→∞

MD(L{q, m}) = 0.

Proof of Theorem 3. From the result in Theorem 2, the simplex Sq−1 can be partitioned
into n sub-simplexes without common interior points; that is,

Sq−1 = V1 + V2 + · · ·+ Vn.

For any point x ∈ X , there must exist a simplex Vi = Vi
{

xi1, xi2, · · · , xiq
}

such that
x ∈ Vi, and we have d2(x,LX ) = d2(x, Vi).

V1, V2, · · · , Vn are approximately congruent and are also congruent with the smallest
sub-simplex partitioned by the set of lattice points with the same order on Sq−1. Let
V0 = V0

{
x01, x02, · · · , x0q

}
be a simplex constructed by the vertex of Sq−1 and q− 1 adjacent

lattice points, where x01 = (1, 0, · · · , 0)T, x02 = (1 − 1/m, 1/m, · · · , 0)T, · · · , x0q =

(1− 1/m, 0, · · · , 1/m)T, and Vi
∼= V0, i = 1, 2, · · · , n.

Then,

max
x∈X

d2(x,LX ) = max
x∈Vi

d2(x, Vi) = max
x∈V0

d2(x, V0)

= max
x∈V0

{
min

1≤j≤q
d2(x, x0j)

}
= d2(x0, x0j) =

q− 1
qm2 ,

where x0 = 1
q

q
∑

j=1
x0j is the centroid of V0.

Next, from the result of Li and Zhang (2017) [9], we can obtain the point set of the pseudo-

component transformation corresponding to the reference point x0 =
(

1
q , 1

q , · · · , 1
q

)T
. Then,

Z(Lm, x0, λ) =

{
z : z =

x0 + λx
1 + λ

, x ∈ Lm, λ ≥ 0
}

.

Suppose that Lm = {x1, x2, · · · , xNm}, Lm+1 =
{

t1, t2, · · · , tNm+1

}
, where Nm =

(q+m−1
m ), Nm+1 = (q+m

m+1). Let x0 =
(

1
q , 1

q , · · · , 1
q

)
be a reference point.

Since

zi = Z(xi, x0, m) =
x0 + mxi

1 + m

=
1

1 + m

((
1
q

,
1
q

, · · · ,
1
q

)T
+ m

(
αi1
m

,
αi2
m

, · · · ,
αiq

m

)T
)

=
1

q(1 + m)

(
qαi1 + 1, qαi2 + 1, · · · , qαiq + 1

)T,
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where αi1, αi2, · · · , αiq ∈ Z+,
q
∑

j=1
αij = m.

We note that the point zi is the centroid point of sub-simplex Vi in Lm+1, and here

Vi = Vi
{

ti1, ti2, · · · , tiq
}

, i = 1, 2, · · · , Nm,

where tij =
1

1+m

[(
αi1, αi2, · · · , αiq

)T
+ eT

q (j)
]
, j = 1, 2, · · · , q.

Let z1, z2, · · · , zNm be the centroid point of V1, V2, · · · , VNm , respectively. If XZ =
Z(Sq−1, x0, m), it can be partitioned into Km = mq−1 smallest sub-simplexes without a
common interior point by Z(Sq−1, x0, m). That is,

XZ = S1 + S2 + · · ·+ SKm .

Moreover, we find that S1, S2, · · · , SKm are congruent. Now, for any one point x ∈ Sq−1,
we have the results as follows.

(1) If x ∈ Si = Si
{

xi1, xi2, · · · , xiq
}

, i = 1, 2, · · · , Nm, then

max
x∈Si

min
1≤j≤q

d2(x, xij) =
q− 1

q(m + 1)2 .

(2) If x ∈ Vi, i = 1, 2, · · · , Nm, then

Vi ∩ Z(Lm, x0, m) = xi,

and
max
x∈Vi

d2(x, xi) =
q− 1

q(m + 1)2 ,

where xi is the centroid point of Vi.
(3) If x ∈ V′j , j = Nm + 1, · · · , Km+1, then

V′j ∩ Z(Lm, x0, m) = φ,

and for q ≤ 4, we have

min
1≤i≤Nm

d2(x, xi) <
q− 1

q(m + 1)2 .

From the above discussion, we have the following results for q = 3; that is,

arg min
λ∈[0,∞)

MD(Z(Lm, x0, λ)) = m,

and
MD(Z(Lm, x0, m)) = MD(L{q, m + 1}) = q− 1

q(m + 1)2 . (10)

Example 4. Now, we illustrate the results of the above discussion by taking the pseudo-component
transformations of the 3-component second-order lattice point set. As shown in Figure 2, Equation (10)
holds wherever the test point falls into the region.
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Figure 2. The sub-simplex under the partition of L{3, 3}.

We note that it is more complicated in the case of a sub-simplex partitioned by a lattice
point set for q > 4. However, by calculation, we find that the uniformity of the point set is
best for the lattice point set transformed by the pseudo-component with the center point
as the reference, and when the transformation parameters are equal to the order of the
lattice points.

Suppose that the mixture region Sq−1 is partitioned by L{q, m} into n sub-simplexes
Sq−1 = V1 + V2 + · · ·+ Vn with no common interior point. For any point x ∈ X , there
must exist a sub-simplex Vi = Vi

{
xi1, xi2, · · · , xiq

}
, such that x ∈ Vi. Further, for a single

point design P = {x}, where x ∈ Vi. Then, the uniform design satisfying the MD-uniform
criterion on the simplex region can be constructed by the lattice partition design when

arg
x∈Vi

md(P) = arg
x∈Vi

max
tk∈Vi

{
d2(tk,Pn)

}
= xi0 =

1
q

q

∑
j=1

xij.

Therefore, the design obtained from partitioning a simplex using a lattice point set
should satisfy the MD-uniform criterion if the centroid of each sub-simplex is taken as the
design point.

5. Uniform Test on the Mixture Region

As mentioned above, the lattice point set is used to partition the simplex Sq−1. We note
that some sub-regions are composed of multiple sub-simplexes, while other sub-domains
are only sub-simplex. In large-sample surveys, it is necessary to check whether the samples
are evenly distributed on the simplex. In this section, we mainly provide the uniform test
method on the mixture region.

Suppose that X is a mixture region, and Vi, i = 1, 2, · · · , k is an arbitrary partition of

X . From the result in Section 3, X =
k
∑

i=1
Vi and there is no common interior point between

two simplexes Vi and Vj, where Vi = Vi{xi1, xi2, · · · , xiq}, i = 1, 2, · · · , k, i 6= j.
Now, for the point set PN = {x1, x2, · · · , xN} ⊂ X ⊆ Sq−1, let

NVi = card{PN ∩Vi}, i = 1, 2, · · · , k

be the number of points in Vi containing PN . We denote

AD(PN) =
1
k

k

∑
i=1

(
NVi

N
− Vol(Vi)

Vol(X )

)2

. (11)
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Note that AD(PN) is a function of
NVi
N and it can be used to measure the uniformity

of PN on the mixture region X . If PN distributes uniformly in the experimental region X ,
this means that AD(PN) will be as small as possible.

We denote pi =
Vol(Vi)
Vol(X )

as the volume ratio of sub-simplex Vi to mixture region X ; let

p̂i =
NVi

k
∑

i=1
NVi

be the proportion of the number of points in Vi.

If the points are distributed uniformly in mixture region X , then the
NVi
N will be the

unbiased estimation of Vol(Vi)
Vol(X )

.
In order to test whether PN is distributed uniformly on the mixture region, the null

hypothesis “H0 : PN distributed uniformly in the region X ” can be considered. Then, the
test statistic is

χ2 = N
k

∑
i=1

( p̂i − pi)
2

pi(1− pi)
. (12)

Now, if the null hypothesis H0 is held, then χ2 ∼ χ2(k). When the significant value
p∗ = P(χ2 > χ2(k)) < 0.05 (or 0.01), we reject the null hypothesis H0.

In particular, if the volumes of sub-simplex Vi, i = 1, 2, · · · , k obtained by the partition
of the lattice point sets are approximately equal, that is Vol(Vi)

Vol(X )
≈ p, i = 1, 2, · · · , k, we have

χ2 =
N

p(1− p)

k

∑
i=1

( p̂i − p)2.

Therefore, if the null hypothesis H0 is held, we have

χ2 =
NkAD(PN)

p(1− p)
∼̇χ2(k).

Furthermore, the 0.95 two-side confidence intervals of AD(PN) can be given by[
p(1− p)

Nk
χ2

0.025(k) ,
p(1− p)

Nk
χ2

0.975(k)
]

. (13)

Next, we will partition the simplex by the lattice point set and provide the steps of the
uniformity test as follows.

Step 1. From the result in Section 3, we obtain r sub-regions Sq−1
[aj ,bj ]

without a common

interior point by using m order lattice point set to partition the simplex Sq−1, as shown
in (8).

Step 2. Since the number of extreme vertices for the sub-region Sq−1
[aj ,bj ]

is greater than q,

then it can be partitioned into k(k ≥ r) sub-simplexes V1, V2, · · · , Vk.
Step 3. Suppose that PN = {x1, x2, · · · , xN} ⊂ Sq−1 are tested samples, and PN =

[x1, x2, · · · , xN ] =
{

xji
}q,N

i,j=1 is a matrix array as row by the N points. Let V−1
i PN =[

αi
1, αi

2, · · · , αi
N
]
=
{

αi
uv
}q,N

u,v=1, and we have

NVi = card{PN ∩Vi} =
N

∑
v=1

[
q

∏
u=1

I(0 < αi
uv < 1)

]
, i = 1, 2, · · · , k.
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Step 4. Calculate the value of the test statistic result and the confidence interval by
using (11).

We note that the partitioning of a simplex Sq−1 by the lattice point set method not only
provides a uniformity test but also constructs a pseudo-component transformation in the
sub-simplex. Moreover, it obtains a design that is uniformly distributed in the simplex.

For example, let x0
i be the centroid point in the sub-simplex Vi and take x0

i as the
reference point. Using the pseudo-component transformation method to convert the vertices
of Vi will enable each sub-simplex to contain q interior points and the design to contain
qmq−1 experimental points. However, the design constructed by this method will face the
problem of “dimensional disaster” when q is larger. To reduce the number of experiments,
we consider taking the center of the sub-simplex of each partition. Then, the design will
only contain mq−1 experimental points in total. Moreover, if the experiments are arranged
with a set of higher-order lattice points, when q > 4, m > 4, the number of sub-simplexes
is larger than the number of a lattice point set. Further, since the convex polyhedron can
be partitioned into several disjoint sub-regions, as shown in (8), then the centroid of each
sub-region will be evenly distributed on the experimental region.

In order to compare the results of the uniform test, we provide four different methods
to generate random points in a simplex. We first generate a random matrix Y =

{
yij
}N, q

i, j=1,
where yij ∼ U(0, 1), i = 1, 2, · · · , N, j = 1, 2, · · · , q, and each yij is independent.

Suppose that N � n; then, the matrix T =
{

xij
}N, q

i, j=1 can be obtained by an inverse
transformation of the matrix Y.

(1) Exponential transformation method
The exponential transformation method was proposed by Fang and Wang (1994) [4],

where each element of T can be calculated by

xij =
log
(
1− yij

)
q
∑

j=1
log
(
1− yij

) , i = 1, 2, · · · , N, j = 1, 2, · · · , q. (14)

(2) Inverse transformation method
Another alternative is the inverse transform method introduced by Fang and Wang

(1996) [5], where the elements of T can be calculated by
xij =

(
1− y1/(q−j)

ij

) j−1
∏
l=1

y1/(q−l)
il , j = 1, 2, · · · , q− 1,

xiq =
q−1
∏
l=1

y1/(q−l)
il , i = 1, 2, · · · , N.

(15)

Let xi = (xi1, xi2, · · · , xiq) be the i-th row in matrix T, which is inversely transformed
by (14) or (15). Then, each row element of T satisfies

xi ∼ U
(

Sq−1
)

,
q

∑
j=1

xij = 1, i = 1, 2, · · · , N

and x1, x2, · · · , xN are independent of each other. Therefore, the elements x1, x2, · · · , xN of
T can be used as a randomly generated experimental point on the simplex Sq−1. Next, we
provide the other two methods as follows.

(3) Method I
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Suppose that Xi, i = 1, 2, · · · , q is an independent and identically distributed

nonnegative random variable and Xi
i.i.d∼ FX(x). Let

Yi =
Xi

q
∑

i=1
Xi

, i = 1, 2, · · · , q, (16)

and then each of Y = (Y1, Y2, · · · , Yq)T is a random mixture point on the q− 1-dimensional
simplex, and note that the distribution of Y = (Y1, Y2, · · · , Yq)T is determined by each
random variable Xi, i = 1, 2, · · · , q.

(4) Method II
Suppose that the random variable X1 ∼ U(0, 1), and let

X2 ∼ U(0, 1− X1), · · · , Xq−1 ∼ U(0, 1−
q−2

∑
j=1

Xj), Xq = 1−
q−1

∑
j=1

Xj.

Then, Z = (X1, X2, · · · , Xq)T is also a random mixture point on the q− 1-dimensional
simplex.

6. Illustrative Examples

In this section, we will provide two examples to illustrate that the method proposed
in Section 3 for constructing a uniform design is feasible and the random mixture points
are effective for uniform tests on the simplex as proposed in Section 5.

Example 5. Suppose that the 20 design points in L{4, 3} are as follows.

x1 = (1, 0, 0, 0), x2 =
(

2
3 , 1

3 , 0, 0
)

, x3 =
(

1
3 , 2

3 , 0, 0
)

, x4 = (0, 1, 0, 0),

x5 =
(

2
3 , 0, 1

3 , 0
)

, x6 =
(

1
3 , 1

3 , 1
3 , 0

)
, x7 =

(
0, 2

3 , 1
3 , 0

)
, x8 =

(
1
3 , 0, 2

3 , 0
)

,

x9 =
(

0, 1
3 , 2

3 , 0
)

, x10 = (0, 0, 1, 0), x11 =
(

2
3 , 0, 0, 1

3

)
, x12 =

(
1
3 , 1

3 , 0, 1
3

)
,

x13 =
(

0, 2
3 , 0, 1

3

)
, x14 =

(
1
3 , 0, 1

3 , 1
3

)
, x15 =

(
0, 1

3 , 1
3 , 1

3

)
, x16 =

(
0, 0, 2

3 , 1
3

)
,

x17 =
(

1
3 , 0, 0, 2

3

)
, x18 =

(
0, 1

3 , 0, 2
3

)
, x19 =

(
0, 0, 1

3 , 2
3

)
, x20 = (0, 0, 0, 1).

Then, from the result in (8), the Sq−1 can be partitioned into 15 sub-regions S4−1
[aj ,bj ]

under

L{4, 3} and Sq−1 = S4−1
[aj ,bj ]

, j = 1, 2, · · · , 15. The vector of lower constraints (VLC) and the vector

of upper constraints (VUC) are given in column 2 and column 3 in Table 1, respectively. In these
sub-regions, there exist some regions that cannot be further partitioned, shown in Table 1, row
1, 6, 11, 12, 17, 18, 19, 25, 26, 27. Moreover, there also exist some sub-regions composed of four sub-
simplexes, shown in Table 1, row 2–5, 7–10, 13–16 and 20–23. Next, we can obtain the sub-simplex
for these sub-regions by further partitioning.

Therefore, the simplex S4−1 be partitioned into 27 sub-simplexes without common interior
points under the 20 design points of L{4, 3}. The order number of four vertexes for each sub-
simplex corresponds to the design point of L{4, 3}. For example, the four vertexes x6, x12, x14, x15
of sub-simplex are composed of the vector of lower constraints a1 = (0, 0, 0, 0) and the vector of
upper constraints b1 = ( 1

3 , 1
3 , 1

3 , 1
3 ). By calculation, we find that there exist differences among the

volumes of these sub-simplexes, but the error is less than 10−4. Moreover, the distribution of the
centroid for these sub-simplexes is shown in Figure 3, and the values of these centroid and each
sub-simplex are shown in Table 1.



Symmetry 2022, 14, 1371 15 of 18

Table 1. Partition of S4−1 under the L{4, 3}.

NO. VLC VUC Vertex Sets Volume× 102 Centroid

1 (0, 0, 0, 0) ( 1
3 , 1

3 , 1
3 , 1

3 ) 6 12 14 15 1.230868 (0.2498, 0.2498, 0.2498, 0.2498)

2 2 6 12 14 1.233640 (0.4165, 0.2498, 0.1665, 0.1665)
3 2 5 11 14 1.233640 (0.5835, 0.0833, 0.1665, 0.1665)
4 ( 1

3 , 0, 0, 0) ( 2
3 , 1

3 , 1
3 , 1

3 ) 2 5 6 14 1.233640 (0.5000, 0.1665, 0.2498, 0.0833)
5 2 11 12 14 1.233640 (0.5000, 0.1665, 0.0833, 0.2498)

6 ( 2
3 , 0, 0, 0) (1, 1

3 , 1
3 , 1

3 ) 1 2 5 11 1.230868 (0.7503, 0.0833, 0.0833, 0.0833)

7 3 7 13 15 1.233640 (0.0833, 0.5835, 0.1665, 0.1665)
8 (0, 1

3 , 0, 0) ( 1
3 , 2

3 , 1
3 , 1

3 ) 3 6 12 15 1.233640 (0.2498, 0.4165, 0.1665, 0.1665)
9 3 6 7 15 1.233640 (0.1665, 0.5000, 0.2498, 0.0833)
10 3 12 13 15 1.233640 (0.1665, 0.5000, 0.0833, 0.2498)

11 ( 1
3 , 1

3 , 0, 0) ( 2
3 , 2

3 , 1
3 , 1

3 ) 2 3 6 12 1.236418 (0.4165, 0.4165, 0.0833, 0.0833)

12 (0, 2
3 , 0, 0) ( 1

3 , 1, 1
3 , 1

3 ) 3 4 7 13 1.230868 (0.0833, 0.7503, 0.0833, 0.0833)

13 8 9 15 16 1.233640 (0.0833, 0.1665, 0.5835, 0.1665)
14 (0, 0, 1

3 , 0) ( 1
3 , 1

3 , 2
3 , 1

3 ) 6 8 14 15 1.233640 (0.2498, 0.1665, 0.4165, 0.1665)
15 6 8 9 15 1.233640 (0.1665, 0.2498, 0.5000, 0.0833)
16 8 14 15 16 1.233640 (0.1665, 0.0833, 0.5000, 0.2498)

17 ( 1
3 , 0, 1

3 , 0) ( 2
3 , 1

3 , 2
3 , 1

3 ) 5 6 8 14 1.236418 (0.4165, 0.0833, 0.4165, 0.0833)

18 (0, 1
3 , 1

3 , 0) ( 1
3 , 2

3 , 2
3 , 1

3 ) 6 7 9 15 1.236418 (0.0833, 0.4165, 0.4165, 0.0833)

19 (0, 0, 2
3 , 0) ( 1

3 , 1
3 , 1, 1

3 ) 8 9 10 16 1.230868 (0.0833, 0.0833, 0.7503, 0.0833)

20 15 17 18 19 1.233640 (0.0833, 0.1665, 0.1665, 0.5835)
21 (0, 0, 0, 1

3 ) ( 1
3 , 1

3 , 1
3 , 2

3 ) 12 14 15 17 1.233640 (0.2498, 0.1665, 0.1665, 0.4165)
22 12 15 17 18 1.233640 (0.1665, 0.2498, 0.0833, 0.5000)
23 14 15 17 19 1.233640 (0.1665, 0.0833, 0.2498, 0.5000)

24 ( 1
3 , 0, 0, 1

3 ) ( 2
3 , 1

3 , 1
3 , 2

3 ) 11 12 14 17 1.236418 (0.4165, 0.0833, 0.0833, 0.4165)

25 (0, 1
3 , 0, 1

3 ) ( 1
3 , 2

3 , 1
3 , 2

3 ) 12 13 15 18 1.236418 (0.0833, 0.4165, 0.0833, 0.4165)

26 (0, 0, 1
3 , 1

3 ) ( 1
3 , 1

3 , 2
3 , 2

3 ) 14 15 16 19 1.236418 (0.0833, 0.0833, 0.4165, 0.4165)

27 (0, 0, 0, 2
3 ) ( 1

3 , 1
3 , 1

3 , 1) 17 18 19 20 1.230868 (0.0833, 0.0833, 0.0833, 0.7503)

Figure 3. The distribution of the centroid points under the partition of S4−1.

Example 6. Now, we use the inverse transformation method and the exponential inverse trans-
formation method, method I and method II to generate N = 50 and N = 100 random mixing
points, respectively.

Take Xi
i.i.d.∼ U(0, 1), i = 1, 2, · · · , q in (16). The distribution of random points in various

cases is as shown in Figure 4.
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Figure 4. The distribution of random points in S4−1. (A1): The distribution of 50 random mixture
points generated by the inverse transformation of method I (A2): The distribution of 50 random mix-
ture points generated by the exponential inverse transformation of method I (A3): The distribution of
50 random mixture points generated by the inverse transformation of method II (A4): The distribu-
tion of 50 random mixture points generated by the exponential inverse transformation of method
II. (B1): The distribution of 100 random mixture points generated by the inverse transformation of
method I (B2): The distribution of 100 random mixture points generated by the exponential inverse
transformation of method I (B3): The distribution of 100 random mixture points generated by the
inverse transformation of method II (B4): The distribution of 100 random mixture points generated
by the exponential inverse transformation of method II.

Note that (A1), (A2), (A3) and (A4) are the distribution of 50 random mixture points generated
by the inverse and exponential inverse transformation methods, method I and method II, respectively.
(B1), (B2), (B3) and (B4) are the distributions of 100 random mixing points produced by the four
methods, respectively. Next, we will compare the uniformity distribution of the random mixture
points generated by these four methods and test it. As shown in Example 5, using the lattice point
set L{4, 3}, the simplex S4−1 can be partitioned into 27 sub-simplexes. The volumes and centroid of
each sub-simplex are shown in Table 1. Then, the values of the uniformity test for the four methods
with N = 50 and N = 100 are shown in the following Table 2. From the result of the uniformity
test, we find that both the significant values p∗ < 0.01 for method I and method II. Therefore,
it is necessary to reject the null hypothesis H0, and the random mixture points generated by the
exponential inverse transformation and inverse transformation method have a uniform distribution
on the S4−1.

Table 2. The uniformity test of random mixture point set generated by four methods.

Number of Samples Method AD(PN) χ2 p∗

Exponential inverse transformation 0.000733 27.73904 0.424521

N = 50 Inverse transformation method 0.000584 22.1094 0.731798
Method I 0.004882 185.0917 <0.01
Method II 0.002213 83.80955 <0.01

Exponential inverse transformation 0.000488 36.95872 0.095841

N = 100 Inverse transformation method 0.000377 28.51026 0.385039
Method I 0.003288 249.2317 <0.01
Method II 0.000850 64.38735 <0.01
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7. Conclusions

Lattice point sets are a critical tool for constructing uniform designs for experiments
with mixtures. Using a lattice point set to partition the irregular mixture regions, the sum
of the volume for each partitioned sub-simplex is approximately equal to the volume of the
mixture region. In addition, if there is a mixture experimental region with upper and lower
bound constraints, then the sum of the volumes of the sub-simplex, obtained by using
the lattice point set for partitioning, is precisely equal to the volume of the constrained
experimental region.

In this paper, we propose a method of partitioning for mixture regions, obtaining sev-
eral sub-simplexes without common interior points, which are important for constructing
uniform designs. Furthermore, under the partition of the lattice point set, we construct the
statistical uniform test on the simplex by using the ratio of volume between the sub-simplex
and mixture region. We find that the random mixture points generated by the exponential
inverse transformation and inverse transformation method are distributed uniformly in
the mixture region.

Currently, there exist relevant results on the division of lattice point sets for low-
dimensional mixture simplexes without additional constraints. However, the algorithms
for the approximate partitioning of high-dimensional and mixture experimental regions
with additional constraints have not been improved. Moreover, there are two primary
aspects for further studies: on the one hand, developing a complete theoretical system for
the partitioning of lattice point sets in high-dimensional experimental regions with upper
and lower bound constraints, linear constraints and additional non-linear constraints; on
the other hand, it is necessary to algorithmically implement irregular region dissection,
where the partition is unique when the number of components and the order of lattice
points are determined.
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