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Abstract: Ulam stability is motivated by the following issue: how much an approximate solution of
an equation differs from the exact solutions to the equation. It is connected to some other areas of
investigation, e.g., optimization, approximation theory and shadowing. In this paper, we present and
discuss the published results on such stability for functional equations in the classes of function-taking
values in 2-normed spaces. In particular, we point to several pitfalls they contain and provide possible
simple improvements to some of them. Thus we show that the easily noticeable symmetry between
them and the analogous results proven for normed spaces is, in fact, mainly apparent. Our article
complements the earlier similar review published in Symmetry (13(11), 2200) because it concerns the
outcomes that have not been discussed in this earlier publication.
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1. Introduction

The theory of stability in the sense of Ulam has become a popular subject of research,
which goes in several directions and is somehow connected with issues studied in some
other areas of mathematics, e.g., shadowing (see [1]), approximation theory and optimiza-
tion. It mainly concerns various equations (difference, differential, integral, functional, etc.),
and very roughly speaking, the following subject is investigated: how much an approxi-
mate solution to an equation differs from the exact solutions of it. It has been motivated by
a problem formulated by Ulam in 1940 for the equation of group homomorphism, and the
first answer to it was provided by Hyers in [2]. The question and the answer to it inspired
many further papers, and we refer to [3–5] for further information on this subject.

It should be mentioned here that shortly after Hyers’ publication, a new wider ap-
proach in this area was suggested by T. Aoki [6]. The result of Aoki was later complemented
in [7–9]. The main outcome that thus arose and is considered to be very representative of
the Ulam stability reads as follows (see Theorem 3.5 of [10]).

Theorem 1. Let W be a normed space, W0 := W \ {0}, B be a Banach space and η ≥ 0 and r 6= 1
be real numbers. Assume that h : W → B satisfies

‖h(x + y)− h(x)− h(y)‖ ≤ η(‖x‖r + ‖y‖r), x, y ∈W0 . (1)

Then there is a unique additive mapping α : W → B with

‖h(x)− α(x)‖ ≤ η‖x‖r

|1− 2r−1| , x ∈W0. (2)
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Let us remember that a mapping α : W → B is additive if it satisfies the Cauchy
equation

α(x + y) = α(x) + α(y) (3)

for every x, y ∈W (here, W is a linear space as in Theorem 1).
Further, an example was provided in [9] showing that for r = 1 an analogous result,

as in Theorem 1, is not valid. Moreover, estimate (2) is optimal (see [11]) and, in the case
r < 0, each function h : W → B fulfilling (1) must be additive, and the completeness of B
is not necessary for this situation (see Theorem 3.5 of [10] and [12]). For some examples
of related results concerning the stability of modified versions of Equation (3) and their
applications, we refer to [13].

The following abstract definition makes the notion of Ulam stability a bit more precise
in the case of a general equation in k variables (R+ denotes the set of nonnegative reals,
and AB means a family of all functions mapping a set B 6= ∅ to a set A 6= ∅).

Definition 1. Let k ∈ N, (E, ρ) be a metric space, U 6= ∅ be a set, D0 ⊂ D ⊂ EU and V ⊂ RUk
+

be nonempty, S : V → RU
+, and F1,F2 : D → EUk

. The equation

(F1ψ)(t1, . . . , tk) = (F2ψ)(t1, . . . , tk) (4)

is said to be S-stable in D0 if, for any ψ ∈ D0 and δ ∈ V with

ρ((F1ψ)(t1, . . . , tk), (F2ψ)(t1, . . . , tk)) ≤ δ(t1, . . . , tk), t1, . . . , tk ∈ U,

there is a mapping φ ∈ D satisfying Equation (4) for all t1, . . . , tk ∈ U and such that ρ(φ(t), ψ(t)) ≤
(Sδ)(t) for t ∈ U.

If (Sδ)(t) = 0 for δ ∈ V and t ∈ U, then we say that the equation is hyperstable in D0.

Note that Equation (4) is the Cauchy functional Equation (3) with k = 2, U = W,
(F1α)(s, t) = α(s + t) and (F2α)(s, t) = α(s) + α(t) for α ∈ D and s, t ∈ U = W.

Clearly, Theorem 1 states that for each real number r 6= 1, the Cauchy Equation (3) is
S-stable in D0 = D = BW with S : V → RU

+ defined by

(Sδη)(x) :=
1

|2− 2r| δη(x, x) =
η‖x‖r

|1− 2r−1| , δη ∈ V , x ∈W,

where
δη(x, y) = η(‖x‖r + ‖y‖r), x, y ∈W, η ∈ R+,

and
V = {δη ∈ RW×W

+ : η ∈ R+}.

However, if r < 0, then a stronger property holds, i.e., the already mentioned result
in [12] is valid, which states that Equation (3) is hyperstable in D0 = BW (that is every
h : W → B satisfying (1) is additive).

Very recently, a more precise outcome (but only for mappings taking values in the
set of reals R) has been proven in [14] using the technique of the Banach limit (as in [15]).
Namely, the following has been obtained in Theorem 8 of [14] (cf. Remark 7 of [14]).

Theorem 2. Let W be a normed space, W0 := W \ {0}, r, µ, ξ ∈ R, r 6= 1, and µ ≤ ξ. Assume
that h : W → R satisfies the inequality

µ(‖x‖r + ‖y‖r) ≤ h(x + y)− h(x)− h(y) ≤ ξ(‖x‖r + ‖y‖r), x, y ∈W0.
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Then there is a unique additive mapping α : W → R such that, in the case r < 1,

µ

1− 2r−1 ‖x‖
r ≤ α(x)− h(x) ≤ ξ

1− 2r−1 ‖x‖
r, x ∈W0, (5)

and, in the case r > 1,

µ

2r−1 − 1
‖x‖r ≤ h(x)− α(x) ≤ ξ

2r−1 − 1
‖x‖r, x ∈W0. (6)

Moreover, if h is continuous at some point, then α is continuous.

Certainly, condition (1) can be replaced by various other inequalities of the form

‖h(x + y)− h(x)− h(y)‖ ≤ φ(x, y), x, y ∈W, (7)

and we should mention here that, for instance, the inequality

‖h(x + y)− h(x)− h(y)‖ ≤ η‖x‖p‖y‖q, x, y ∈W \ {0}, (8)

with p, q ∈ R and η > 0, was studied in [16,17] (see also [18]). Moreover, the stability of
numerous other equations has been investigated in various ways, and we refer to [3–5,19]
for more details and examples.

Very roughly, we can say (see Definition 1) that an equation is Ulam stable if, for every
mapping fulfilling the equation approximately (in some sense), there is an accurate solution
of the equation that is close to this mapping (in some way).

Clearly, the notions of an approximate solution and of the closeness of two mappings
can be understood in different ways. Therefore, considering the Ulam stability for various
ways of measuring distance makes sense. One non-classical distance-measuring method
can be introduced by the concept of 2-norms, which was proposed in 1964 by Gähler
(see [20,21]). Let us mention that a natural generalization of this concept is n-normed space
(see, e.g., [22,23]), i.e., the 2-normed space is n-normed space with n = 2. However, in this
article, we limit ourselves only to the case of 2-normed spaces due to the large amount of
material we present.

In this paper, we complement the content of [23], where the (less complicated) results
from [24–39] have been surveyed. Here, we present and discuss the (more involved)
outcomes on Ulam stability in 2-normed spaces provided in [40–58].

Some information on the solutions to functional equations considered in this paper
can be found in monographs [59–62].

Let us also add here that in this paper, R denotes a set of real numbers, R0 := R \ {0}, Q
denotes a set of rational numbers, N stands for the set of positive integers and N0 := N∪ {0}.

2. 2-Normed Spaces

The notion of 2-normed spaces was introduced by Gähler (see, e.g., [21,63]). We
present this concept in a somewhat generalized form.

To avoid any ambiguities, let us start with definitions of the notions that we use.

Definition 2. Given a field K, we say that a mapping | · | : K→ R+ is a valuation in K if, for all
a, b ∈ K,

(a) |a| = 0 if and only if a = 0;
(b) |ab| = |a| |b|;
(c) |a + b| ≤ |a|+ |b|.

A valuation | · | in field K is nontrivial if |a| 6∈ {0, 1} for some a ∈ K.
If condition (c) is replaced by the following stronger inequality

(c’) |a + b| ≤ max {|a|, |b|},
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then we say that the valuation is non-Archimedean.

Definition 3. Let K be a field with a nontrivial valuation | · | : K→ R+ and X be a linear space
over K with a dimension greater than 1.

We say (cf., e.g., [21,63]) that a mapping ‖·, ·‖ : X× X → R+ is a 2-norm in X if, for every
x1, x2, x3 ∈ X and β ∈ K, the following four conditions are fulfilled:

(1) ‖x1, x2‖ = 0 if and only if x1 and x2 are linearly dependent;
(2) ‖x1, x2‖ = ‖x2, x1‖;
(3) ‖x1, x2 + x3‖ ≤ ‖x1, x2‖+ ‖x1, x3‖;
(4) ‖βx1, x2‖ = |β|‖x1, x2‖.

If inequality (3) is replaced by the subsequent stronger condition

(3’) ‖x1, x2 + x3‖ ≤ max{‖x1, x2‖, ‖x1, x3‖},

then we say that the 2-norm is non-Archimedean.
Let ‖·, ·‖ : X× X → R+ be a 2-norm in X. Then we say that a pair (X, ‖·, ·‖) is a 2-normed

space. If K is the field of reals R and the valuation in K is the usual absolute value, then we say
that (X, ‖·, ·‖) is a real 2-normed space; if K is the field of complex numbers C and the valuation in
K is the usual complex modulus, then we say that (X, ‖·, ·‖) is a complex 2-normed space.

Definition 4. A sequence (xn)n∈N in a 2-normed space X is a Cauchy sequence if there exist
two linearly independent vectors z1, z2 ∈ X with

lim
n,m→∞

‖xn − xm, zi‖ = 0, i = 1, 2.

A sequence (xn)n∈N in a linear 2-normed space X is convergent if there is a vector x ∈ X and
two linearly independent vectors z1, z2 ∈ X, such that

lim
n→∞

‖xn − x, zi‖ = 0, i = 1, 2;

such vector x is called a limit of (xn)n∈N and we denote it by limn→∞ xn.

2-Banach space is a 2-normed space in which every Cauchy sequence is convergent.
Further, it should be remarked that in a 2-normed space, a limit of a sequence is unique.

Next, the following property can be easily proven.

Lemma 1. Let X be a 2-normed space, x, y, z ∈ X, and the vectors y and z be linearly independent.
If

‖x, y‖ = 0 = ‖x, z‖,

then x = 0.

From the Cauchy–Schwarz inequality, it easily follows that if X is a real linear space
with a dimension greater than 1, and 〈·, ·〉 is an inner product in X, then the mapping
‖·, ·‖ : X2 → R+ given by

‖x, y‖ :=
√
‖x‖2‖y‖2 − 〈x, y〉2 , x, y ∈ X, (9)

fulfills conditions (1)–(4), i.e., it is a 2-norm in X. Further (see Proposition 2.3 of [41]), if
(X, 〈·, ·〉) is a real Hilbert space, then X is a 2-Banach space (with the 2-norm defined by (9)).

If an inner product in R2 is given by: 〈(x1, x2), (y1, y2)〉 = x1y1 + x2y2 for (x1, x2),
(y1, y2) ∈ R2, then the 2-norm depicted by formula (9) has the following form:

‖(x1, x2), (y1, y2)‖ := |x1y2 − x2y1|, (x1, x2), (y1, y2) ∈ R2. (10)



Symmetry 2022, 14, 1365 5 of 28

Finally, observe that the expressions

c‖·, ·‖1 + d‖·, ·‖2, min {c‖·, ·‖1, d‖·, ·‖2}, max {c‖·, ·‖1, d‖·, ·‖2}

define 2-norms for any two 2-norms ‖·, ·‖1 and ‖·, ·‖2 in a real linear space X and every
positive reals c, d.

3. Stability in 2-Normed Spaces

An analogue of Definition 1 for 2-normed spaces could be formulated as follows.

Definition 5. Let k ∈ N, (Y, ‖·, ·‖) be a 2-normed space, U be a nonempty set, B ⊂ RUk×Y and
D0 ⊂ D ⊂ YU be nonempty, S : B → RU×Y, and F1,F2 : D → YUk

. Then Equation (4) is said
to be S-stable in D0 if, for any ψ ∈ D0 and δ ∈ B such that

‖(F1ψ)(t1, . . . , tk)− (F2ψ)(t1, . . . , tk), y‖ ≤ δ(t1, . . . , tk, y), t1, . . . , tk ∈ U, y ∈ Y,

there is φ ∈ D satisfying (4) for all t1, . . . , tk ∈ U with

‖φ(t)− ψ(t), y‖ ≤ (Sδ)(t, y), t ∈ U, y ∈ Y.

If (Sδ)(t, y) = 0 for δ ∈ V , t ∈ U and y ∈ Y, then we say that the equation is hyperstable
in D0.

In this section, we present the Ulam stability results in 2-normed spaces that have
been investigated for various interesting equations. In what follows, (Y, ‖·, ·‖) is always a
real 2-Banach space and (Y1, ‖·, ·‖) is a real 2-normed space.

We start with a result from [40] concerning the stability of a modification of the Cauchy
functional equation, which is called the Pexider equation. This result is not actually covered
by Definition 5, but it is easy to reformulate the definition accordingly. The outcome in [40]
can be stated as follows (we reformulate it but preserve the assumptions given in [40]).

Theorem 3. Let X be a normed linear space, k ∈ N, k > 1, and ϕ : X × X × X → R+ be a
function such that, for all x, y, z ∈ X,

lim
n→∞

1
kn ϕ(knx, kny, z) = 0, (11)

M̃k(x, z) :=
∞

∑
n=0

k−1

∑
i=1

M(knx, iknx, z)
kn < ∞, (12)

where M(x, y, z) := ϕ(x, y, z) + ϕ(0, y, z) + ϕ(x, 0, z). Let f , g, h : X → Y be mappings with

f (0) = g(0) = h(0) = 0, (13)

‖ f (x + y)− g(x)− h(y), z‖ ≤ ϕ(x, y, z), x, y, z ∈ X. (14)

Then there is a unique additive mapping Ak : X → Y such that

‖ f (x)− Ak(x), z‖ ≤ 1
k

M̃k(x, z), x, z ∈ X.

Let us remind here that the additivity of Ak means that

Ak(x + y) = Ak(x) + Ak(y), x, y ∈ X.
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Remark 1. First, it is clear that if Theorem 3 is to make sense, then either we must have X = Y,
or (14) should have the form

‖ f (x + y)− g(x)− h(y), z‖ ≤ ϕ(x, y, z), x, y ∈ X, z ∈ Y, (15)

with ϕ : X× X×Y → [0,+∞) and (11) and (12) should be assumed for all x, y ∈ X and z ∈ Y.
Further, from the proof given in [40], it follows that the norm in X is not necessary; it is enough to
assume that, e.g., X is a real linear space.

Below, we show that under a very weak assumption on ϕ (that is somewhat comple-
mentary to (11)), we obtain a result similar to Theorem 3, but with a better statement. To
this end, we need the following hypothesis.

(L) (X,+) is a groupoid (which is not necessarily commutative), Y0 is a linear subspace
of Y1, ϕ : X2 × Y0 → R+ and, for every x, y ∈ X, there exist linearly independent
z1, z2 ∈ Y0 and two real sequences

(
ξ1

n
)

n∈N,
(
ξ2

n
)

n∈N such that ξ i
n 6= 0 for i = 1, 2,

n ∈ N, and

lim
n→∞

1
ξ i

n
ϕ(x, y, ξ i

nzi) = 0, i = 1, 2. (16)

Now we are in a position to prove the following.

Theorem 4. Let hypothesis (L) be valid and f , g, h : X → Y1 fulfill the inequality

‖ f (x + y)− g(x)− h(y), z‖ ≤ ϕ(x, y, z), x, y ∈ X, z ∈ Y0. (17)

Then, f , g, h satisfy the Pexider equation

f (x + y) = g(x) + h(y), x, y ∈ X. (18)

Moreover, if (X,+) has a neutral element denoted by 0, then there exist a unique additive
mapping A : X → Y1 and unique u, v ∈ Y1 such that

f (x) = A(x) + u + v, g(x) = A(x) + u, (19)

h(x) = A(x) + v, x ∈ X.

In the particular case where (13) holds, we have f = g = h = A.

Proof. Fix x, y ∈ X. Then, according to hypothesis (L), there exist linearly independent
z1, z2 ∈ Y0 and two real sequences

(
ξ1

n
)

n∈N,
(
ξ2

n
)

n∈N such that ξ i
n 6= 0 for i = 1, 2, n ∈ N,

and condition (16) holds. Hence, by (17),

‖ f (x + y)− g(x)− h(y), ξ i
nzi‖ ≤ ϕ(x, y, ξ i

nzi), n ∈ N, i = 1, 2,

which yields

‖ f (x + y)− g(x)− h(y), zi‖ ≤
1
|ξ i

n|
ϕ(x, y, ξ i

nzi), n ∈ N, i = 1, 2. (20)

Letting n→ ∞ in (20), we get

‖ f (x + y)− g(x)− h(y), zi‖ = 0, i = 1, 2.

Since z1 and z2 are linearly independent, this yields f (x + y) = g(x) + h(y) (see Lemma 1).
Thus we have shown that f , g, h fulfill the Pexider equation

f (x + y) = g(x) + h(y). (21)
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The remaining part of the reasoning is very well known (see, e.g., [59,60]), but for the
convenience of readers we present it.

First, putting y = 0 and next x = 0 in (21), we get f (x) = g(x) + h(0) for x ∈ X and
f (y) = g(0) + h(y) for y ∈ X, which implies that

g(x) = f (x)− h(0), h(x) = f (x)− g(0), x ∈ X. (22)

Therefore, now (21) takes the form

f (x + y) = f (x)− h(0) + f (y)− g(0), x, y ∈ X, (23)

whence

f (x + y)− g(0)− h(0) = f (x)− g(0)− h(0) + f (y)− g(0)− h(0), x, y ∈ X. (24)

Define A : X → Y1 by A(x) = f (x) − g(0) − h(0) for x ∈ X. Then, by (24), A is
additive and it is easily seen that (19) holds with u = g(0) and v = h(0). It remains to show
the uniqueness of u, v and A.

Therefore, suppose that u0, v0 ∈ X and additive A0 : X → Y1 are such that

f (x) = A0(x) + u0 + v0, g(x) = A0(x) + u0, (25)

h(x) = A0(x) + v0, x ∈ X.

Then A(0) = 0 = A0(0) and A(x) + u = g(x) = A0(x) + u0 for x ∈ X, whence with
x = 0 we get u = u0 and consequently A = A0. Analogously we obtain v = v0.

Finally, if (13) holds, then from (19) we get f = g = h = A, because u = h(0) and
v = g(0).

In general, condition (16) cannot be derived from (11), but the next remark shows that
hypothesis (L) holds for many natural examples of ϕ.

Remark 2. It is easy to check that given linearly independent vectors y1, y2 ∈ Y1, we can define a
norm ‖ · ‖0 in Y1 by

‖z‖0 := ‖y1, z‖+ ‖y2, z‖, z ∈ Y1.

Thus a 2-norm in Y1 generates a very large family of norms in Y1.
Let X and Y0 be as in hypothesis (L). Define ϕ : X2 ×Y0 → R+ by

ϕ(x, y, z) = ψ0(x, y)‖z‖r
0, x, y ∈ X, z ∈ Y0,

where ‖ · ‖0 is a norm in Y1, ψ0 : X2 → R+ is an arbitrary given mapping, r ∈ R+ and r 6= 1.
Then ϕ satisfies hypothesis (L). Moreover, if X = Y1, then hypothesis (L) is also fulfilled by ϕ given
by one of the following two formulas:

ϕ(x, y, z) = ψ1(x, y)‖x, z‖r + ψ2(x, y)‖y, z‖r, x, y ∈ X, z ∈ Y0,

ϕ(x, y, z) = ψ1(x, y)‖x, z‖p‖y, z‖q, x, y ∈ X, z ∈ Y0,

where ψ1, ψ2 : X2 → R+ are arbitrary given mappings, p, q, r ∈ R+, r 6= 1 and p + q 6= 1.
However, there also exist numerous natural examples of ϕ that do not satisfy hypothesis (L)

(with Y1 = Y) but fulfill the assumptions of Theorem 3 (the corrected versions of them). For instance,
let ‖ · ‖0 be a norm in Y and

ϕ(x, y, z) = ψ(x, y)‖z‖0, x, y ∈ X, z ∈ Y, (26)

with arbitrary given ψ : X2 → R+. Then clearly, (L) does not hold for such ϕ with Y0 = Y1 = Y,
and for

ψ(x, y) = c1‖x‖r
1 + c2‖y‖r

2, x, y ∈ X,
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or
ψ(x, y) = c1‖x‖

p
1‖y‖

q
2, x, y ∈ X,

with some c1, c2, p, q, r ∈ R+, r < 1, p + q < 1 and some norms ‖ · ‖1 and ‖ · ‖2 in X = Y,
mapping ϕ given by (26) satisfies conditions (11) and (12) for all x, y, z ∈ X.

A useful fixed point theorem for 2-Banach spaces has been proven in [41], and one of
its direct applications is the Ulam stability result for a very general functional equation
with a single variable. To present it, we need the following four hypotheses.

(H1) S is a nonempty set, Y0 ⊂ Y contains two linearly independent vectors, j ∈ N,
fi : S→ S, gi : Y0 → Y0 and Li : S×Y0 → R+ for i = 1, . . . , j;

(H2) Λ : R+
S×Y0 → R+

S×Y0 is an operator defined by

Λδ(x, y) :=
j

∑
i=1

Li(x, y)δ( fi(x), gi(y)), δ ∈ R+
S×Y0 , x ∈ S, y ∈ Y0. (27)

(H3) Ψ : S×Y j → Y satisfies the inequality

‖Ψ(x, y1, ..., yj)−Ψ(x, z1, ..., zj), y‖ ≤
j

∑
i=1

Li(x, y)‖yi − zi, gi(y)‖ (28)

for any x ∈ S, y ∈ Y0 and (y1, ..., yj), (z1, ..., zj) ∈ Y j;

(H4) T : YS → YS is defined by

(Tϕ)(x) := Ψ(x, ϕ( f1(x)), ..., ϕ( f j(x))), ϕ ∈ YS, x ∈ S. (29)

Moreover, if Φ is a mapping from a nonempty set A into A, then Φn denotes the n-th
iterate of Φ for each n ∈ N, i.e., Φ0(x) = x for all x ∈ A and Φn(x) = Φ(Φn−1(x)) for all
x ∈ A and n ∈ N.

Now, we are in a position to present the subsequent result from Theorem 2 of [41].

Theorem 5. Let hypotheses (H1)–(H4) be fulfilled, ε : S×Y0 → R+ satisfy

ε∗(x, y) :=
∞

∑
m=0

(Λmε)(x, y) < ∞, x ∈ S, y ∈ Y0, (30)

and ϕ : S→ Y be such that

‖ϕ(x)−Ψ(x, ϕ( f1(x)), ..., ϕ( f j(x))), y‖ ≤ ε(x, y), x ∈ S, y ∈ Y0. (31)

Then, for every x ∈ S the limit
ψ(x) = lim

m→∞
(Tm ϕ)(x) (32)

exists and the function ψ : S → Y, defined in this way, is the unique solution of the functional
equation

Ψ(x, ψ( f1(x)), ..., ψ( f j(x))) = ψ(x), x ∈ S, (33)

such that
‖ϕ(x)− ψ(x), y‖ ≤ ε∗(x, y), x ∈ S, y ∈ Y0. (34)

However, arguing analogously as in the first part of the proof of Theorem 4, under
an assumption that it is a modified version of hypothesis (L), we can easily obtain the
following complementary hyperstability result.
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Theorem 6. Let S be a nonempty set, Y0 ⊂ Y1 contains two linearly independent vectors, j ∈ N,
Ψ : S× Y j

1 → Y1, f1, . . . , f j : S → S, and ε : S× Y1 → R+. Assume that for every x ∈ X there
exist linearly independent z1, z2 ∈ Y0 and two real sequences

(
ξ1

n
)

n∈N,
(
ξ2

n
)

n∈N such that ξ i
n 6= 0

for i = 1, 2, n ∈ N, and

lim
n→∞

1
ξ i

n
ε(x, ξ i

nzi) = 0, i = 1, 2. (35)

If ψ : S→ Y1 satisfies the inequality

‖ψ(x)−Ψ(x, ψ( f1(x)), ..., ψ( f j(x))), y‖ ≤ ε(x, y), x ∈ S, y ∈ Y0, (36)

then (33) holds.

However the main stability results in [41] (motivated by the approach proposed in [64])
concerns the Cauchy equation

f (x + y) = f (x) + f (y)

and can be rewritten as follows.

Theorem 7. Assume that (G,+) is a commutative group, Aut G denotes the set of all automor-
phisms of (G,+), G0 := G \ {0} 6= ∅, Y0 ⊂ Y contains two linearly independent vectors,
H : G2

0 ×Y0 → R+,

K :=
{

u ∈ Aut G : u′ ∈ Aut G and λ(u′) + λ(u) < 1
}
6= ∅,

and V ⊂ K is nonempty and commutating (i.e., ξ ◦ η = ξ ◦ η for every ξ ◦ η ∈ V), where, for any
u ∈ Aut G, u′(x) = x− u(x) for x ∈ G and

λ(u) := inf
{

t ∈ R+ : H(u(x), u(y), z) ≤ tH(x, y, z) for x, y ∈ G0, z ∈ Y0

}
.

Let f : G → Y satisfy

‖ f (x + y)− f (x)− f (y), z‖ ≤ H(x, y, z), x, y ∈ G0, z ∈ Y0. (37)

Then there is a unique additive mapping T : G → Y such that

‖ f (x)− T(x), z‖ ≤ HV (x, z), x ∈ G0, z ∈ Y0,

where

HV (x, z) := inf
{H(u′(x), u(x), z)

1− λ(u)− λ(u′)
: u ∈ V

}
, x ∈ G0, z ∈ Y0.

The following hyperstability result, given in Corollary 6.1 of [41], can be easily derived
from Theorem 7.

Corollary 1. Let G, G0, Y0 and H be as in Theorem 7. Assume that there is a nonempty and
commutating V ⊂ K such that

inf {H(u′x, ux, z) : u ∈ V} = 0, x ∈ G0, z ∈ Y0, (38)

and
sup {λ(u′) + λ(u) : u ∈ V} < 1. (39)

Then each function f : G → Y fulfilling inequality (37) is additive.
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In the same way, as in the first part of the proof of Theorem 4, we can obtain the
subsequent outcome that is complementary to Corollary 1.

Corollary 2. Let hypothesis (L) be valid and D ⊂ X2 be nonempty. Assume that F : Y2
1 → Y1 and

f : X → Y1 satisfy

‖ f (x + y)− F( f (x), f (y)), z‖ ≤ ϕ(x, y, z), (x, y) ∈ D, z ∈ Y0. (40)

Then
f (x + y) = F( f (x), f (y)), (x, y) ∈ D. (41)

A somewhat different and more involved result on stability of the Cauchy equation has
been obtained in [42], for functions mapping a nonempty subset X of an abelian semigroup
(S,+) into Y, under the assumption that there is k0 ∈ N, k0 > 1, with

mx, mx + 1 ∈ X, x ∈ X, m ∈ N0 := {kn
0 : n ∈ N}, (42)

where 1x = x and (n+ 1)x = nx + x for x ∈ S, n ∈ N. We present it below (the result in [42]
has been formulated under an assumption on X a bit weaker than (42), but actually (42) is
necessary there).

To this end, we write Ry := {ay : a ∈ R} for every y ∈ Y. Let A1, A2 : S → Y be
additive mappings (i.e., Ai(x + z) = Ai(x) + Ai(z) for every x, z ∈ S), and C, D : Y → Y be
such that the set D−1(Y \Ru) ∩ C−1(Y \Rv) contains two linearly independent vectors for
every u, v ∈ Y. Next, let c, d ∈ R+, p, q ∈ (−∞, 0), and ψ : X2×Y → R satisfy the condition

ψ∗m,i(x, y) =
∞

∑
n=0

(Λn
mψm,i)(x, y) < ∞, x ∈ X, y ∈ Y, i = 1, 2, m ∈ N0, m > κ, (43)

with some κ ∈ N, where ψm,1(x, y) := ψ(x, mx, y), ψm,2(x, y) := ψ(mx, x, y), Λm : RX×Y
+ →

RX×Y
+ is given by

(Λmδ)(x, y) := δ((m + 1)x, y) + δ(mx, y), x ∈ X, y ∈ Y, δ ∈ RX×Y
+ ,

and Λ0
mδ = δ, Λn

m = Λm ◦Λn−1
m for δ ∈ RX×Y

+ , n ∈ N.
Define Ψ : X2 ×Y → R by

Ψ(x1, x2, y) := c‖A1(x1), C(y)‖p + d‖A2(x2), D(y)‖q

when

‖A1(x1), C(y)‖ · ‖A2(x2), D(y)‖ 6= 0,

and Ψ(x1, x2, y) := ψ(x1, x2, y) otherwise.
The main result in [42] reads as follows.

Theorem 8. Assume that f : X → Y satisfies

‖ f (x1 + x2)− f (x1)− f (x2), y‖ ≤ Ψ(x1, x2, y)

for all y ∈ Y and for all x1, x2 ∈ X with x1 + x2 ∈ X. Then there is a unique h : X → Y such that

h(x1 + x2) = h(x1) + h(x2), x1, x2 ∈ X, x1 + x2 ∈ X,

and

‖ f (x)− h(x), y‖ ≤ min
{

c‖A1(x), C(y)‖p, d‖A2(x), D(y)‖q
}



Symmetry 2022, 14, 1365 11 of 28

for every x ∈ X and every y ∈ Y with ‖A1(x), C(y)‖ · ‖A2(x), D(y)‖ 6= 0.

Moreover,

‖ f (x)− h(x), y‖ ≤ inf
m∈N0

ψ∗m,0(x, y)

for every x ∈ X and for every y ∈ Y with ‖A1(x), C(y)‖ · ‖A2(x), D(y)‖ = 0, where ψ∗m,0(x, y) :=
min

{
ψ∗m,1(x, y), ψ∗m,2(x, y)

}
and ψ∗m,i is defined by (43).

In [43], the authors applied the fixed point theorem from [41] to investigate, in the real
2-Banach spaces, the stability of a generalized Cauchy functional equation. The main result
in [43] is somewhat similar to Theorem 7 (Aut G and u′ have the same meaning) and can
be written as follows.

Theorem 9. Let m, l ∈ N, (G,+) be a commutative group such that G0 := G \ {0} 6= ∅ and
mx 6= 0, lx 6= 0 for x ∈ G0, Y0 be a subset of Y containing two linearly independent vectors, and
h : G0 × G0 ×Y0 → R+ be such that

M(G) := {u ∈ Aut G : u′ ∈ Aut G and ms(u′) + ls(u) < 1} 6= ∅

where

s(u) := inf{t ∈ R+ : h(u(x), u(y), z) ≤ t h(x, y, z) for all x, y ∈ G0, z ∈ Y0}

for u ∈ Aut G. Suppose that f : G → Y fulfills the inequality

‖ f (mx + ly)−m f (x)− l f (y), z‖ ≤ h(mx, ly, z)

for all x, y ∈ G0 and z ∈ Y0. Then, for any nonempty V ⊂ M(G) with u ◦ v = v ◦ u for u, v ∈ V ,
there is a unique T : G → Y such that

f (mx + ly) = m f (x) + l f (y), x, y ∈ G0, mx + ly ∈ G0, (44)

‖ f (x)− T(x), z‖ ≤ K(x, z), x ∈ G0, z ∈ Y0,

where

K(x, z) := inf
{h(x− lu(x), u(x), z)

1−ms(u′)− ls(u)
: u ∈ V

}
. (45)

Actually, Theorem 9 has been formulated in Theorem 3.1 of [43] in a way suggesting
that f satisfies

f (mx + ly) = m f (x) + l f (y)

for all x, y ∈ G, or at least for all x, y ∈ G0; but from the proof of Theorem 3.1 of [43] it
follows that only (44) has been shown there. Moreover, we have corrected a small mistake
in the denominator of the fraction in (45).

Clearly, under hypothesis (L), we can derive from Corollary 2 a result that comple-
ments Theorem 9.

In [44], the author also used the fixed point theorem from [41] to investigate the Ulam
stability of the following radical functional equation

f
(

4
√

x4 + y4
)
= f (x) + f (y), x, y ∈ R. (46)

For information on solutions to equations of such type we refer to [65].
The stability result in Theorem 4.1 of [44] is following (we preserve its form as in [44]).
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Theorem 10. Assume that h1, h2 : R2 → R+ are such that

M0 := {n ∈ N : an := s1(n4)s2(n4) + s1(1 + n4)s2(1 + n4) < 1} 6= ∅,

where, for i = 1, 2 and n ∈ N,

si(n) := inf{t ∈ R+ : hi(nx4, z) ≤ thi(x4, z) for x, z ∈ R}.

Suppose that f : R→ Y satisfies the inequality∥∥∥ f
(

4
√

x4 + y4
)
− f (x)− f (y), z

∥∥∥ ≤ h1(x4, z)h2(y4, z), x, y, z ∈ R. (47)

Then there exists a unique additive function T : R→ Y such that

‖ f (x)− T(x4), z‖ ≤ s0h1(x4, z)h2(y4, z), x, z ∈ R,

where

s0 := inf
{ s2(n4)

1− an
: n ∈ M0

}
.

It is easily seen that there are several small mistakes in the theorem. Namely, the
domains of h1, h2 should be R×Y, and z should belong to Y everywhere and not to R.

The other stability result in Theorem 4.2 of [44] is analogous (with the same mistakes,
which also occur in Corollaries 5.1–5.3 in [44]), but with h1(x4, z)h2(y4, z) in (47) replaced by
h(x4, z) + h(y4, z) with some h : R2 → R satisfying similar assumptions as hi in Theorem 10.

Moreover, in this case, under hypothesis (L), we can derive from Corollary 2 a result
that complements Theorem 10 and Theorem 4.2 of [44] (i.e., the corrected versions of them).

In [45], the authors investigated the stability of the functional equations

h
(√

x2 + y2
)
= h(x) + h(y), (48)

h
(√

x2 + y2
)
+ h
(√
|x2 − y2|

)
= 2h(x) + 2h(y), (49)

for function h : R → Y. They have proposed several interesting outcomes. We present
below only one example of them (Theorem 3.2 of [45]) in a bit modified form to increase its
readability. The other results in [45] are of similar type.

Theorem 11. Let ` ∈ {−1, 1}, φ : R3 → R+ be such that

φ̂(x, z) :=
∞

∑
i= 1

2 (1−`)

√
2 −3`i

(
φ
(√

2 lix,
√

2 lix,
√

2 liz
)
+ φ

(√
2 li+1x, 0,

√
2 liz

)
(50)

+
1 + `

2
φ
(
0, 0,
√

2 liz
))

< ∞

for x, z ∈ R,

lim
n→∞

1
2`n φ

(√
2 lnx,

√
2 lny, z

)
= 0, x, y, z ∈ R, (51)

and g : R→ Y satisfy the condition

g(αx) = αg(x), α ∈ R. (52)
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Assume that f : R→ Y satisfies∥∥∥ f
(√

x2 + y2
)
− f (x)− f (y), g(z)

∥∥∥ ≤ φ(x, y, z), x, y, z ∈ R. (53)

Then the limit
h(x) := lim

n→∞

1
2`n f

(√
2 `nx

)
exists for every x ∈ R and h : R→ Y is a unique mapping satisfying Equation (48) for all x, y ∈ R
and the inequality

‖ f (x)− h(x), g(z)‖ ≤ 1
2

φ̂(x, z), x, z ∈ R. (54)

Unfortunately, the assumptions on g are not sufficient in this theorem. Namely, it is
necessary for the set g(R) to include at least two linearly independent vectors because
otherwise, the statement is not true. In fact, if g(R) ⊂ Rv with some v ∈ Y, then for every
mapping f : R→ Y with f (R) ⊂ Rv condition (53) holds with φ(x, y, u) ≡ 0, while f does
not necessarily satisfy (48) for all x, y ∈ R (in this case φ̂(x, z) ≡ 0, whence (54) means that
f = h).

Further, assumption (52) with a fixed x ∈ R \ {0} (it is not explained in [45] what is x
in this assumption) simply means that g(α) = α 1

x g(x) for all α ∈ R, that is g(X) ⊂ Rv with
v := 1

x g(x) ∈ Y.
We should add here that the main reasoning in the proof of Theorem 3.2 of [45] can be

modified in such a way that assumption (52) is superfluous; and then the final outcome is
similar to Theorem 11, but with some formulas modified. We will publish this modified
version (and some complementary results) in a separate article.

Moreover, note that under hypothesis (L), we can derive from Corollary 2 a result that
complements Theorem 11 (in this modified form).

The other main stability outcomes in [45] for 2-normed spaces contain similar imper-
fections.

The other functional equations, for which stability has been investigated in [45] in
2-normed spaces (with similar doubts), are

h
(√

xx∗ + yy∗
)
= h(x) + h(y), (55)

h
(√

xx∗ + yy∗
)
+ h
(√

xx∗ − yy∗
)
= 2h(x) + 2h(y), (56)

for mappings h from a C∗-algebraA into Y, where
√

z for z ∈ A denotes the unique positive
element u ∈ A with u2 = z (Equation (56) is considered for such x, y ∈ A that xx∗ − yy∗ is
a positive element).

In [46], the authors have investigated the stability of the functional equation

F

(
p

√√√√ k

∑
i=1

xp
i

)
=

k

∑
i=1

F(xi), x1, . . . , xk ∈ R, (57)

for functions F : R → Y, where p, k ∈ N \ {1} are fixed. The first main stability result in
Theorem 3.1 of [46] reads as follows (some typos made in [46] have been corrected).

Theorem 12. Let h1, . . . , hk : R2 → R+ be such that

U :=
{

n ∈ N : αn :=
k

∏
i=1

λi

(
(k− 1)np + 1

)
+ (k− 1)

k

∏
i=1

λi(np) < 1
}
6= ∅
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where
λi(n) := inf

{
t ∈ R+ : hi(nxp, z) ≤ t hi(xp, z), x, z ∈ R

}
, n ∈ N.

Assume that g : R→ Y is surjective and f : R→ Y satisfies

∥∥∥∥∥ f

(
p

√√√√ k

∑
i=1

xp
i

)
−

k

∑
i=1

f (xi), g(z)

∥∥∥∥∥ (58)

≤
k

∏
i=1

hi(xp
i , z), x1, . . . , xk, z ∈ R.

Then there exists a unique solution F : R→ Y of Equation (57) such that

‖ f (x)− F(x), g(z)‖ ≤ λ0

k

∏
i=1

hi(xp, z), x, z ∈ R,

where

λ0 := inf
n∈U

{ ∏k−1
i=1 λi(np)

1−∏k
i=1 λi((k− 1)np + 1)− (k− 1)∏k

i=1 λi(np)

}
.

Below we show that for k > 2, with a short reasoning, we can obtain an improved
version of Theorem 12. Namely, we have the following.

Theorem 13. Let k > 2 and h1, . . . , hk : R2 → R+ be such that there is l ∈ N with 1 < l ≤ k
and

Ul :=
{

n ∈ N : αn :=
l

∏
i=1

λi

(
(l − 1)np + 1

)
+ (k− 1)

l

∏
i=1

λi(np) < 1
}
6= ∅,

where λi(n) is defined as in Theorem 12. Assume that g : R → Y is surjective and f : R → Y
fulfills inequality (58). Then f is a solution to Equation (57).

Proof. Since Ul 6= ∅, there is n ∈ N with αn < 1, which means that λi(np) < 1 for some
i ∈ {1, . . . , l}.

Suppose that hi(0, z) > 0 for some z ∈ R. Then, taking x = 0 in the definition of λi(n),
we see that we must have λi(n) ≥ 1, which is a contradiction. Thus we have shown that
hi(0, z) = 0 for z ∈ R. Without a loss of generality, we can assume that i = 1.

Now taking x1 = . . . = xk−2 = 0 in (58) we get∥∥∥∥∥ f

(
p

√√√√ k

∑
i=k−1

xp
i

)
−

k

∑
i=k−1

f (xi), g(z)

∥∥∥∥∥ ≤ 0, x2, z ∈ R.

As g is surjective, this means that∥∥∥∥∥ f

(
p

√√√√ k

∑
i=k−1

xp
i

)
−

k

∑
i=k−1

f (xi), u

∥∥∥∥∥ = 0, xk−1, xk ∈ R, u ∈ Y, (59)

and consequently (see Lemma 1)

f
(

p
√

xp
1 + xp

2

)
= f (x1) + f (x2), x1, x2 ∈ R. (60)

Since Equations (57) and (60) have the same solutions in the class of functions f : R→ Y
(see Theorem 2.1 of [44]), this completes the proof.
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In Theorem 3.2 of [46], the authors obtained an outcome that is similar to Theorem 12
and reads as follows.

Theorem 14. Let h : R2 → R+ be such that

U :=
{

n ∈ N : βn := λ
(
(k− 1)np + 1

)
+ (k− 1)λ(np) < 1

}
6= ∅,

where

λ(n) := inf
{

t ∈ R+ : h(nxp, z) ≤ t h(xp, z) for x, z ∈ R
}

, n ∈ N. (61)

Assume that g : R→ Y is surjective and f : R→ Y satisfies

∥∥∥∥∥ f

(
p

√√√√ k

∑
i=1

xp
i

)
−

k

∑
i=1

f (xi), g(z)

∥∥∥∥∥ ≤ k

∑
i=1

h(xp
i , z), x1, . . . , xk, z ∈ R. (62)

Then there exists a unique solution F : R→ Y of Equation (57) such that

‖ f (x)− F(x), g(z)‖ ≤ ηh(xp, z), x, z ∈ R,

where

η := inf
n∈U

{ 1 + (k− 1)λ(np)

1− λ((k− 1)np + 1)− (k− 1)λ(np)

}
.

Below we show that for k > 2, by additional reasoning, we can obtain the following
improved version of Theorem 14.

Theorem 15. Let h : R2 → R+ be such that there is l ∈ N with 1 < l ≤ k and

Ul :=
{

n ∈ N : βn := λ
(
(l − 1)np + 1

)
+ (l − 1)λ(np) < 1

}
6= ∅,

where λ is given by (61). Assume that g : R→ Y is surjective and f : R→ Y satisfies (62). Then
there exists a unique solution F : R→ Y of Equation (57) such that

‖ f (x)− F(x), g(z)‖ ≤ η l h(xp, z), x, z ∈ R, (63)

where

η l := inf
n∈U

{ 1 + (l − 1)λ(np)

1− λ((l − 1)np + 1)− (l − 1)λ(np)

}
.

Proof. The case l = k is just Theorem 14. Therefore, assume that l < k.
First, we prove that h(0, z) = 0 for z ∈ R. For the proof by contradiction, suppose that

there is z ∈ R with h(0, z) > 0. Then taking x = 0 in the definition of λ(n), we see that
we must have λ(n) ≥ 1 for n ∈ N, which means that Ul = ∅ and, therefore, contradicts
the assumptions.

Therefore, we have proven that h(0, z) = 0 for z ∈ R. Now taking xl+1 = . . . = xk = 0
in (58) we get

∥∥∥∥∥ f

(
p

√√√√ l

∑
i=1

xp
i

)
−

l

∑
i=1

f (xi), g(z)

∥∥∥∥∥ ≤ l

∑
i=1

h(xp
i , z), x1, . . . , xl , z ∈ R.
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Now, by Theorem 14 with k = l, there exists a unique solution F : R→ Y of the equation

F

(
p

√√√√ l

∑
i=1

xp
i

)
=

l

∑
i=1

F(xi), x1, . . . , xl ∈ R, (64)

such that (63) holds. As Equations (57) and (60) have the same solutions in the class of
mappings from R into Y (see Theorem 2.1 of [44]), this completes the proof.

Please note that the form of Theorem 14 is quite simple for l = 2. Moreover, if
L = {l ∈ {2, . . . , k} : Ul 6= ∅}, then in (63) we can replace η l by

η0 := inf
l∈L

η l .

In [47], the authors used the fixed point theorem from [41] to investigate the stability
of the quadratic functional equation

f (x + y) + f (x− y) = 2 f (x) + 2 f (y). (65)

The first main result in Theorem 2.1 of [47] reads as follows.

Theorem 16. Let X be a normed space, X0 := X \ {0}, and mappings h1, h2 : X0 × X0 → R+

be such that

V =
{

n ∈ N : αn =
1
2

λ1(1 + n)λ2(1 + n) +
1
2

λ1(1− n)λ2(1− n) (66)

+ λ1(n)λ2(n) < 1
}
6= ∅,

with

λi(n) := inf{t ∈ R+ : hi(nx, z) ≤ t hi(x, z) for x, z ∈ X0}, n ∈ N, i = 1, 2.

Assume that g : X0 → Y is a surjective mapping and f : X → Y satisfies

‖ f (x + y) + f (x− y)− 2 f (x)− 2 f (y), g(z)‖ ≤ h1(x, z)h2(y, z) (67)

for all x, y, z ∈ X0, such that x + y 6= 0 and x − y 6= 0. Then there exists a unique quadratic
mapping F : X → Y such that

‖ f (x)− F(x), g(z)‖ ≤ ηh1(x, z)h2(x, z), x, z ∈ X0, (68)

where

η = inf
n∈V

{ λ2(n)
2− λ1(1 + n)λ2(1 + n)− λ1(1− n)λ2(1− n)− 2λ1(n)λ2(n)

}
.

It is not sure what is meant in [47] by the statement that F is a quadratic mapping. It
seems that it means the following condition

F(x + y) + F(x− y) = 2F(x) + 2F(y), x, y ∈ X0, x + y, x− y ∈ X0, (69)

because in the proof of Theorem 2.1 in [47], the authors have only shown condition (69) for
F. Moreover, it is not necessary to assume the existence of a norm in X (in Theorem 2.1
of [47], i.e., in our Theorem 16).

As a consequence of Theorem 2.1 of [47], the authors obtained several hyperstability
outcomes, stating that under some additional assumptions on h1 and h2, every mapping
f : X → Y satisfying (67) must fulfill (69) (with F = f ).
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Clearly, arguing analogously as in the first part of the proof of Theorem 4, we can
obtain, for instance, the following theorem corresponding to Theorem 2.3 of [47].

Theorem 17. Let k > 1 be an integer, α ∈ R, (X,+) be a group (not necessarily commutative),
g : X → Y1, g(kx) = αg(x) for x ∈ X, D ⊂ X2, and ϕ : X3 → R+ be such that for every
(x, y) ∈ D, there exist z1, z2 ∈ X such that g(z1) and g(z2) are linearly independent and

lim
n→∞

α−n ϕ(x, y, knzi) = 0, i = 1, 2. (70)

Assume that f : X → Y1 satisfies

‖ f (x + y) + f (x− y)− 2 f (x)− 2 f (y), g(z)‖ ≤ ϕ(x, y, z), (x, y) ∈ D, z ∈ X. (71)

Then

f (x + y) + f (x− y) = 2 f (x) + 2 f (y), (x, y) ∈ D. (72)

Proof. Fix (x, y) ∈ D and i ∈ {1, 2}. Then there exist z1, z2 ∈ X such that g(z1) and g(z2)
are linearly independent and (70) holds and, by (71), for i = 1, 2,

‖ f (x + y) + f (x− y)− 2 f (x)− 2 f (y), g(knzi)‖ ≤ ϕ(x, y, knzi) (73)

whence

‖ f (x + y) + f (x− y)− 2 f (x)− 2 f (y), g(zi)‖ ≤ α−n ϕ(x, y, knzi). (74)

Letting n→ ∞ in (74), by (70) we get

‖ f (x + y) + f (x− y)− 2 f (x)− 2 f (y), g(zi)‖ = 0, i = 1, 2.

As vectors z1 and z2 are linearly independent, this implies that f (x + y) + f (x− y) =
2 f (x) + 2 f (y) (see Lemma 1), which completes the proof.

In view of Remark 2, it is easy to find numerous examples of functions ϕ and g
satisfying the assumptions of Theorem 17.

The other main result in [47] (Theorem 2.2) is analogous with Theorem 16, but with
inequality (67) replaced by

‖ f (x + y) + f (x− y)− 2 f (x)− 2 f (y), g(z)‖ ≤ h(x, z) + h(y, z), (75)

where h : X2
0 → R satisfies analogous assumptions as h1 and h2 in Theorem 16. The

ambiguities regarding Theorem 2.2 of [47] are similar as for Theorem 2.1 of [47].
The authors in [48] obtained stability results for the functional equations

f (x + y, z + w) + f (x− y, z− w) = 2 f (x, z) + 2 f (y, w), (76)

f (x + y, z− w) + f (x− y, z + w) = 2 f (x, z) + 2 f (y, w), (77)

f (x + y, z− w) + f (x− y, z + w) = 2 f (x, z)− 2 f (y, w). (78)

The main outcome in [48] for Equation (76) (i.e., Theorem 2.1 of [48]) can be written
as follows.

Theorem 18. Let X be a normed space, p ∈ (0, 2), ε, δ, η ∈ R+, and let f : X × X → Y be a
surjective mapping such that

‖ f (x + y, z + w) + f (x− y, z− w)− 2 f (x, z)− 2 f (y, w), f (u, v)‖ (79)

≤ ε + δ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) + η(‖u‖+ ‖v‖)
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for all x, y, z, w, u, v ∈ X. Then there exists a unique mapping F : X2 → Y satisfying (76) for all
x, y, z, w, u, v ∈ X such that

‖ f (x, y)− F(x, y), f (u, v)‖ ≤ ε

3
+

2δ

4− 2p (‖x‖
p + ‖y‖p) +

η

3
(‖u‖+ ‖v‖)

for all x, y, u, v ∈ X.

Actually, it has been assumed in Theorem 2.1 of [48] that ε > 0, but it is easily seen
that the theorem is also true for ε = 0; this can be deduced from Theorem 2.1 of [48] (i.e.,
from our Theorem 18) with ε→ 0, or from the proof of it.

Similar results have been obtained in [48] for Equations (77) and (78).
In [49], the author applied the fixed point theorem in [41] to study the stability of the

subsequent functional equation (of the p-Wright affine functions)

g(px1 + (1− p)x2) + g((1− p)x1 + px2) = g(x1) + g(x2), (80)

with a fixed p ∈ R and a mapping g from a nonempty set E ⊂ Y into Y. The main stability
result in [49] can be written as follows.

Theorem 19. Let E ⊂ Y be nonempty, Y0 ⊂ Y contain two linearly independent vectors, p ∈ R,
A, k ∈ (0, ∞),

|p|k + |1− p|k < 1,

px1 + (1− p)x2 ∈ E, x1, x2 ∈ E,

and g : E→ Y satisfy

‖g(px1 + (1− p)x2) + g((1− p)x1 + px2)− g(x1)− g(x2), y‖ (81)

≤ A(‖x1, y‖k + ‖x2, y‖k), x1, x2 ∈ E, y ∈ Y0.

Then there exists a unique mapping G : E→ Y such that

G(px1 + (1− p)x2) + G((1− p)x1 + px2) = G(x1) + G(x2), x, y ∈ E, (82)

‖g(x)− G(x), y‖ ≤ A‖x, y‖
1− |p|k − |1− p|k

, x ∈ E, y ∈ Y0.

Moreover, G is the unique mapping fulfilling (82) such that there exists a constant M ∈ (0, ∞)
with

‖g(x)− G(x), y‖ ≤ M‖x, y‖k, x ∈ E, y ∈ Y0.

However, under an additional assumption of Y0, in the case k 6= 1, we can obtain the
following better result.

Theorem 20. Let E be a nonempty subset of a real linear space X, D ⊂ E2 be nonempty, p ∈ R,
A1, A2, k ∈ R, and Y0 ⊂ Y1 be such that there exist two linearly independent vectors z1, z2 ∈ Y1
and l1, l2 ∈ R \ {0} such that |li|k−1 > 1 and ln

i zi ∈ Y0 for i = 1, 2 and n ∈ N. Assume that
g : E→ Y1 satisfies the inequality

‖g(px1 + (1− p)x2) + g((1− p)x1 + px2)− g(x1)− g(x2), y‖ (83)

≤ A1‖x1, y‖k + A2‖x2, y‖k
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for every y ∈ Y0 and every (x1, x2) ∈ D such that px1 + (1− p)x2 ∈ E. Then

g(px1 + (1− p)x2) + g((1− p)x1 + px2) = g(x1) + g(x2) (84)

for every (x1, x2) ∈ D such that px1 + (1− p)x2 ∈ E.

Proof. Fix (x1, x2) ∈ D such that px1 + (1− p)x2 ∈ E. Then, for each n ∈ N and i = 1, 2,
we have ln

i zi ∈ Y0 and, by (83),

‖g(px1 + (1− p)x2) + g((1− p)x1 + px2)− g(x1)− g(x2), ln
i zi‖ (85)

≤ A1‖x1, ln
i zi‖k + A2‖x2, ln

i zi‖k,

whence

‖g(px1 + (1− p)x2) + g((1− p)x1 + px2)− g(x1)− g(x2), zi‖ (86)

≤ l(k−1)n
i

(
A1‖x1, zi‖k + A2‖x2, zi‖k).

Letting n→ ∞ in (86), we get

‖g(px1 + (1− p)x2) + g((1− p)x1 + px2)− g(x1)− g(x2), zi‖ = 0

for i = 1, 2. Since z1 and z2 are linearly independent vectors, this means that g(px1 +
(1− p)x2) + g((1− p)x1 + px2)− g(x1)− g(x2) = 0 (see Lemma 1), which completes the
proof.

The first main stability result in [50] can be rewritten as follows.

Theorem 21. Let a and b be nonzero rational numbers, h1, h2 : R2 → R+ be two functions such
that

U :=
{

n ∈ N : αn = 2a2λ1

(n + 1
a

)
λ2

(n + 1
a

)
+ 2b2λ1

(−n
b

)
λ2

(−n
b

)
(87)

+λ1(2n + 1)λ2(2n + 1) < 1
}
6= ∅,

where
λi(ρ) := inf{t ∈ R+ : hi(ρx3, z) ≤ t hi(x3, z) for x, z ∈ R}

for every ρ ∈ R and i = 1, 2. Assume that g : R → Y is a surjective mapping with g(0) = 0,
f : R→ Y satisfies∥∥∥ f

(
3
√

ax3 + by3
)
+ f

(
3
√

ax3 − by3
)
− 2a2 f (x)− 2b2 f (y), g(z)

∥∥∥ ≤ h1(x3, z)h2(y3, z) (88)

for all x, y, z ∈ R0 := R \ {0}, and f (0) = (a2 + b2) f (0). Then there exists a unique function
T : R0 → Y satisfying

T
(

3
√

ax3 + by3
)
+ T

(
3
√

ax3 − by3
)
= a2T(x) + 2b2T(y), x, y ∈ R0, (89)

and such that

‖ f (x)− T(x), g(z)‖ ≤ βh1(x3, z)h2(x3, z), x, z ∈ R0,

where
β = inf

{ 1
1− αn

λ1

(n + 1
a

)
λ2

(−n
b

)
: n ∈ U

}
.
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It is not clear why in the above result a and b are assumed in [50] to be rational numbers
and not just reals because it is not necessary for the proof.

Note that also for Equation (89), we can easily prove a result analogous to Theorem 17.
The other main stability result in [50] is analogous to Theorem 21, but with h1(x3, z)h2(y3, z)

in (88) replaced by h(x3, z) + h(y3, z), where h : R2 → R+ fulfills an analogous assumption
as h1 and h2. General remarks on solutions to equations similar to (89) can be found in [66].

In [51], the authors used the fixed point approach to investigate the stability of the
functional equation

f
( x + y

2
+ z
)
+ f

( x− y
2

+ z
)
= f (x) + 2 f (z). (90)

The main stability result in [51] can be rewritten as follows.

Theorem 22. Let Y0 := Y \ {0}, E be a real linear space, E0 := E \ {0} and h1, h2, h3 : R2 → R+

be such that the set

U := {n ∈ N : λ1(1 + n)λ2(1 + n)λ3(1 + n) + λ1(n)λ2(n)λ3(n) < 1}

is nonempty, where

λi(n) = inf{t ∈ R+ : hi(nx, w) ≤ t hi(x, w) for x ∈ E0, w ∈ Y0}

for all n ∈ N and i = 1, 2, 3. Assume that f : E→ Y satisfies∥∥∥ f
( x + y

2
+ z
)
+ f

( x− y
2

+ z
)
− 2 f (z)− f (x), w

∥∥∥ ≤ h1(x, w)h2(y, w)h3(z, w)

for all w ∈ Y0 and all x, y, z ∈ E0 such that x + y 6= −2z and x− y 6= −2z. Then there exists a
unique F : E0 → Y such that

F
( x + y

2
+ z
)
+ F

( x− y
2

+ z
)
= F(x) + 2F(z)

for all x, y, z ∈ E0 with x + y 6= −2z, x− y 6= −2z and

‖ f (x)− F(x), w‖ ≤ ηh1(x, w)h2(x, w)h3(x, w), x ∈ E0, w ∈ Y0,

where

η = inf
{ λ1(n)λ2(n)

1− λ1(1 + n)λ2(1 + n)λ3(1 + n)− λ1(n)λ2(n)λ3(n)
: n ∈ U

}
. (91)

Using ideas already applied earlier, we can obtain, e.g., the improved version of Theo-
rem 22 given below. To this end, we need the following hypothesis, similar to hypothesis
(L) (used in Theorem 4).

(L’) Y0 is a linear subspace of Y1, E is a real linear space, D ⊂ E3 is nonempty, ϕ : E3×Y0 →
R+ and, for every (x, y, z) ∈ D, there exist linearly independent w1, w2 ∈ Y0 and two
real sequences

(
ξ1

n
)

n∈N,
(
ξ2

n
)

n∈N such that ξ i
n 6= 0 for i = 1, 2, n ∈ N, and

lim
n→∞

1
ξ i

n
ϕ(x, y, z, ξ i

nwi) = 0, i = 1, 2. (92)

Theorem 23. Let (L’) be valid. Assume that f : E→ Y satisfies∥∥∥ f
( x + y

2
+ z
)
+ f

( x− y
2

+ z
)
− 2 f (z)− f (x), w

∥∥∥ ≤ ϕ(x, y, z, w) (93)

for all w ∈ Y0 and all (x, y, z) ∈ D. Then (90) holds for all (x, y, z) ∈ D.
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Proof. Fix (x, y, z) ∈ D. Then, according to hypothesis (L’), there exist linearly independent
z1, z2 ∈ Y0 and two real sequences

(
ξ1

n
)

n∈N,
(
ξ2

n
)

n∈N such that ξ i
n 6= 0 for i = 1, 2, n ∈ N,

and condition (92) holds. Hence, by (93), for all n ∈ N and i = 1, 2∥∥∥ f
( x + y

2
+ z
)
+ f

( x− y
2

+ z
)
− 2 f (z)− f (x), ξ i

nwi

∥∥∥ ≤ ϕ(x, y, z, ξ i
nw),

which yields

∥∥∥ f
( x + y

2
+ z
)
+ f

( x− y
2

+ z
)
− 2 f (z)− f (x), wi

∥∥∥ ≤ 1
|ξ i

n|
ϕ(x, y, z, ξ i

nwi). (94)

Letting n→ ∞ in the inequality (94), on account of (92) we get∥∥∥ f
( x + y

2
+ z
)
+ f

( x− y
2

+ z
)
− 2 f (z)− f (x), wi

∥∥∥ = 0, i = 1, 2.

This implies (90) because z1 and z2 are linearly independent (see Lemma 1).

In the next section, we present the stability results obtained for non-Archimedean
2-normed spaces.

4. Stability in Non-Archimedean 2-Normed Spaces

In [52], the authors have investigated the stability of the following functional inequality

‖ f (x) + f (y) + f (az), w‖ ≤ ‖ f (x + y)− f (az), w‖,

for mapping f from a non-Archimedean 2-normed space into a non-Archimedean 2-Banach
space, where a is a fixed non-zero integer. The first main stability result given in Theorem 2.2
of [52] can be written as follows.

Theorem 24. Let X be a non-Archimedean 2-normed space and Y be a non-Archimedean 2-Banach
space. Assume that φ : X3 → R+ is such that

lim
n→∞

φ((−2)nx, (−2)ny, (−2)nz)
|2|n = 0, x, y, z ∈ X, (95)

and the limit

lim
n→∞

max
{φ((−2)kx, (−2)kx, (−2)k+1 x

a )

|2|k−1 : 0 ≤ k ≤ n− 1
}

(96)

exists for all x ∈ X. Let f : X → Y be such that f (0) = 0 and

‖ f (x) + f (y) + f (az), w‖ ≤ ‖ f (x + y)− f (−az), w‖+ φ(x, y, z), (97)

x, y, z ∈ X, w ∈ Y.

Then there exists an additive mapping A : X → Y such that

‖ f (x)− A(x), w‖ ≤ lim
n→∞

max
{φ((−2)kx, (−2)kx, (−2)k+1 x

a )

|2|k−1 : 0 ≤ k ≤ n− 1
}

(98)

for all x ∈ X and w ∈ Y. Moreover, if for every x ∈ X

lim
k→∞

lim
n→∞

max
{φ((−2)ix, (−2)ix, (−2)i+1 x

a )

|2|i
: k ≤ i ≤ k + n− 1

}
= 0,

then A is a unique additive mapping satisfying (98).
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It seems that the authors assume in [52] that X and Y are over the same field K (but
this is not precisely stated there). It is not clear why X is assumed to be a non-Archimedean
2-normed space because in the proof of Theorem 2.2 of [52], it is enough to assume that X
is a linear space over a field in which a 6= 0. Moreover, it is necessary to assume that the
characteristic of K is neither 3 nor 2 (this first property has been used without assuming it in
the proof of Theorem 2.1 of [52], which, in turn, has been applied in the proof of Theorem 2.2
of [52]). Moreover, additional reasoning leads to the following improved result.

Theorem 25. Let X and Y be as depicted above. Assume that φ : X3 → R+ and f : X → Y
satisfy (97). Then f is additive, i.e., f (x + y) = f (x) + f (y) for every x, y ∈ X.

Proof. Since the valuation in K is assumed to be nontrivial (see Definition 3), there exists
b ∈ K with |b| > 1. Therefore, by (97), for every n ∈ N, x, y, z ∈ X and w ∈ Y we get

|b|n‖ f (x) + f (y) + f (az), w‖ = ‖ f (x) + f (y) + f (az), bnw‖
≤ ‖ f (x + y)− f (−az), bnw‖+ φ(x, y, z)

= |b|n‖ f (x + y)− f (−az), w‖+ φ(x, y, z),

which implies that

‖ f (x) + f (y) + f (az), w‖ ≤ ‖ f (x + y)− f (−az), w‖+ |b|−nφ(x, y, z)

and consequently (with n→ ∞)

‖ f (x) + f (y) + f (az), w‖ ≤ ‖ f (x + y)− f (−az), w‖.

Note yet taking x = y = z = 0 in the last inequality we have 3 f (0) = 0, whence f (0) = 0.
Hence, by Theorem 24 with φ(x, y, z) = 0 for all x, y, z ∈ X, we obtain the statement.

The other stability result in Theorem 2.3 of [52] is similar to Theorem 24, with analo-
gous ambiguities, and it can be improved in a similar way.

In [53], results analogous to Theorem 24 have been obtained for the inequalities

‖ f (x + y)− f (x)− f (y), w‖ ≤
∥∥∥ρ
(

2 f
( x + y

2

)
− f (x)− f (y)

)
, w
∥∥∥,

∥∥∥2 f
( x + y

2

)
− f (x)− f (y), w

∥∥∥ ≤ ∥∥ρ
(

f (x + y)− f (x)− f (y)
)
, w
∥∥

for functions f mapping a non-Archimedean 2-normed space X into a non-Archimedean
2-Banach space Y over a field F with a non-Archimedean nontrivial valuation | · |, where
ρ ∈ F is fixed and |ρ| < 1 (actually the 2-norm in X seems to be superfluous in the proofs
of the main results presented in Theorems 2.3, 2.5, 3.3 and 3.5 of [53], while some norms are
necessary in X and Y in the corollaries following them).

Those results given in Theorems 2.3, 2.5, 3.3 and 3.5 of [53] can be improved with the
analogous reasoning as in the proof of Theorem 25 and, therefore, we only present those
modified versions (without proof) below. Namely, we have the following theorem.

Theorem 26. Let X and Y be as depicted above. Let φ : X2 → R+ and f : X → Y satisfy one of
the following two inequalities

‖ f (x + y)− f (x)− f (y), w‖ ≤
∥∥∥ρ
(

2 f
( x + y

2

)
− f (x)− f (y)

)
, w
∥∥∥+ φ(x, y),

x, y ∈ X, w ∈ Y,
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∥∥∥ρ
(

2 f
( x + y

2

)
− f (x)− f (y)

)
, w
∥∥∥ ≤ ∥∥ρ

(
f (x + y)− f (x)− f (y)

)
, w
∥∥+ φ(x, y),

x, y ∈ X, w ∈ Y.

Then, f is additive.

In [54], the authors considered the Ulam stability of the following system of functional
equations

f (ax1 + bx2, y, z) + f (ax1 − bx2, y, z) = 2a f (x1, y, z), (99)

f (x, ay1 + by2, z) + f (x, ay1 − by2, z) = ab2( f (x, y1 + y2, z) + f (x, y1 − y2, z)
)

(100)

+ 2a(a2 − b2) f (x, y1, z),

f (x, y, az1 + bz2) + f (x, y, az1 − bz2) = a2b2( f (x, y, z1 + z2) + f (x, y, z1 − z2)
)

(101)

+ 2a2(a2 − b2) f (x, y, z1)

− 2b2(a2 − b2) f (x, y, z2)

for functions f mapping a non-Archimedean normed space X into a non-Archimedean
2-Banach space Y, where a, b are nonzero integers and a 6= ±1,±b. Namely, under some
additionally, rather involved, assumptions on functions φ1, φ2, φ3 : X3 → R+, they have
studied the inequalities

‖Q1(x, y1, y2, z), w‖ ≤ φ1(x1, x2, y, z), x1, x2, y, z ∈ X, w ∈ Y, (102)

‖Q2(x, y1, y2, z), w‖ ≤ φ2(x, y1, y2, z), x, y1, y2, z ∈ X, w ∈ Y, (103)

‖Q3(x, y, z1, z2), w‖ ≤ φ3(x, y, z1, z2), x, y, z1, z2 ∈ X, w ∈ Y, (104)

where

Q1(x1, x2, y, z) := f (ax1 + bx2, y, z) + f (ax1 − bx2, y, z)− 2a f (x1, y, z),

Q2(x, y1, y2, z) := f (x, ay1 + by2, z) + f (x, ay1 − by2, z)

− ab2( f (x, y1 + y2, z) + f (x, y1 − y2, z)
)

− 2a(a2 − b2) f (x, y1, z),

Q3(x, y, z1, z2) := f (x, y, az1 + bz2) + f (x, y, az1 − bz2)

− a2b2( f (x, y, z1 + z2) + f (x, y, z1 − z2)
)

− 2a2(a2 − b2) f (x, y, z1) + 2b2(a2 − b2) f (x, y, z2).

We do not present nor discuss those results here because the reasoning, which we
have applied already several times, shows that the following (better than in [54]) outcome
is true.

Theorem 27. Let Y be a non-Archimedean normed space over a field F with a nontrivial valuation
| · |. Let (X,+) be a group (not necessarily commutative), a and b be integers, φ : X4 → R+ and
f : X → Y satisfy the system of inequalities (102)–(104). Then f fulfills Equations (99)–(101) for
all x, x1, x2, y, y1, y2, z, z1, z2 ∈ X.

Proof. Since the valuation in F is nontrivial, there exists c ∈ F with |c| > 1. Therefore, by
(102), for every n ∈ N, x1, x2, y, z ∈ X and w ∈ Y we get

|c|n‖Q1(x1, x2, y, z), w‖ = ‖Q1(x1, x2, y, z), cnw‖ ≤ φ(x1, x2, y, z),

whence

‖Q1(x1, x2, y, z), w‖ ≤ |c|−nφ(x1, x2, y, z),
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which (with n→ ∞) yields Q1(x1, x2, y, z) = 0 (see Lemma 1).
Analogously, we show that Equations (100) and (101) hold for all x, y, y1, y2, z, z1, z2 ∈

X.

5. Stability in (2, β)-Normed Spaces

In this section, we consider the Ulam stability results obtained for (2, β)-normed
spaces. Let us start with a suitable definition (see [55,56]).

Definition 6. Let β ∈ (0, ∞), K be a field with a valuation | · | : K→ R+ and let X be a linear
space over K with a dimension greater than 1.

We say that a mapping ‖·, ·‖ : X×X → R+ is a (2, β)-norm in X if, for every x1, x2, x3 ∈ X
and α ∈ K, conditions (1)–(3) of Definition 3 are fulfilled and

(4’) ‖αx1, x2‖ = |α|β‖x1, x2‖.

Let ‖·, ·‖ : X × X → R+ be a (2, β)-norm in X. Then we say that a pair (X, ‖·, ·‖) is a
(2, β)-normed space. If K is the field of reals R and the valuation in K is the usual absolute value,
then we say that (X, ‖·, ·‖) is a real linear (2, β)-normed space; if K is the field of complex numbers
C and the valuation in K is the usual complex modulus, then we say that (X, ‖·, ·‖) is a complex
(2, β)-normed space.

The notions of the Cauchy sequence, limit of a sequence, convergent sequence and
(2, β)-Banach space are defined in the same way as for the 2-normed spaces.

Let β ∈ (0, 1] and (X, ‖·, ·‖) be a 2-normed space. Define ‖·, ·‖∗ : X2 → R+ by

‖x, z‖∗ = ‖x, z‖β, x, z ∈ X.

Then it is very easy to check that (X, ‖·, ·‖∗) is a (2, β)-normed space.
The stability of functional equations in (2, β)-Banach spaces has been considered

in [55,56]. The main result in [55] reads as follows.

Theorem 28. Let R0 := R \ {0}, β be a fixed real number with 0 < β ≤ 1, (X, ‖ · ‖β) be a
(2, β)-Banach space and let h1, h2 : R0 × X → R+ be such that the set

M0 :=
{

n ∈ N2 : an := 2βs1,2(n3) + 2βs1,2(n3 − 1) + 2βs1,2(2n3 − 1) < 1
}

is nonempty, where s1,2(n) = s1(n)s2(n) and

si(n) := inf
{

t ∈ R+ : hi(nx3, z) ≤ t hi(x3, z) for x ∈ R0, z ∈ X
}

for i = 1, 2 and n ∈ N. Suppose that f : R→ X is such that f (0) = 0 and∥∥∥ f
(

3
√

x3 + y3
)
+ f

(
3
√

x3 − y3
)
− 2 f (x)− 2 f (y), z

∥∥∥
β
≤ h1(x3, z)h2(y3, z)

for all x, y ∈ R0 and z ∈ X. Then there exists a unique Q : R→ X such that

Q(x + y) + Q(x− y) = 2Q(x) + 2Q(y), x, y ∈ R0,

and
‖ f (x)−Q(x3), z‖β ≤ s0h1(x3, z)h2(x3, z), (x, z) ∈ R0 × X,

where
s0 := inf

{ 1
1− an

s1(n3)s2(n3 − 1) : n ∈ M0

}
.

We can easily obtain a result complementary to this theorem, e.g., arguing analogously
as in the proof of Theorem 17.
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In [56], the author has proven a stability result for (2, β)-Banach spaces very similar to
Theorem 19, and we can easily obtain an improved version of it analogous to Theorem 20.

In [45], the authors have investigated the stability of the functional equations

f
(√

ax2 + by2
)
= a f (x) + b f (y), (105)

f
(√

cx2 + cy2
)
+ f

(√
|cx2 − dy2|

)
= 2c2 f (x) + 2d2 f (y), (106)

with fixed positive reals a, b, c, d such that a + b 6= 1 and c2 + d2 6= 1 and for mappings f
from R into a (2, β)-normed space Y. They have presented several interesting outcomes,
but with similar imperfections as depicted in connection with Theorem 11.

6. Stability in Random 2-Normed Spaces

Finally, let us mention that in [57,58] the authors provided some Ulam stability results
in random 2-normed spaces. Their forms are quite involved and go beyond the scope of
this article, so we omit them. Let us only add that in [57], the stability of the pexiderized
quadratic functional equation of the form

f (x + y) + f (x− y) = 2g(x) + 2h(y)

has been studied and in [58], the authors presented some stability results for the cubic
functional equation

f (2x + y) + f (2x− y) = 2 f (x + y) + 2 f (x− y) + 12 f (x).

7. Conclusions

It can roughly be said that an equation (e.g., difference, differential, functional, integral)
is Ulam stable if every function satisfying it approximately (in a given sense) must be (in
some way) close to an accurate solution of the equation. Since the notions of ‘approximate
solution’ and ‘closeness of two functions’ can be understood in various ways (see, e.g., [67]),
such stability can also be considered in 2-normed spaces.

In this paper, we have presented and discussed the results on Ulam stability in 2-
normed spaces provided in articles [40–58]. In this way, we complement the paper [23],
where the results from [24–39] have been surveyed. We have shown how to supplement or
improve several of these results. We also have pointed to various traps and mistakes that
we have noticed in some of these papers.

Finally, let us mention that a natural generalization of the 2-normed space is the n-
normed space. In our future work, we will prepare a similar survey (on Ulam stability in
n-normed spaces) of the outcomes contained in [68–82] and in any papers on this subject
still to be published.
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23. Bahyrycz, A; Brzdęk, J.; El-Hady, E.-S.; Leśniak, Z. On Ulam stability of functional equations in 2-normed spaces—A survey.

Symmetry 2021, 13, 2200. [CrossRef]
24. Gao, J. On the stability of the linear mapping in 2−normed spaces. Nonlinear Funct. Anal. Appl. 2009, 14, 801–807.
25. Chung, S.C.; Park, W.G. Hyers-Ulam stability of functional equations in 2-Banach spaces. Int. J. Math. Anal. (Ruse) 2012, 6,

951–961.
26. Cho, Y.J.; Park, C.; Eshaghi Gordji, M. Approximate additive and quadratic mappings in 2-Banach spaces and related topics. Int.

J. Nonlin. Anal. Appl. 2012, 3, 75–81.
27. Almahalebi, M.; Kabbaj, S. A fixed point approach to stability of the quartic equation in 2-Banach spaces. J. Math. Comput. Sci.

2013, 3, 972–984.
28. Arunkumar, M.; Bodaghi, A.; Rassias, J.M.; Sathya, E. The general solution and approximations of a decic type functional equation

in various normed spaces. J. Chungcheong Math. Soc. 2016, 29, 287–328. [CrossRef]
29. Arunkumar, M. Stability of n−dimensional additive functional equation in generalized 2-normed space. Demonstr. Math. 2016,

49, 319–330. [CrossRef]
30. Rassias, J.M.; Arunkumar, M.; Sathya, E.; Kumar, N.M. Solution and stability of a acq functional equation in generalized 2-normed

spaces. Intern. J. Fuzzy Math. Arch. 2015, 7, 213–224.
31. Almahalebi, M.; Chahbi, A.; Kabbaj, S. A fixed point approach to the stability of a bi-cubic functional equations in 2-Banach

spaces. Palest. J. Math. 2016, 5, 220–227.
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