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Abstract: In the oil and gas industry, in the process of drilling support (geosteering) and well telemetry,
there is a problem of transmitting reliable information via wireless communication channels. The
quality of such communication, as a rule, suffers due to the presence of errors caused by interference.
As the depth of the well increases, the problem becomes more extensive. In order to solve the
problem, it is proposed to choose noise-resistant coding in the system of residual classes. This system
parallelizes the execution of arithmetic operations, has corrective abilities and organically adapts to
the neural network basis of intelligent field management. At the same time, there are constraining
factors for the mass application of the RNS; for example, difficulties in implementing non-modular
procedures, forward and reverse coding, and some difficulties in identifying and correcting errors.
That is why the task of improving the RNS seems relevant not only for oil and gas complexes, but also
for any digital signal processing applications focused on intelligent neural network management on
the basis of non-positional computing. The material of the article is limited to the study of the noise
immunity of linear codes of the deduction system and the development of algorithms for detecting
and correcting errors.

Keywords: deduction system in residual classes; noise immunity; linear L-code; error detection and
correction; oil and gas complexes; telemetry information

1. Introduction

Drilling of oil and gas wells in Russia at the present stage is mainly focused on
maintaining the production level. In recent years, there has been a trend of moderate
growth in the drilling market. At the same time, the volume of penetration at the level
of 2016 (25.6 million m) will be restored no earlier than 2023, and the share of horizontal
drilling will continue to increase to 44% by 2022. The analysis of drilling technology
and methods of controlling the trajectory of directional wells shows that for effective
control of the process of directional drilling, it is necessary to expand the informative
base to ensure the transmission of reliable data based on the parameters of the drilling
regime [1]. The information obtained from the bottom of the well in combination with the
readings of the instruments at the mouth allows for effective monitoring and control of
the parameters of the drilling mode. The solution of this urgent problem is possible when
using navigation telesystems with processors with high-speed and reliable information
processing capabilities.

Similar tasks are also solved when developing wells that have already been drilled,
which is when information about telemetry and geophysical research must also be pro-
cessed and transmitted to control points with a high degree of reliability via a wireless
communication channel during the entire inter-repair period, which can be from two to
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three years. The structure of the autonomous telemetry system, explaining the impossibility
of organizing wired (cable) communication, is shown in Figure 1.
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Figure 1. Layout diagram of oil well equipment with sucker rod pump and telemetry system. 1. Oil
seal; 2. Centralizing scrapers; 3. Rod string; 4. IPG (hydraulic landing tool); 5. Centralizer; 6. Locking
support for the pump; 7. Production string; 8. Packer; 9. Auxiliary pipe; 10. Centralizer; 11. Funnel
feather; 12. Telemetry system.

Thus, during construction, geonavigation and geophysical exploration of operated
wells, one of the problems is a large amount of field information that needs to be trans-
mitted from a great depth via wireless communication channels. Figure 1 shows that the
use of wired cable communication in these cases is impossible due to the presence of a
packer (No. 8). Therefore, the transmission of information can only be provided by an
electromagnetic, acoustic or radio channel at low frequencies of transmission of packet
messages. At the same time, an important role is played by ensuring the reliability of the
received information [1–3].

As the main conditions for the transmission of telemetry formulated by oil and gas
companies, the following are selected: high-speed processing of wide-range signals, low
and ultra-low frequencies for transmitting packet messages from the well and adaptation
to neural networks for subsequent integration into intelligent enterprise management
systems [1].

In practice, the achievement of high reliability of information transmission, i.e., ensur-
ing the reliability of its recovery at the receiving end of the transmission line, is ensured not
so much by improving the technical means of information transmission as by using various
methods of noise-resistant coding. This is explained by the fact that any possible increase in
reliability is too expensive and sometimes requires the development of complex protective
measures and hardware. The correctly chosen encoding method is able to provide the
greatest resistance to possible accidental distortions [4–7]. To do this, special processing of
the received information is carried out, which in turn assumes to eliminate the interference
introduced into it, clear the signal from errors and achieve compliance with what was sent
from the transmitting end of the line [8–11].

As a solution to the problem, the authors propose the use of coding in the system
of residual classes. The choice of the encoding method is due to several reasons at once.
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Firstly, it is already the de facto existence of a neural network basis, with which a number
system capable of parallelizing arithmetic operations is best combined; secondly, it meets
the need for multiple high-speed processings of broadband packet information, dictated,
as a special case, by the need to save power resources of autonomous equipment; thirdly,
it meets the provision of fault tolerance due to code capable of detecting and correcting
errors that occur.

It is generally accepted that of the known methods of encoding information in prob-
lems of ensuring high noise immunity (Reed–Muller, cyclic redundancy check (CRC),
(Bose–Chowdhury–Hockingham (BCH), etc.), the code in the deduction system (the system
of residual classes, RNS, built on the basis of the Chinese remainder theorem) and the Reed–
Solomon code have the greatest appeal [12–14]. These codes are used with high efficiency
in high-speed, digital signal processing algorithms with a large amount of computational
operations, but the RNS is most organically combined with a neural network basis [15].
Computing structures developed specifically for the oil and gas industry based on the
deduction system have proven themselves well in practice. Therefore, the task of ensuring
high reliability of wireless communication channels for transmitting geonavigation infor-
mation during drilling and about the state of wells in regard to a variety of geophysical
and telemetric parameters based on the RNS is relevant for modern oil and gas complexes
with intelligent control.

This article discusses the possibilities of correcting linear codes of the deduction system
from the point of view of their suitability to ensure the noise immunity of transmitted
telemetry signals by detecting and correcting the resulting distortions.

To this end, the authors formulated four statements and developed three error correc-
tion algorithms in the RNS which are largely capable of improving the reliability of wireless
communication when transmitting downhole information.

2. Materials and Methods

It is known that among the correction codes, a special place is occupied by the non-
positional system of deductions or residual classes (RNS) [16–19]. This is due to the fact that,
firstly, the codes and the numbers being checked in it are represented in the form of residues
(deductions), which makes it possible to consider such codes completely arithmetically,
and secondly, in the RNS there is no significance of the order of digits in the number record.

The deduction system is a modular non-positional system for representing digits. In
scientific circles, it is generally believed that this view is based on the Chinese remainder
theorem, the calculations of Nicomachus from Gerasa, Euclid, and Euler, or even more
ancient Aztec and Mayan calculus [5–9].

Nevertheless, the most famous extant work of the Chinese mathematician Sun Tzu
(III century) is called the “Mathematical Treatise”. In this treatise the remainder theorem is
formulated, according to which there is a unique non-negative solution modulo M.

This representation of numbers makes it possible to replace operations with large
numbers A with operations with small numbers in the form of deductions (residues) (α1,
α2, . . . , αn) from division by the selected modules mi. Thus, comparisons are obtained:
A ≡ α1(mod m1), A ≡ α2(mod m2), . . . , A ≡ αn(mod mn). Therefore, any number Ak be-
longing to the set L can be represented in the deduction system by bases (or modules)
M = [m1, m2, . . . , mn], where M is the smallest common multiple of the natural numbers
m1, m2, . . . , mn, and L is the maximum length (number of terms) of the polynomial. If we
multiply all the bases, we obtain the range of the system Pn = m1 × m2 ×, . . . , × mn.

In the RNS, all basic arithmetic operations such as addition, subtraction, multiplication
and division are performed in a component-by-component way, and the result is known in
advance, is an integer and lies in the range [0, M − 1]. For example, the result of adding
two numbers A ≡ αn(mod mn) and B ≡ βn(mod mn) is the number C ≡ cn(mod mn). Then,
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c1 ≡ (α1 + β1)(mod m1);
c2 ≡ (α2 + β2)(mod m2);
...
cn ≡ (αn + βn)(mod mn).

Similarly, subtraction, multiplication and division are performed, but additional re-
strictions are imposed on division: it must be an integer, that is, the divisor must completely
divide the divisible. The divisor must be mutually simple with all the modules of the basis.

As can be seen, computing operations not with integers but with their residues can
significantly reduce machine time and provide the required accuracy, which has always
attracted developers seeking high-speed digital signal processing. Operations on individual
modules can be implemented using parallel and parallel pipeline architectures.

The following two systems are most often used in the RNS:
(1). An asymmetric system of non-negative deductions modulo m, consisting of the

numbers 0, 1, 2, m − 1;
(2). A symmetric system of the smallest deductions in absolute value, consisting of

numbers 0, ±1, ±2,..., ±(m − 1)/2 for an odd number m.
In order to ensure corrective abilities, redundancy is introduced into the deduction

system. In addition to the information modules m1, m2, . . . , mn, control bases mn+1, . . . ,
mn+k are also used [2,5,7,8].

Depending on the ratio between the values L, M and Pn, the correction codes in the
RNS are divided into three main classes:

(1). Non-linear codes (L = M = Pn);
(2). Semi-linear codes (L < M < Pn);
(3). Linear codes (L = M < Pn) [7].

Let us consider some general concepts for codes in the system of residual classes. Let
the set L contain a set of such natural numbers in which if any two numbers A1 and A2
satisfy the requirement A1, A2 ∈ L, then any number A3 between A1 and A2 also belongs to
L, A3 ∈ L.

In the works of [7,8], for error correction in the RNS, the possibilities of non-linear codes
(R-codes) were investigated. They have good corrective abilities, as well as comparative
ease of construction for any given minimum code distance. At the same time, it turned
out that the technical implementation of the correction requires sufficiently large values of
control bases (mj > 40), which leads to a significant increase in hardware costs.

Unlike the R-code, in the linear L-code and the semi-linear RL-code, the bases are not
mutually prime, i.e., integers have no common divisors except ±1.

In the correcting L-code, the sum, difference and product of any vectors are code
words. In this case, no natural numbers can be matched with a non-code word. Correction
of information by the L-code leads to a useful redundancy equivalent to redundancy.
Therefore, from the point of view of ensuring the possibility of monitoring and correcting
errors arising in the dynamics of the computational process, linear L-codes are the most
attractive [5,7,8].

Taking this into account, the authors of this study investigated the noise immunity of
linear codes (L-codes). This article presents the results of determining the necessary and
sufficient conditions for the implementation of the developed algorithms for detecting and
correcting errors in the deduction system.

3. Results

It is known [16–20] that the sum, difference and product of any linear code vectors
are code words. In this case, no natural numbers can be matched to non-code words. It is
shown in [3] that the correction of errors in the deduction system by means of L-codes leads
to redundancy equivalent to redundancy. An important characteristic here is the concept
of the minimum code distance dmin. In the usual ordered deduction system, dmin = k + 1.
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However, if the RNS is expanded by adding k modules and each module is larger than any
information module, then the minimum code distance is automatically increased by k.

Let us examine two statements.

Statement 1. The minimum distance dmin of the correcting L-code in the deduction system is equal
to the minimum weight of non-zero code words.

It follows from the statement that the minimum code distance can be determined if
the weights of the code words are already known.

Statement 2. In order for the L-code to have a minimum distance dmin, it is necessary and sufficient
that the degree of redundancy satisfies the ratio R = Md min−1.

It turns out that the correction of arbitrary errors of information in the deduction
system by means of L-codes leads to a large redundancy equivalent to conservation. At the
same time, arbitrary distortions of the code word residues in the RNS correspond to the
linear code with equal probability. Therefore, is it impractical to use linear codes for error
correction? This is not quite true. It is further proved that the possibilities of L-codes can
be significantly expanded by limiting the class of possible errors in individual code word
deductions. To do this, it is only necessary to ensure that certain conditions are met [2,5].

Statement 3. For any integer A = (α1,α2, . . . ,αn) in the system of deductions with modules mi
(i = 1,2,...,n) and for any pair of modules mi and mj, the condition must be met:

(αi − αj) ≡ 0(mod dij), (1)

where dij = (mi, mj) is the largest common divisor of modules mi, mj, (i, j = 1,2, . . . n, i 6= j).
To detect errors in the deduction by an arbitrary modulus mi (I = 1, 2, . . . , n) of the number

A = (α1, α2, . . . , αn) specified in the deduction system with modules m1, m2, . . . , mn, it is necessary
that the module mi has at least one that differs from one, a common divisor with the module mj
(i 6= j).

Indeed, if we assume that the greatest common divisor of modules dij = (mi, mj) is defined for
arbitrary modules of the residue system (i 6= j), and the error occurred modulo mi, i.e., άi = αi + ∆αi,
then the expression (άi − αj) = 0(mod dij) is equivalent to the expression ∆αi(mod dij).

Since, in accordance with Statement 3, the condition (άi − αj) = 0(mod dij) is satisfied, then
we can assume that:

αi + ∆αi = άi(mod mi), and αi + ∆αi = m × mi + άi, (2)

where m is the modulus of the deduction system, an integer.
The distorted deduction άi = αi + ∆αi − m × mi is determined from (1). Then we can write:

άi − αj = [(αi − αj) + (m × k × dij) + ∆αi]. (3)

Since (αi − αj) ≡ 0(mod dij) and −m × k × dij ≡ 0(mod dij), where mi = k × dij, k is a
natural number, then (άi − αj) ≡ ∆αi(mod dij).

This means that in the absence of common divisors (dij = 1) ∆αi ≡ 0(mod dij), which
proves the necessary condition of Statement 3. The necessary condition may also be
sufficient if the error is not a multiple of the divisor dij.

Indeed, (m × dij + αij) 6= 0(mod × dij), where 0 < αij < di.

Statement 4. To detect an error in the deduction by an arbitrary modulus mi of the number
A = (α1, α2, . . . , αn) given in the system of residual classes, it is necessary and sufficient that the
error ∆αi is not a multiple of the divisors dij and di = (di1, di2, . . . , din), where di is the largest
common divisor of di1, di2, . . . , din, i 6= j.
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Proof. Calculate the values of αij, αik and αjk. If the error occurred on the basis of mi, then
αik = 0, and αij 6= 0 and αik 6= 0. The number of different combinations of αij, αik is equal
to (dij − 1) × (dik − 1), where (dij − 1) is the number of possible values of αij (αij 6= 0), and
(dik − 1) is the number of possible values of αik (αik 6= 0). On the other hand, the number
of possible error values based on mi is mi − 1 (∆αi 6= 0) minus the number of undetected
errors. The number of undetected errors consists of the number of errors that are multiples
of the divisor dik − Kdik

and multiples of the divisor dij − Kdij
. �

Thus, the number of possible values of detected errors is equal to
mi − 1 − (Kdik

+ Kdij
− K[dik,dij]).

To ensure that the number of combinations corresponds to the possible values of errors
on the basis of mi, it is necessary to fulfill the condition:

(dij − 1)× (dik − 1)≥ mi − 1− (Kdik
+ Kdij

− K[dik,dij]), which was required to be proved.
Taking into account the proven statement 4, it is possible to write a sufficient condition

for correcting the error in the deduction αi:

(dik − 1) × (dij − 1) > σ(∆α1), (4)

where σ(∆α1) = (mi − 1 − (Kdik
+ Kdij

− K[dik,dij]));
Kdik

is the number of possible divisors of the error ∆αi on the basis of mi, (i.e., the
number of possible divisors mi − 1), multiples of the value dik;

Kdij
is the number of possible divisors of the error ∆αi on the basis of mi, multiples of

the value dij;
K[dik,dij] is the number of possible error divisors ∆αi based on mi, multiples of dik and dij.
Based on the results obtained in Statement 4, an error detection algorithm was devel-

oped in Algorithm 1.

Algorithm 1 Error detection

1. Check the deduction based on mi to determine the set of values1. Check the deduction based on
mi to determine the set of values:

α1 − α2 = α12(mod d12),
α1 − α3 = α13(mod d13),

. . .
α1 − αn = α1n(mod d1n).

(5)

If α1i = 0(mod d1i), then the second deduction is checked, etc.
2. For the obtained values αij (i 6=j), make a matrix |G| of the form:

α12, α13, . . . , α1n
α21, α23, . . . , α2n

G = . . .
αn2, αn3, . . . , αnn−1.

(6)

When composing the matrix G, it is not necessary to identify the true numerical value αij. It is
enough to present it in the form of:

αij = 0, if αi − αj = 0(mod dij), (7)

αij = 1, if αi − αj 6= 0(mod dij) (8)

3. If the determinant of the matrix |G| is zero, then the number A = (α1, α2, . . . , αn) is correct, and
if |G| 6= 0, then the number A is incorrect.

Since αi − αj ≡ [dij − (αj − αi)]mod dij, then the determinant |G| cannot be found.
It is enough to calculate the diagonal elements of the matrix G and add one value to αn1,
i.e., α12, α23, α34, . . . , αn−1 n, αn1.
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It is possible to check not only at which values αij the fact of the distortion of the
code word is established, but also at which values the number of the distorted deduction
is calculated.

Checking the validity of necessary and sufficient conditions for correcting one-time errors.
Suppose that in order to correct one-time errors by means of L-codes in a deduction

by an arbitrary modulus mi, the number A = (α1, α2,..., αn), given in the deduction system
with modules m1, m2, . . . , mn, will be sufficient to satisfy the condition:

(dik − 1) × (dij − 1) ≥ mi − 1 − (K(dik) + K(dij) − K[dik,dij]), (9)

where dik = (mi, mk), dij = (mi, mj);
K(dik) is the number of divisors that are multiples of dik;
K(dij) is the number of divisors that are multiples of dij;
K[dik,dij] is the number of divisors that are multiples of the smallest common multiple

of [dik,dij] for i = j.
Indeed, if an error occurred modulo mi when determining the values αij, αik, αjk,

then αjk = 0, αij 6= 0, αjk 6= 0 and the number of possible values of detected errors is
(dij − 1) × (dikj − 1). Here, dij − 1 is the number of possible values of the value αjk (αjk 6= 0).

At the same time, the number of possible errors modulo mi is mi − 1, (∆αi 6= 0) without
taking into account the number of undetected errors. Here, the undetected errors include
errors that are multiples of the divisor dik − K(dik) and multiples of the divisor dij − K(dij).

Therefore, the number of possible values of detected errors can be determined as follows:

mi − 1 − (K(dik) + K(dij) − K[dik,dij]). (10)

In order to ensure that the number of combinations corresponds to the possible values
of errors modulo, the condition must be met:

(dij − 1) × (dikj − 1) ≥ mi − 1 − (K(dik) + K(dij) − K[dik,dij]). (11)

This proves the validity of condition (9). It is sufficient when different values of the
errors ∆αi correspond to different values of the product αjk × αij, and vice versa. It is then
that there is an unambiguous mutual correspondence between the possible values of ∆αi
and the values of the product αjk × αij, which makes it possible to uniquely determine the
magnitude of the error in Algorithm 2.

Algorithm 2 Correction of errors by an arbitrary module

1. Calculate the number of the distorted deduction, for which the values are determined in
accordance with (4):

α1 − α2 = α12(mod d12),
α2 − α3 = α23(mod d23),

. . .
αn−1 − αn = αn−1(mod dn−1),

αn − α1 = αn1(mod dn1).

If all deductions are equal to αij = 0(mod dij), then the number A is correct. If an error occurred
modulo mi, then αij 6= 0 and αik 6= 0, and this, in turn, means that the number being checked
Á = (α1, α2, . . . άi, . . . , αn) is incorrect.
2. According to the values αij and αik, refer to the error constants storage table where the
corresponding value ∆αi is selected.
3. Make a correction of the number Á minus αi and obtain the correct number A = (α1, α2, . . . , αn).

In the reduced deduction system with the excluded modules for which an error
occurred, it is possible to unambiguously represent the number A. It is only necessary,
instead of determining the error values ∆αi by the values αij and αik, to directly calculate
the values of the correct deduction αi. Based on this, Algorithm 3 can be formulated.
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Algorithm 3 Correction of errors

1. Calculation of deduction values α12, α23, . . . , αn1.
2. Determination of the number of the distorted deduction (for example, if an error occurred
modulo mi, then this module is excluded, and the number A is represented by modules m1, m2,
. . . , mn, i.e., A = (α1, α2, . . . , αi−1, αi+1, . . . , αn)).
3. Implementation of convolution (transformation) of the number A into a positional code.
4. Determination of the true value of the distorted remainder αi = A − [A/mi] mi, where [x] is an
integer part not exceeding x.

The corrected number will look like:

Acorr = (α1, α2, . . . , αi, . . . , αn). (12)

There are conditions under which it is possible to exclude some modules from the
deduction system. Thus, if we imagine the modules of the original system of residual
classes in the form:

m1 = β11(α11), β12(α12), . . . , β1ll(α1l1);
m2 = β21(α21), β22(α22), . . . , β2ln(α2ln);

. . .
mn = βn1(αn1), βn2(αn2), . . . , βnln(αnln),

M = β1(α1), β2(α2), . . . , βk(αk),

(13)

then, in order to accurately determine the number A given in the deduction system with
modules m1, m2 . . . , mn in the range [0, M), it is possible to exclude only those modules for
which βm, βn = βijj, (m = 1, 2, . . . , k, i = 1, 2, . . . , n) and it is necessary that αm ≥ αilj.

Thus, the necessary and sufficient conditions for error correction by the method of
exclusion of the distorted module were investigated. Such conditions are the simultaneous
fulfillment of equality and inequality:

βm = βijj; (14)

αm ≥ αijj. (15)

Example 1. Let a residue system with four modules m1 = 4, m2 = 6, m3 = 12, and m4 = 18 be given.
Moreover, M = [4, 6, 12, 18] = 36.

Let us represent the modules of the system in the canonical form:

m1 = 22; m2 = 2 × 3, m3 = 22 × 3, m4 = 2 × 32, M = 22 × 32

Obviously, the required modules are m1, m2, and m3.
To check, let us compose the particular values:

M1 = [6, 12, 18] = 36;

M2 = [4, 12, 18] = 36;

M3 = [4, 6, 18] = 36;

M4 = [4, 6, 12] = 12.

As you can see, the particular value M4 < 36, which confirms the correctness of de-terminating
the excluded grounds from the specified system of residue related to L-codes.

Example 2. Let us assume that when calculating the values (αk − αk+1)mod dk k+1, αi i−1 6= 0 and
αi i+1 6= 0 are obtained. In this case, the remaining values are equal to αk k+1 = (αk − αk+1)mod
dk k+1 = 0.

In this case, the number Á = (α1, α2, . . . άi, . . . , αn) is incorrect. The error is located at the
base of mi. For this example, you can determine the true value of the deduction ∆αi. To do this, you
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need to contact the block where the error constants are stored. After that, you can determine the true
value of the deduction αi corr = άi − ∆αi.

The number corrected in this way will be represented as:

Acorr = (α1, α2, . . . , αi corr, . . . , αn). (16)

It should be noted that this method has a limitation. In order to complete the correction, a
necessary condition is that the error ∆αi i is not simultaneously a multiple of two divisors di i−1
and di i+1.

4. Discussion

The results obtained as formulated above in four statements and in three algorithms
are the theoretical basis for the synthesis of error detection and correction blocks. A variant
of the device for error correction in the RNS is shown in Figure 2.
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Figure 2. Device for error correction in RNS.

The device works as follows. Let us assume that the input of the device is supplied
with a code already familiar to us in the RTS, with mutually pairwise simple bases m1 = 4,
m2 = 6, and m3 = 12. In this case, the code word table L = [4, 6, 12] = 12 it will look like this
(Table 1).

Table 1. Table of code numbers for the input sequence Ai on three bases.

Ai
Code Numbers

m1 m2 m3

0000 00 000 0000

0001 01 001 0001

0010 10 010 0010

0011 11 011 0011

0100 00 100 0100
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Table 1. Cont.

Ai
Code Numbers

m1 m2 m3

0101 01 101 0101
0110 10 000 0110

0111 11 001 0111

1000 00 010 1000

1001 01 011 1001

1010 10 100 1010

1011 11 101 1011

In this case, d12 = (4, 6) = 2, d23 = (6, 12) = 6, and d31 = (4, 12) = 4; σ(∆α1) = 2 in
accordance with Table 2.

Table 2. Correspondence table α31 and α12.

α31 α12 = 1

1 ∆ά1 = 1

2 -

3 ∆ά1 = 3

σ (∆α2) = 3 (Table 3) and σ(∆α3) = 8 (Table 4), where σ(∆α1) = mi − 1 − (Kd12 + Kd31 −
K[d12,d31]); σ(∆α2) = m2 − 1 − (Kd12 + Kd23 − K[d12k,d23]); σ(∆α3) = m3 − 1 − (Kd23 + Kd31 −
K[d23,d31]).

Table 3. Correspondence table α23 and α12.

α31 α12 = 1

1 ∆ά2 = 5

2 -

3 ∆ά2 = 3

4 -

5 ∆ά2 = 1

Table 4. Error table for α31 and α12.

α31
α23

1 2 3 4 5

1 ∆ά3 = 7 - ∆ά3 = 3 - ∆ά3 = 11

2 - ∆ά3 = 2 - ∆ά3 = 10 -

3 ∆ά3 = 1 - ∆ά3 = 9 - ∆ά3 = 5

Let it be necessary to determine the correctness of the number Á = (11, 100, 0111).
Then the initial number Á is entered in the first and second registers. The first adder of the
first group determines the value of ά1 = m1 − α1 = 01, the second determines the value of
ά2 = m2 − α2 = 010, and the third determines the value of ά3 = m3 − α3 = 0101. The first
adder modulo dij determines the value of α12 = (α1 + ά2)mod d12, the second determines the
value of α23 = (α2 + ά3)mod d23, and the third determines the value of α31 = (α3 + ά1)mod
d13. Thus, from the outputs of the corresponding decoders, only the second switch receives
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the values α12 = 1, α23 = 3, according to which it determines the values of the error inverted
modulo m2, i.e., ∆ά2 = 3. The last value through the second encoder in binary code goes
to the first input of the second adder, and the second input of this adder is fed the value
∆ά2 = α2 + ∆α2 = 100. The adder of the second group determines the result of the operation
(∆ά2 + ά2)mod d2 = (m2 − ∆α2 + α2 + ∆α2)mod m2 = 001. The corrected number A = (11,
001, 0111) is sent to the output of the device.

The developed device has an applied value. It was developed to solve a specific prob-
lem and was designed to increase the noise immunity of downhole telemetry information
transmitted over wireless communication channels. However, it should be noted that the
prospective applicability of the presented algorithms and structures is much broader and is
not limited only to the oil and gas industry.

It should be noted that the verification of the real increase in the noise immunity of
the telemetric information using RNS linear correction codes has not yet been carried out.
The problem of distortion of telemetry signals when transmitted to the earth’s surface via a
wireless communication channel has not yet been solved. This is confirmed by attempts
to introduce cable-free telemetry in wells equipped with rod-type deep-water pumps in
the oil companies “Saratovneftegaz”, “Varioganneft” and “Ulianovskneft” in 2012–2014.
Packers are installed in all the squares, preventing the organization of cable communication.
The presence of a large amount of interference caused the noise of the received signals at
a depth of 1200–1500 m and, as a result, caused the temporary cessation of work on the
introduction of wireless telemetry technology. Since more than 75% of wells in Russia are
accounted for by rod depth pumps, the scale of the problem speaks for itself.

In the future, a consistent development of coding theory is expected to continue the
search for effective paradigms combining the corrective properties of the residual class
system with a neural network basis and quantum computing.

This article may be useful to specialists in the field of digital signal processing, control
error coding, radio communications, and oil and gas field development.

5. Conclusions

The article presented the results for determining the necessary and sufficient conditions
for the implementation of the developed algorithms for detecting and correcting errors
using linear L-codes of the deduction system. Four statements were formulated and proved,
necessary and sufficient conditions were determined, three algorithms were developed and
the principles of operation were explained on the example of a specific, developed device
for detecting, localizing and correcting errors.

The main advantages of L-codes in the deduction system were proved, which consist
of the simplicity of the procedures for detecting and localizing their location. It is con-
cluded that by the simplicity of the decoding schemes, L-codes have no analogues in the
conventional positional number system.

Thus, error correction methods in a system of residual classes with mutually pairwise
simple bases make it relatively easy to implement an error detection and correction pro-
cedure, allowing you to localize an erroneous base and correct the remainder in just five
conditional time cycles for any number of bases in the RNS.

Codes in the RNS with mutually pairwise simple bases should be used to create highly
reliable and high-speed computing structures of digital signal processing, where the crite-
rion of redundancy of the representation of code words does not have a determining value.

Author Contributions: Conceptualization by K.T.T. and V.A.K.; methodology by V.S.M. and M.V.S.;
verification by M.V.S.; investigation by K.T.T. and V.A.K.; review, writing and editing by M.V.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2022, 14, 1363 12 of 12

References
1. Tyncherov, K.; Mukhametshin, V.S.; Khuzina, L. Method to control and correct telemtry well information in the basis of residue

number system. J. Fundam. Appl. Sci. 2018, 9, 1370. [CrossRef]
2. Setshedi, K.J.; Mutingwende, N.; Ngqwala, N.P. The Use of Artificial Neural Networks to Predict the Physicochemical Character-

istics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa. Int. J. Environ. Res. Public Health
2021, 18, 5248. [CrossRef] [PubMed]

3. Baibekova, F.N.; Podoltsev, V.V.; Bespalova, N.M.; Sologubova, L.A. Overview of the ways to reduce telemetric information
redundancy. Radio Ind. 2019, 29, 8–16. [CrossRef]

4. Molahosseini, A.S.; Sorouri, S.; Zarandi, A.A.E. Research challenges in next-generation residue number system architectures. In
Proceedings of the 2012 7th International Conference on Computer Science and Education, Melbourne, Australia, 14–17 July 2012;
pp. 1658–1661. [CrossRef]

5. Krasnobayev, V.; Kuznetsov, A.; Yanko, A.; Kuznetsova, K. Correction Codes in the System of Residual Classes; IEEE: Piscataway
Township, NJ, USA, 2019; pp. 488–492. [CrossRef]

6. Shekhanin, K.; Kuznetsov, A.; Krasnobayev, V.; Smirnov, O. Detecting Hidden Information in FAT. Int. J. Comput. Netw. Inf. Secur.
2020, 12, 33–43. [CrossRef]

7. Krasnobayev, V.; Kuznetsov, A.; Yanko, A.; Kuznetsova, K. The data errors control in the modular number system based on the
nullification procedure. In Proceedings of the Third International Workshop on Computer Modeling and Intelligent Systems
(CMIS-2020), Zaporizhzhia, Ukraine, 27 April–1 May 2020; Volume 2608, pp. 580–593.

8. Kasianchuk, M.M.; Yakymenko, I.Z.; Nykolaychuk, Y.M. Symmetric Cryptoalgorithms in the Residue Number System.
Cybern. Syst. Anal. 2021, 57, 329–336. [CrossRef]

9. Isupov, K. Using Floating-Point Intervals for Non-Modular Computations in Residue Number System. IEEE Access 2020, 8,
58603–58619. [CrossRef]

10. Mohan, P. Residue Number Systems: Theory and Applications; Birkhauser: Basel, Switzerland, 2016.
11. de Matos, R.; Paludo, R.; Chervyakov, N.; Lyakhov, P.A.; Pettenghi, H. Efficient implementation of modular multiplication by

constants applied to RNS reverse converters. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems
(ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [CrossRef]

12. Kalmykov, I.A. Redundant Modular Codes for Development of Fault-Tolerant Systems of Satellite Identification. Int. J. Emerg.
Trends Eng. Res. 2020, 8, 3160–3168. [CrossRef]

13. Kalmykov, I.; Chistousov, N.; Aleksandrov, A.; Provornov, I. Application of Correcting Polynomial Modular Codes in Infot-
elecommunication Systems. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2020; pp. 387–398.
[CrossRef]

14. Chervyakov, N.I.; Molahosseini, A.S.; Lyakhov, P.A.; Babenko, M.G.; Deryabin, M.A. Residue-to-binary conversion for general
moduli sets based on approximate Chinese remainder theorem. Int. J. Comput. Math. 2017, 94, 1833–1849. [CrossRef]

15. Chervyakov, N.I.; Lyakhov, P.A.; Babenko, M.G.; Lavrinenko, A.V.; Deryabin, M.A. An efficient method of error correction in
fault-tolerant modular neurocomputers. Neurocomputing 2016, 205, 32–44. [CrossRef]

16. Chervyakov, N.I.; Molahosseini, A.S.; Lyakhov, P.A.; Babenko, M.G.; Lavrinenko, I.N.; Lavrinenko, A.V. Comparison of modular
numbers based on the chinese remainder theorem with fractional values. Autom. Control Comput. Sci. 2015, 49, 354–365. [CrossRef]

17. Chervyakov, N.I.; Babenko, M.G.; Lyakhov, P.A.; Lavrinenko, I.N. An Approximate Method for Comparing Modular Numbers
and its Application to the Division of Numbers in Residue Number Systems. Cybern. Syst. Anal. 2014, 50, 977–984. [CrossRef]

18. Chervyakov, N.I.; Lyakhov, P.A.; Babenko, M.G. Digital filtering of images in a residue number system using finite-field wavelets.
Autom. Control Comput. Sci. 2014, 48, 180–189. [CrossRef]

19. Hosseinzadeh, M.; Jassbi, S.J.; Navi, K. A Novel Multiple Valued Logic OHRNS Moduli rn Adder Circuit. Int. Conf. Eng. Technol.
2007, 1, 985–989.

20. Goel, S.; Kumar, A.; Bayoumi, M.A. Design of Robust, Energy-Efficient Full Adders for Deep-Submicrometer Design Using
Hybrid-CMOS Logic Style. IEEE Trans. Very Large Scale Integr. Syst. 2006, 14, 1309–1321. [CrossRef]

http://doi.org/10.4314/jfas.v9i2s.848
http://doi.org/10.3390/ijerph18105248
http://www.ncbi.nlm.nih.gov/pubmed/34069195
http://doi.org/10.21778/2413-9599-2019-29-2-8-16
http://doi.org/10.1109/iccse.2012.6295382
http://doi.org/10.1109/picst47496.2019.9061253
http://doi.org/10.5815/ijcnis.2020.03.04
http://doi.org/10.1007/s10559-021-00358-6
http://doi.org/10.1109/ACCESS.2020.2982365
http://doi.org/10.1109/iscas.2017.8050779
http://doi.org/10.30534/ijeter/2020/47872020
http://doi.org/10.1007/978-3-030-51974-2_38
http://doi.org/10.1080/00207160.2016.1247439
http://doi.org/10.1016/j.neucom.2016.03.041
http://doi.org/10.3103/S0146411615060048
http://doi.org/10.1007/s10559-014-9689-2
http://doi.org/10.3103/S0146411614030031
http://doi.org/10.1109/TVLSI.2006.887807

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

