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Abstract: Accurate medical imaging segmentation of the retinal fundus vasculature is essential to
assist physicians in diagnosis and treatment. In recent years, convolutional neural networks (CNN)
are widely used to classify retinal blood vessel pixels for retinal blood vessel segmentation tasks.
However, the convolutional block receptive field is limited, simple multiple superpositions tend to
cause information loss, and there are limitations in feature extraction as well as vessel segmentation.
To address these problems, this paper proposes a new retinal vessel segmentation network based
on U-Net, which is called multi-scale cross-position attention network (MCPANet). MCPANet uses
multiple scales of input to compensate for image detail information and applies to skip connections
between encoding blocks and decoding blocks to ensure information transfer while effectively
reducing noise. We propose a cross-position attention module to link the positional relationships
between pixels and obtain global contextual information, which enables the model to segment
not only the fine capillaries but also clear vessel edges. At the same time, multiple scale pooling
operations are used to expand the receptive field and enhance feature extraction. It further reduces
pixel classification errors and eases the segmentation difficulty caused by the asymmetry of fundus
blood vessel distribution. We trained and validated our proposed model on three publicly available
datasets, DRIVE, CHASE, and STARE, which obtained segmentation accuracy of 97.05%, 97.58%,
and 97.68%, and Dice of 83.15%, 81.48%, and 85.05%, respectively. The results demonstrate that the
proposed method in this paper achieves better results in terms of performance and segmentation
results when compared with existing methods.

Keywords: retinal vessel segmentation; convolutional neural network; attention mechanism

1. Introduction

The eye is an extremely important component of the human organism. However, in
recent years, the incidence of various ocular diseases such as cataracts, glaucoma, and
diabetic retinopathy has been increasing every year. Not only do retinal vascular features
indicate the development of ocular diseases, but they are also used by physicians as
indicators for the diagnosis of cardiovascular disease, because some diseases in the human
body cause minor changes in the retinal vasculature. Take diabetes for example, which
often causes thickening of the walls of small retinal vessels and increased permeability,
making them more susceptible to deformation and leakage [1]. Diabetic retinopathy,
as one of the complications of diabetes mellitus, will cause blindness in severe cases.
Therefore, segmentation of retinal vessels for diagnosis by physicians would be able to give
warning of the occurrence or progression of a large number of diseases. However, manual
segmentation of blood vessels from fundus images is a very complex and time-consuming
task [2]. The distribution of blood vessels in the fundus is often not symmetrical, and the
small blood vessels are densely distributed. This usually requires doctors to have high
proficiency to ensure the accuracy of segmentation.
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Automated vessel segmentation has been studied for many years now. With a wave of
machine learning, many researchers have applied this technique to retinal vessel segmen-
tation. Machine learning methods are usually classified as supervised and unsupervised
methods. In retinal fundus segmentation, unsupervised methods refer to retinal vessel
images, which do not require manual annotation. Similar to using high-pass filtering
for vessel enhancement [3], Gabor wavelet filters to segment vessels [4], focusing on the
pre-processing of retinal images with luminance correction [5], and using spatial correlation
and probability calculations and processing images using Gaussian smoothing [6]. Some
researchers have applied the EM maximum likelihood estimation algorithm [7] and the
GMM expectation-maximization algorithm [3] to the retinal vessel and background pixel
classification as well. All of these methods have contributed to retinal vessel segmentation,
but there are still problems of not high enough accuracy and speed. In recent years, re-
searchers have applied deep learning to an increasing number of fields. The emergence of
deep convolutional neural networks [8] has pushed retinal vessel segmentation to another
high point. Compared with traditional machine learning methods, deep convolutional
neural networks are highly capable of extracting effective features of data [9]. Following the
proposal of U-Net [10], many methods based on U-Net improvements proliferated. To alle-
viate the problem of gradient disappearance, DENSENet [11] enhances feature transfer and
has a smaller number of parameters. U-Net++ [12] uses multiple layers of skip connections
to grab features at different levels on the structure of the encoder-decoder. Multiple net-
works are combined to be more adapted to small datasets of retinal vessels [13]. All of these
approaches have demonstrated to varying degrees the effectiveness of convolutional blocks
for feature extraction and for segmenting blood vessels from retinal images. However, each
convolutional kernel in a convolutional neural network (CNN) has a limited receptive field
and can only process local information but cannot focus on global contextual information.
There has been a lot of work tending to use feature pyramids [14] and void convolution
to increase the receptive field and obtain features at different scales. Deeplabv3 [15] uses
void convolution with different expansion rates and pyramid pooling operations to ag-
gregate multi-scale contextual information. PSPNet [14] proposed pyramid pooling for
better extraction of global contextual information. Attention mechanisms have made efforts
in focusing on important features of images. Res-UNet [16] added a weighted attention
mechanism to the U-Net model to better discriminate between vascular and background
pixel features. The connection between two distant pixels on an image is also important
for more accurate segmentation in medical image segmentation tasks. There are some
works to capture long-distance dependencies by repeatedly stacking convolutional layers,
but this approach is too inefficient and also leads to deepening the number of network
layers. Non-local blocks [17] are proposed to capture such long-range dependencies, and
their operation does not only target local regions. The weighting of all location features is
considered when calculating the features at a location, and it is also able to accept inputs
of arbitrary size. The fully connected network [18], although targeting global information,
brings a large number of parameters and can only have fixed size inputs and outputs.
Therefore, the structure of non-local blocks not only solves this problem but also allows
easy insertion into the network structure. However, the effectiveness of non-local blocks is
also accompanied by an increase in computational effort, and this is where improvements
need to be made.

To better capture the contextual information and improve the accuracy of retinal vessel
segmentation, we propose a new retinal vessel segmentation framework called Multiscale
Cross Position Attention Network(MCPANet). We propose cross position attention to
capture long-distance pixel dependencies. In addition, to reduce the computational effort,
only the correlation of a pixel with its peer and the same column position pixel is computed
at a time. By superimposing the position attention twice, we can get the global features
associated with the pixel and thus obtain the global contextual information. In addition,
four different scales of pooling operations are introduced at the end of downsampling
to expand the receptive field. Since the fundus vessels have many fine endings, a very
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important reason affecting the segmentation accuracy lies in the fact that these fine and
asymmetric vessel pixels are not properly classified. Therefore, to capture this detailed
information, we use multiple scales of image input, aiming to provide more comprehensive
information. Our main work has the following three aspects:

1. A new multi-scale cross-position attention mechanism for the retinal vessel segmenta-
tion framework is proposed, and the residual connection is used in the network to
improve the feature extraction ability of the network structure and reduce the noise
in the segmentation. The use of pooling operations at different scales to expand the
receptive field results in a significant reduction in the loss of information about tiny
vessel features.

2. A cross-position attention module is proposed to obtain the contextual information
of pixels and build a relational model with the contextual information associated
with them on local detail features, which not only operates on the whole image but
also focuses on finer details present in local blocks. It also reduces the computation
and memory usage in non-local blocks, and our model has only a small number of
parameters.

3. Trained and validated on three publicly available retinal datasets, DRIVE, CHASE,
and STARE, our model performs well in terms of performance and segmentation
results.

The rest of this paper is organized as follows. We first describe our network architec-
ture in Section 2. Then, the dataset and evaluation metrics are presented in Section 3. The
validation experiments are given in Section 4 and the experimental results are analyzed.
Section 5 is the discussion part, and it finally concludes in Section 6.

2. Methods

In this section, details of the multi-scale cross-position attention network MCPANet for
retinal fundus vessel segmentation are given. The network structure is first shown, and then
the residual coding block and decoding block structures are introduced. Next, we introduce
the cross-position attention module, which can better obtain contextual information and re-
duce the amount of computation and memory usage. To further improve the segmentation
results, we introduce the Dice loss function to supervise the final segmentation output.

2.1. Network Architecture

The work in this paper is based on the classical U-Net network structure [10], which is
an end-to-end network consisting of an encoder and decoder. The encoder is considered a
feature extractor that sequentially acquires high-dimensional features across multiple scales.
In addition, the decoder uses these encoded features to recover segmentation targets [9].
The overall network structure of MCPANet consists of two parts. The first part is a U-Net-
based network with four layers of encoder-decoder branches, which process slices of the
original retinal vascular images to better extract detailed information about the endings of
the fundus vessels. We used feature map inputs at different scales, with each layer having
image input sizes of 64 × 64, 32 × 32, 16 × 16, and 8 × 8 pixels, which allows the network
to learn image features at multiple scale representations. Skip connections are established
between each encoder and decoder block for the better extraction of image features. Due
to the high amount of fundus detail information, we include residual connections in the
encoder part to prevent information loss. Four different scales of pooling operations are
used at the bottom of the network to increase the receptive field and encode the contextual
information, followed by a 1 × 1 convolutional dimensionality reduction. To match the
size of the original feature map, we perform an upsampling to fuse the feature map and
connect it with the original feature map to feed the decoder block. The second part is the
cross-position attention module (CPA), which performs further contextual information
extraction on the output results of the network. By placing two CPA modules serially, we
can obtain global position information. The feature map Y output by the CPA module is
connected with the previous feature map X and then the segmentation result is output
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by the segmentation layer. The final result is supervised by the DiceLoss function. The
network structure of the MCPANet is shown in Figure 1.

Figure 1. MCPANet network structure diagram.

2.2. Encoder and Decoder Structure

In the encoding stage, we use the same encoder block for each encoder. When the
convolution operation is performed on the feature map, the output obtained is smaller
compared to the original feature map, and it causes the loss of retinal fundus vessel pixel
information. Therefore, we propose a coding block based on the residual connection to
compensate for the retinal fundus vessel pixel information. The specific procedure is as
follows: for the input image, a 1 × 1 convolution is first performed, and then a batch
normalization operation is performed to ensure the nonlinear representability of the model.
Then, the features are extracted using two consecutive 3× 3 convolutions. Finally, the ReLU
function is used as the activation function. The residual connection allows the information
of the original feature map to be passed in before going through a series of operations and
outputting the feature map. This enables the extraction of retinal fundus vessel features in
a more efficient manner. In Figure 2 is a detailed implementation of the encoder block.

For the decoder block, we use the universal decoding structure, that is, a simple
convolutional layer. The upsampling layer uses transposed convolution and the activation
function uses the ReLU function.

Figure 2. Encoder block.

2.3. Cross-Positional Attention Module

In this section, we describe the details of the cross-position attention module(CPA).
For the feature map obtained in the backbone network, although the deep CNN is able to
eliminate the background regions unrelated to the vessel pixels, the less obvious capillary
information is often easily lost. Therefore, in order to model the relationship of contextual
information associated with local detail features, we introduce the cross-position attention
module to achieve a better segmentation effect. Unlike the previous work, we extend
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nonlocal operations to the retinal fundus vessel segmentation task. We obtain global
semantic information descriptions by establishing connections between long-range features
of fundus vessels pixels. The advantage of using the attention module to model long-
range dependencies leads to improved feature representation for retinal fundus vessel
segmentation.

We take the output feature map F ∈ RH×W×C of the backbone network as the input
of the CPA module. Where, H, W are the height and width of the feature map and C
represents the number of channels. First, for a given feature map F, it passes through a 1 × 1
convolutional layer to obtain feature maps M, N, V, respectively, {M, N, V} ∈ RC×W×H .

For the obtained feature maps M, N, there is a vector Qx for any pixel position x in M.
To calculate the correlation between pixels in the full image and position x, for simplicity,
we first find the feature vectors in the feature map N that are in the same row and column
as position x, and save them in the set Dx ∈ R(H+W−1)×C. The feature vector Qx of the
pixel position x and the transpose of the vector in the obtained set Dx are subjected to
a dot multiplication operation, that is, the correlation between the features is obtained.
A softmax layer is further applied on the multiplied result to generate an attention map
Sz ∈ R(H+W−1)×(W×H). The calculation process is shown in Equation (1).

Sz = so f t max
(

QxDT
i,x

)
(1)

The attention map Sz is then multiplied with the set Ψx ∈ R(H+W−1)×C of feature
vectors in the feature map V obtained at the beginning which are also in the same row as
position x to obtain the new feature map. The resulting feature map is then added to the
input original feature map F to generate the final output feature map Y. See Equation (2). A
more intuitive representation is available in Figure 3.

Y =
H+W−1

∑
i=0

Sz ·Ψi.x + F (2)

By using this feature correlation calculation twice, we can obtain global contextual
information about each pixel location. Finally, the final retinal fundus vessel segmentation
results are obtained by passing through the segmentation layer.

Figure 3. CPA module diagram.
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2.4. Loss Function

Although the segmentation results of retinal vessels are generated after MCPANet,
there are still some regions of segmentation inaccuracy and segmentation errors between
the segmented retinal vessels and the given groundtruth. Therefore, we use a loss function
to enhance the results before outputting the segmentation results. Although many papers
have used the classical binary cross-entropy loss function in the choice of the loss function,
the Dice loss [19] function is more applicable here for the retinal vessel segmentation task in
this paper. The Dice Coefficient is an ensemble similarity measure function taking values in
the range [0, 1], which we use to calculate the difference between the predicted retinal vessel
segmentation results (denoted as P) and the groundtruth (denoted as G). DiceCoefficient
formula is defined in Equation (3).

DiceCoe f f icient = 2× |P ∩ G|
|P|+ |G| (3)

where |P ∩ G| denotes the intersection of the predicted retinal vessel segmentation result
and the groundtruth, and |P| and |G| denote their pixel counts, respectively. In addition,
the Dice loss function is denoted as Dice = 1− DiceCoe f f icient, defined as in Equation (4).
In the specific implementation, we introduce a constant w to prevent the denominator from
being zero.

DiceLoss = 1− 2× |P ∩ G|+ w
|P|+ |G|+ w

(4)

3. Dataset and Evaluation Metrics
3.1. Experimental Environment and Parameters

We use the Pytorch framework for deep learning to implement the methods in this
paper. The training is implemented on a QuadroRTX 6000 server with a GPU memory
size of 24 G and Ubuntu64 operating system. An initial learning rate of 0.001 is used
for the training. The Adam optimizer is used for training with the following parameters:
exponential decay rate β1 is set to 0.9, β2 is set to 0.999, and epsilon = 1 × 10−8. We used
the model with the best validation performance in our tests, and the Dice loss function
was used for the loss function. For the DRIVE and CHASE datasets, we set the number
of iterations of the model to 100, the training batch size to 128, and the threshold to 0.47.
Since there are only 20 images in the STARE dataset, we used the leave-one-out method for
training to make the training effect as good as possible. The training batch size is set to 512,
the number of iterations of the model to 100, and the threshold value is set to 0.50.

3.2. Datasets

We validate our method on three publicly available datasets (DRIVE, CHASE, and
STARE) used to segment retinal vessels.

The DRIVE dataset [20] consists of 40 color images of retinal fundus vessels, the
corresponding groundtruth images, and the corresponding mask images. The size of each
image is 565 × 584, and the first twenty fundus images are set as the test set. The last twenty
images are set as the training set.

STARE dataset [21] consists of 20 color images of retinal fundus vessels, the corre-
sponding groundtruth images, and the corresponding mask images. The size of each image
was 700 × 605 pixels. Testing was performed using the leave-one-out method, where one
image at a time was used for testing, and the remaining 19 samples were used for training.

CHASE dataset [22] consists of 28 retinal fundus vessel color images, the correspond-
ing groundtruth images, and the corresponding mask images. The image size was 999 × 960.
Image sources were collected from the left and right eye datasets of 14 students. Twenty
images were used as the training set and the remaining eight images were used as the test
set. Figure 4 Sample images are shown in the CHASE dataset. From left to right are the
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original retinal fundus vessel medical images, the masked images, and the groundtruth,
which is manually segmented by experts.

Figure 4. Sample images of CHASE dataset: (a) Original retinal fundus vessel medical image;
(b) Masked image; (c) Expert manual segmentation of the groundtruth.

Due to the characteristics of the retinal fundus vessel images and their acquisition,
direct segmentation using the original image leads to poor results and unclear vessel con-
tours. Therefore, it is necessary to perform pre-processing to enhance the vessel information
before segmentation. In this paper, the pre-processing method proposed by Jiang et al. [23],
data normalization, adaptive histogram equalization (CLAHE) processing, and gamma
correction method were used. Due to the higher vessel clarity of the isolated G-channel,
it is experimentally verified that the RGB three channels are fused at 29.9%, 58.7%, and
11.4%, respectively, and then with grayscale processing to obtain images with more distinct
blood vessels.

Normalization was used to improve the convergence speed of the model, and then
CLAHE processing was used to enhance the vessel-background contrast of the dataset.
Finally, gamma correction was used to improve the quality of retinal fundus vessel images.
The four image processing strategies are shown in Figure 5a–e.

Figure 5. Pre-processing results: (a) Original retinal fundus vascular medical image; (b) RGB three-
channel scaled fusion image; (c) data-normalized image; (d) CLAHE processed image; and (e) Gamma
corrected image.

3.3. Experimental Evaluation Metrics

To quantitatively evaluate the accuracy of retinal vessel segmentation by the method
in this paper, we use a confusion matrix to analyze the performance of the evaluation
metrics such as Dice, Accuracy, Sensitivity, and Specificity. Dice indicates the proportional
relationship between Sensitivity and Accuracy. Accuracy indicates the ratio of the sum of
correctly segmented vessel pixels and background pixels to the total pixels of the whole
image. The sensitivity indicates the ratio of correctly segmented vascular pixels to the
total number of real vessel pixels. Specificity indicates the ratio of correctly segmented
background pixels to the total number of real background pixels. Precision indicates the
ratio of correctly segmented vessel pixels to the sum of all segmented vessel pixels. The
corresponding equations for each evaluation metric are expressed in Equations (5)–(9).
Where true positive (TP) is the number of correctly segmented vessel pixels, true negative
(TN) is the number of correctly segmented background pixels, false positive (FP) is the
number of background pixels incorrectly segmented as vessel pixels, and false negative
(FN) is the number of vessel pixels incorrectly segmented as background pixels.



Symmetry 2022, 14, 1357 8 of 19

Dice =
2× TP

2× TP + FN + FP
(5)

Accuracy =
TP + TN

TP + FN + FP + TN
(6)

Sensitivity =
TP

TP + FN
(7)

Speci f icity =
TN

TN + FP
(8)

Precision =
TP

TP + FP
(9)

4. Experimental Results and Analysis
4.1. Comparison of the Results before and after Model Improvement

To verify the effectiveness of each module of the proposed model, in this section, we
will perform module-by-module validation on DRIVE, CHASE, and STARE datasets in
the form of ablation experiments. First, the baseline network is based on a modification
of U-Net by adding residual connectivity and multi-scale pooling modules, denoted as
the BackBone. On this foundation, we add the CPA module, denoted as BackBone + CPA,
and finally, we replace the single input of the image with the multiscale input, which
is the model MCPANet in this paper. Tables 1 and 2 show the experimental results of
the three models on the DRIVE and CHASE datasets. To make the highest value of each
metric more eye-catching, we bolded it. In terms of BackBone’s performance, Dice and
Sensitivity reached 0.8130 and 0.8281, 0.8122 and 0.8155 on the DRIVE and CHASE datasets,
respectively. The addition of the cross-position attention module helps to obtain contextual
information, which makes the sensitivity slightly lower on the DRIVE dataset, but the
more important indicator Dice is improved by 1.5%. On the CHASE dataset, the Dice
and Sensitivity reached 0.8123 and 0.8328, respectively, with essentially the same Dice
but a 1.73% increase in Sensitivity. This proves that the CPA module is effective for more
accurate segmentation of vascular pixels. Finally, after adding multi-scale input to the
model, the Dice and Sensitivity of MCPANet on the DRIVE dataset reach 0.8315 and 0.8356,
respectively, with a further increase of 0.35% in Dice and 1.9% in Sensitivity. The Dice and
Sensitivity on the CHASE dataset reached 0.8148 and 0.8416, respectively, with a further
increase in Sensitivity based on the increase in Dice. This suggests that multiple images of
vessel sections at different scales enable the model to learn different characteristics as well
as fine vessel features.

Table 1. Ablation experiments on the DRIVE dataset.

Model Specificity Sensitivity Accuracy Dice AUC_ROC

BackBone 0.9849 0.8281 0.9706 0.8130 0.9622
BackBone + CPA 0.9854 0.8167 0.9704 0.8280 0.9747
MCPANet 0.9836 0.8356 0.9705 0.8315 0.9871

The bold data in the table represent the maximum value achieved on each evaluation index.

Table 2. Ablation experiments on the CHASE dataset.

Model Specificity Sensitivity Accuracy Dice AUC_ROC

BackBone 0.9862 0.8155 0.9762 0.8122 0.9769
BackBone + CPA 0.9855 0.8328 0.9757 0.8123 0.9896
MCPANet 0.9849 0.8416 0.9758 0.8148 0.9898

The bold data in the table represent the maximum value achieved on each evaluation index.
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To verify the effect of the choice of loss function on whether the model can achieve
adequate segmentation, we did a set of ablation experiments, using the cross-entropy
loss function and the Dice loss function in the MCPANet model, respectively. The results
we obtained on the DRIVE and CHASE datasets are shown in Tables 3 and 4. It can be
observed that on the DRIVE dataset, the Dice and Sensitivity obtained using the Dice loss
function with essentially the same accuracy is improved over that using the cross-entropy
loss function. On the CHASE dataset, the Dice and Sensitivity obtained using the Dice loss
function are 0.8148 and 0.8416, respectively, with an increase in Dice and 1.2% in Sensitivity
compared to the cross-entropy loss function. It is confirmed that suitable loss functions are
needed for different segmentation tasks to further improve the accuracy of the model.

Table 3. Comparison of different loss functions on the DRIVE dataset.

Model Specificity Sensitivity Accuracy Dice

MCPANet + Cross-entropy 0.9836 0.8343 0.9703 0.8305
MCPANet + Dice 0.9836 0.8356 0.9705 0.8315

The bold data in the table represent the maximum value achieved on each evaluation index.

Table 4. Comparison of different loss functions on the CHASE dataset.

Model Specificity Sensitivity Accuracy Dice

MCPANet + Cross-entropy 0.9859 0.8297 0.9759 0.8131
MCPANet + Dice 0.9849 0.8416 0.9758 0.8148

The bold data in the table represent the maximum value achieved on each evaluation index.

For the STARE dataset, we used the leave-one-out method in both training and testing.
Table 5 shows the test results of MCPANet on 20 images, and we average the results of
20 folds on five metrics as the test results of MCPANet on the STARE dataset.

Table 5. Test results using the leave-one-out method on the STARE dataset.

Image Accuracy Specificity Sensitivity Dice AUC_ROC

0 0.9722 0.9833 0.8478 0.8288 0.9781
1 0.9776 0.9900 0.8184 0.8297 0.9684
2 0.9807 0.9864 0.8909 0.8468 0.9812
3 0.9714 0.9870 0.7767 0.8010 0.9715
4 0.9668 0.9824 0.8090 0.8148 0.9531
5 0.9780 0.9843 0.8915 0.8488 0.9854
6 0.9748 0.9776 0.9420 0.8567 0.9858
7 0.9757 0.9774 0.9540 0.8544 0.9925
8 0.9822 0.9857 0.9401 0.8923 0.9919
9 0.9737 0.9780 0.9237 0.8494 0.9858
10 0.9797 0.9864 0.8917 0.8621 0.9887
11 0.9807 0.9824 0.9603 0.8848 0.9914
12 0.9800 0.9874 0.9037 0.8894 0.9854
13 0.9803 0.9896 0.8869 0.8907 0.9879
14 0.9780 0.9867 0.8857 0.8741 0.9800
15 0.9682 0.9875 0.7989 0.8370 0.9708
16 0.9760 0.9882 0.8567 0.8641 0.9767
17 0.9866 0.9940 0.8455 0.8642 0.9710
18 0.9827 0.9877 0.8728 0.8130 0.9774
19 0.9710 0.9830 0.8408 0.7867 0.9738
Average 0.9768 0.9853 0.8799 0.8505 0.9798

The bold data in the table represent the maximum value achieved on each evaluation index.

We trained and validated the models: BackBone and BackBone + CPA on the STARE
dataset using the leave-one-out method. The experimental results are shown in Table 6,
with the highest values of each metric in bold. Comparing the performance of BackBone,
the Dice and Accuracy improve by 1.15% and 0.67%, respectively, after adding the CPA
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module. MCPANet improves the Dice and Accuracy rate by 1.34% and 1.38%, respectively,
on this basis. The combined performance shows that the method in this paper can improve
in all indexes and is very effective for more accurate segmentation of vessel pixels.

Table 6. Ablation experiments on the STARE dataset.

Model Specificity Sensitivity Accuracy Dice AUC_ROC

BackBone 0.9821 0.8594 0.9722 0.8256 0.9791
BackBone +
CPA

0.9837 0.8661 0.9748 0.8371 0.9796

MCPANet 0.9853 0.8799 0.9768 0.8505 0.9798
The bold data in the table represent the maximum value achieved on each evaluation index.

Next, more intuitive visualization of the effectiveness of our modules is presented,
from which the segmentation effect of the retinal fundus vessel details can be observed.
Figure 6 shows the segmentation results on the three datasets. It can be observed that
for different models and different datasets, it is easier to segment the thicker veins in the
center of the retina or the slightly thinner arteries, because these vessels are more clearly
visible on the whole fundus image. The accurate segmentation of the surrounding fine
vessels is a more important evaluation point to determine the effectiveness of a model
segmentation. Therefore, we focused on the segmentation of capillaries in the visualization
comparison. Columns (a)–(e) in the figure show the original retinal vessel images, which
are the groundtruth of manual segmentation by professionals, the segmentation results of
BackBone, and the segmentation results of BackBone + CPA, and the segmentation results
of MCPANet, respectively. From top to bottom, the medical image segmentation results on
CHASE, STARE, and DRIVE datasets are shown in order. To highlight the segmentation
effect, we have enlarged some regions in the retinal image, the groundtruth image, and the
segmentation result map of each model, and marked the focused observation regions with
green boxes.

Figure 6. Visualization of ablation experiments for three datasets: (a) Original image, (b) Groundtruth
image, (c) BackBone, (d) BackBone + CPA, and (e) MCPANet.
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As can be observed in Figure 6, the BackBone network can segment the backbone of
the blood vessels, but the segmentation results are bad for the detailed parts. There is a lot
of noise, and the pixels that do not belong to the blood vessels are also labeled as blood
vessel pixels. After adding the CPA module to the network, this phenomenon is greatly
improved. On the CHASE dataset, we can see that the noise is greatly reduced and the
boundaries of the segmented vessel pixels are clearer in the part marked by red boxes.
Because the CPA acquires the global information and takes into account the connection
between the pixel relationships, the number of misclassified pixels is reduced and the
information of vessel pixels is learned better. Compared with the results of MCPANet
segmentation, the noise is further reduced in all three datasets. The finer capillaries can be
segmented, and the extraction of edge vessel pixels can be deepened. This effect can be
observed by the marked area in Figure 6. This shows that our method is effective for the
segmentation task of retinal fundus vessel medical images, and a good segmentation result
can be achieved by improving it.

4.2. Comparison with Other Methods

Further, to validate the effectiveness of our model, it was compared with current
models, which perform better on the retinal fundus vessel segmentation task on three
datasets. To make the experiments more convincing, we chose the unsupervised methods of
Azzopardi et al. [24] and Chen et al. [25], as well as the classical U-Net [10], R2U-Net [26],
and the supervised methods of Tong et al. [27], which contain methods ranging from
2018–2021. We evaluated them according to four evaluation metrics: Dice, Accuracy,
Sensitivity, and Specificity. Tables 7–9 show the comparison of the segmentation results
on the DRIVE, CHASE, and STARE datasets. From Table 7, it can be observed that on the
DRIVE dataset, MCPANet performs the best in terms of Accuracy and Specificity compared
with the unsupervised method, and the best in terms of the three metrics of Accuracy,
Sensitivity, and Dice compared to the supervised method, with an improvement of 0.14%,
0.67%, and 1.26%, respectively. As can be observed in Table 8, on the CHASE dataset,
MCPANet performs best on the three metrics of Accuracy, Specificity and Dice compared
to the unsupervised method, and better on Accuracy and Dice compared to the supervised
method. There was an improvement of 0.06% in Accuracy and 0.32% in Dice. As can be
observed in Table 9, on the STARE dataset, MCPANet performs best on all four metrics
compared to the unsupervised method, with a 5.01% improvement in Sensitivity and a
0.30% improvement in Dice compared to the supervised method. The improvement of
these results verifies the effectiveness of MCPANet in this paper.

Table 7. Comparison with other methods on the DRIVE dataset.

Type Methods Year Accuracy Sensitivity Specificity Dice

Unsupervised
method

Azzopardi et al. [24] 2015 0.9442 0.7655 0.9704 -
Chen et al. [25] 2017 0.9390 0.7358 0.9680 -
Tian et al. [28] 2019 0.9580 0.8639 0.9690 -
Jainish et al. [7] 2020 0.9657 0.9890 0.7900 -

Supervised
Method

U-Net [10] 2015 0.9531 0.7537 0.9820 0.8142
R2U-Net [26] 2018 0.9556 0.7792 0.9813 0.8171
DUNet [29] 2019 0.9566 0.7963 0.9800 0.8237
AG-UNet [30] 2020 0.9558 0.7854 0.9810 0.8216
CA-Net [9] 2020 0.9605 0.7727 0.9788 0.7733
RVSeg-Net [31] 2020 0.9681 0.8107 0.9845 -
Guo et al. [32] 2020 0.9691 0.8149 0.9839 0.8222
topGAN [33] 2020 0.9430 0.9180 0.9300 -
M-GAN [34] 2020 0.9706 0.8346 0.9836 0.8324
Tong et al. [27] 2021 0.9684 0.8117 0.9870 0.8174
SCS-Net [35] 2021 0.9697 0.8289 0.9838 0.8189
SA-Net [36] 2021 0.9569 0.8252 - -
PLRS-Net [37] 2022 0.9682 0.8269 0.9817 -
Ours 2022 0.9705 0.8356 0.9836 0.8315

The bold data in the table represent the maximum value achieved on each evaluation index.
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Table 8. Comparison with other methods on the CHASE dataset.

Type Methods Year Accuracy Sensitivity Specificity Dice

Unsupervised
method

Azzopardi et al. [24] 2015 0.9387 0.7585 0.9587 -
Tian et al. [28] 2019 0.9601 0.8778 0.9680 -

Supervised
Method

U-Net [10] 2015 0.9578 0.8288 0.9701 0.7783
R2U-Net [26] 2018 0.9634 0.7756 0.9820 0.7928
DUNet [29] 2019 0.9610 0.8155 0.9752 0.7883
AG-UNet [30] 2020 0.9752 0.8110 0.9870 0.8116
RVSeg-Net [31] 2020 0.9726 0.8069 0.9836 -
Guo et al. [32] 2020 0.9751 0.8486 0.9836 0.8111
CA-Net [9] 2020 0.9645 0.8120 0.9749 0.7409
M-GAN [33] 2020 0.9736 - - 0.8110
Tong et al. [27] 2021 0.9739 0.8340 0.9868 0.7911
SCS-Net [35] 2021 0.9744 0.8365 0.9839 -
PLRS-Net [37] 2022 0.9731 0.8301 0.9839 -
Ours 2022 0.9758 0.8416 0.9849 0.8148

The bold data in the table represent the maximum value achieved on each evaluation index.

Table 9. Comparison with other methods on the STARE dataset.

Type Methods Year Accuracy Sensitivity Specificity Dice

Unsupervised
Method

Azzopardi et al. [24] 2015 0.9387 0.7585 0.9587 -
Tian et al. [28] 2019 0.9601 0.8778 0.9680 -
U-Net [10] 2015 0.9690 0.8270 0.9842 0.8373

Supervised
Method

R2U-Net [26] 2018 0.9712 0.8298 0.9862 0.8475
Iter-Net [38] 2020 0.9782 0.7715 0.9919 0.8146
M-GAN [35] 2020 0.9876 0.8324 0.9938 0.8370
Tong et al. [27] 2021 0.9805 0.8072 0.9927 0.8270
SCS-Net [35] 2021 0.9736 0.8207 0.9839 -
PLRS-Net [37] 2022 0.9715 0.8635 0.9803 -
Ours 2022 0.9768 0.8799 0.9853 0.8505

The bold data in the table represent the maximum value achieved on each evaluation index.

We visualize our method in comparison with the current better performing CA-Net [9]
and AG-UNet [30] network models for the segmentation task of retinal fundus vessels.
Figures 7 and 8 show the visualization results on the DRIVE and CHASE datasets, respec-
tively. Columns (a)–(e) show the original retinal vessel images, the groundtruth manually
segmented by a professional, and the segmentation results of CA-Net, AG-UNet, and
MCPANet, respectively. On the DRIVE dataset, we can see that CA-Net and AG-UNet can
segment all arteries and veins, but there are still some blood vessels that are not segmented.
In addition, wrongly segmenting background pixels as blood vessel pixels and the noise
is more obvious in the results of CA-Net segmentation. Compared with the CA-Net, MC-
PANet can reduce the misclassification of pixels and perform better in the segmentation
of small vessels because it fully utilizes the inter-pixel position relationship and multiple
scale feature maps. Since MCPANet takes into account the information of deep and shallow
layers, the noise effect is reduced in the segmentation results. On the CHASE dataset,
MCPANet can obtain clearer vessel segmentation results compared with CA-Net and AG-
UNet. This is because the MCPANet focuses more on the long-range relationship between
pixels and the relationship with the surrounding pixels when acquiring the vessel pixel
information. The comparative analysis shows that MCPANet has better performance and
advantages for the retinal vessel segmentation task. This conclusion can be derived from
Figures 7 and 8.
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Figure 7. Visualization results on DRIVE dataset compared with other methods. (a) Original image,
(b) Groundtruth image, (c) CA-Net [9], (d) AG-UNet [30], (e) Ours.

Figure 8. Visualization results on CHASE dataset compared with other methods. (a) Original image,
(b) groundtruth image, (c) CA-Net [9], (d) AG-UNet [30], and (e) ours.

For retinal fundus datasets, it usually includes a certain number of diseased retinal
fundus images. Therefore, from the image, we can not only see the blood vessel information,
but also the lesion information of the patient in different degrees in the fundus. On the
STARE dataset, we show visually that our method can also be adapted to the segmentation
of lesion regions. As can be seen in Figure 9, since the grand truth corresponds only to the
retinal blood vessels marked by the doctor, it does not involve the segmentation standard
of the lesion area, and our model can also segment the lesion area well.
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Figure 9. Visualization results on STARE dataset compared with other methods. (a) Original image,
(b) groundtruth image, (c) CA-Net [9], and (d) ours.

4.3. Generalization Verification of the Model

To verify the generalization of our model, in this subsection, our model is evaluated
using the KvasirSEG gastrointestinal polyp image segmentation dataset. The KvasirSEG
dataset consists of 1000 images. Since the dataset has no given division criteria, we ran-
domly shuffle it, taking 500 images as the training set, 100 as the validation set, and 400
as the test set. In order to unify the input of the network, images of different sizes are
normalized to a size of 300 × 300. In addition, using the same data augmentation method
as the paper [23], we compare the test results of our method on the four indicators with
the existing models and list the results in Table 10. Similarly, the segmentation results for
intestinal polyps are visualized in Figure 10. The results show that our method not only
performs well on retinal vessel segmentation tasks, but also on other medical image tasks.

Figure 10. Visualization results of segmentation on KvasirSEG. The light pink part represents the
segmentation result of the lesion area on the original image, and the darker pink part in the segmented
lesion area represents the part with more obvious skin color in the original image.
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Table 10. Comparison with other methods on the KvasirSEG dataset.

Methods Year Accuracy Sensitivity Specificity Dice

U-Net [10] 2015 0.9466 0.9594 0.9401 0.8212
Attention U-Net [39] 2018 0.9440 0.9508 0.9375 0.8181
CE-Net [40] 2019 0.9501 0.9569 0.9435 0.8307
CA-Net [9] 2020 0.9422 0.9489 0.9357 0.8099
Ours 2022 0.9521 0.9591 0.9453 0.8374

The bold data in the table represent the maximum value achieved on each evaluation index.

4.4. Number of Model Parameters and ROC Curve Evaluation

We evaluate the spatial and time spending of the network model in terms of model
parameters and single image segmentation time. The experiments are conducted in the
same experimental environment. The evaluation results are detailed in Table 11, which
shows that although MCPANet adds CPA module and multi-scale input based on BackBone,
it does not introduce too many parameters, which makes our model not only obtain better
segmentation performance but also have the advantage of a small number of parameters.
For AG-UNet, the number of parameters in this method is even smaller. It can also be
observed from the segmentation time that the segmentation time of our method is the
smallest on both DRIVE and STARE datasets. The time spent on the CHASE dataset is one
80th of AG-UNet. While comparing with CA-Net, we have more numbers of parameters
but our segmentation time is still the smallest and better on DRIVE and STARE datasets.
From the table, we can conclude that MCPANet has less numbers of parameters and
training time with the best segmentation result performance, which further proves the
superiority of our model.

Table 11. Number of parameters and segmentation time for different models.

Model (Params) DRIVE (10,000 Pathcs) CHASE_DB1 (10,000
Pathcs) STARE (38,000 Patchs)

BackBone (7.42 M) 1.29 s 6.37 s 7.05 s
BackBone + CPA (7.43 M) 1.51 s 7.37 s 1.51 s
CA-Net (2.8 M) 2.7 s 3.77 s 2.28 s
AG-UNet (28.3 M) 6.21 s 21.01 s 15.89 s
MCPANet (7.46 M) 0.83 s 10.24 s 1.02 s

We calculated Receiver Operating Characteristic (ROC) curves and Precision Recall
(PR) curves for each network model of the ablation structure, which are displayed in
visualizations in Figure 11. The ROC curves express the information between the incorrect
segmentation of background pixels into vessel pixels and the correct segmentation of vessel
pixels. When the proportion of these two is larger, the PR curve can better reflect the
pixel classification. In terms of experimental results, the ROC and PR curves of MCPANet
occupy the largest area in all three datasets. This indicates that MCPANet achieves the
best results in the retinal vessel segmentation task, exploiting the positional relationship
between pixels and taking into account the deep and shallow feature information to obtain
the best performance.
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Figure 11. PR and ROC curves for each ablation structure.

5. Discussion

This paper proposes a novel retinal vessel segmentation framework with a multi-scale
cross-position attention mechanism. Compared with previous methods, we obtain better
accuracy and better segmentation results. However, there are currently two issues to
consider. First, the contribution of our paper is to use existing datasets and combine the
current popular convolutional neural network technology to achieve a higher-precision
segmentation of retinal vessels. However, changes in the diameter and thickness of blood
vessels often indicate the occurrence of diseases to a certain extent, although we currently
do not have a larger dataset to achieve high-precision caliber measurement. However,
exploring the relationship between vascular caliber and cardiovascular disease (CVD) and
systemic inflammation can be the focus of our next work, because there is still a lot of room
for high-precision segmentation and measurement of a vascular caliber. Secondly, as far as
the retinal fundus dataset is concerned, in the image we can not only see the blood vessel
information, but also the different degrees of lesions in the fundus of the patient. Although
our method can make a certain contribution in lesion segmentation, there is still some room
for achieving more accuracy and meeting the clinical standards of doctors. Therefore, this
is also the direction of the work that we should do in the future.
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6. Conclusions

We propose the MCPANet network model to handle the retinal fundus vessel seg-
mentation task. The model can quickly and automatically segment the blood vessels in
fundus images under the premise of ensuring accuracy, and has the advantage of a small
amount of parameters. MCPANet captures long-distance dependencies by linking the
positional relationship between pixels to obtain contextual information more fully and
improve the accuracy of segmentation. Using different scales of feature input enables
the model to enhance the feature extraction ability, which is extremely important for the
segmentation of capillaries. The skip connection design makes the information transfer
between layers more fluent. Pooling operations at different scales further expand the
receptive field and help extract global information. We validate the MCPANet model
on three well-established datasets, DRIVE, CHASE, and STARE. The results show that
compared with existing R2U-Net, AG-UNet and SCS-Net methods. Our method has better
performance and fewer parameters, and the segmentation of retinal small blood vessels is
more accurate. In addition, the impressive performance of MCPANet on KvasirSEG dataset
also confirms the generalization ability of the model.
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