
����������
�������

Citation: Ceng, L.-C.; Li, J.-Y.; Wang,

C.-S.; Zhang, F.-F.; Hu, H.-Y.; Cui,

Y.-L.; He, L. Characterizations of

Well-Posedness for Generalized

Hemivariational Inequalities Systems

with Derived Inclusion Problems

Systems in Banach Spaces. Symmetry

2022, 14, 1341. https://doi.org/

10.3390/sym14071341

Academic Editor: Calogero Vetro

Received: 6 June 2022

Accepted: 17 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Characterizations of Well-Posedness for Generalized
Hemivariational Inequalities Systems with Derived Inclusion
Problems Systems in Banach Spaces
Lu-Chuan Ceng * , Jian-Ye Li, Cong-Shan Wang, Fang-Fei Zhang, Hui-Ying Hu, Yun-Ling Cui and Long He

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China; jianyeli@shnu.edu.cn (J.-Y.L.);
congshanwang@shnu.edu.cn (C.-S.W.); fangfeizhang@shnu.edu.cn (F.-F.Z.); huiying@shnu.edu.cn (H.-Y.H.);
cuiyunling@shnu.edu.cn (Y.-L.C.); longhe@shnu.edu.cn (L.H.)
* Correspondence: zenglc@shnu.edu.cn

Abstract: In real Banach spaces, the concept of α-well-posedness is extended to the class of general-
ized hemivariational inequalities systems consisting of two parts which are of symmetric structure
mutually. First, certain concepts of α-well-posedness for generalized hemivariational inequalities
systems are put forward. Second, certain metric characterizations of α-well-posedness for generalized
hemivariational inequalities systems are presented. Lastly, certain equivalence results between strong
α-well-posedness of both the system of generalized hemivariational inequalities and its system of
derived inclusion problems are established.
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1. Introduction

Tykhonov’s well-posedness put forward in [1] has been playing an important role
in the study of optimization problems and their related problems such as variational in-
equalities, inclusion problems, Nash equilibrium problems, etc. For more than the last
50 years, a large number of results regarding well-posedness for optimization problems
have been established in the literature; these can be seen, e.g., in [2–11] and the references
therein. In particular, Lucchetti and Patrone [12] extended the concept of well-posedness
for optimization problems to the variational inequalities in 1981. Using Ekeland’s vari-
ational principle, they presented the characterization of Tykhonov’s well-posedness for
minimization problems involving convex and lower semicontinuous (l.s.c.) functions on
nonempty, convex and closed sets.

In 1995, Goeleven and Mentagui [13] first put forward the notion of well posedness
for hemivariational inequalities (HVIs) and established certain elementary results for
well-posed HVIs. Very recently, Wang et al. [14] built the equivalence between the well-
posedness of both the hemivariational inequalities system (SHVI) and its derived inclusion
problems system (SDIP), i.e., an inclusion problems system which is equivalent to the SHVI.
Meanwhile, Ceng, Liou and Wen [15] extended the concept of α-well-posedness to the class
of generalized hemivariational inequalities (GHVIs), gave certain metric characterizations
of α-well-posedness for GHVIs, and established the equivalence between α-well-posedness
of both the GHVI and its derived inclusion problem (DIP), i.e., an inclusion problem which
is equivalent to the GHVI. Additionally, Ceng and Lin [16] introduced and considered
the α-well-posedness for systems of mixed quasivariational-like inequalities (SMQVLIs)
in Banach spaces, and furnished certain metric characterizations of α-well-posedness
for SMQVLIs.
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Suppose that Vk is a real Banach space with its dual V∗k for k = 1, 2. For k = 1, 2,
we denote by 〈·, ·〉V∗k ×Vk

the duality pairing between Vk and V∗k and by || · ||Vk and || · ||V∗k
the norms of spaces Vk and V∗k , respectively. It is well known that the product space
V = V1 ×V2 is still a real Banach space endowed with the norm below:

||u||V = ||u1||V1 + ||u2||V2 ∀u = (u1, u2) ∈ V .

For k = 1, 2, let Ak : V1×V2 → 2V∗k be a nonempty set-valued mapping, J : V1×V2 → R
be a locally Lipschitz functional on V and fk be a given point in V∗k .

In this paper, we consider the system of generalized hemivariational inequalities
(SGHVI), which consists of finding u = (u1, u2) ∈ V s.t. for certain (ω1, ω2) ∈ A1(u1, u2)×
A2(u1, u2),

(SGHVI)

{
〈ω1 − f1, v1 − u1〉V∗1 ×V1 + J◦1 (u1, u2; v1 − u1) ≥ 0 ∀v1 ∈ V1,
〈ω2 − f2, v2 − u2〉V∗2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ 0 ∀v2 ∈ V2,

where, for k 6= j = 1, 2, J◦k (uk, uj; vk − uk) indicates Clarke’s generalized directional deriva-
tive of functional J(·, uj) at uk in the direction vk − uk, with J(·, uj) being a functional on Vk
for any fixed uj ∈ Vj, that is,

J◦k (uk, uj; vk − uk) = lim sup
w→uk ,λ↓0

J(w + λ(vk − uk), uj)− J(w, uj)

λ
.

It is worth pointing out that the above SGHVI consists of two parts, which are of
symmetric structure mutually.

In particular, if Ak is a single-valued mapping for k = 1, 2, then the above SGHVI
reduces to the following system of hemivariational inequalities (SHVI) investigated in [14]:

Find u = (u1, u2) ∈ V s.t.

(SHVI)

{
〈A1(u1, u2)− f1, v1 − u1〉V∗1 ×V1 + J◦1 (u1, u2; v1 − u1) ≥ 0 ∀v1 ∈ V1,
〈A2(u1, u2)− f2, v2 − u2〉V∗2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ 0 ∀v2 ∈ V2.

Inspired by the above research works on well posedness, we shall extend the con-
cept of α-well-posedness to the class of SGHVIs in Banach spaces, present certain metric
characterizations of α-well-posedness for SGHVIs, and establish the equivalence between
the α-well-posedness of both the SGHVI and its SDIP. The architecture of this article is
organized below: in Section 2, we present some concepts and basic tools for further use.
In Section 3, we define certain notions of α-well-posedness for SGHVIs and, under two
assumptions imposed on the operators involved, provide certain metric characterizations
of α-well-posedness for SGHVIs. In Section 4, we establish two equivalence results between
the α-well-posedness of both the SGHVI and its SDIP.

2. Preliminaries

First of all, we recall certain vital concepts and helpful results on nonlinear analysis,
optimization theory and nonsmooth analysis, which can be found in [17–21] . Let E be
a real Banach space with its dual E∗. Let υ and {υn} be a point and a sequence in E,
and let υ∗ and {υ∗n} be a point and a sequence in E∗, respectively. We use the notations
υn → υ, υn ⇀ υ and υ∗n

∗
⇀ υ∗ to represent the strong convergence of {υn} to υ, the weak

convergence of {υn} to υ and the weak∗ convergence of {υ∗n} to υ∗, respectively. Recall
that, if E is not reflexive, then the weak∗ topology of E∗ is weaker than its weak topology
and that if E is reflexive, then the weak∗ topology of V∗ coincides with its weak topology.
It is readily known that if {υn} ⊂ E, {υ∗n} ⊂ E∗, υn → υ in E and υ∗n

∗
⇀ υ∗ in E∗, then

〈υ∗n, υn〉E∗×E → 〈υ∗, υ〉E∗×E as n→ ∞.
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Definition 1. Let ϕ : E→ R be a functional on E. ϕ is referred to as being
(i) Lipschitz continuous on E iff ∃L > 0 s.t.

|ϕ(υ1)− ϕ(υ2)| ≤ L||υ1 − υ2||E ∀υ1, υ2 ∈ E;

(ii) Locally Lipschitz continuous on E iff ∀υ ∈ E, ∃ (neighborhood) N(υ) and ∃Lυ > 0 s.t.

|ϕ(υ1)− ϕ(υ2)| ≤ Lυ||υ1 − υ2||E ∀υ1, υ2 ∈ N(υ).

Definition 2. Let V1, V2 be two real Banach spaces and J : V1 × V2 → R be a functional on
V1 ×V2. The functional J is referred to as being:

(i) Lipschitz continuous in the first variable iff the functional J(·, υ2) : V1 → R is Lipschitz
continuous on V1 for any fixed υ2 ∈ V2;

(ii) Locally Lipschitz continuous in the first variable, iff the functional J(·, u2) : V1 → R is
locally Lipschitz continuous on V1 for any fixed υ2 ∈ V2.

In a similar way, the Lipschitz continuity and locally Lipschitz continuity of the
functional J : V1 ×V2 → R in the second variable can be formulated, respectively.

Suppose that ϕ : E→ R be a locally Lipschitz functional on E, u is a given point and υ
is a directional vector in E. The Clarke’s generalized directional derivative (CGDD) of ϕ at
the point u in the direction υ, denoted by ϕ◦(u; υ), is formulated below

ϕ◦(u; υ) = lim sup
w→u,λ↓0

ϕ(w + λυ)− ϕ(w)

λ
.

According to the CGDD, Clarke’s generalized subdifferential (CGS) of ϕ at u, denoted
by ∂ϕ(u), is the set in the dual space E∗, formulated below

∂ϕ(u) = {ξ ∈ E∗ : ϕ◦(u; υ) ≥ 〈ξ, υ〉E∗×E, ∀υ ∈ E}.

The following proposition provides some basic properties for the CGDD and the CGS;
as can be seen in, e.g., [18,20,22–24]and the references therein.

Proposition 1. Let ϕ : E→ R be a locally Lipschitz functional on E and let u, υ ∈ E be two given
elements. Then:

(i) The function υ 7→ ϕ◦(u; υ) is finite, positively homogeneous, subadditive and thus convex
on E;

(ii) ϕ◦(u; υ) is upper semicontinuous (u.s.c.) on E× E as a function of (u, υ), as a function of
υ alone, is Lipschitz continuous on E;

(iii) ϕ◦(u;−υ) = (−ϕ)◦(u; υ);
(iv) For all u ∈ E, ∂ϕ(u) is a nonempty, convex, bounded and weak∗-compact set in E∗;
(v) For all v ∈ E, one has

ϕ◦(u; υ) = max{〈ξ, υ〉E∗×E : ξ ∈ ∂ϕ(u)};

(vi) The graph of the Clarke’s generalized subdifferential ∂ϕ(u) is closed in E× (w∗ − E∗)
topology, with (w∗ − E∗) being the space E∗ endowed with the weak∗ topology, i.e., if {un} ⊂ E
and {u∗n} ⊂ E∗ are sequences s.t. u∗n ∈ ∂ϕ(un), un → u in E and u∗n → u∗ weakly∗ in E∗, then
u∗ ∈ ∂ϕ(u).

Definition 3. (i) A single-valued operator T : E→ E∗ is referred to as being monotone, iff

〈Tu− Tυ, u− υ〉E∗×E ≥ 0 ∀u, υ ∈ E;
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(ii) A set-valued operator F : E→ 2E∗ is referred to as being monotone, iff

〈u∗ − υ∗, u− υ〉 ≥ 0 ∀u, υ ∈ E, u∗ ∈ F(u), υ∗ ∈ F(υ).

Definition 4 (see [19]). Let S be a nonempty set in E. The measure of noncompactness (MNC) µ
of the set S is formulated below

µ(S) = inf{ε > 0 : S ⊂
n⋃

k=1

Sk and diam(Sk) < ε ∀k ∈ {1, 2, ..., n}},

where diam(Sk) indicates the diameter of set Sk.

Let A1, A2 be the nonempty subsets of E. The Hausdorff metric H(·, ·) between A1
and A2 is formulated by

H(A1, A2) = max{e(A1, A2), e(A2, A1)},

where e(A1, A2) = supa∈A1
d(a, A2) with d(a, A2) = infb∈A2 ||a− b||E. It is worth pointing

out that certain additional properties of the Hausdorff metric between two sets can be
found in [19]. In addition, we note that [25], if A1 and A2 are compact subsets in E, we
know that ∀a ∈ A1, ∃b ∈ A2 s.t.

||a− b||E ≤ H(A1, A2).

Definition 5 (see [26]). Let H(·, ·) be the Hausdorff metric on the collection CB(E∗) of all
nonempty, closed and bounded subsets of E∗, formulated below

H(A, B) = max{e(A, B), e(B, A)},

for A and B in CB(E∗). A set-valued operator F : E→ CB(E∗) is referred to as being
(i)H-hemicontinuous, if for any u, υ ∈ E, the function t 7→ H(F(u + t(υ− u)), F(u)) from

[0, 1] into [0,+∞) is continuous at 0+;
(ii)H-continuous, if ∀ε > 0 and ∀ (fixed) u0 ∈ E, ∃δ > 0 s.t. ∀υ ∈ E with ||υ− u0||E < δ,

one hasH(F(v), F(u0)) < ε.

It is remarkable that theH-continuity ensures theH-hemicontinuity, but the converse
is generally not true. In the end, we recall a theorem in [27], which is very vital for deducing
our main results.

Theorem 1 (see [27]). Suppose that C is nonempty, closed and convex in E and C∗ is nonempty,
closed, convex and bounded in E∗. Let ϕ : E→ R be a proper convex l.s.c. functional and υ ∈ C be
arbitrary. Assume that ∀u ∈ C, ∃u∗(u) ∈ C∗ s.t.

〈u∗(u), u− υ〉E∗×E ≥ ϕ(υ)− ϕ(u).

Then, ∃υ∗ ∈ C∗ s.t.

〈υ∗, u− υ〉E∗×E ≥ ϕ(υ)− ϕ(u) ∀u ∈ C.

3. Metric Characterizations of Well-Posedness for SGHVIs

In this section, we introduce certain notions of α-well-posedness for SGHVIs and
establish certain metric characterizations of α-well-posedness for SGHVIs under certain
appropriate conditions.

On the basis of certain notions of well-posedness in [2,15,16,26,28–34], we first intro-
duce certain definitions of α-well-posedness for SGHVIs. For k = 1, 2, let αk : Vk → [0,+∞)
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be convex, continuous, and positively homogeneous, i.e., αk(sυk) = sαk(υk) for all υk ∈ Vk
and s ≥ 0.

Definition 6. A sequence {un} ⊂ V1 × V2 with un = (un
1 , un

2 ) is referred to as being an
α-approximating sequence with α = (α1, α2) for the SGHVI iff ∃(ωn

1 , ωn
2 ) ∈ A1(un

1 , un
2 ) ×

A2(un
1 , un

2 ), n ∈ N and ∃{εn} ⊂ [0,+∞) with εn → 0 (n→ ∞) s.t.{
〈ωn

1 − f1, v1 − un
1 〉V∗1 ×V1 + J◦1 (u

n
1 , un

2 ; v1 − un
1 ) ≥ −εnα1(v1 − un

1 ) ∀v1 ∈ V1,
〈ωn

2 − f2, v2 − un
2 〉V∗2 ×V2 + J◦2 (u

n
1 , un

2 ; v2 − un
2 ) ≥ −εnα2(v2 − un

2 ) ∀v2 ∈ V2.

In particular, if for k = 1, 2, Ak is single-valued and αk(xk − yk) = ||xk − yk||Vk
∀xk, yk ∈ Vk, then {un} is referred to as being an approximating sequence for SHVI (see [14]).

Definition 7. The SGHVI is referred to as being strongly (and weakly, respectively) α-well-posed
with α = (α1, α2) iff it has a unique solution and every α-approximating sequence for the SGHVI
converges strongly (and weakly, respectively) to the unique solution. In particular, if for k = 1, 2,
Ak is single-valued and αk(xk − yk) = ||xk − yk||Vk ∀xk, yk ∈ Vk, then the SHVI is referred to as
being strongly (and weakly, respectively) well-posed (see [14]).

It is evident that the strong α-well-posedness of the SGHVI ensures the weak α-well-
posedness of the SGHVI, but the converse is generally not valid.

Definition 8. The SGHVI is referred to as being strongly (and weakly, respectively) α-well-
posed in the generalized sense if the solution set of the SGHVI is nonempty and, for every
α-approximating sequence, there always exists a subsequence converging strongly (and weakly,
respectively) to some point of the solution set. In particular, if for k = 1, 2, Ak is single-valued
and αk(xk − yk) = ||xk − yk||Vk ∀xk, yk ∈ Vk, then the SHVI is referred to as being strongly (and
weakly, respectively) well-posed in the generalized sense (see [14]).

In a similar way, the strong α-well-posedness in the generalized sense for the SGHVI
ensures the weak α-well-posedness in the generalized sense for the SGHVI, but the converse
is not valid in general. Obviously, the notions of strong and weak α-well-posedness of the
SGHVI put forward in this paper are quite different from those of Definitions 3.1–3.2 and
3.4 in Wang et al. [14]. In order to establish the metric characterizations of α-well-posedness
for SGHVI, for any ε > 0, we first formulate two sets in V = V1 ×V2 below:

Ωα(ε) = {(u1, u2) ∈ V1 ×V2 : for some (ω1, ω2) ∈ A1(u1, u2)× A2(u1, u2),
〈ω1 − f1, v1 − u1〉V∗1 ×V1 + J◦1 (u1, u2; v1 − u1) ≥ −εα1(v1 − u1) ∀v1 ∈ V1,
〈ω2 − f2, v2 − u2〉V∗2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ −εα2(v2 − u2) ∀v2 ∈ V2},

and

∆α(ε) = {(u1, u2) ∈ V1 ×V2 : for all (v1, v2) ∈ V1 ×V2,
〈ν1 − f1, v1 − u1〉V∗1 ×V1 + J◦1 (u1, u2; v1 − u1) ≥ −εα1(v1 − u1) ∀ν1 ∈ A1(v1, u2),
〈ν2 − f2, v2 − u2〉V∗2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ −εα2(v2 − u2) ∀ν2 ∈ A2(u1, v2)}.

In order to show certain properties of sets Ωα(ε) and ∆α(ε), we first impose certain
hypotheses on the operators A1, A2 and J in the SGHVI.

(HA): (a) A1 : V1 ×V2 → 2V∗1 is monotone in the first variable, i.e., ∀u1, v1 ∈ V1 and
u2 ∈ V2,

〈v∗1 − u∗1 , v1 − u1〉V∗1 ×V1 ≥ 0 ∀v∗1 ∈ A1(v1, u2), u∗1 ∈ A1(u1, u2);
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(b) A2 : V1 × V2 → 2V∗2 is monotone in the second variable, i.e., ∀u1 ∈ V1 and
u2, v2 ∈ V2,

〈v∗2 − u∗2 , v2 − u2〉V∗2 ×V2 ≥ 0 ∀v∗2 ∈ A2(u1, v2), u∗2 ∈ A2(u1, u2);

(c) A1 : V1×V2 → 2V∗1 is a nonempty compact-valued mapping which isH-hemicontinuous;
(d) A2 : V1×V2 → 2V∗2 is a nonempty compact-valued mapping which isH-hemicontinuous;
(e) A1 : V1×V2 → 2V∗1 is a nonempty compact-valued mapping which isH-continuous;
(f) A2 : V1×V2 → 2V∗2 is a nonempty compact-valued mapping which isH-continuous.

(HJ): (a) J : V1 × V2 → R is locally Lipschitz with respect to the first variable and
second variable on V1 ×V2;

(b) J(u1, u2) + J(v1, v2) = J(u1, v2) + J(v1, u2) ∀u = (u1, u2) and v = (v1, v2) in
V = V1 ×V2.

Lemma 1 (see ([14], Lemma 3.6)). Suppose that the functional J : V1 × V2 → R satisfies the
hypotheses (a), (b) in (HJ). Then, for any sequence un = (un

1 , un
2 ) ∈ V strongly converging towards

u = (u1, u2) ∈ V and vn
k ∈ Vk strongly converging towards vk ∈ Vk, one has

lim sup
n→∞

J◦k (u
n
1 , un

2 ; vn
k ) ≤ J◦k (u1, u2; vk), (1)

where k = 1, 2.

Proposition 2. Suppose that A1 : V1 × V2 → 2V∗1 and A2 : V1 × V2 → 2V∗2 satisfy the hy-
potheses (a), (b), (c), (d) in (HA) and J : V1 × V2 → R satisfies the hypothesis (HJ). Then,
Ωα(ε) = ∆α(ε) ∀ε > 0.

Proof. From the monotonicity of operators A1 in the first variable and A2 in the second
variable, it follows that 〈ν1 −ω1, v1 − u1〉V∗1 ×V1 ≥ 0 ∀ν1 ∈ A1(v1, u2), ω1 ∈ A1(u1, u2), and
〈ν2 −ω2, v2 − u2〉V∗2 ×V2 ≥ 0 ∀ν2 ∈ A2(u1, v2), ω2 ∈ A2(u1, u2). Hence, it is easy to see that
Ωα(ε) ⊂ ∆α(ε) for any ε > 0. Thus, it is sufficient to show that ∆α(ε) ⊂ Ωα(ε). In fact,
arbitrarily pick a fixed u = (u1, u2) ∈ ∆α(ε). Then, ∀(v1, v2) ∈ V1 ×V2, one has{

〈ν1 − f1, v1 − u1〉V∗1 ×V1 + J◦1 (u1, u2; v1 − u1) ≥ −εα1(v1 − u1) ∀ν1 ∈ A1(v1, u2),
〈ν2 − f2, v2 − u2〉V∗2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ −εα2(v2 − u2) ∀ν2 ∈ A2(u1, v2).

(2)

For any w = (w1, w2) ∈ V1 × V2 and t ∈ (0, 1), letting v1 := w1,t = u1 + t(w1 − u1)
and v2 := w2,t = u2 + t(w2 − u2) in (2), we deduce from the positive homogeneousness of
α1 and α2 that{

〈ω1,t − f1, t(w1 − u1)〉V∗1 ×V1 + J◦1 (u1, u2; t(w1 − u1)) ≥ −εtα1(w1 − u1) ∀ω1,t ∈ A1(w1,t, u2),
〈ω2,t − f2, t(w2 − u2)〉V∗2 ×V2 + J◦2 (u1, u2; t(w2 − u2)) ≥ −εtα2(w2 − u2) ∀ω2,t ∈ A2(u1, w2,t).

Using Proposition 1 (i), we know that the CGDD is of positive homogeneousness with
respect to its direction. So it follows that{

〈ω1,t − f1, w1 − u1〉V∗1 ×V1 + J◦1 (u1, u2; w1 − u1) ≥ −εα1(w1 − u1), ∀ω1,t ∈ A1(w1,t, u2),
〈ω2,t − f2, w2 − u2〉V∗2 ×V2 + J◦2 (u1, u2; w2 − u2) ≥ −εα2(w2 − u2), ∀ω2,t ∈ A2(u1, w2,t).

(3)

Since A1 : V1 × V2 → 2V∗1 and A2 : V1 × V2 → 2V∗2 are nonempty compact-valued
mappings, A1(w1,t, u2), A1(u1, u2), A2(u1, w2,t) and A2(u1, u2) are nonempty compact sets.
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Hence, by Nadler’s result [25], we deduce that ∀t ∈ (0, 1), ω1,t ∈ A1(w1,t, u2) and
ω2,t ∈ A2(u1, w2,t), ∃ν1,t ∈ A1(u1, u2) and ν2,t ∈ A2(u1, u2) s.t.{

||ω1,t − ν1,t||V∗1 ≤ H(A1(w1,t, u2), A1(u1, u2)),
||ω2,t − ν2,t||V∗2 ≤ H(A2(u1, w2,t), A2(u1, u2)).

Since for k = 1, 2, Ak(u1, u2) is compact, without loss of generality, we may assume
that νk,t → ωk ∈ Ak(u1, u2) as t→ 0+. It is obvious that (w1,t, u2) = (u1, u2) + t[(w1, u2)−
(u1, u2)] and (u1, w2,t) = (u1, u2) + t[(u1, w2)− (u1, u2)]. Since Ak is H-hemicontinuous
for k = 1, 2, we obtain that{

||ω1,t − ν1,t||V∗1 ≤ H(A1(w1,t, u2), A1(u1, u2))→ 0 as t→ 0+,
||ω2,t − ν2,t||V∗2 ≤ H(A2(u1, w2,t), A2(u1, u2))→ 0 as t→ 0+,

which immediately implies that for k = 1, 2,

||ωk,t −ωk||V∗k ≤ ||ωk,t − νk,t||V∗k + ||νk,t −ωk||V∗k → 0 as t→ 0+. (4)

Thus, taking the limit as t→ 0+ at both sides of the inequalities in (3), we infer from
(4) that {

〈ω1 − f1, w1 − u1〉V∗1 ×V1 + J◦1 (u1, u2; w1 − u1) ≥ −εα1(w1 − u1),
〈ω2 − f2, w2 − u2〉V∗2 ×V2 + J◦2 (u1, u2; w2 − u2) ≥ −εα2(w2 − u2),

which, together with the arbitrariness of w = (w1, w2) ∈ V1 × V2, implies that
∆α(ε) ⊂ Ωα(ε). This completes the proof.

Lemma 2. Suppose that A1 : V1 × V2 → 2V∗1 and A2 : V1 × V2 → 2V∗2 satisfy the hypotheses
(a), (b), (e), (f) in (HA), and J : V1 × V2 → R satisfies the hypothesis (HJ). Then, for any
ε > 0, Ωα(ε) = ∆α(ε) is closed in V = V1 ×V2.

Proof. Since theH-continuity guarantees theH-hemicontinuity, using Proposition 2, one
has Ωα(ε) = ∆α(ε) ∀ε > 0. Let un = (un

1 , un
2 ) ∈ ∆α(ε) be a sequence strongly converging

towards u = (u1, u2) in V = V1 ×V2. Then, ∀n ≥ 1, ∃(ωn
1 , ωn

2 ) ∈ A1(un
1 , un

2 )× A2(un
1 , un

2 )
s.t.{

〈ωn
1 − f1, v1 − un

1 〉V∗1 ×V1 + J◦1 (u
n
1 , un

2 ; v1 − un
1 ) ≥ −εα1(v1 − un

1 ), ∀v1 ∈ V1,
〈ωn

2 − f2, v2 − un
2 〉V∗2 ×V2 + J◦2 (u

n
1 , un

2 ; v2 − un
2 ) ≥ −εα2(v2 − un

2 ), ∀v2 ∈ V2.
(5)

Since A1 : V1 × V2 → 2V∗1 and A2 : V1 × V2 → 2V∗2 are nonempty compact-valued
mappings, A1(un

1 , un
2 ), A1(u1, u2), A2(un

1 , un
2 ) and A2(u1, u2) are nonempty compact sets.

Hence, by Nadler’s result [25], one knows that for ωn
1 ∈ A1(un

1 , un
2 ) and ωn

2 ∈ A2(un
1 , un

2 ),
∃νn

1 ∈ A1(u1, u2) and ∃νn
2 ∈ A2(u1, u2) s.t.{
||ωn

1 − νn
1 ||V∗1 ≤ H(A1(un

1 , un
2 ), A1(u1, u2)),

||ωn
2 − νn

2 ||V∗2 ≤ H(A2(un
1 , un

2 ), A2(u1, u2)).

Furthermore, since for k = 1, 2, Ak(u1, u2) is compact, without loss of generality, we
may assume that νn

k → ωk ∈ Ak(u1, u2) as n → ∞. For k = 1, 2, we note that Ak is
H-continuous. Thus, we obtain that{

||ωn
1 − νn

1 ||V∗1 ≤ H(A1(un
1 , un

2 ), A1(u1, u2))→ 0 as n→ ∞,
||ωn

2 − νn
2 ||V∗2 ≤ H(A2(un

1 , un
2 ), A2(u1, u2))→ 0 as n→ ∞,
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which immediately implies that, for k = 1, 2,

||ωn
k −ωk||V∗k ≤ ||ω

n
k − νn

k ||V∗k + ||νn
k −ωk||V∗k → 0 as n→ ∞. (6)

It therefore follows from (6) that{
lim

n→∞
〈ωn

1 − f1, v1 − un
1 〉V∗1 ×V1 = 〈ω1 − f1, v1 − u1〉V∗1 ×V1 ,

lim
n→∞
〈ωn

2 − f2, v2 − un
2 〉V∗2 ×V2 = 〈ω2 − f2, v2 − u2〉V∗2 ×V2 .

(7)

Moreover, by the hypothesis (HJ) on the functional J, Lemma 1 ensures that
lim sup

n→∞
J◦1 (u

n
1 , un

2 ; v1 − un
1 ) ≤ J◦1 (u1, u2; v1 − u1),

lim sup
n→∞

J◦2 (u
n
1 , un

2 ; v2 − un
2 ) ≤ J◦2 (u1, u2; v2 − u2).

(8)

Furthermore, using the continuity of α1 and α2, we obtain that, for k = 1, 2,

lim
n→∞

αk(vk − un
k ) = αk(vk − uk). (9)

Therefore, taking the limsup as n → ∞ at both sides of the inequalities in (5), we
conclude from (7)–(9) that{

〈ω1 − f1, v1 − u1〉V∗1 ×V1 + J◦1 (u1, u2; v1 − u1) ≥ −εα1(v1 − u1) ∀v1 ∈ V1,
〈ω2 − f2, v2 − u2〉V∗2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ −εα2(v2 − u2) ∀v2 ∈ V2,

which implies that u = (u1, u2) ∈ Ωα(ε) = ∆α(ε). Thus, Ωα(ε) = ∆α(ε) is closed in
V = V1 ×V2. This completes the proof.

Theorem 2. Suppose that A1 : V1 × V2 → 2V∗1 satisfy the hypothesis (d) in (HA),
A2 : V1 × V2 → 2V∗2 satisfy the hypothesis (e) in (HA), and J : V1 × V2 → R satisfy the
hypothesis (HJ). Then, the SGHVI is strongly α-well-posed if and only if

Ωα(ε) 6= ∅ ∀ε > 0 and diam(Ωα(ε))→ 0 as ε→ 0.

Proof. Necessity. Assume that the SGHVI is strongly α-well-posed. Then, the SGHVI
admits a unique solution u = (u1, u2) ∈ V1 ×V2, i.e., for certain (ω1, ω2) ∈ A1(u1, u2)×
A2(u1, u2),

SGHVI

{
〈ω1 − f1, v1 − u1〉V∗1 ×V1 + J◦1 (u1, u2; v1 − u1) ≥ 0 ∀v1 ∈ V1,
〈ω2 − f2, v2 − u2〉V∗2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ 0 ∀v2 ∈ V2.

This ensures that u ∈ Ωα(ε) ∀ε > 0, i.e., Ωα(ε) 6= ∅ ∀ε > 0. If diam(Ωα(ε)) 6→ 0 as
ε→ 0, then there exists un = (un

1 , un
2 ), pn = (pn

1 , pn
2 ) ∈ Ωα(εn), d > 0 and 0 < εn → 0

such that
||un − pn||V1×V2 = ||un

1 − pn
1 ||V1 + ||u

n
2 − pn

2 ||V2 > d. (10)

By the definition of the α-approximating sequence for the SGHVI, {un} and {pn}
are two α-approximating sequences. Thus, it follows from the strong α-well-posedness of
SGHVI that {un} and {pn} both strongly converge towards the unique solution u, which
contradicts (10).

Sufficiency. Suppose that Ωα(ε) 6= ∅ and diam(Ωα(ε)) → 0 as ε → 0. We claim
that the SGHVI is strongly α-well-posed. In fact, let {un} with un = (un

1 , un
2 ) be an
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α-approximating sequence for the SGHVI. Then, there exist (ωn
1 , ωn

2 ) ∈ A1(un
1 , un

2 ) ×
A2(un

1 , un
2 ), n ∈ N and a nonnegative sequence {εn} with εn → 0 (n→ ∞) such that{
〈ωn

1 − f1, v1 − un
1 〉V∗1 ×V1 + J◦1 (u

n
1 , un

2 ; v1 − un
1 ) ≥ −εnα1(v1 − un

1 ) ∀v1 ∈ V1,
〈ωn

2 − f2, v2 − un
2 〉V∗2 ×V2 + J◦2 (u

n
1 , un

2 ; v2 − un
2 ) ≥ −εnα2(v2 − un

2 ) ∀v2 ∈ V2,

which implies un ∈ Ωα(εn) ∀n ≥ 1. Since diam(Ωα(εn))→ 0 as n→ ∞, {un} is a Cauchy
sequence in V = V1 ×V2. Without loss of generality, we may assume that {un} strongly
converges towards u = (u1, u2) in V = V1 ×V2.

Now, we claim that u is a unique solution to the SGHVI. Indeed, since operators A1
and A2 are H-continuous on V = V1 × V2, the functional J satisfies the hypothesis (HJ),
and α1 and α2 are continuous, so we can obtain by similar arguments to those in (7)–(9) that

〈ω1 − f1, v1 − u1〉V∗1 ×V1 + J◦1 (u1, u2; v1 − u1)

≥ lim
n→∞
〈ωn

1 − f1, v1 − un
1 〉V∗1 ×V1 + lim sup

n→∞
J◦1 (u

n
1 , un

2 ; v1 − un
1 )

= lim sup
n→∞

{〈ωn
1 − f1, v1 − un

1 〉V∗1 ×V1 + J◦1 (u
n
1 , un

2 ; v1 − un
1 )}

≥ lim
n→∞

− εnα1(v1 − un
1 ) = lim

n→∞
− α1(εn(v1 − un

1 ))

= 0.

By a similar way, one has

〈ω2 − f2, v2 − u2〉V∗2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ 0.

Therefore, u is a solution to the SGHVI.
Finally, we claim the uniqueness of solutions of the SGHVI. Suppose that u′ is an-

other solution to the SGHVI. Since, for any ε > 0, u, u′ ∈ Ωα(ε), ||u − u′||V1×V2 ≤
diam(Ωα(ε)), which together with the condition diam(Ωα(ε))→ 0 as ε→ 0, guarantees
that u = u′. This completes the proof.

Theorem 3. Suppose that A1 : V1 ×V2 → 2V∗1 and A2 : V1 ×V2 → 2V∗2 satisfy the hypotheses
(a), (b), (e) and (f) in (HA) and J : V1 ×V2 → R satisfy the hypothesis (HJ). Then, the SGHVI is
strongly α-well-posed in the generalized sense if and only if

Ωα(ε) 6= ∅ ∀ε > 0 and µ(Ωα(ε))→ 0 (ε→ 0).

Proof. Necessity. Suppose that the SGHVI is strongly α-well-posed in the generalized
sense. Then, the solution set S of the SGHVI is nonempty, i.e., S 6= ∅. This ensures that
Ωα(ε) 6= ∅ ∀ε > 0 because S ⊂ Ωα(ε). Moreover, we claim here that the solution set S of
the SGHVI is compact. In fact, for any sequence {un} ⊂ S with un = (un

1 , un
2 ), {un} is

an α-approximating sequence for the SGHVI and thus there exists a subsequence of {un}
strongly converging towards a certain element of S, which implies that S is compact. To
complete the proof of the necessity, we claim that µ(Ωα(ε))→ 0 as ε→ 0. From S ⊂ Ωα(ε),
it follows that

H(Ωα(ε), S) = max{e(Ωα(ε), S), e(S, Ωα(ε))} = e(Ωα(ε), S).

Since the solution set S is compact, one has

µ(Ωα(ε)) ≤ 2H(Ωα(ε), S) = 2e(Ωα(ε), S).

Now, to prove µ(Ωα(ε)) → 0 as ε → 0, it is sufficient to show that e(Ωα(ε), S) → 0
as ε → 0. On the contrary, assume that e(Ωα(ε), S) 6→ 0 as ε → 0. Then, there exists a
constant l > 0, a sequence {εn} ⊂ [0, ∞) with εn → 0 and un ∈ Ωα(εn) such that

un 6∈ S + B(0, l), (11)
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where B(0, l) is the closed ball centered at 0 with radius l. Since un ∈ Ωα(εn) with
εn → 0, {un} is an α-approximating sequence for SGHVI. Thus, there exists a subsequence
converging strongly towards a certain element u ∈ S due to the strong α-well-posedness
in the generalized sense for SGHVI. This contradicts (11). Consequently, µ(Ωα(ε))→ 0 as
ε→ 0.

Sufficiency. Assume that Ωα(ε) 6= ∅ ∀ε > 0 and µ(Ωα(ε)) → 0 (ε → 0). We claim
that the SGHVI is strongly α-well-posed in the generalized sense. In fact, we observe that

S =
⋂
ε>0

Ωα(ε).

Furthermore, since µ(Ωα(ε))→ 0 (ε→ 0) and Ωα(ε) is nonempty and closed for any
ε > 0 (due to Lemma 2), it follows from the theorem in ([19], p. 412) that S is nonempty
compact and

e(Ωα(ε), S) = H(Ωα(ε), S)→ 0 ε→ 0. (12)

Now, to show the strong α-well-posedness in the generalized sense for the SGHVI,
let {un} ⊂ V1 × V2 with un = (un

1 , un
2 ) be an α-approximating sequence for the SGHVI.

Then, there exists (ωn
1 , ωn

2 ) ∈ A1(un
1 , un

2 )× A2(un
1 , un

2 ), n ∈ N and {εn} ⊂ [0,+∞) with
εn → 0 (n→ ∞) such that{

〈ωn
1 − f1, v1 − un

1 〉V∗1 ×V1 + J◦1 (u
n
1 , un

2 ; v1 − un
1 ) ≥ −εnα1(v1 − un

1 ) ∀v1 ∈ V1,
〈ωn

2 − f2, v2 − un
2 〉V∗2 ×V2 + J◦2 (u

n
1 , un

2 ; v2 − un
2 ) ≥ −εnα2(v2 − un

2 ) ∀v2 ∈ V2,

which yields un ∈ Ωα(εn). This, together with (12), leads to

d(un, S) ≤ e(Ωα(εn), S)→ 0.

Since S is compact, there exists ūn ∈ S such that

||un − ūn||V1×V2 = d(un, S)→ 0.

Again from the compactness of the solution set S, one knows that {ūn} has a sub-
sequence {ūnk} strongly converging towards a certain element ū ∈ S. Thus, it follows
that

||unk − ū||V1×V2 ≤ ||u
nk − ūnk ||V1×V2 + ||ū

nk − ū||V1×V2 → 0,

which immediately implies that the subsequence {unk} of {un} strongly converges towards
ū. Therefore, the SGHVI is strongly α-well-posed in the generalized sense. This completes
the proof.

It is remarkable that Proposition 2, Lemma 2 and Theorems 2–3 improve, extend
and develop Lemmas 3.7–3.8 and Theorems 3.10–3.11 in [14] to a great extent because
the SGHVI is more general than the SHVI considered in Lemmas 3.7–3.8 and Theorems
3.10–3.11 of [14].

4. Equivalence for Well-Posedness of the SGHVI and SDIP

In this section, we first introduce the systems of inclusion problems (SIPs) in the
product space V = V1 × V2 and then define the concept of α-well-posedness for SIPs.
Moreover, we show the equivalence results between the α-well-posedness of the SGHVI
and α-well-posedness of its SDIP.

Let V1 and V2 be two real Banach spaces with V∗1 and V∗2 being their dual spaces,
respectively. Suppose that, for k = 1, 2, Γk is a nonempty set-valued mapping from
V1 ×V2 to V∗k . A system of inclusion problems (SIP) associated with mappings Γ1 and Γ2 is
formulated below:
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Find u1 ∈ V1 and u2 ∈ V2 such that

(SIP)
{

01 ∈ Γ1(u1, u2),
02 ∈ Γ2(u1, u2),

(13)

where for k = 1, 2, 0k ∈ V∗k represents the zero element in V∗k . For simplicity, we use the
symbols below:

u = (u1, u2) ∈ V1 ×V2, 0 = (01, 02) ∈ V∗1 ×V∗2 and Γ(u) = (Γ1(u), Γ2(u)) ∈ V∗1 ×V∗2 .

This allows us to simplify the SIP as follows:
Find u ∈ V = V1 ×V2 such that

0 ∈ Γ(u).

Definition 9. A sequence {un} ⊂ V1 ×V2 with un = (un
1 , un

2 ) is called an α-approximating se-
quence for the SIP if ∃pn = (pn

1 , pn
2 ) ∈ Γ(un), n ∈ N and ∃{εn} ⊂ [0,+∞) with ||pn||V∗1 ×V∗2

+
εn → 0 as n→ ∞, s.t.{

〈pn
1 , v1 − un

1 〉V∗1 ×V1 ≥ −εnα1(v1 − un
1 ) ∀v1 ∈ V1, n ∈ N,

〈pn
2 , v2 − un

2 〉V∗2 ×V2 ≥ −εnα2(v2 − un
2 ) ∀v2 ∈ V2, n ∈ N.

Definition 10. The SIP is referred to as being strongly (and weakly, respectively) α-well-posed
if it has a unique solution and every α-approximating sequence converges strongly (and weakly,
respectively) to the unique solution of the SIP.

Definition 11. The SIP is referred to as being strongly (and weakly, respectively) α-well-posed
in the generalized sense if the solution set S of the SIP is nonempty and every α-approximating
sequence has a subsequence strongly converging (and weakly, respectively) towards a certain element
of the solution set S.

In order to show that the α-well-posedness for the SGHVI is equivalent to the α-well-
posedness for its SDIP, we first furnish a lemma which establishes the equivalence between
the SGHVI and SDIP.

Lemma 3. u = (u1, u2) ∈ V1 × V2 is a solution to the SGHVI if and only if it solves the
following SDIP:

Find u = (u1, u2) ∈ V1 ×V2 such that

(SDIP)
{

f1 ∈ A1(u1, u2) + ∂1 J(u1, u2),
f2 ∈ A2(u1, u2) + ∂2 J(u1, u2),

where, for k 6= j = 1, 2, ∂k J(u1, u2) denotes the CGS of J(·, uj) at uk.

Proof. First of all, we claim the necessity. In fact, assume that u = (u1, u2) ∈ V = V1 ×V2
is a solution of the SGHVI, i.e., for certain (ω1, ω2) ∈ A1(u1, u2)× A2(u1, u2),{

〈ω1 − f1, v1 − u1〉V∗1 ×V1 + J◦1 (u1, u2; v1 − u1) ≥ 0 ∀v1 ∈ V1,
〈ω2 − f2, v2 − u2〉V∗2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ 0 ∀v2 ∈ V2.

(14)

For any w = (w1, w2) ∈ V1 ×V2, letting v1 = u1 + w1 ∈ V1 and v2 = u2 + w2 ∈ V2 in
(14), we obtain that {

J◦1 (u1, u2; w1) ≥ 〈 f1 −ω1, w1〉V∗1 ×V1 ,
J◦2 (u1, u2; w2) ≥ 〈 f2 −ω2, w2〉V∗2 ×V2 .
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It follows from the definition of the CGS and the arbitrariness of wk ∈ Vk, k = 1, 2 that{
f1 ∈ ω1 + ∂1 J(u1, u2) ⊆ A1(u1, u2) + ∂1 J(u1, u2),
f2 ∈ ω2 + ∂2 J(u1, u2) ⊆ A2(u1, u2) + ∂2 J(u1, u2),

which implies that u = (u1, u2) ∈ V1 ×V2 is a solution to the SDIP.
Sufficiency. Suppose that u = (u1, u2) ∈ V = V1 ×V2 is a solution to the SDIP, i.e.,{

f1 ∈ A1(u1, u2) + ∂1 J(u1, u2),
f2 ∈ A2(u1, u2) + ∂2 J(u1, u2).

It follows that, for k = 1, 2, there exist ωk ∈ Ak(u1, u2) and ηk ∈ ∂k J(u1, u2) such that{
f1 = ω1 + η1,
f2 = ω2 + η2.

(15)

For any v = (v1, v2) ∈ V = V1 ×V2, by multiplying both sides of the equalities in (15)
with v1 − u1 ∈ V1 and v2 − u2 ∈ V2, respectively, we deduce, by the definition of the CGS,
that

〈 f1, v1 − u1〉V∗1 ×V1 = 〈ω1 + η1, v1 − u1〉V∗1 ×V1

= 〈ω1, v1 − u1〉V∗1 ×V1 + 〈η1, v1 − u1〉V∗1 ×V1

≤ 〈ω1, v1 − u1〉V∗1 ×V1 + J◦1 (u1, u2; v1 − u1),

and
〈 f2, v2 − u2〉V∗2 ×V2 = 〈ω2 + η2, v2 − u2〉V∗2 ×V2

= 〈ω2, v2 − u2〉V∗2 ×V2 + 〈η2, v2 − u2〉V∗2 ×V2

≤ 〈ω2, v2 − u2〉V∗2 ×V2 + J◦2 (u1, u2; v2 − u2).

Therefore, u is a solution of the SGHVI. This completes the proof.

Let E be a real reflexive Banach space with its dual E∗. We denote by J the normalized
duality mapping from E∗ to its dual E∗∗(= E) formulated by

J (ν) = {x ∈ E : 〈ν, x〉E∗×E = ||ν||2E∗ = ||x||2E} ∀ν ∈ E∗.

Theorem 4. Let V1 and V2 be real reflexive Banach spaces. Then, the SGHVI is strongly α-well-
posed if and only if its SDIP is strongly α-well-posed.

Proof. Necessity. Suppose that the SGHVI is strongly α-well-posed. Then there exists a
unique u = (u1, u2) ∈ V = V1 × V2 settling the SGHVI. It follows from Lemma 3 that u
is the unique solution of the SDIP. To show the strong α-well-posedness for the SDIP, we
let un = (un

1 , un
2 ) be an α-approximating sequence for the SDIP. We claim that un → u as

n→ ∞. In fact, one knows that there exists a sequence pn = (pn
1 , pn

2 ) ∈ V∗1 ×V∗2 , n ∈ N and
a sequence {εn} ⊂ [0,+∞), such that for each k = 1, 2, pn

k ∈ Ak(un
1 , un

2 )− fk + ∂k J(un
1 , un

2 ),
||pn||V∗1 ×V∗2

+ εn → 0 as n→ ∞ and{
〈pn

1 , v1 − un
1 〉V∗1 ×V1 ≥ −εnα1(v1 − un

1 ) ∀v1 ∈ V1, n ∈ N,
〈pn

2 , v2 − un
2 〉V∗2 ×V2 ≥ −εnα2(v2 − un

2 ) ∀v2 ∈ V2, n ∈ N.
(16)

It is obvious that for k = 1, 2, there exists ωn
k ∈ Ak(un

1 , un
2 ) and ηn

k ∈ ∂k J(un
1 , un

2 ), such
that {

pn
1 = ωn

1 − f1 + ηn
1 ,

pn
2 = ωn

2 − f2 + ηn
2 .

(17)
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For k 6= j = 1, 2, using the definition of the CGS ∂k J(un
1 , un

2 ) of J(·, un
j ) at un

k and
multiplying both sides of the equalities in (17) with vk − un

k ∈ Vk, we obtain from (16) that

〈ωn
1 − f1, v1 − un

1 〉V∗1 ×V1 + J◦1 (u
n
1 , un

2 ; v1 − un
1 )

≥ 〈ωn
1 − f1, v1 − un

1 〉V∗1 ×V1 + 〈η
n
1 , v1 − un

1 〉V∗1 ×V1

= 〈pn
1 , v1 − un

1 〉V∗1 ×V1 ≥ −εnα1(v1 − un
1 ) ∀v1 ∈ V1,

and
〈ωn

2 − f2, v2 − un
2 〉V∗2 ×V2 + J◦2 (u

n
1 , un

2 ; v2 − un
2 )

≥ 〈ωn
2 − f2, v2 − un

2 〉V∗2 ×V2 + 〈η
n
2 , v2 − un

2 〉V∗2 ×V2

= 〈pn
2 , v2 − un

2 〉V∗2 ×V2 ≥ −εnα2(v2 − un
2 ) ∀v2 ∈ V2,

Therefore, we deduce that {un} is an α-approximating sequence for the SGHVI. Thus,
it follows from the strong α-well-posedness for the SGHVI that {un} strongly converges
towards the unique solution u. This ensures that the SDIP is strongly α-well-posed.

Sufficiency. Suppose that the SDIP is strongly α-well-posed. Then, there exists a
unique solution u of the SDIP, which, together with Lemma 3, implies that u is also the
unique solution of the SGHVI. Let {un} be an α-approximating sequence for the SGHVI.
Then, there exist (ωn

1 , ωn
2 ) ∈ A1(un

1 , un
2 ) × A2(un

1 , un
2 ), n ∈ N and {εn} ⊂ [0,+∞) with

εn → 0 (n→ ∞) such that{
〈ωn

1 − f1, v1 − un
1 〉V∗1 ×V1 + J◦1 (u

n
1 , un

2 ; v1 − un
1 ) ≥ −εnα1(v1 − un

1 ) ∀v1 ∈ V1,
〈ωn

2 − f2, v2 − un
2 〉V∗2 ×V2 + J◦2 (u

n
1 , un

2 ; v2 − un
2 ) ≥ −εnα2(v2 − un

2 ) ∀v2 ∈ V2.
(18)

Using Proposition 1 (v), one observes that{
J◦1 (u

n
1 , un

2 ; v1 − un
1 ) = max{〈h1, v1 − un

1 〉V∗1 ×V1 : h1 ∈ ∂1 J(un
1 , un

2 )},
J◦2 (u

n
1 , un

2 ; v2 − un
2 ) = max{〈h2, v2 − un

2 〉V∗2 ×V2 : h2 ∈ ∂2 J(un
1 , un

2 )}.

Thus, for any (v1, v2) ∈ V1 × V2, there exist h1(un
1 , un

2 , v1) ∈ ∂1 J(un
1 , un

2 ) and
h2(un

1 , un
2 , v2) ∈ ∂2 J(un

1 , un
2 ) such that{

〈ωn
1 − f1, v1 − un

1 〉V∗1 ×V1 + 〈h1(un
1 , un

2 , v1), v1 − un
1 〉V∗1 ×V1 ≥ −εnα1(v1 − un

1 ) ∀v1 ∈ V1,
〈ωn

2 − f2, v2 − un
2 〉V∗2 ×V2 + 〈h2(un

1 , un
2 , v2), v2 − un

2 〉V∗2 ×V2 ≥ −εnα2(v2 − un
2 ) ∀v2 ∈ V2.

(19)

By Proposition 1 (iv), we know that ∂1 J(un
1 , un

2 ) and ∂2 J(un
1 , un

2 ) are nonempty, con-
vex, bounded and closed subsets in V∗1 and V∗2 , respectively, which imply that, for each
k = 1, 2, the set {ωn

k + hk − fk : hk ∈ ∂k J(un
1 , un

2 )} is also nonempty, convex, bounded
and closed in V∗k . Therefore, for each k = 1, 2, it follows from (19) and Theorem 1 with
ϕk(·) = εnαk(· − un

k ), which is proper, convex and continuous, that there exists a
hn

k ∈ ∂k J(un
1 , un

2 ), which is independent on vk, such that{
〈ωn

1 − f1, v1 − un
1 〉V∗1 ×V1 + 〈h

n
1 , v1 − un

1 〉V∗1 ×V1 ≥ −εnα1(v1 − un
1 ) ∀v1 ∈ V1,

〈ωn
2 − f2, v2 − un

2 〉V∗2 ×V2 + 〈h
n
2 , v2 − un

2 〉V∗2 ×V2 ≥ −εnα2(v2 − un
2 ) ∀v2 ∈ V2.

(20)

Therefore, it follows that{
〈pn

1 , v1 − un
1 〉V∗1 ×V1 ≥ −εnα1(v1 − un

1 ) ∀v1 ∈ V1,
〈pn

2 , v2 − un
2 〉V∗2 ×V2 ≥ −εnα2(v2 − un

2 ) ∀v2 ∈ V2,
(21)

where pn
k = ωn

k − fk + hn
k for k = 1, 2. It is readily known that for k = 1, 2,

pn
k = ωn

k − fk + hn
k ∈ Ak(un

1 , un
2 )− fk + ∂k J(un

1 , un
2 ). (22)
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Then, to show that ||pn||V∗1 ×V∗2
→ 0 as n→ ∞, it is sufficient to show that ||pn

k ||V∗k → 0
as n → ∞ for k = 1, 2, that is, for any ε > 0, there exists an integer N ≥ 1 such that
||pn

k ||V∗k < ε for all n ≥ N. In fact, note that Vk is reflexive, i.e., Vk = V∗∗k . According to the
normalized duality mapping Jk from V∗k to its dual V∗∗k (= Vk) formulated below

Jk(νk) = {xk ∈ Vk : 〈νk, xk〉V∗k ×Vk
= ||νk||2V∗k = ||xk||2Vk

} ∀νk ∈ V∗k ,

we know that for each n ∈ N, there exists j̃k(pn
k ) ∈ Jk(pn

k ) such that

〈pn
k , j̃k(pn

k )〉V∗k ×Vk
= ||pn

k ||
2
V∗k

= || j̃k(pn
k )||

2
Vk

.

For k = 1, 2, putting vk = un
k − j̃k(pn

k ) in (21), we obtain

〈pn
k ,− j̃k(pn

k )〉V∗k ×Vk
≥ −εnαk(− j̃k(pn

k )),

that is,
||pn

k ||
2
V∗k
≤ εnαk(− j̃k(pn

k )). (23)

If ||pn
k ||V∗k 6→ 0 as n→ ∞, then there exists εk > 0 and for each j ≥ 1, there exists p

nj
k

such that
||pnj

k ||V∗k ≥ εk.

Taking into account ||εnj
j̃k(p

nj
k )

||p
nj
k ||V∗k

||Vk → 0 as j → ∞, and using the positive homoge-

neousness and continuity of αk, we conclude from (23) that

εk ≤ ||p
nj
k ||V∗k ≤

εnj

||p
nj
k ||V∗k

αk(− j̃k(p
nj
k )) = αk(−εnj

j̃k(p
nj
k )

||p
nj
k ||V∗k

)→ 0 as j→ ∞,

which reaches a contradiction. This means that ||pn
k ||V∗k → 0 as n→ ∞ for k = 1, 2. Hence,

the sequence {un} with un = (un
1 , un

2 ) is an α-approximating sequence for SDIP. Thus,
it follows from the strong α-well-posedness for the SDIP that {un} strongly converges
towards the unique solution u in V1 ×V2. Therefore, the SGHVI is strongly α-well-posed.
This completes the proof.

Using arguments similar to those in the proof of Theorem 4, one can easily prove
the following equivalence between the strong α-well-posedness in the generalized sense
for the SGHVI and the strong α-well-posedness in the generalized sense for the SDIP. In
fact, we first denote by f the solution set of the SGHVI. Note that the SGHVI is strongly
α-well-posed⇔ f = {u} and ∀ (α-approximating sequence) {un} for the SGHVI it holds
un → u, and that the SGHVI is strongly α-well-posed in the generalized sense⇔ f 6= ∅
and ∀ (α-approximating sequence) {un}, ∃{unj} ⊂ {un} s.t. unj → u for some u ∈ f.
After substituting the strong α-well-posedness in the generalized sense for the SGHVI (and
SDIP, respectively) into the strong α-well-posedness for the SGHVI (and SDIP, respectively)
in the proof of Theorem 4, we can deduce the conclusion of the following Theorem 5.

Theorem 5. Let V1 and V2 be real reflexive Banach spaces. Then, the SGHVI is strongly α-well-
posed in the generalized sense if and only if its SDIP is strongly α-well-posed in the generalized
sense.

It is remarkable that, not only in [14] (Theorem 4.5), Wang et al. proved that the
SHVI is strongly well-posed if and only if its SDIP is strongly well-posed, but also in [14]
(Theorem 4.6), they proved that the SHVI is strongly well-posed in the generalized sense
if and only if its SDIP is strongly well-posed in the generalized sense. Compared with
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Theorems 4.5 and 4.6 of [14], our Theorems 4 and 5 improve and extend them in the
following aspects:

(i) The strong well-posedness for the SHVI and its SDIP in [14] (Theorem 4.5) is
extended to develop the strong α-well-posedness for the SGHVI and its SDIP in our
Theorem 4.

(ii) The strong well-posedness in the generalized sense for the SHVI and its SDIP
in [14] (Theorem 4.6) is extended to develop the strong α-well-posedness in the generalized
sense for the SGHVI and its SDIP in our Theorem 5.

5. Conclusions

In this article, we extended the concept of α-well-posedness to the class of generalized
hemivariational inequalities systems (SGHVIs) consisting of the two parts which are of
symmetric structure mutually. In real Banach spaces, we first put forward certain concepts
of α-well-posedness for SGHVIs, and then provide certain metric characterizations of α-
well-posedness for SGHVIs. Additionally, we establish certain equivalence results of strong
α-well-posedness for both the SGHVI and its system of derived inclusion problems (SDIP).
In particular, these equivalence results of strong α-well-posedness (i.e., Theorems 4 and 5)
improve and extend Theorems 4.5 and 4.6 of [14] in the following aspects:

(i) The strong well-posedness for the SHVI and its SDIP in [14] (Theorem 4.5) is
extended to develop the strong α-well-posedness for the SGHVI and its SDIP in our
Theorem 4.

(ii) The strong well-posedness in the generalized sense for the SHVI and its SDIP
in [14] (Theorem 4.6) is extended to develop the strong α-well-posedness in the generalized
sense for the SGHVI and its SDIP in our Theorem 5.

On the other hand, for k = 1, 2, let Gk : Vk → R ∪ {+∞} be a proper convex and
lower semicontinuous functional, and ḡk : Vk → Vk be a continuous mapping. Denote by
domGk the efficient domain of functional Gk, that is, domGk := {uk ∈ Vk : Gk(uk) < +∞}.
Consider the system of generalized strongly variational–hemivariational inequalities
(SGSVHVI), which consists of finding u = (u1, u2) ∈ V = V1 × V2 such that for some
(ω1, ω2) ∈ A1(ḡ1(u1), u2)× A2(u1, ḡ2(u2)),{

〈ω1 − f1, v1 − ḡ1(u1)〉V∗1 ×V1 + J◦1 (u1, u2; v1 − ḡ1(u1)) + G1(v1)− G1(ḡ1(u1)) ≥ 0 ∀v1 ∈ V1,
〈ω2 − f2, v2 − ḡ2(u2)〉V∗2 ×V2 + J◦2 (u1, u2; v2 − ḡ2(u2)) + G2(v2)− G2(ḡ2(u2)) ≥ 0 ∀v2 ∈ V2.

It is worth mentioning that the above SGSVHVI also consists of two parts which are of
symmetric structure mutually.

In particular, if Gk(vk) = 0 ∀vk ∈ Vk and ḡk is the identity mapping on Vk, then
the above SGSVHVI reduces to the SGHVI considered in this article. Additionally, if Ak
is a single-valued mapping for k = 1, 2, then the above SGSVHVI reduces to the SHVI
considered in [14].

Finally, it is worth mentioning that part of our future research is aiming to generalize
and extend the well-posedness results for SGHVIs in this article to the above class of
SGSVHVIs in real Banach spaces.
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