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Abstract: We apply Geometric Arbitrage Theory (GAT) to obtain results in mathematical finance
for credit markets, which do not need stochastic differential geometry in their formulation. The
remarkable aspect of the GAT is the gauge symmetry, which can be translated to the financial context,
by packaging all of the asset model information into a (stochastic) principal fiber bundle. We obtain
closed-form equations involving default intensities and loss-given defaults characterizing the no-free-
lunch-with-vanishing-risk condition for government and corporate bond markets while relying on the
spread-term structure with default intensity and loss-given default. Moreover, we provide a sufficient
condition equivalent to the Novikov condition implying the absence of arbitrage. Furthermore, the
generic dynamics for an isolated credit market allowing for arbitrage possibilities (and minimizing
the total quantity of potential arbitrage) are derived, and arbitrage credit bubbles for both base credit
assets and credit derivatives are explicitly computed. The existence of an approximated risk-neutral
measure allowing the definition of fundamental values for the assets is inferred through spectral
theory. We show that instantaneous bond returns are serially uncorrelated and centered, that the
expected value of credit bubbles remains constant for future times where no coupons are paid, and
that the variance of the market portfolio nominals is concurrent with that of the corresponding bond
deflators.

Keywords: geometric arbitrage and spectral theory; gauge symmetry and invariance; credit risk;
asset bubbles; deflators; interest rate term structures; market portfolio dynamics

1. Introduction

Following [1–3], this paper utilizes a conceptual structure called Geometric Arbitrage
Theory to model arbitrage in financial markets in the presence of credit risks, which are
some of the fundamental factors of financial risks. Geometric Arbitrage Theory (GAT)
embeds traditional stochastic finance into a modern stochastic differential geometric frame-
work to characterize arbitrage. The main contribution of this approach consists of mod-
eling markets made of basic financial instruments together with their term structures as
principal fiber bundles. The financial features of this market—such as the lack of arbi-
trage and equilibrium—are then characterized in terms of standard differential geometric
constructions—such as curvature—associated with a natural connection in this fiber bun-
dle. Principal fiber bundle theory has been heavily exploited in theoretical physics as the
language in which the laws of nature can be best formulated by providing an invariant
framework to describe physical systems and their dynamics. These ideas can be carried over
to mathematical finance and economics. A market is a financial–economic system that can
be described by an appropriate principal fiber bundle. A principle such as the invariance
of market laws under the change in numéraire can then be seen as gauge invariance.

The fact that gauge theories are the natural language to describe economics was first
proposed by Malaney and Weinstein in the context of the economic index problem [4,5].
Ilinski (see [6–8]) proposed to view arbitrage as the curvature of a gauge connection, in
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analogy to some physical theories. Independently, the authors of [9] further developed
the seminal work of Flesaker and Hughston [10] and utilized techniques from differential
geometry (indirectly mentioned by allusive wording) to reduce the complexity of asset
models before stochastic modeling.

Perhaps due to its borderline nature lying at the intersection between stochastic
finance and differential geometry, there was almost no further mathematical research, and
the subject, unfairly considered as an exotic topic, remained confined to econophysics
(see [11–13]). In more recent years, financial economics and mathematical finance have
addressed the challenge of modeling markets and allowing for arbitrage opportunities,
such as in [14,15], without utilizing GAT. In [1,2], Geometric Arbitrage Theory was given
a rigorous mathematical foundation by utilizing the formal background of stochastic
differential geometry, as in [16–21]. GAT already proved itself as a practical portfolio
management tool allowing one to construct arbitrage portfolios in a medium-frequency
trading set-up, as shown in [22]. Moreover, GAT can bring new insights into mathematical
finance by looking at the same concepts from a different perspective, so that the new
results can be understood without a stochastic differential geometric background, thus
extending the (credit) asset bubble framework for no-arbitrage markets, as described in
[23–26]. This is the case for the main contributions of this paper, a characterization of the
no-free-lunch-with-vanishing-risk condition for credit markets.

More precisely, we assume that there is a market in one currency for both government
and corporate bonds for different maturities, and we choose the government bond as a
numéraire. With the formal notation introduced in Section 4.2, we will prove following
results.

Theorem 1 (No Arbitrage Credit Market). Let λ = λt and LGD = LGDt be the default
intensity and the loss-given default, respectively, of the corporate bond. Let PCorp, Gov and rCorp, Gov

be the term structures and short rate for corporate and government bonds. The following assertions
are equivalent:

(i) The credit market model satisfies the no-free-lunch-with-vanishing-risk condition.
(ii) There exists a positive local martingale β = (βt)t≥0 such that deflators and short rates satisfy,

for all times, the condition
rCorp

t − rGov
t = βtLGDtλt.

(iii) There exists a positive local martingale β = (βt)t≥0 such that deflators and term structures
satisfy, for all times, the condition

PCorp
t,s

PGov
t,s

= Et

[
exp

(
−
∫ s

t
du βuLGDuλu

)]
.

This characterization of no-arbitrage credit markets has been known for a long time
(see, for instance, [27], p. 39) and can now be easily inferred as a consequence of Geometric
Arbitrage Theory.
Moreover, we obtain what, to our knowledge, is a new result for credit markets.

Theorem 2 (Novikov’s Condition). Let the credit market fulfill

rCorp
t − rGov

t = βtLGDtλt,

for a positive semi-martingale (βt)t and

E0

[
exp

(∫ T

0
dt

1
2

(
λtLGDt

1− LGDtXt
− (rCorp

t − rGov
t )

)2 t
Qt(K)

)]
< +∞,
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where

Qt(K) :=
W†

t Wt

t
∼ χ2(K).

Then, the credit market satisfies the no-free-lunch-with-vanishing-risk condition.

Furthermore, applying recently discovered results about the extension of asset bubbles
for markets allowing for arbitrage, in Theorem 12, we can explicitly compute the arbitrage
bubble for a credit market composed of base assets and credit derivatives, as well as its
market dynamics. These are, again, new results.

This paper is structured as follows. Section 2 summarizes traditional stochastic finance
and the results of the GAT by reviewing our previous paper [1–3]. A guiding example is
provided for a market whose asset prices are Itô processes. Proofs are omitted and can
be found in [1–3,28]. Section 3 provides the mathematical background in order to define
generalized derivatives of stochastic processes, which are needed in the following, since
the typical processes associated with credit risk have jumps and, in particular, do not
allow for Nelson’s derivatives in the strong sense. Section 4 reviews the fundamentals of
credit risk and introduces the two basic model types: the structural and the reduced-form
(intensity-based) types. In Section 5, the Geometric Arbitrage Theory toolbox introduced in
Section 2 is then utilized to prove results for credit markets allowing for arbitrage. Section
6 concludes.

2. Background of Geometric Arbitrage Theory: Geometrical–Topological and Spectral
Theory Reformulation of Mathematical Finance

In this section, we describe the main concepts of GAT introduced in [1,2] and further
extended in [28], to which we refer for proofs and examples. This can be considered as the
GAT reformulation of market risk.

2.1. The Traditional Market Model

In this subsection, we will summarize the traditional set-up, which will be rephrased
in Section 2.2 in differential geometric terminology. The reader is referred to [29] and the
ultimate reference [30]. We basically assume continuous-time trading and that the set of
trading dates is finite. This assumption is general enough to embed the cases of finite and
infinite discrete times, as well as the one with a finite horizon in continuous time. Note that,
while it is true that, in the real world, trading occurs at discrete times only, these are not
known a priori and can be virtually any points in the time continuum. This motivates the
technical effort of continuous-time stochastic finance.

The uncertainty is modeled by a filtered probability space (Ω,A,P), where P is the
statistical (physical) probability measure, A = {At}t∈[0,+∞[ is an increasing family of sub-
σ-algebras ofA∞ representing the increasing information about the market, and (Ω,A∞,P)
is a probability space. The filtration A is assumed to satisfy the usual conditions, that is,

• right continuity: At =
⋂

s>tAs for all t ∈ [0,+∞[.
• A0 contains all null sets of A∞.

The market consists of finitely many assets indexed by j = 1, . . . , N, whose nominal
prices are given by the vector-valued sem-imartingale S : [0,+∞[×Ω → RN denoted
by (St)t∈[0,+∞[, which is adapted to the filtration A. The stochastic process (Sj

t)t∈[0,+∞[

describes the price at time t of the j-th asset in terms of the unit of cash at time t = 0.
More precisely, we assume the existence of a 0-th asset, the cash, a strictly positive semi-
martingale, which evolves according to S0

t = exp(
∫ t

0 du r0
u), where the predictable semi-

martingale (r0
t )t∈[0,+∞[ represents the continuous interest rate provided by the cash account:

One always knows in advance what the interest rate on one’s own bank account is, but
this can change from time to time. The cash account is, therefore, considered the locally
risk-less asset in contrast to the other assets, the risky ones. In the following, we will mainly
utilize discounted prices, defined as Ŝj

t := Sj
t/S0

t , representing the asset prices in terms of
the current unit of cash.
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We emphasize that there is no need to assume that asset prices are positive. However,
there must be at least one strictly positive asset—in our case, the cash. If we want to
renormalize the prices by choosing another asset instead of the cash as a reference, i.e., by
making it into our numéraire, then this asset must have a strictly positive price process.
More precisely, a generic numéraire is an asset whose nominal price is represented by a
strictly positive stochastic process (Bt)t∈[0,+∞[ and that is a portfolio of the original assets
j = 0, 1, 2, . . . , N. The discounted prices of the original assets are then represented in terms
of the numéraire by the semi-martingales Ŝj

t := Sj
t/Bt. It is worth emphasizing that the

construction depends on the gauge (i.e., the numéraire); however, our new results, such as
Theorems 1 and 2, are independent of the choice of the numéraire. In this sense, we can say
that the symmetry plays a central role in Geometric Arbitrage Theory.

We assume that there are no transaction costs and that short sales are allowed. We
remark that the absence of transaction costs can be a serious limitation for a realistic model.
The filtration A is not necessarily generated by the price process (St)t∈[0,+∞[; other sources
of information than prices are allowed. All agents have access to the same information
structure, that is, to the filtration A.

A strategy is a predictable stochastic process x : [0,+∞[×Ω → RN describing the
portfolio holdings. The stochastic process (xj

t)t∈[0,+∞[ represents the number of pieces
of the j-th asset portfolio held by the portfolio as time goes by. We remark that the Itô
stochastic integral ∫ t

0
x · dS =

∫ t

0
xu · dSu,

and the Stratonovich stochastic integral∫ t

0
x ◦ dS :=

∫ t

0
x · dS +

1
2

∫ t

0
d〈x, S〉 =

∫ t

0
xu · dSu +

1
2

∫ t

0
d〈x, S〉u (1)

are well defined for this choice of integrator (S) and integrand (x), as long as the strategy is
admissible, meaning that it is v-admissible for some v ≥ 0, that is, x = (xt)t∈[0,+∞[ is an

S-integrable predictable process for which the Itô integral satisfies
∫ t

0 x · dS ≥ −v almost
surely for all t ≥ 0 with x0 = 0. The bracket 〈·, ·〉 in (1) denotes the quadratic covariation of
two processes. In a general context, strategies do not need to be semi-martingales, but if
we want the quadratic covariation and, hence, Stratonovich’s integral to be well defined,
we must require this additional assumption. For details about stochastic integration, we
refer to Appendix A in [18], which summarizes Chapter VII of the authoritative [31]. The
portfolio value is the process {Vt}t∈[0,+∞[ defined by

Vt := Vx
t := xt · St.

An admissible strategy x is said to be self-financing if and only if the portfolio value at
time t is given by

Vt = V0 +
∫ t

0
xu · dSu.

This means that the portfolio gain is the Itô integral of the strategy with the price
process as integrator; the change in portfolio value is purely due to changes in the assets’
values. The self-financing condition can be rewritten in differential form as

dVt = xt · dSt.

As pointed out in [32], if we want to utilize Stratonovich’s integral to rephrase the
self-financing condition while maintaining its economical interpretation (which is necessary
for the subsequent constructions of mathematical finance), we write

Vt = V0 +
∫ t

0
xu ◦ dSu −

1
2

∫ t

0
d〈x, S〉u
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or, equivalently,

dVt = xt ◦ dSt −
1
2

d〈x, S〉t.

An arbitrage strategy for the market model is an admissible self-financing strategy x
for which one of the following condition holds for some horizon T > 0:

• P[Vx
0 < 0] = 1 and P[Vx

T ≥ 0] = 1,
• P[Vx

0 ≤ 0] = 1 and P[Vx
T ≥ 0] = 1 with P[Vx

T > 0] > 0.

In Chapter 9 of [30], the no-arbitrage condition is given a topological characteriza-
tion. In view of the fundamental theorem of asset pricing, the no-arbitrage condition is
substituted by a stronger condition, the so-called no-free-lunch-with-vanishing-risk con-
dition. Let us denote by L0(Ω,AT ,P) the set of AT-measurable random variables and by
L∞(Ω,AT ,P) the set of bounded random variables. Furthermore, L0

+ and L∞
+ denote the

subsets of positive random variables in L0 and L∞, respectively.

Definition 1 (Arbitrage). Let the process (St)t∈[0,+∞[ be a semi-martingale and let (xt)t∈[0,+∞[

be an admissible self-financing strategy. Let us consider trading up to time T ≤ ∞. The portfolio
wealth at time t is given by Vt(x) := V0 +

∫ t
0 xu · dSu, and we denote by K0 the subset of

L0(Ω,AT ,P) containing all such VT(x), where x is any admissible self-financing strategy. We
define

• C0 := K0 − L0
+(Ω,AT ,P).

• C := C0 ∩ L∞(Ω,AT ,P).
• C̄: the closure of C in L∞ with respect to the norm topology.

• VV0 :=
{
(Vt)t∈[0,+∞[

∣∣Vt = Vt(x), where x is V0-admissible
}

.

• VV0
T :=

{
VT
∣∣ (Vt)t∈[0,+∞[ ∈ VV0

}
: terminal wealth for V0-admissible self-financing

strategies.

We say that S satisfies

• the no-arbitrage (NA) condition if and only if C ∩ L∞
+(Ω,AT ,P) = {0}.

• the no-free-lunch-with-vanishing-risk (NFLVR) condition if and only if C̄∩ L∞
+(Ω,AT ,

P) = {0}.
• the no-unbounded-profit-with-bounded-risk (NUPBR) condition if and only if VV0

T is
bounded in L0 for some V0 > 0.

The relationship between these three different types of arbitrage was elucidated in
[33] and in [34] with the proof of the following result.

Theorem 3.
(NFLVR)⇔ (NA) + (NUPBR).

In 1994, Delbaen and Schachermayer proved (see [30], Chapter 9.4, particularly the
main Theorem 9.1.1) the following theorem.

Theorem 4 (First Fundamental Theorem of Asset Pricing in Continuous Time). Let
(St)t∈[0,+∞[ and (Ŝt)t∈[0,+∞[ be bounded semi-martingales. There is an equivalent martingale
measure P∗ for the discounted prices Ŝ if and only if the market model satisfies the (NFLVR).

This is a generalization for continuous time of the Dalang–Morton–Willinger theorem
proved in 1990 (see [30], Chapter 6) for the discrete-time case, where the (NFLVR) is relaxed
to the (NA) condition. The Dalang–Morton–Willinger theorem generalizes the Harrison
and Pliska theorem (see [30], Chapter 2) to arbitrary probability spaces, which holds true in
discrete time for finite probability spaces.

An equivalent alternative to the martingale measure approach for asset pricing pur-
poses is given by the pricing kernel (state price deflator) method.
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Definition 2. Let (St)t∈[0,+∞[ be a semi-martingale describing the price process for the assets of
our market model. The positive semi-martingale (βt)t∈[0,+∞[ is called the pricing kernel (or state
price deflator) for S if and only if (βtSt)t∈[0,+∞[ is a P-martingale.

As shown in [29] (Chapter 7, definitions 7.18 and 7.47 and Theorem 7.48), the existence
of a pricing kernel is equivalent to the existence of an equivalent martingale measure for
a specific choice of numéraire. If we want the numéraire to be arbitrary, like the one we
originally choose for the model, then we have to additionally assume that the pricing kernel
β is a local P-martingale.

Theorem 5. Let (St)t∈[0,+∞[ and (Ŝt)t∈[0,+∞[ be bounded semi-martingales. The process Ŝ admits
an equivalent martingale measure P∗ if and only if there is a pricing kernel β for S (or for Ŝ), which
is a local martingale.

2.2. Geometric Reformulation of the Market Model: Primitives

Following [1–3], we are going to introduce a more general representation of the
market model introduced in Section 2.1 that is better suited to the arbitrage modeling
task. The underlying theory is that of (stochastic) principal fiber bundles of (stochastic)
differential geometry. We restate several definitions, propositions, and theorems without
proofs from [1–3,28] for the sake of the readers.

Definition 3. A gauge is an ordered pair of two A-adapted real-valued semi-martingales (D, P),
where D = (Dt)t≥0 : [0,+∞[×Ω → R is called the deflator and P = (Pt,s)t,s : T ×Ω → R,
which is called the term structure, is considered as a stochastic process with respect to the time t,
termed valuation date, and T := {(t, s) ∈ [0,+∞[2 | s ≥ t}. The parameter s ≥ t is referred to
as the maturity date. The following properties must be satisfied almost surely for all t, s such that
s ≥ t ≥ 0:

(i) Pt,s > 0,
(ii) Pt,t = 1.

Deflators and term structures can be considered outside the context of fixed income. An
arbitrary financial instrument is mapped to a gauge (D, P) with the following economic
interpretation:

• Deflator: Dt is the value of the financial instrument at time t expressed in terms of
some numéraire. If we choose the cash account and the 0-th asset as the numéraire,

then we can set Dj
t := Ŝj

t =
Sj

t
S0

t
(j = 1, . . . N).

• Term structure: Pt,s is the value at time t (expressed in units of deflator at time t) of
a synthetic zero-coupon bond with maturity s delivering one unit of the financial
instrument at time s. It represents a term structure of forward prices with respect to
the chosen numéraire.

As we mentioned in [1–3], we point out that there is no unique choice for deflators
and term structures describing an asset model. For example, if a set of deflators qualifies,
then we can multiply every deflator by the same positive semi-martingale to obtain another
suitable set of deflators. Of course, term structures have to be modified accordingly. The
term “deflator” is clearly inspired by actuarial mathematics. In the present context, it refers
to a nominal asset value up for division by a strictly positive semi-martingale (which can be
the state price deflator if this exists and it is made into the numéraire). There is no need to
assume that a deflator is a positive process. However, if we want to make an asset into our
numéraire, then we have to make sure that the corresponding deflator is a strictly positive
stochastic process.
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Definition 4. The term structure can be written as a functional of the instantaneous forward rate
f defined as

ft,s := − ∂

∂s
log Pt,s, Pt,s = exp

(
−
∫ s

t
dh ft,h

)
.

and
rt := lim

s→t+
ft,s

is called the short rate.

Remark 1. Since (Pt,s)t,s is a t-stochastic process (semi-martingale) depending on a parameter
s ≥ t, the s-derivative can be defined deterministically, and the expressions above make sense
pathwise in both a classical and a generalized sense. In a generalized sense, we will always have a
D′ derivative for any ω ∈ Ω; this corresponds to a classic s-continuous derivative if Pt,s(ω) is a
C1-function of s for any fixed t ≥ 0 and ω ∈ Ω.

Remark 2. The special choice of vanishing interest rate r ≡ 0 or flat-term structure P ≡ 1 for all
assets corresponds to the classical model, where only asset prices and their dynamics are relevant.

We now want to introduce transforms of deflators and term structures in order to group
gauges containing the same (or less) stochastic information. The reader can refer to [1–3]
for details. Therefore, we will consider deterministic linear combinations of assets modeled
by the same gauge (e.g., zero bonds of the same credit quality with different maturities).

Definition 5. Let π : [0,+∞[−→ R be a deterministic cash-flow intensity (possibly generalized)
function. We mean by this that π is, in general, a tempered distribution, which, in many cases,
can be chosen to be a classical function. It induces a gauge transform (D, P) 7→ π(D, P) :=
(D, P)π := (Dπ , Pπ) with the formulae

Dπ
t := Dt

∫ +∞

0
dh πhPt,t+h, Pπ

t,s :=

∫ +∞

0
dh πhPt,s+h∫ +∞

0
dh πhPt,t+h

.

Remark 3. This gauge transform constructs a bond from the original gauge. The cash-flow intensity
π specifies the bond’s cash-flow structure. The bond’s value at time t expressed in terms of the
market model numéraire is given by Dπ

t . The term structure of forward prices for the bond’s future
expressed in terms of the bond’s current value is given by Pπ

t,s.

Let us consider a market consisting of N assets and a numéraire in a continuous-time
setting. A general portfolio at time t is described by the vector of nominals x ∈ X for an
open set X ⊂ RN . Following Definition 3, for j = 1, . . . , N, the asset model induces the
gauge

(Dj, Pj) = ((Dj
t)t∈[0,+∞[, (Pj

t,s)s≥t),

where Dj denotes the deflator and Pj denotes the term structure. This can be written as

Pj
t,s = exp

(
−
∫ s

t
f j
t,udu

)
,

where f j is the instantaneous forward rate process for the j-th asset, and the corresponding
short rate is given by rj

t := limu→t+ f j
t,u. For a portfolio with nominals x ∈ X ⊂ RN , we

define

Dx
t :=

N

∑
j=1

xjD
j
t f x

t,u :=
N

∑
j=1

xjD
j
t

∑N
j=1 xjD

j
t

f j
t,u Px

t,s := exp
(
−
∫ s

t
f x
t,udu

)
.
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The short rate is written as

rx
t := lim

u→t+
f x
t,u =

N

∑
j=1

xjD
j
t

∑N
j=1 xjD

j
t

rj
t.

The image space of all possible strategies reads

M := {(t, x) ∈ [0,+∞[×X}.

As shown in [1,2], the set of all deflators {(Dx
t , Px

t,s) | s ≥ t ≥ 0} over X can be given
the structure of a principal fiber bundle, whose curvature characterizes arbitrage as follows.

Theorem 6 (No Arbitrage). The following assertions are equivalent:

(i) The market model satisfies the no-free-lunch-with-vanishing-risk condition.
(ii) There exists a positive local martingale β = (βt)t≥0 such that deflators and short rates satisfy,

for all times and all portfolio nominals (t, x) ∈ M, the condition

rx
t = −D log(βtDx

t ).

(iii) There exists a positive local martingale β = (βt)t≥0 such that deflators and term structures
satisfy, for all times and all portfolio nominals (t, x) ∈ M, the condition

Px
t,s =

Et[βsDx
s ]

βtDx
t

.

This motivates the following definition.

Definition 6. The market model satisfies the zero-curvature condition (ZC) if and only if the
curvature vanishes almost surely.

As proved in [35], the two weaker notions of arbitrage, the zero-curvature and the
no-unbounded-profit-with-bounded-risk conditions, are equivalent. Together with the
well-known results in [33,34], this leads to

Theorem 7.

(NFLVR)⇔
{

(NUPBR)⇒ (ZC)
(NA)

As an example (see [1–3] for details) to demonstrate how the most important geometric
concepts of Section 2 can be applied, we consider an asset model whose dynamics are
given by a multidimensional Itô process. Let us consider a market consisting of N + 1
assets labeled by j = 0, 1, . . . , N, where the 0-th asset is the cash account utilized as a
numéraire. Therefore, as explained in the introductory Subsection 2.1, it suffices to model
the price dynamics of the other assets j = 1, . . . , N expressed in terms of the 0-th asset. As
vector-valued semi-martingales for the discounted price process Ŝ : [0,+∞[×Ω→ RN and
the short rate r : [0,+∞[×Ω→ RN , we chose the multidimensional Itô processes given by

dŜt = Ŝt(αtdt + σtdWt)

drt = atdt + btdWt,
(2)

where

• (Wt)t∈[0,+∞[ is a standard P-Brownian motion in RK, for some K ∈ N, and,
• (σt)t∈[0,+∞[, (αt)t∈[0,+∞[, are, respectively, RN×K- and RN-valued stochastic processes,
• (bt)t∈[0,+∞[, (at)t∈[0,+∞[ are, respectively, RN×L- and RN-valued stochastic processes.
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Proposition 1. Let the dynamics of a market model be specified by following Itô’s processes as in
(2), where we additionally assume that the coefficients

• (αt)t, (σt)t, and (rt)t satisfy

lim
s→t+

Es[αt] = αt, lim
s→t+

Es[rt] = rt, lim
s→t+

Es[σt] = σt,

• (σt)t is an Itô process, and
• (σt)t and (Wt)t are independent processes.

Then, the market model satisfies the (ZC) condition if and only if

αt + rt ∈ Range(σt). (3)

Remark 4. In the case of the classical model, where there are no term structures (i.e., r ≡ 0), the
condition (3) reads as αt ∈ Range(σt).

The stronger (NFLVR) condition in this guiding example appears in the following
result.

Proposition 2. For the market model whose dynamics are specified by the SDEs

dŜt = Ŝt(αtdt + σtdWt)

drt = atdt + btdWt,

the no-free-lunch-with-vanishing-risk condition (NFLVR) is satisfied if Novikov’s condition

E0

[
exp

(∫ T

0

1
2

∣∣∣σt
†(σtσt

†)−1(αt + rt)
∣∣∣2du

)]
< +∞, (4)

is fulfilled.

2.3. Bubbles in Arbitrage Markets

Asset bubbles were first introduced in [23] for complete markets and were recently
extended to and computed for arbitrage markets in [3] thanks to spectral theory, whose
main findings we briefly summarize here.

Definition 7. The cash-flow bundle is defined as

V := [0, T]×X︸ ︷︷ ︸
=M

×R[0,+∞[.

The space of the sections of the cash-flow bundle can be made into a scalar product space by
introducing, for stochastic sections f = f (t, x, ω) = ( fs(t, x, ω))s∈[0,+∞[ and g = g(t, x, ω) =
(gs(t, x, ω))s∈[0,+∞[,

( f , g) :=
∫

Ω
dP
∫

X
dN x

∫ T

0
dt〈 f , g〉(t, x, ω)

= E0

[
( f , g)L2(M,R[0,+∞[)

]
= ( f , g)L2(Ω,V ,A0,dP),

where

〈 f , g〉(t, x, ω) :=
∫ +∞

0
ds fs(t, x, ω)gs(t, x, ω).
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The Hilbert space of integrable sections reads

H := L2(Ω,V ,A0, dP)

=
{

f = f (t, x, ω) = ( fs(t, x, ω))s∈[0,+∞[

∣∣∣ ( f , f )L2(Ω,V ,A0,dP) < +∞
}

.

Let us extend the coordinate vector x ∈ RN with a 0-th component given by the time t. Let
X = ∑N

j=0 Xj
∂

∂xj
be a vector field over M and let f = ( fs)s a section of the cash-flow bundle V .

Then,

∇VX ft :=
N

∑
j=0

(
∂ ft

∂xj
+ Kj ft

)
Xj,

where

K0(x) = −rx
t Kj(x) =

Dj
t

Dx
t

(1 ≤ j ≤ N)

defines a covariant derivative on the cash-flow bundle V .

Definition 8 (Spectral Lower Bound). The highest spectral lower bound of the connection
Laplacian on the cash-flow bundle V is given by

λ0 := inf
ϕ∈C∞(M,V)

ϕ 6=0
BN(ϕ)=0

(∇V ϕ,∇V ϕ)H
(ϕ, ϕ)H

and it is assumed on the subspace

Eλ0 :=
{

ϕ
∣∣∣ ϕ ∈ C∞(M,V) ∩H, BN(ϕ) = 0, (∇V ϕ, ∇V ϕ)H ≥ λ0(ϕ, ϕ)H

}
.

The space
Kλ0 := {ϕ ∈ Eλ0 | ϕ ≥ 0, E[ϕ] = 1}

contains all candidates for the Radon–Nikodym derivative

dP∗
dP = ϕ, (5)

for a probability measure P∗ that is absolutely continuous with respect to the statistical measure P.

Theorem 4, which is the first fundamental theorem of asset pricing, can be reformulated
as follows.

Proposition 3. The market model satisfies the (NFLVR) condition if and only if λ0 = 0. Any
probability measure defined by (5) with ϕ ∈ K0 is a risk-neutral measure, that is, (Dt)t∈[0,T] is a
vector-valued martingale with respect to P∗, i.e.,

E∗t [Ds] = Dt for all s ≥ t in [0, T].

The market is complete if and only if λ0 = 0 and dim E0 = 1.

For arbitrage markets, we have that λ0 > 0, and there exist no risk-neutral probability
measures. Nevertheless, it is possible to define a fundamental value, but not in a unique
way. The relationships between spectral theory and topology given by the Atiyah–Singer
(Gauss–Bonnet–Chern) theorem were explored in [3] to construct topological obstructions
to the no-free-lunch-with-vanishing-risk condition given by the non-vanishing of the Euler
characteristic of the space of nominals X and the non-vanishing of the homology group of
the cash-flow bundle V over M.
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Definition 9 (Fundamental Prices and Bubbles of Basic Assets’ Arbitrage). Let (Ct)t∈[0,T]

be the RN cash-flow stream stochastic process associated with the N assets of the market model with
the given spectral lower bound λ0 and Radon–Nikodym candidates’ subspace Kλ0 . For a given
choice of ϕ ∈ Kλ0 , the approximated fundamental value of the assets with the stochastic RN-valued
price process (St)t∈[0,T] is defined as

S∗,ϕt := Et

[
ϕ

(∫ τ

t
dCu exp

(
−
∫ u

t
r0

s ds
)
+ Sτ exp

(
−
∫ τ

t
r0

s ds
)

1{τ<+∞}

)]
1{t<τ},

where τ denotes the maturity time of all risky assets in the market model, and the approximated
bubble is defined as

Bϕ
t := St − S∗,ϕt .

The fundamental price vector for the assets and their asset bubble prices are defined as

S∗t := S∗,ϕ0
t

Bt := Bϕ0
t

ϕ0 := arg min
ϕ∈Kλ0

E0

[∫ T

0
ds |Bϕ

s |2
]

.

(6)

The probability measure P∗ with the Radon–Nikodym derivative

dP∗
dP = ϕ0

is called the minimal arbitrage measure.

Proposition 4. The assets’ fundamental values can be expressed as conditional expectations with
respect to the minimal arbitrage measure as

S∗t := E∗t
[∫ τ

t
dCu exp

(
−
∫ u

t
r0

s ds
)
+ Sτ exp

(
−
∫ τ

t
r0

s ds
)

1{τ<+∞}

]
1{t<τ}. (7)

Formula (7) can be reformulated in terms of the curvature, by means of which we can
extend Jarrow, Protter, and Shimbo’s results in [23] to the following bubble decomposition
and classifications theorems proved in [3].

Theorem 8 (Bubble decomposition and types). Let T = +∞ and τ denote the maturity time
of all risky assets in the market model. St admits a unique (up to a P-evanescent set) decomposition

St = S̃t + Bt,

where B = (Bt)t∈[0,T] is a càdlàg process satisfying, for all j = 1, . . . , N,

Bj
t = Sj

t −E∗t
[∫ τ

t
dCj

u exp
(
−
∫ u

t
ds r0

s

)
+ exp

(∫ τ

t
ds r0

s

)
Sj

τ1{τ<+∞}

]
1{t<τ}, (8)

into a sum of fundamental and bubble values.
If there exists a non-trivial bubble Bj

t in an asset’s price for j = 1, . . . , N, then there exists a
probability measure P∗ equivalent to P, for which we have three and only three possibilities:

Type1: Bj
t is a local super- or sub-martingale with respect to both P and P∗ if P[τ = +∞] > 0.

Type2: Bj
t is a local super- or sub-martingale with respect to both P and P∗, but is not a uniformly

integrable super- or sub-martingale if Bj
t is unbounded, but with P[τ < +∞] = 1.

Type3: Bj
t is a strict local super- or sub- P- and P∗-martingale if τ is a bounded stopping time.

Next, we analyze the situation for derivatives.
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Definition 10 (Fundamental Prices and Bubbles of a Contingent Claim’s Arbitrage). Let
us consider, in the context of Definition (9), a European-style derivative (e.g., put, call) given by the
contingent claim with a unique payoff G(ST) at time T for an appropriate real-valued function G of
N real variables. The contingent claim’s fundamental price and its corresponding arbitrage bubble
are defined in the case of base assets paying no dividends as

V∗t (G) := Et

[
ϕ0 exp

(
−
∫ T

t
r0

s ds
)

G(ST) 1{T<+∞}

]
1{t<T}

= E∗
[

exp
(
−
∫ T

t
r0

s ds
)

G(ST) 1{T<+∞}

]
1{t<T}

Bt(G) := Vt(G)−V∗t (G),

(9)

where ϕ0 is the minimizer for the basic assets’ bubbles defined in (6), P∗ is the minimal arbitrage
measure, and (Vt(G))t∈[0,T] is the price process of the European option.

In the case of base assets paying dividends, the definition becomes

V∗t (G) := Et

[
ϕ0 exp

(
−
∫ T

t
r0

s ds
)

G
(

ST exp
(

CT
ST

(T − t)
))

1{T<+∞}

]
1{t<T}

= E∗
[

exp
(
−
∫ T

t
r0

s ds
)

G
(

ST exp
(

CT
ST

(T − t)
))

1{T<+∞}

]
1{t<T}

Bt(H) := Vt(G)−V∗t (G),

(10)

where Cj
t

Sj
t

is the instantaneous dividend rate for the j-th asset.

Remark 5. If the market is complete, then λ0 = 0 and Kλ0 = {ϕ0}, where ϕ0 is the Radon–
Nikodym derivative of the unique risk-neutral probability measure with respect to the statistical
probability measure. The definitions in (9) and in (8) coincide for the complete market with the
definitions of the fundamental value and asset bubble price for both the base asset and contingent
claim introduced by Jarrow, Protter, and Shimbo in [23], proving that they are a natural extension
to markets allowing for arbitrage opportunities.

Corollary 1. The bubble discounted values for the base assets in Definition 9 and for the contingent
claim on the base assets paying dividends in Definition 8

B̂t := exp
(
−
∫ t

0
r0

s ds
)

Bt B̂(G)t := exp
(
−
∫ t

0
r0

s ds
)

B(G)t

satisfy the equalities

B̂j
t = Dj

t −
(
E∗t
[

Dj
τ1{τ<+∞}

]
+E∗t

[
Ĉj

τ1{τ<+∞}

]
− Ĉj

t

)
1{t<τ}

B̂t(G) = V̂t(G)−E∗t
[

Ĝ
(

ST exp
(

CT
ST

(T − t)
))

1{T<+∞}

]
1{t<T},

(11)

where

Ĉj
t := exp

(
−
∫ t

0
r0

s ds
)

Cj
t , Ĝ := exp

(
−
∫ T

0
r0

s ds
)

G

V̂t(G) := exp
(
−
∫ t

0
r0

s ds
)

Vt(G)

are the discounted cash flow for the j-th asset, the discounted contingent claim payoff, and the
discounted value of the derivative.

As shown in [28], we have the following theorem.
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Theorem 9. The following statements hold true for any market model with T ≤ +∞ allowing for
arbitrage:

(a) The market portfolio, asset values, and term structures solving the minimal arbitrage problem
are identically distributed over time, and their returns are centered and serially uncorrelated:

([xt; Dt; rt]))t∈[0,T]is an i.d. process with respect to the statistical probability measure P, and

([Dxt;DDt;Drt])t∈[0,T] is centered and has a vanishing autocovariance function.

In particular, conditional and total expectations of asset values, nominals, and term structures
are constant over time:

E0[xt] ≡ const E0[Dt] ≡ const E0[rt] ≡ const
E0[Dxt] ≡ 0 E0[DDt] ≡ 0 E0[Drt] ≡ 0.

The variances of portfolio nominals are concurrent with those of the deflators:

Var0

(
Dj

t

)
Var0

(
xj

t
xt · Dt

)
≥ 1

4
, (12)

for all indices j = 1, . . . , N.
(b) The expectation and variance of the bubble discounted value for the j-th asset read

E0[B̂
j
t] = E0

[
Dj

t − Ĉj
t

]
−E∗0

[
Dj

T − Ĉj
T

]
Var0(B̂j

t) = Var0

(
Dj

t − Ĉj
t

)
+ Var∗0

(
Dj

T − Ĉj
T

)
− 2Cov∗0

(
Dj

t − Ĉj
t , Dj

T − Ĉj
T

)
.

(c) The expectation and variance of the bubble discounted value for the contingent claim G(ST)
on the base assets read

E0[B̂t(G)] = E0[V̂t(G)]−E∗0
[

Ĝ
(

ST exp
(

CT
ST

(T − t)
))]

Var0(B̂t(G)) = Var0(V̂t(G)) + Var∗0

(
Ĝ
(

ST exp
(

CT
ST

(T − t)
)))

.

3. Generalized Derivatives of Stochastic Processes

In stochastic differential geometry, one would like to lift the constructions of stochastic
analysis from open subsets of RN to N-dimensional differentiable manifolds. To that aim,
chart-invariant definitions are needed, and hence, a stochastic calculus satisfying the usual
chain rule and not Itô’s Lemma is required (cf. [19], Chapter 7, and the remark in Chapter 4
at the beginning of page 200). That is why papers about Geometric Arbitrage Theory are
mainly concerned with stochastic integrals and derivatives meant in Stratonovich’s sense
and not in Itô’s. Of course, at the end of the computation, Stratonovich integrals can be
transformed into Itô’s. Note that, in a fundamental portfolio equation, the self-financing
condition cannot be directly formally expressed with Stratonovich integrals, but first with
Itô’s and then transformed into Stratonovich’s because it is a non-anticipative condition.
We refer to [1–3] and restate the definitions for the readers’ convenience.

Definition 11. Let I be a real interval and let Q = (Qt)t∈I be an RN-valued stochastic process
on the probability space (Ω,A, P). The process Q determines three families of σ-subalgebras of the
σ-algebra A:

(i) “Past” Pt, generated by the pre-images of Borel sets in RN by all mappings Qs : Ω→ RN for
0 < s < t.

(ii) “Future” Ft, generated by the pre-images of Borel sets in RN by all mappings Qs : Ω→ RN

for 0 < t < s.
(iii) “Present” Nt, generated by the pre-images of Borel sets in RN by the mapping Qs : Ω→ RN .
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Let Q = (Qt)t∈I be continuous. Assuming that the following limits exist, Nelson’s stochas-
tic derivatives are defined as

DQt := lim
h→0+

E
[Qt+h −Qt

h

∣∣∣Pt

]
: forward derivative,

D∗Qt := lim
h→0+

E
[Qt −Qt−h

h

∣∣∣Ft

]
: backward derivative,

DQt :=
DQt + D∗Qt

2
: mean derivative.

Let S1(I) be the set of all processes Q such that t 7→ Qt, t 7→ DQt, and t 7→ D∗Qt are
continuous mappings from I to L2(Ω,A). Let C1(I) be the completion of S1(I) with respect to the
norm

‖Q‖ := sup
t∈I

(
‖Qt‖L2(Ω,A) + ‖DQt‖L2(Ω,A) + ‖D∗Qt‖L2(Ω,A)

)
.

Remark 6. The stochastic derivatives D, D∗, and D correspond to Itô’s, the anticipative, and,
Stratonovich’s integral, respectively (cf. [36]). The process space C1(I) contains all Itô processes.
If Q is a Markov process, then the sigma algebras Pt (”past”) and Ft (”future”) in the definitions
of forward and backward derivatives can be substituted by the sigma algebra Nt (”present”); see
Chapters 6.1 and 8.1 in [36].

Stochastic derivatives can be defined pointwise in ω ∈ Ω outside the class C1 in terms
of generalized functions.

Definition 12. Let Q : I × Ω → RN be a continuous linear functional in the test processes
ϕ : I × Ω → RN for ϕ(·, ω) ∈ C∞

c (I, RN). We mean by this that, for a fixed ω ∈ Ω, the
functional Q(·, ω) ∈ D(I, RN) is the topological vector space of continuous distributions. We can
then define Nelson’s generalized stochastic derivatives:

DQ(ϕt) := −Q(Dϕt): forward generalized derivative,

D∗Q(ϕt) := −Q(D∗ϕt): backward generalized derivative,

D(ϕt) := −Q(Dϕt): mean generalized derivative.

If the generalized derivative is regular, then the process has a derivative in the classic
sense. This construction is nothing else than a straightforward pathwise lift of the theory
of generalized functions to a wider class of stochastic processes that do not allow a priori
for Nelson’s derivatives in the strong sense. We will utilize this feature in the treatment of
credit risk, where many processes with jumps occur.

4. Credit Risk

After having introduced the machinery of Geometric Arbitrage Theory, we can tackle
the modeling of assets’ defaults and their recoveries.

4.1. Classical Credit Risk Models

Here, we summarize the standard ways to model credit risk. There are basically two
possibilities for modeling defaults: structural model types, on one hand, and reduced-form
(intensity-based) model types on the other. We refer to [37,38] to understand the differences
in concepts of these models as follows: The difference between them can be characterized in
terms of the information assumed to be known by the observer. Structural models assume
that the observer has the same information set as the firm’s manager, i.e., the complete
knowledge of all firms’ assets and liabilities. In most situations, this knowledge leads to
a predictable default time. In contrast, reduced-form models assume that the observer
has the same information set as the market, i.e., an incomplete knowledge of the firm’s
condition. In most cases, this imperfect knowledge leads to an inaccessible default time.
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As highlighted in [37], these models are not disconnected and disjoint model types, as
was commonly supposed, but rather, they are really the same model containing different in-
formational assumptions. Furthermore, the insightful idea of [37] is that the key distinction
between structural and reduced-form models is not in the characteristic of the default time
(predictable vs. inaccessible), but in the information set available to the observer. Indeed,
structural models can be transformed into reduced-form models as the information set
changes and becomes less refined, from that observable by the firm’s manager to that which
is observed by the market.

Rather than comparing model types on the basis of their forecasting performance,
the choice of model type should be based on the information set available to the observer.
For general risk management purposes, the relevant set is the information available in the
market; hence, a structural model is to be preferred. By contrast, if one is interested in a
firm’s risky debt or related credit derivatives, then reduced-form models are the better
approach.

Let us introduce the standard setup by utilizing the market model introduced in
Section 2 to account for defaults and different information sets. Credit risk management
investigates an entity (corporation, bank, individual) that borrows funds, promises to
return these funds under a prespecified contractual agreement, and may default before
the funds (in their entirety) are repaid. Therefore, we introduce a market allowing for two
kinds of assets (besides the cash account): non-defaultable (e.g., government bonds) and
defaultable assets (e.g., corporate bonds).

Definition 13 (Information Structures). To model uncertainty, there are two filtrations for
(Ω,A,P):
• Market Filtration: This is the A = {At}t∈[0,+∞[ used so far for market risk, representing

the information available to all market participants.
• Global Filtration: This is the G = {Gt}t∈[0,+∞[ representing the information available to

the management of the bond issuer’s company.

The global filtration is postulated to contain the market filtration, i.e., At ⊂ Gt for all t ≥ 0.
Unless otherwise specified, conditional probabilities and expectations refer to the market filtration,
i.e., Pt[·] = P[·|At] and Et[·] := E[·|At].

Definition 14 (Default and Recovery Models). Let DCorp
t be the market value of a defaultable

asset.

• Default indicator:

Xt :=
{

1, corporate bond in default state at time t
0, corporate bond in non-default state at time t.

• Time to default:
τ := inf{t ≥ 0 |Xt = 1}.

• Conditional default probability:

pAt,s := Pt[τ ≤ s | τ > t].

• Structural model: Let (Et)t≥0 be the corporate equity process with default threshold Emin.
The structural model for default is the following specification for the default indicator:

Xt := 1{Et≤Emin}.

The corporate equity dynamics are observable in the market, i.e., At ⊃ σ({Es | s ≤ t}), and
they are typically given by an Itô diffusion with respect to the market filtration:

dEt = Et(α
E
t (Et) + σE

t (Et))dWt.



Symmetry 2022, 14, 1330 16 of 25

• Intensity model: The global filtration G contains the filtration σ
({

τ, Ys | s ≤ t
})

generated
by the time to default and by a vector of state variables Yt, which follows an Itô diffusion. The
default indicator is a Cox process induced by τ with a positive intensity process (λt)t≥0, which
corresponds to the following specification:

Xt := 1{Λ−1(E)≤t}, (13)

where Λt :=
∫ t

0 dhλh and E ∼ Exp(1) is an exponentially distributed random variable.
• Loss-given default: If there is default at time t, then the recovered value at time t+ is given

by (1− LGDt)DCorp
t− . The stochastic process (LGDt)t≥0 is observable in the market filtration.

Proposition 5. The default probabilities in the two models read:

• Structural model:
pAt,s = Pt[Es ≤ Emin | Et ≥ Emin].

• Intensity model:

pGt,s = 1−E
[

exp
(
−
∫ s

t
dhλh

)∣∣∣∣Gt

]
.

A known fact about structural credit risk models is summarized by the following
proposition.

Proposition 6. In the structural models, the time to default is a predictable stopping time and
corresponds to the first hitting time of the barrier

τ = inf{t ≥ 0 | Et ≤ Emin}.

Remark 7. A stopping time τ is a non-negative random variable such that the event {τ ≤ t} ∈ At
for every t ≥ 0. A stopping time is predictable if there exists a sequence of stopping times (τn)n≥0
such that τn is increasing with n, τn < τ for all n ≥ 0 and limn→+∞ τn = τ almost surely.
Intuitively, as mentioned in [37], an event described by a predictable stopping time is ”known” to
occur ”just before” it happens, since it is announced by an increasing sequence of stopping times.
This is certainly the situation for structural models with respect to the market filtration. In essence,
although default is an uncertain event and, thus, technically a surprise, it is not a ”true surprise”
to the global observer because it can be anticipated with almost certainty by watching the path of
the company’s equity value. The key characteristic of a structural model is the observability of the
market information set At ⊃ σ({Es | s ≤ t}) and not the fact that default is predictable.

Another known fact about reduced-form credit risk models (cf. [37]) is the following.

Proposition 7. In reduced-form models, the time to default is a totally inaccessible stopping time,
i.e., for every predictable stopping time S, the event {ω ∈ Ω | τ(ω) = S(ω) < +∞} vanishes
almost surely.

Now, what are the relationships between structural and reduced-form models? The
reason for the transformation of the default time τ from a predictable stopping time in
Proposition 6 into an inaccessible stopping time in Proposition 7 is that, between the
times of observations of the company equity value, we do not know how the equity
value has evolved. Consequently, prior to our next observation, a default could occur
unexpectedly (as a complete surprise). If one changes the information set held by the
observer from more to less information from G to A, then a structural model with default
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being a predictable stopping time can be transformed into a hazard rate model with default
being an inaccessible stopping time:

E
[

pGt,s
∣∣∣At

]
= 1−Et

[
exp

(
−
∫ s

t
du λu

)]
= 1− exp

(
−
∫ s

t
du hu

)
,

where h denotes the deterministic hazard function. Thus, the overall relevant structure is
that of the two filtrations and how stopping times behave in them. The structural models
play a role in the determination of the structure generating the default time. However,
as soon as the information available to the observer is reduced or obscured, one needs to
project onto a smaller filtration; then, the default time becomes totally inaccessible, and
the compensator Λ of the one-jump point process 1− Xt becomes the object of interest. If
the compensator can be written in the form Λt =

∫ t
0 dhλh, then the process (λt)t≥0 can be

interpreted as the instantaneous rate of default given the observer’s information set. In that
case, from Proposition 5, we derive the following.

Proposition 8. Structural and intensity models are related by the following relationship:

λt = lim
s→t+

∂

∂s
Pt[Es ≤ Emin | Et > Emin].

Proposition 9. For both structural and reduced-form credit model, if the market model satisfies
the no-arbitrage-with-vanishing-risk condition, the risk-free discounted value of the corporate bond
reads, for any s ≥ t,

DCorp
t = E∗t

[(
(1− LGDτ)1{τ≤s} + 1{τ>s}

)
DCorp

s

]
.

Proof. Let St denote the value of the corporate bond and ct its cash-flow intensity. Then,

St = E∗t
[∫ +∞

t
dh ch exp

(
−
∫ h

t
du r0

u

)]
.

Therefore,

DCorp
t = E∗t

[∫ +∞

t
dh ch exp

(
−
∫ h

t
du r0

u

)]
= E∗t

[∫ +∞

t
dh δ(h− τ)

(
(1− LGDh)1{h≤s} + 1{h>s}

)
DCorp

s

]
= E∗t

[(
(1− LGDτ)1{τ≤s} + 1{τ>s}

)
DCorp

s

]
].

Is it possible to characterize the model type on the basis of Nelson’s differentiation
property of the default indicator?

Proposition 10. In the structural model, the generalized Nelson forward derivative of the default
indicator reads

DAXt = lim
s→t+

∂

∂s
Pt[Es ≤ Emin | Et > Emin].

Proof. The default probability can be developed as

Pt[Es ≤ Emin | Et > Emin] =
Et

[
1{Es≤Emin}1{Et>Emin}

]
Et

[
1{Et>Emin}

]
= Et

[
1{Es≤Emin}

]
.
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Therefore, we obtain

lim
s→t+

∂

∂s
Pt[Es ≤ Emin | Et > Emin]

= lim
s→t+

lim
h→0+

Pt[Es+h ≤ Emin | Et > Emin]− Pt[Es ≤ Emin | Et > Emin]

h

= lim
s→t+

lim
h→0+

Et

[1{Es+h≤Emin | Et>Emin} − 1{Es≤Emin | Et>Emin}
h

]
= lim

s→t+
DA1{Es≤Emin | Et>Emin} = DAXt,

where Nelson’s derivative D has to be understood in the generalized sense.

Proposition 11. For the intensity model, with respect to the global filtration, the Nelson forward
generalized derivative of the default indicator reads

DGXt = λt.

Proof. We can reformulate (13) as a structural model as

Xt = 1{Λ−1(E)≤t} = 1{−Λt+(E)≤0},

and therefore,
pGt,s = P[−Λs + E ≤ 0 | {−Λt + E > 0} ∩ Gt].

By mimicking the proof of Proposition 10 with these adaptations, we have

DGXt = lim
s→t+

∂

∂s
P[−Λs + E ≤ 0 | {−Λt + E > 0} ∩ Gt]

= lim
s→t+

∂

∂s

(
1−E

[
exp

(
−
∫ s

t
dhλh

)∣∣∣∣Gt

])
= lim

s→t+
E
[

exp
(
−
∫ s

t
dhλh

)
λs

∣∣∣∣Gt

]
= E[λt|Gt] = λt.

(14)

Therefore, by comparing Propositions 8, 10, and 11, we can conclude with the following
theorem.

Theorem 10. Structural models admit an intensity formulation where the intensity is given by the
Nelson forward derivative with respect to the market filtration.

4.2. Geometric Arbitrage Theory Credit Risk Model

Now, we can carry out the analysis of credit markets described in Section 4.1 by
utilizing the tools of Geometric Arbitrage Theory introduced in Section 2 and, in particular,
Proposition 2.

Definition 15 (Credit Market). A (simple) credit market consists of a government asset (SGov
t )t∈[0,T]

with cash flow (CGov
t )t∈[0,T] and a corporate asset (SCorp

t )t∈[0,T] with cash flow (CCorp
t )t∈[0,T]. The

credit asset is defined as a portfolio consisting of a long position in the corporate asset and a short
position in the government asset: SCred

t := SCorp
t − SCred

t and CCred
t := CCorp

t − CCred
t . Following

Definition 3, let (DGov, PGov) and (DCorp, PCorp) be the gauges corresponding to the government
and the corporate asset, respectively, with their corresponding term structures. The credit gauge
(DCred, PCred) is defined as

• Deflator: DCred
t := DCorp

t − DGov
t := exp

(∫ t
0 ds r0

s

)
(SCorp

t − SGov
t ),
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• Discounted cash flow: ĈCred
t := exp

(∫ t
0 ds r0

s

)
(ĈCorp

t − ĈGov
t ),

• Instantaneous forward rate: f Cred
t,s := f Corp

t,s − f Gov
t,s ,

• Short rate: rCred
t := lims→t+ f Cred

t,s ,

• Term structure: PCred
t,s := exp

(
−
∫ s

t dh f Cred
t,h

)
.

The credit gauge represents all relevant information necessary to model a credit market for
bonds with arbitrary maturities and of a given rating in one currency. Different ratings correspond
to different credit gauges. In the vector notation of Definitions 3 and 4, we have, with the choice
xCred := [−1,+1]†,

Dt := [DGov
t , DCorp

t ]† rt := [rGov
t , rCorp

t ]†

DCred
t = DxCred

t rCred
t = rxCred

t .

Proposition 12. The credit asset gauge satisfies the following properties:

• Deflator:

DCred
t = (1− LGDtXt)DCorp

0 − DGov
t .

• Term structure:

PCred
t,s =

PCorp
t,s

PGov
t,s

.

• Short rate:

rCred
t = rCorp

t − rGov
t .

We can apply Theorem 6 to the credit market to characterize the no-arbitrage condition.

Theorem 11 (No-Arbitrage Credit Market). Let λ = λt and LGD = LGDt be the default
intensity and the loss-given default, respectively, of the corporate bond. The following assertions are
equivalent:

(i) The credit market model satisfies the no-free-lunch-with-vanishing-risk condition.
(ii) There exists a positive local martingale β = (βt)t≥0 such that deflators and short rates satisfy,

for all times, the condition
rCred

t = βtLGDtλt.

(iii) There exists a positive local martingale β = (βt)t≥0 such that deflators and term structures
satisfy, for all times, the condition

PCred
t,s = Et

[
exp

(
−
∫ s

t
du βuLGDuλu

)]
.

Proof. By Theorem 6 (iii) for N = 2, with government (x = [1, 0]†) and corporate (x =
[0,−1]†) values, the (NFLVR) condition reads

PGov
t,s =

Et[βsDGov
s ]

βtDGov
t

PCorp
t,s =

Et[βsDCorp
s ]

βtD
Corp
t

By making the government asset into the numéraire (i.e., DGov
t ≡ 1), we obtain, from

the first equation, PGov
t,s ≡ 1 and, hence, rGov

t ≡ 0. We define an equivalent martingale
measure for (Dt)t by setting the Radon–Nikodym derivative as

dP∗
dP := βT ,
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and rewrite the second equation utilizing βt = Et

[
dP∗
dP

]
as

PCorp
t,s =

Et[βsDCorp
s ]

βtD
Corp
t

= E∗t [1− LGDsXs].

By taking on both sides of the equation − ∂
∂s

∣∣∣
s:=t

, we obtain

rCorp
t = LGDtλ

∗
t ,

because, by rewriting the default indicator by means of the Heaviside function and the
time to default,

LGDt = LGDτΘ(t− τ)

Xt = Θ(t− τ)

E∗t [DA(LGDtXt)] = E∗t [DA(LGDt)Xt)︸ ︷︷ ︸
=δ(t−τ)Θ(t−τ)=0

+LGDtDA(Xt)] = LGDtλ
∗
t ,

where λ∗t is the default intensity with respect to P∗. Therefore, with the government asset
as a numéraire,

rCred
t = rCorp

t = LGDtλ
∗
t = βtLGDtλt,

which is (ii), to which (iii) is equivalent. The proof is completed.

Theorem 1 follows directly from Theorem 11. We can now apply Proposition 1 and
Proposition 2 to the credit market to find the dynamics satisfying the no-free-lunch-with-
vanishing-risk condition.

We have a version where the equivalence of (NFLVR) with (ZC) holds true if Novikov’s
growth condition for the instantaneous Sharpe ratio is satisfied.

Corollary 2. For the market with the government bond chosen as a numéraire and corporate
bond dynamics (DCorp

t )t specified by the weak limits DCorp
t = D′ − limε→0 DCorp,ε

t and rCorp
t =

D′ − limε→0 rCorp,ε
t of Itô processes (DCorp,ε

t )t (r
Corp,ε
t )t and satisfying SDE

dDCorp,ε
t = DCorp,ε

t (α
Corp,ε
t dt + σ

Corp,ε
t dWt)

drCorp,ε
t = aCorp,ε

t dt + bCorp,ε
t dWt

(15)

where

• (Wt)t∈[0,+∞[ is a standard P-Brownian motion in RK, for some K ∈ N,

• (α
Corp,ε
t )t∈[0,+∞[, (σ

Corp,ε
t )t∈[0,+∞[, and (rCorp,ε

t )t∈[0,+∞[ are, respectively, R-, RK-, and RK-
valued predictable stochastic processes,

• (αt)t, (σt)t, and (rt)t satisfy

lim
s→t+

Es[α
Corp,ε
t ] = α

Corp,ε
t , lim

s→t+
Es[r

Corp,ε
t ] = rCorp,ε

t ,

lim
s→t+

Es[σ
Corp,ε
t ] = σ

Corp,ε
t ,

• (σ
Corp,ε
t )t is an Itô process, and

• (σ
Corp,ε
t )t and (Wt)t are independent processes.
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The no-free-lunch-with-vanishing-risk condition is satisfied if Novikov’s condition is satisfied,
which is the case if and only if the zero-curvature condition is satisfied and

E0

[
exp

(∫ T

0
dt

1
2

(
λtLGDt

1− LGDtXt
− rCorp

t

)2 t
Qt(K)

)]
< +∞, (16)

where

Qt(K) :=
W†

t Wt

t
∼ χ2(K)

is a chi-squared distributed real random variable.

Theorem 2 follows from Corollary 2 because any D′ process can be regularized by a
sequence of Itô processes satisfying the assumptions of the corollary as

lim
ε→0

DCorp,ε
t (ϕ) = DCorp

t (ϕ) and lim
ε→0

rCorp,ε
t (ϕ) = rCorp

t (ϕ)

for all ϕ(·, ω) ∈ C∞
c ([0, T], R).

Proof. The only thing to prove is inequality (16). On one hand,{
DGov

t ≡ 1
DCorp

t = (1− LGDtXt)DCorp
0 .

(17)

On the other, the solution of (15) reads

DCorp,ε
t = DCorp,ε

0 exp
(∫ t

0

(
α

Corp,ε
u +

1
2

σ
Corp,ε
u σ

Corp,ε
u

†
)

du +
∫ t

0
σ

Corp,ε
u dWu

)
,

and, hence,

D log(DCorp,ε
t ) = α

Corp,ε
t +

1
2

σ
Corp,ε
t σ

Corp,ε
t

†
+ σ

Corp,ε
t

Wt

2t
, (18)

because
DWt =

Wt

2t
and

〈
σCorp,ε, W

〉
t
≡ 0. (19)

Since the zero-curvature condition is satisfied, we infer that

D log(DCorp,ε
t ) + rCorp,ε

t = D log(DGov
t︸ ︷︷ ︸
≡1

) + rGov
t︸︷︷︸
=0

= 0,

which, inserted into Equation (19), leads to

α
Corp,ε
t + rCorp,ε

t +
1
2

σ
Corp,ε
t σ

Corp,ε
t

†
+ σ

Corp,ε
t

Wt

2t
= 0.

By applying lims→t+ Es[·] on both sides, we conclude that

α
Corp,ε
t + rCorp,ε

t +
1
2

σ
Corp,ε
t σ

Corp,ε
t

†
= 0. (20)

Hence, as the government asset is the numéraire, the integrand in formula (4) reads∣∣∣∣∣σCorp,ε
t

†
(

σ
Corp,ε
t σ

Corp,ε
t

†
)−1(

α
Corp,ε
t + rCorp,ε

t

)∣∣∣∣∣
2

=
1
4

σ
Corp,ε
t σ

Corp,ε
t

†
.

Equation (18) becomes, after having inserted (20),

(
D log(DCorp,ε

t ) + rCorp,ε
t

)2
= σ

Corp,ε
u σ

Corp,ε
u

† W†
t Wt

4t2 .
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On the other hand, the second equation in (17) leads to

D log(DCorp
t ) = − LGDtλt

1− LGDtXt
,

and, therefore,

lim
ε→0

∣∣∣∣∣σCorp,ε
t

†
(

σ
Corp,ε
t σ

Corp,ε
t

†
)−1(

α
Corp,ε
t + rCorp,ε

t

)∣∣∣∣∣
2

=

(
LGDtλt

1− LGDtXt
− rCorp

t

)2 t
Qt(K)

,

which, inserted into Novikov’s condition (4), proves inequality (16).

5. Credit Arbitrage Dynamics and Bubbles

We now apply the results for arbitrage market bubbles as recalled in Section 2.3 to our
simple credit market model consisting of a two-base asset—a government and a corporate
bond. We allow arbitrage and just assume that the total quantity of potential arbitrage is
minimized by the market forces, as explained in detail in [2,28].

Theorem 12 (Credit Arbitrage Dynamics and Arbitrage Bubbles for Credit Markets).
The following statements hold true for the credit market model of Definition 15:

Dt := [DGov
t , DCred

t ]† rt := [rGov
t , rCred

t ]† xt := [xGov
t , xCred

t ]†

with T ≤ +∞ allowing for arbitrage:

(a) The market portfolio, asset values, and term structures solving the minimal arbitrage problem
are identically distributed over time, and their returns are centered and serially uncorrelated:

([xt; Dt; rt]))t∈[0,T] is an i.d. process with respect to P, and

([Dxt;DDt;Drt])t∈[0,T] is centered and has a vanishing autocovariance function.
(21)

In particular, the conditional and total expectations of asset values, nominals, and term
structures are constant over time:

E0[xt] ≡ const E0[Dt] ≡ const E0[rt] ≡ const
E0[Dxt] ≡ 0 E0[DDt] ≡ 0 E0[Drt] ≡ 0.

The variances of the portfolio nominals are concurrent with those of the deflators:

Var0

(
Dj

t

)
Var0

(
xj

t
xt · Dt

)
≥ 1

4
, (22)

for all indices j = 1, 2. For the credit component, we have:

E0[xCred
t ] ≡ const E0[D

Corp
t ] ≡ const E0[λtLGDt] ≡ const.

The variance of the portfolio credit nominal is concurrent with that of the credit deflator:

Var0

(
DCred

t

)
Var0

(
xCred

t

xGov
t DGov

t + xCred
t DCred

t

)
≥ 1

4
. (23)
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(b) The expectation and variance of the discounted value for the credit bubble read

E0[B̂Cred
t ] = E0

[
DCred

t − ĈCred
t

]
−E∗0

[
DCred

T − ĈCred
T

]
Var0(B̂Cred

t ) = Var0

(
DCred

t − ĈCred
t

)
+ Var∗0

(
DCred

T − ĈCred
T

)
− 2Cov∗0

(
DCred

t − ĈCred
t , DCred

T − ĈCred
T

)
.

(24)

(c) The expectation and variance of the discounted value for the credit derivative G(SCred
T ) on the

credit asset read

E0[B̂Cred
t (G)] = E0[V̂Cred

t (G)]−E∗0

[
Ĝ

(
SCred

T exp

(
CCred

T

SCred
T

(T − t)

))]

Var0(B̂Cred
t (G)) = Var0(V̂Cred

t (G)) + Var∗0

(
Ĝ

(
ST exp

(
CCred

T

SCred
T

(T − t)

)))
.

(25)

Theorem 12 can be extended to portfolios of government and corporate coupon bonds
with an appropriate cash-flow structure by means of gauge transforms, as in Definition 5 of
(DGov, PGov) and (DCorp, PCorp). Its financial interpretation for the arbitrage-minimizing
dynamics of an isolated market comprising government and corporate bonds is the follow-
ing:

• The instantaneous bond returns have zero expectation and are serially uncorrelated.
• For any corporate bond, the product of default intensity and loss-given default have a

time-constant expectation.
• The bigger the variance of the market portfolio nominals, the smaller the variance of

the bond values, and vice versa.
• The expected values of credit bubbles during future periods with no coupons are

constant.
• The expected values of credit derivative bubbles during future periods can be com-

puted and are typically not constant.

The main limitation of Theorem 12 is given by an isolated market assumption because
many bond markets correlate with other markets and macroeconomic factors. In some
sense, this justifies the econometric research on general asset dynamics.

6. Conclusions

By introducing an appropriate stochastic differential geometric formalism, the classical
theory of stochastic finance can be embedded into a conceptual framework called Geometric
Arbitrage Theory, where the market is modeled with a principal fiber bundle, arbitrage
corresponds to its curvature, and the existence of an approximated risk-neutral measure
allowing the definition of fundamental values for the assets is inferred through spectral
theory. The tools developed can be applied to default risk and recovery modeling, leading
to arbitrage and no-arbitrage characterizations for credit markets, as well as the explicit
computation for arbitrage credit bubbles and credit market dynamics.

In particular, we provide a no-free-lunch-with-vanishing-risk characterization of bond
markets by relying on the spread-term structure with default intensity and loss-given
default, as well as a sufficient condition equivalent to the Novikov condition implying the
absence of arbitrage. Moreover, for isolated government and corporate bond markets, we
construct the market portfolio and asset dynamics that minimize the quantity of potential
arbitrage, showing that instantaneous bond returns are serially uncorrelated and centered,
that the expected value of credit bubbles remains constant for future times where no
coupons are paid, and that the variance of the market portfolio nominals is concurrent with
that of the corresponding bond deflators.
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