
 
 

 

 
Symmetry 2022, 14, 1320. https://doi.org/10.3390/sym14071320 www.mdpi.com/journal/symmetry 

Article 

The Estimation of Bent Line Expectile Regression Model Based 
on a Smoothing Technique 
Jie Liu 1, Jiaqing Chen 1,* and Yangxin Huang 2 

1 Department of Statistics, Wuhan University of Technology, Wuhan 430070, China; 238645@whut.edu.cn 
2 Department of Epidemiology and Biostatistics, University of South Florida, Tampa, FL 33620, USA; 

yhuang@health.usf.edu 
* Correspondence: jqchenwhut@163.com 

Abstract: A bent line expectile regression model can describe the effect of a covariate on the re-
sponse variable with two different straight lines, which intersect at an unknown change-point. Due 
to the existence of the change-point, the objective function of the model is not differentiable with 
respect to the change-point, so it cannot be solved by the method of the traditional linear expectile 
regression model. For this model, a new estimation method is proposed by a smoothing technique, 
that is, using Gaussian kernel function to approximate the indicator function in the objective func-
tion. It can not only estimate the regression coefficients and change-point location simultaneously, 
but also have better estimation effect, which compensates for the insufficiency of the previous esti-
mation methods. Under the given regularity conditions, the theoretical proofs of the consistency 
and asymptotic normality of the proposed estimators are derived. There are two parts of numerical 
simulations in this paper. Simulation 1 discusses various error distributions at different expectile 
levels under different conditions, the results show that the mean values of the biases of the estima-
tion method in this paper, and other indicators, are very small, which indicates the robust property 
of the new method. Simulation 2 considers the symmetric and asymmetric bent lien expectile re-
gression models, the results show that the estimated values of the estimation method in this paper 
are similar to the true values, which indicates the estimation effect and large sample performance 
of the proposed method are excellent. In the application research, the method in this paper is ap-
plied to the Arctic annual average temperature data and the Nile annual average flow data. The 
research shows that the standard errors of the estimation method in this paper are very similar to 
0, indicating that the parameter estimation accuracy of the new method is very high, and the loca-
tion of the change-point can be accurately estimated, which further confirms that the new method 
is effective and feasible. 
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1. Introduction 
When performing regression analysis on data in the fields of financial economics 

[1,2], biomedicine [3,4] and environmental science [5,6], it is inevitable to encounter 
changes in the data structure. The point corresponding to the change in the data structure 
is called a change-point [7]. Establishing piecewise linear regression model to study the 
change-point problem is one of the hot issues in recent years. At present, there have been 
a large number of literature studies on the piecewise linear regression model, which has 
been widely used in various fields [8–11]. According to whether the regression function 
of the piecewise linear regression model is continuous at the change-point, Bhattacharya 
[12] divided the model into two categories. One is that the regression function of the 
model is continuous at the change-point, which is called continuous threshold regression 
model, and the corresponding change-point is called continuous change-point. On the 
contrary, the other is called discontinuous piecewise linear regression model, and the 
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corresponding change-point is called discontinuous change-point. This paper is to study 
the continuous threshold regression model. 

In the aspect of change-point detection, Chan [13] extended the log-likelihood ratio 
test statistics to the piecewise autoregressive model to detect the existence of the change-
point. Liu and Qian [14] introduced an empirical likelihood ratio test statistics for contin-
uous change-point in the regression model. Lee et al. [15] proposed general statistics for 
change-point detection in the regression model, namely sup-likelihood ratio test statistics, 
which shows that the asymptotic distribution of the test statistics under null assumption 
is non-standard. In addition, some scholars have studied the change-point detection prob-
lem of non-random covariates, mainly focusing on the analysis of time series data, specific 
references can be referred to Hansen [16] and Cho and White [17], among others. It should 
be emphasized that the main research goal of this paper is to propose a new estimation 
method for the continuous threshold expectile regression model, rather than detecting the 
existence of the change-point. Therefore, this paper is based on the assumption of the ex-
istence of the change-point. 

In some practical applications, except the conditional expectation of the response var-
iable, we want to have more complete information on the response variable. The expectile 
regression model proposed by Newey and Powell [18] can not only provide complete in-
formation on the response variable through tail expectation, but also have loose applica-
tion conditions and no strict assumptions for error terms. More importantly, its loss func-
tion is differentiable, so it is convenient to calculate. It is a good supplement and expansion 
to the traditional mean regression model and quantile regression model. Zhang and Li 
[19] firstly introduced a continuous threshold expectile regression model, also known as 
bent line expectile regression model, and proposed a formal test for the existence of the 
change-point at given expectile levels. Similar to Lerman [20], Zhang and Li [19] proposed 
a grid search method to estimate the regression coefficients and change-point parameter, 
respectively. The main idea of the grid search method is to search over all possible values 
under the domain of the change-point and then to select the best one. Nevertheless, the 
grid search method estimates the regression coefficients and change-point location sepa-
rately. Not only that, it requires a finer grid to identify the change-point location more 
precisely, which could result in expensive computation. Furthermore, it is not realistic for 
this method by assuming that the change-point only occurs at discrete grid points. Moti-
vated by these issues, Zhou and Zhang [21] extended the linearization technique proposed 
by Yan et al. [22] to the bent line expectile regression model and constructed the interval 
estimation of the estimators through the theory of the standard linear expectile regression 
model and the delta technique. Nonetheless, estimation obtained by using the lineariza-
tion technique in general may underestimate the change-point. 

Smoothing technique is to use Gaussian kernel function to approximate the indicator 
function in the objective function, so as to achieve the purpose of smoothing the change-
point locally. Then the objective function is continuous and differentiable with respect to 
all parameters after being smoothed, so we can easily estimate all parameters in the model. 
This paper is to propose a new estimation method for the bent line expectile regression 
model through a smoothing technique, which can simultaneously compensate for the in-
sufficiency of the grid search method of Zhang and Li [19] and the linearization method 
of Zhou and Zhang [21]. In addition, the theoretical proofs of the consistency and asymp-
totic normality of the proposed estimators are derived. The numerical simulations under 
the different conditions show the good performance of the new estimation method pro-
posed in this paper. Finally, the research based on the Arctic annual average temperature 
data and the Nile annual average flow data show that the new method is effective and 
feasible. 

The remainder of this paper is structured as follows. Section 2 introduces the bent 
line expectile regression model and proposes a new estimation method for the model 
based on a smoothing technique. At the same time, we also establish the asymptotic prop-
erties of the estimators. In Section 3, simulation studies are conducted to investigate the 
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finite sample performance of the estimation method proposed in this paper. Section 4 ap-
plies the model and the estimation method to analyze two real data. Section 5 concludes 
the paper. 

2. Methodology 
In this section, we first introduce the bent line expectile regression model, and then 

point out the insufficiency of the grid search method and linearization method to intro-
duce the smoothing method proposed in this paper. Finally, we prove the consistency and 
asymptotic normality of the proposed estimators obtained by this new method. 

2.1. Model Introduction 
Let (𝑌 , 𝑋 , 𝒁 ), 𝑖 = 1, . . . , 𝑛 be the independent identically distributed random sam-

ples from the population (𝑌, 𝑋, 𝒁). Given 0 < 𝜏 < 1, Zhang and Li [19] proposed a bent 
line expectile regression model: 𝑄 (𝑌|𝑋, 𝒁) = 𝛽 + 𝛽 𝑋 + 𝛽 (𝑋 − 𝑡) + 𝜸⊺𝒁 (1)

where 𝑌 is the response variable, 𝑋 is the scalar covariate with a change-point, 𝒁 is a 𝑝 × 1-dimensional vector of linear covariates with constant slopes, 𝑄 (𝑌|𝑋, 𝒁) is the 𝜏th 
conditional expectile of the response variable 𝑌 given 𝑋 and 𝒁, 𝑢 = 𝑢𝐼 (𝑢 > 0) and 𝐼(∙) is the indicator function, 𝑡 is an unknown change-point, 𝝃 = (𝛽 , 𝛽 , 𝛽 , 𝜸⊺)⊺ are the 
regression coefficients with the exception of 𝑡. In model (1), the linear expectile regression 
model 𝑄 (𝑌|𝑋, 𝒁) is continuous on the covariate 𝑋 at the change-point location 𝑡, but 𝑋 
has segmented effects on the expectile of 𝑌 through the unknown change-point 𝑡. More 
specifically, the slope of 𝑋 is 𝛽  below the change-point 𝑡, whereas it is 𝛽 + 𝛽  above 
that point 𝑡. For the identifiability of the change-point, it is commonly assumed that 𝛽 ≠0. 

To estimate all the regression parameters of the model 𝜽 = (𝝃⊺, 𝑡)⊺ at given expectile 
levels 𝜏 ∈ (0,1), an estimator for 𝜽 can be obtained by minimizing the following objec-
tive function: 𝑙 , (𝜽) = 1𝑛 𝜌 {𝑌 − 𝛽 − 𝛽 𝑋 − 𝛽 (𝑋 − 𝑡) − 𝜸⊺𝒁 } (2)

where 𝜌 (𝑢) = 𝑢 |𝜏 − 𝐼(𝑢 < 0)| is the asymmetric least square (ALS) loss function. 

2.2. The Proposed Method 
However, due to the existence of the change-point 𝑡, the objective function (2) is not 

differentiable with respect to 𝑡, which leads to the non-smoothness problem of the objec-
tive function, so it cannot be solved by the method of the traditional linear expectile re-
gression model. In this regard, Zhang and Li [19] proposed the grid search method to 
circumvent the non-smoothness problem of the objective function. The main idea of the 
grid search method is to fix the location of the change-point on the grid in advance, then 
estimate the regression coefficients, and finally use the grid search algorithm to select the 
optimal point on the grid as the estimation of the change-point parameter. To be specific, 
for a fixed 𝑡, the parameter vector 𝝃 can be estimated by, 𝝃(𝑡) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝝃 1𝑛 𝜌 {𝑌 − 𝑼 (𝑡)𝝃} 

where 𝑼 (𝑡) = (1, 𝑋 , (𝑋 − 𝑡) , 𝒁 ⊺). Then, the change-point 𝑡 can be estimated by 
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�̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛 1𝑛 𝜌 {𝑌 − 𝑼 (𝑡)𝝃(𝑡)} 

Therefore, the estimator of 𝜽 is 𝜽 = (𝝃(𝑡)⊺, �̂�)⊺. 
Although the grid search method has become the mainstream estimation method of 

the change-point model, it has its limitations: the grid search method estimates the regres-
sion coefficients and change-point location separately; it requires a finer grid to identify 
the change-point location more precisely, which could result in expensive computation; it 
is not realistic for this method by assuming that the change-point only occurs at discrete 
grid points. In order to overcome these defects of the grid search method, Zhou and Zhang 
[21] extended the linearization technique proposed by Yan et al. [22] to the bent line ex-
pectile regression model, converted the bent line expectile regression model into a stand-
ard linear expectile regression model, and then obtained the estimations of the regression 
coefficients and change-point parameter in the model (1) simultaneously through an iter-
ative algorithm. The specific approach is to approximate the non-linear term by a first-
order Taylor expansion around an initial value 𝑡( ), (𝑋 − 𝑡) ≈ 𝑋 − 𝑡( ) + (−1)𝐼(𝑋 > 𝑡( ))(𝑡 − 𝑡( )) 

where (−1)𝐼(𝑋 > 𝑡( )) is the first-order derivative of (𝑋 − 𝑡)  at 𝑡( ). 
Although the estimation method proposed by Zhou and Zhang [21] makes up for the 

shortcomings of the grid search method, their method may also have a certain drawback, 
that is, estimation obtained by using the linearization technique in general may underes-
timate the change-point. Therefore, our next research content is to propose a better esti-
mation method for the bent line expectile regression model, which can make up for the 
shortcomings of the grid search method and linearization method simultaneously. 

Gaussian kernel function is not only simple in mathematical form and differentiable, 
that can make calculation easier, but also smooth, which can make the final model 
smoother. Therefore, we consider to use Gaussian kernel function Φ( ) to approximate 
the indicator function 𝐼(𝑋 > 𝑡), where Φ(∙) is a standard normal distribution function, ℎ > 0 is a bandwidth and ℎ → 0 when 𝑛 tends to infinity. Consequently, the objective 
function (2) can be approximated by, ℓ(𝜽) = 1𝑛 𝜌 𝑌 − 𝛽 − 𝛽 𝑋 − 𝛽 (𝑋 − 𝑡)Φ(𝑋 − 𝑡ℎ ) − 𝜸⊺𝒁  (3)

Note that the function in the bracket of (3) is continuous and differentiable with re-
spect to all parameters 𝜽, including the change-point 𝑡. Therefore, we can easily estimate 
the change-point parameter 𝑡 and the regression parameters 𝝃 in the model by minimiz-
ing the smoothed objective function. 

2.3. Asymptotic Properties 
To simplify notations, let, 𝑔(𝒘 , 𝜽) = 𝛽 + 𝛽 𝑋 + 𝛽 (𝑋 − 𝑡)Φ 𝑋 − 𝑡ℎ + 𝜸⊺𝒁  

where 𝒘 = (1, 𝑋 , 𝒁 ) , 𝜽 = (𝛽 , 𝛽 , 𝛽 , 𝜸 , 𝑡) . Then the parameters 𝜽 can be estimated 
by minimizing the following objective function: ℓ (𝜽) = 1𝑛 𝜌 {𝑌 − 𝑔(𝒘 , 𝜽)} (4)

that is, 
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𝜽 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜽 ℓ (𝜽) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜽 1𝑛 𝜌 {𝑌 − 𝑔(𝒘 , 𝜽)} (5)

To obtain the asymptotic properties of the estimator 𝜽 , we introduce more nota-
tions: 𝑞(𝒘 , 𝜽) = 𝜕𝑔(𝒘 , 𝜽)∂𝜽  = [1, 𝑋 , (𝑋 − 𝑡)Φ(𝑋 − 𝑡ℎ ), 𝒁 , −𝛽 Φ(𝑋 − 𝑡ℎ ) − 𝛽 (𝑋 − 𝑡)ℎ Φ (𝑋 − 𝑡ℎ )]  𝐶 (𝜽 ) = [(1 − 2𝜏)𝐹 (𝑔(𝒘 , 𝜽 )) + 𝜏]𝑛 𝑞(𝒘 , 𝜽 )𝑞 (𝒘 , 𝜽 ) 

𝐷 (𝜽 ) = − 1𝑛 {𝑞(𝒘 , 𝜽 )𝑞 (𝒘 , 𝜽 )[(1 − 2𝜏)𝐹 (𝑔(𝒘 , 𝜽 )) + 𝜏]} 

where 𝜽  is the true parameter, 𝐹 (𝑔(𝒘 , 𝜽 )) is the distribution function of 𝑌 . 
Obviously, minimizing the objective function (4) is equivalent to solving the equa-

tion, 𝜓 {𝑌 − 𝑔(𝒘 , 𝜽)}𝑞(𝒘 , 𝜽) = 0 (6)

where 𝜓 (𝑢) = 𝑢|𝜏 − 𝐼(𝑢 < 0)| is the kernel of the first-order derivative of the function 𝜌 (𝑢). Solving the equation yields the estimators of the parameters. 
The following theorem gives the asymptotic properties of the estimator 𝜽 . 

Theorem 1 (Asymptotic Properties). Let 𝜽  be the true parameter, and 𝜽  is the estimator 
of the estimation method in this paper. Under the regularity conditions in the Appendix A, we have 𝜽 − 𝜽 = 𝑂 (𝑛 / ), and √𝑛(𝜽 − 𝜽 ) is asymptotically normally distributed with mean zero 
and the covariance matrix of 𝜮 = 𝜏(1 − 𝜏)𝐷 (𝜽 )𝐶 (𝜽 )𝐷 (𝜽 ). 

The matrices 𝐶 (𝜽 ) and 𝐷 (𝜽 ) in the covariance matrix can be estimated by the 
following formulas: 𝐶 (𝜽 ) = 1𝑛 𝑞(𝒘 , 𝜽 )𝑞 (𝒘 , 𝜽 ) 

𝐷 (𝜽 ) = − 1𝑛 (1 − 2𝜏)𝐹 (𝑔(𝒘 , 𝜽 )) + 𝜏 𝑞(𝒘 , 𝜽 )𝑞 (𝒘 , 𝜽 )  

where 𝐹 (𝑔(𝒘 , 𝜽 )) is the empirical distribution function of 𝑌 . 
Note that the estimation of 𝜽 = (𝛽 , 𝛽 , 𝛽 , 𝜸 , 𝑡)  is based on the choice of band-

width ℎ. Therefore, the choice of bandwidth is crucial. We use the cross-validation (CV) 
criterion to choose the bandwidth ℎ. Specifically, let, 𝐶𝑉(ℎ) = 𝜌 {𝑌 − 𝑄 ( 𝜏, 𝜽 ∣∣ 𝑋 , 𝒁 )} 

where 𝑄  is the estimator of the model after removing the 𝑖th observation (𝑌 , 𝑋 , 𝒁 ). 
The bandwidth ℎ that minimizes the value of 𝐶𝑉(ℎ) is optimal. 
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3. Simulation Studies 
There are two parts of numerical simulations in this section to verify the finite sample 

performance of the estimation method in this paper. The first simulation is to evaluate the 
robust properties of the proposed estimators with three different types of error. Another 
simulation considers the symmetric and asymmetric bent line expectile regression mod-
els. 

3.1. Simulation 1 
Considering that the independent identically distribution assumption can greatly re-

duce the case of individual cases in the sample, which makes the sample data more rep-
resentative in general, we consider the scenario of independent identically distribution. 
However, in many practical studies, the assumption of independent identically distribu-
tion is usually not satisfied, so corresponding to this, we consider the scenario of hetero-
scedasticity. On the other hand, there are many possible cases for the error term of the 
model. We discuss the two opposite cases that the error term obeys normal distribution 
and non-normal distribution. Furthermore, we study the mixed distribution which con-
tains both normal distribution and non-normal distribution. 

The simulation data in this section come from the following two scenarios: 
(I) Independent identically distribution (IID): 𝑌 = 𝛽 + 𝛽 𝑋 + 𝛽 (𝑋 − 𝑡) + 𝛾𝑍 + 𝑒 
(II) Heteroscedasticity: 𝑌 = 𝛽 + 𝛽 𝑋 + 𝛽 (𝑋 − 𝑡) + 𝛾𝑍 + (1 + 0.3𝑋)𝑒 
where 𝑋~𝑈(−2,5), 𝑍~𝐵(1,0.5). The 𝜏th expectile of the random error term 𝑒 is 0, that 
is, 𝑒 = �̃� − 𝑄 (�̃�), where 𝑄 (�̃�) is the 𝜏th expectile of �̃�. 

For each scenario, we consider the following three different error cases: 
(1) a standard normal distribution: �̃�~𝑁(0,1) 
(2) a t-distribution with three degrees of freedom: �̃�~𝑡  
(3) a contaminated standard normal distribution: �̃�~0.9𝑁(0,1) + 0.1𝑡  

The regression coefficients are set as (𝛽 , 𝛽 , 𝛽 , 𝛾) = (1,3, −2,1)  and the change-
point is 𝑡 = 1.5. For each case, we conduct 200 repetitions with sample sizes 𝑛 = 200. 

In order to compare the proposed method with that of Zhou and Zhang [21], we also 
consider the linearization method. Tables A1–A6 show the simulation results of the line-
arization method (“seg”) and the proposed method in this paper (“proposed”) at the dif-
ferent expectile levels 𝜏 = 0.1,0.3,0.5,0.7,0.9. It should be noted that the data in the tables 
represent biases (estimated value − true value), that is, 𝑏𝑖𝑎𝑠 = 𝜽 − 𝜽 . It can be seen 
from the tables that the mean values (“Mean”) of the biases of the proposed method in 
this paper are very similar to 0 at different expectile levels of various error distributions, 
and for some parameters, this indicator is even equal to 0 in some cases, for example, for 
the independent identically distribution model with �̃�~𝑡 , the mean value (“Mean”) of 
the bias of 𝛾 is 0 when 𝜏 = 0.5. In addition, this indicator of the method in this paper is 
far less than the linearization method. On the other hand, the sum of squared errors 
(“SSE”) of the biases of the two estimation methods are very similar to 0, indicating that 
the fitting results of the two methods are so satisfying. Further, we find that this indicator 
of the method in this paper is only about half of that of the linearization method through 
comparison, which indicates that the method in this paper is more suitable for data fitting. 
In addition, the minimums (“Min”) and the maximums (“Max”) of the biases of the pro-
posed method are similar to those of the linearization method, and the value ranges of the 
minimums (“Min”) and the maximums (“Max”) of the two methods are generally (0,1), 
just for the case of �̃�~𝑡 , there are more cases where the two indicators are greater than 1 
in the two methods, but this situation is also normal. In addition, the upper quartiles 
(“IQ1”), the medians (“Median”) and the lower quartiles (“IQ3”) of the biases of the pro-
posed method are slightly smaller than those of the linearization method, which is espe-
cially evident at the tail expectile levels (e.g., 𝜏 = 0.1,0.9). It shows that estimation ob-
tained by using the linearization technique indeed underestimates the change-point. All 
in all, the estimation method in this paper is better than the linearization method. 



Symmetry 2022, 14, 1320 7 of 24 
 

 

3.2. Simulation 2 
Considering that the location of the change-point may be different, we divide the 

sources of the simulation data into symmetric and asymmetric cases, which could ensure 
the rigor and comprehensiveness of the study. 

The simulation data in this section come from the following two scenarios: 
Symmetric scenario: 𝑌 = 0 + 𝛽 𝑋 − 2𝛽 (𝑋 − 5) + 𝑐 (𝑋)𝑒 

Asymmetric scenario: 𝑌 = 4.5 − 𝛽 + 𝛽 𝑋 − (𝛽 + 0.5)(𝑋 − 2) + 𝑐 (𝑋)𝑒 

where 𝑐 (𝑋) = 0.5 + 0.1𝑋, 𝑐 (𝑋) = 0.5 + 0.02𝑋, 𝑒 is standard normal distribution and 
its 𝜏th expectile is 0. 

In the symmetric scenario, the scalar covariate 𝑋~𝑈(0,10), and the change-point is 
the median of 𝑋 which is 𝑡 = 5. Then corresponding to the model in this paper, we set (𝛽 , 𝛽 , 𝛽 , 𝑡) = (0, 𝛽 , −2𝛽 , 5). In the asymmetric scenario, the scalar covariate 𝑋 is a mix-
ture distribution that uniformly on (0,1) with probability 0.1 and uniformly on (0,10) 
with probability 0.9, that is, 𝑋~0.1𝑈(0,1) + 0.9𝑈(0,10), the change-point is 𝑡 = 2. Then 
corresponding to the model in this paper, we set (𝛽 , 𝛽 , 𝛽 , 𝑡) = (4.5 − 𝛽 , 𝛽 , −𝛽 − 0.5,2). 

For each scenario, we set the parameter 𝛽 = 0.5, and we conduct 200 repetitions 
with sample sizes 𝑛 = 200 by applying the linearization method (“seg”) and our method 
(“proposed”). Tables A7 and A8 record the simulation results at different expectile levels 𝜏 = 0.1,0.3,0.5,0.7,0.9. It is also worth noting that the data in the tables also represent bi-
ases. It can be seen from the tables that the results obtained by the method in this paper 
and the linearization method are very similar, and their indicators are relatively small, 
which also shows that the estimated values of both methods are similar to the true values. 
Not only that, we discover that the mean values (“Mean”), the sum of squared errors 
(“SSE”), the minimums (“Min”), the upper quartiles (“IQ1”), the medians (“Median”), the 
lower quartiles (“IQ3”) and the maximums (“Max”) of the biases of the two methods in-
crease with 𝜏, which indicates that the fitting effect is better while the expectile is smaller. 
In addition, when 𝜏 is small (e.g., 𝜏 = 0.1,0.3), these indicators of the method in this pa-
per are slightly smaller than those of the linearization method. However, when 𝜏 is larger 
(e.g., 𝜏 = 0.7,0.9), these indicators of the proposed method are slightly larger than those 
of the linearization method. In general, the estimation effect and large sample perfor-
mance of the proposed method are good. 

4. Empirical Applications 
There are two parts of practical applications in this section. We apply the proposed 

method in this paper to the Arctic annual average temperature data and the Nile annual 
average flow data separately to illustrate the practical utility of the new method. 

4.1. Application 1 
The latest evidence shows that the earth has been warming over the past 50 years, 

and this trend has not changed. Scientists from many countries have contributed to the 
study of global climate change, among which the warming of the Arctic climate is one of 
the important aspects of the study of global climate change. 

In this section, we mainly focus on the annual average temperature data in the Arctic 
region (90 N–23.6 N) from 1940 to 2021. This dataset is available from NASA Goddard 
Institute for Space Studies (www.giss.nasa.gov (accessed on 15 March 2022). Based on the 
scatter diagram provided by the institute, we can roughly learn that the annual average 
temperature in the Arctic region remained almost stable between 1940 and 1975, and then 
increased rapidly after 1975. Therefore, we guess the annual average temperature in the 
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Arctic region changed in 1975. Therefore, we fit the following model to the Arctic annual 
average temperature data: 𝑄 (𝑌|𝑋) = 𝛽 + 𝛽 𝑋 + 𝛽 (𝑋 − 𝑡)  

where 𝑌 is the annual average temperature in the Arctic region, 𝑋 is the continuous time 
and 𝑋 < 𝑋 <. . . < 𝑋 , 𝑛 = 82  is the sample size. We consider 𝜏 = 0.2,0.3,0.5,0.7,0.8 
these five different expectile levels. Table A9 summarizes the estimations (“Estimate”) of 
the parameters and their standard errors (“SE”) of the grid search method, linearization 
method and smoothing method proposed in this paper. It can be seen from the table that 
the parameter estimation accuracy of the smoothing method proposed in this paper is 
exactly the same as that of the grid search method, the standard errors of all parameters 
except 𝛽  are equal to 0, and the standard error of 𝛽  is also very similar to 0, which 
indicates that the parameter estimation accuracy of the two methods are all very high. 
This is not difficult to explain, although the grid search method is complex and its com-
putation is very large, as long as the fine grid is divided to a certain degree, the optimal 
value can be obtained, which also shows the good performance and practical utility of the 
smoothing method proposed in this paper. Moreover, we find that the parameter estima-
tion accuracy of the smoothing method and the grid search method is slightly higher than 
that of the linearization method. On the other hand, as far as our dataset is concerned, the 
smoothing method and linearization method can save about a quarter of computation and 
time compared with the grid search method, which greatly improves the computational 
efficiency. Most importantly, we can intuitively see the change-point 𝑡 ≈ 1975, that is, the 
annual average temperature in the Arctic region changed significantly in 1975, which also 
verifies our conjecture. 

4.2. Application 2 
The Nile dataset is the internal dataset in R, which represents the measurements of 

the annual average flow (in unit 10  𝑚 ) of the River Nile at Aswan between 1871 and 
1970. In this section, we mainly focus on the annual average flow data of the Nile from 
1871 to 1970. Based on the scatter diagram in Figure 1, we can roughly learn that the an-
nual average flow of the River Nile showed a downward trend before 1914, then increased 
rapidly after 1914. In addition, it should be noted that the number 1 in the abscissa of the 
graph represents 1871, and so on. 

 
Figure 1. The scatter diagram of the annual average flow of the River Nile. 

Therefore, we fit the following model to the Nile annual average flow data: 𝑄 (𝑌|𝑋) = 𝛽 + 𝛽 𝑋 + 𝛽 (𝑋 − 𝑡)  

where 𝑌 is the annual average flow of the River Nile, 𝑋 is the continuous time and 𝑋 <𝑋 <. . . < 𝑋 , 𝑛 = 100 is the sample size. We consider 𝜏 = 0.2,0.3,0.5,0.7,0.8 these five 
different expectile levels. Table A10 summarizes the estimations (“Estimate”) of the 
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parameters and their standard errors (“SE”) of the grid search method, linearization 
method and smoothing method proposed in this paper. It can be seen from the table that 
the parameter estimation accuracy of the smoothing method proposed in this paper is 
very similar to that of the grid search method, and both of them are very high. Not only 
that, we find this indicator of the proposed method and grid search method is slightly 
higher than that obtained by the linearization method. On the other hand, as far as our 
dataset is concerned, compared with the grid search method, the smoothing method and 
linearization method have smaller computation and less operation time. In addition, we 
can intuitively see 𝑡 ≈ 1914 obtained by the proposed method when 𝜏 = 0.2,0.3,0.5, that 
is, the annual average flow of the River Nile changed significantly in 1914. It also shows 
that 𝑡 ≈ 1924 when 𝜏 = 0.7,0.8, and this situation is also acceptable. 

5. Conclusions 
In this paper, we study the problem of statistical inference of the change-point and 

other regression coefficients of the bent line expectile regression model. Due to the exist-
ence of the change-point, the objective function of the model is not differentiable with 
respect to the change-point, which brings a huge challenge to our calculation. In order to 
compensate for the insufficiency of the previous estimation methods, we propose a new 
estimation method by a smoothing technique, that is, using Gaussian kernel function to 
approximate the indicator function in the objective function, which can not only estimate 
the regression coefficients and change-point location simultaneously, greatly reduce the 
computation, but also improve the accuracy of the parameter estimation. At the same 
time, we give the large sample properties of the estimation method in this paper, the esti-
mator 𝜽  converges to the true parameter 𝜽  at a speed of 𝑛 /  in probability, and the 
bias 𝜽 − 𝜽  is asymptotically normally distributed. Through the numerical simulation 
analysis, we find that all the indicators of the biases of the parameter estimations are al-
most equal to 0, which shows that the new method proposed in this paper has a very good 
estimation effect and verifies the large sample performance of the new method. Finally, 
we also apply the model and the method in this paper to the analysis of two actual data 
and find that the estimated values of the parameters obtained by the new method pro-
posed in this paper are almost equal to the true values, which shows the practical utility 
of the new method. It not only improves the accuracy of the parameter estimation, but 
also greatly improves the computational efficiency compared with the grid search 
method. 

The model studied in this paper is the continuous threshold expectile regression 
model with a single change-point, but in practical applications, it is very meaningful to 
consider a continuous threshold expectile regression model with multiple change-points. 
In this regard, we can consider extending the current research work to the multiple 
change-points situation, which is believed to be a very interesting topic. 
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Appendix A. Proof of Theorem 1 
Without loss of generality, the asymptotic properties of the proposed estimators are 

derived based on the following assumptions: 
A1 There is a constant 𝜖 > 0 that holds lim→ 𝑃(|𝑋 − 𝑡| < 𝜖) = 0. 
A2 For all 𝑖 = 1, . . . , 𝑛, 𝐹 {𝑄 (𝜏, 𝜽 ∣ 𝒘 )} is the conditional expectile distribution function 
of the response variable 𝑌  given 𝒘  and has a bounded and continuous expectile den-
sity function 𝑓 {𝑄 (𝜏, 𝜽 ∣ 𝒘 )}. 
A3 The density function 𝑝 (𝑥) of 𝑋  is continuous on the bounded compact set [𝑀 , 𝑀 ]. 
A4 𝐸(‖𝒁 ‖ ) < ∞, where ‖∙‖ is the Euclidean norm of any vector. 
A5 The bandwidth ℎ → 0 as 𝑛 → ∞. 
A6 There are two positive definite matrices 𝐶 ,  and 𝐷 ,  that hold lim→ 𝐶 , = 𝐶 ,  and lim→ 𝐷 , = 𝐷 , . 

Lemma 1 (Consistency). Under the conditions A1–A5, we let 𝜽  be the estimator of the 
minimized objective function ℓ (𝜽) and 𝜽  be the true parameter. Then 𝜽  converges 
to 𝜽  in probability, that is to say, it is established 𝜽 → 𝜽 . 

Proof of Lemma 1. To prove the consistency of the estimators, we firstly have to show 
that, sup𝜽∈𝚯|𝑙(𝜽) − ℓ(𝜽)| → 0 

Based on assumption A1, for a certain 𝜖 > 0, we have 𝑙𝑖𝑚→ 𝑃(|𝑋 − 𝑡| < 𝜖) = 0. It is 
easy to show that for any 𝜉 > 0 , there exists 𝑁 > 0  that satisfies 𝑃(|𝑋 − 𝑡| < 𝜖) < 𝜉 
when 𝑖 > 𝑁. In addition, based on the definition of the function Φ(⋅), if satisfied |𝑋 −𝑡| ≥ 𝜖, then there is, Φ 𝑋 − 𝑡ℎ = 𝐼(𝑋 > 𝑡) + 𝑜 (ℎ), ℎ → 0. 

Let 𝑣(𝒘 , 𝜽) = 𝛽 + 𝛽 𝑋 + 𝛽 (𝑋 − 𝑡)𝐼(𝑋 > 𝑡) + 𝜸⊺𝒁 . Notice, 𝑔(𝒘 , 𝜽) = 𝑣(𝒘 , 𝜽) + 𝛽 (𝑋 − 𝑡) Φ 𝑋 − 𝑡ℎ − 𝐼(𝑋 > 𝑡)  = 𝑣(𝒘 , 𝜽) + 𝑟(𝒘 , 𝜽)  
where 𝑟(𝒘 , 𝜽) = 𝛽 (𝑋 − 𝑡) Φ − 𝐼(𝑋 > 𝑡) . 

Then we can easily acquire, 𝑙(𝜽) − ℓ(𝜽) = 1𝑛 𝜌 𝑌 − 𝑣(𝒘 , 𝜽) − 𝜌 𝑌 − 𝑔(𝒘 , 𝜽)  

= 1𝑛 𝑌 − 𝑣(𝒘 , 𝜽) 𝜏 − I 𝑌 < 𝑣(𝒘 , 𝜽)  − 𝑌 − 𝑔(𝒘 , 𝜽) 𝜏 − I 𝑌 < 𝑔(𝒘 , 𝜽)  = 1𝑛 𝑌 − 𝑣(𝒘 , 𝜽) 𝜏 − I 𝑌 < 𝑣(𝒘 , 𝜽) − 𝜏 − I 𝑌 < 𝑔(𝒘 , 𝜽)  + 𝑌 − 𝑣(𝒘 , 𝜽) − 𝑌 − 𝑔(𝒘 , 𝜽) 𝜏 − I 𝑌 < 𝑔(𝒘 , 𝜽)  = 1𝑛 𝑌 − 𝑣(𝒘 , 𝜽) (1 − 2𝜏)𝐼(|𝑌 − 𝑣(𝒘 , 𝜽)| < ∣ 𝑟(𝒘 , 𝜽)|) ∗ sgn(−𝑟(𝒘 , 𝜽))     + 2𝑌 − 𝑣(𝒘 , 𝜽) − 𝑔(𝒘 , 𝜽) 𝑟(𝒘 , 𝜽) 𝜏 − 𝐼 𝑌 − 𝑣(𝒘 , 𝜽) < 𝑟(𝒘 , 𝜽)  
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= 1𝑛 𝑌 − 𝑣(𝒘 , 𝜽) (1 − 2𝜏)I{|𝑌 − 𝑣(𝒘 , 𝜽)| < |𝑟(𝒘 , 𝜽)|}sgn{−𝑟(𝒘 , 𝜽)} +2 𝑌 − 𝑣(𝒘 , 𝜽) 𝑟(𝒘 , 𝜽) 𝜏 − 𝐼 𝑌 − 𝑣(𝒘 , 𝜽) < 𝑟(𝒘 , 𝜽)  −𝑟(𝒘 , 𝜽) 𝜏 − 𝐼 𝑌 − 𝑣(𝒘 , 𝜽) < 𝑟(𝒘 , 𝜽)  
Therefore, it can be obtained, sup𝜽∈𝚯|𝑙(𝜽) − ℓ(𝜽)| ≤ sup𝜽∈𝚯 1𝑛 𝑌 − 𝑣(𝒘 , 𝜽) |(1 − 2𝜏)| 

+sup𝜽∈𝚯 1𝑛 2 𝑟(𝒘 , 𝜽) 𝑌 − 𝑣(𝒘 , 𝜽) I(|𝑋 − 𝑡| < 𝜖)  

+sup𝜽∈𝚯 1𝑛 2 𝑟(𝒘 , 𝜽) 𝑌 − 𝑣(𝒘 , 𝜽) I(|𝑋 − 𝑡| < 𝜖)  

+sup𝜽∈𝚯 1𝑛 𝑟(𝒘 , 𝜽) 𝑌 − 𝑣(𝒘 , 𝜽) I(|𝑋 − 𝑡| ≥ 𝜖)  

+sup𝜽∈𝚯 1𝑛 𝑟(𝒘 , 𝜽) I(|𝑋 − 𝑡| < 𝜖)  

+sup𝜽∈𝚯 1𝑛 𝑟(𝒘 , 𝜽) I(|𝑋 − 𝑡| < 𝜖)  

+sup𝜽∈𝚯 1𝑛 𝑟(𝒘 , 𝜽) I(|𝑋 − 𝑡| ≥ 𝜖)  

 
Let 𝑀 = max{𝑟(𝒘 , 𝜽), 𝑖 = 1 … , 𝑁}. Combining the existing assumption lim→ 𝑃(|𝑋 −𝑡| < 𝜖) = 0 and the expansion Φ = 𝐼(𝑋 > 𝑡) + 𝑜 (ℎ), we have, 

sup𝜽∈𝚯|𝑙(𝜽) − ℓ(𝜽)| ≤ sup𝜽∈𝚯 1𝑛 𝑌 − 𝑣(𝒘 , 𝜽) |(1 − 2𝜏)| 
+sup𝜽∈𝚯 1𝑛 2 𝑀 ⋅ 𝑌 − 𝑣(𝒘 , 𝜽)  

+sup𝜽∈𝚯 1𝑛 2 𝑟(𝒘 , 𝜽) 𝑌 − 𝑣(𝒘 , 𝜽) ⋅ 𝜉  

+sup𝜽∈𝚯 1𝑛 2 𝑌 − 𝑣(𝒘 , 𝜽) 𝛽 (𝑋 − 𝑡) ⋅ 𝑜 (ℎ) ⋅ 1  
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+sup𝜽∈𝚯 1𝑛 𝑀 ⋅ 1  

+sup𝜽∈𝚯 1𝑛 𝑟(𝒘 , 𝜽) ⋅ 1 ⋅ 𝜂  

+sup𝜽∈𝚯 1𝑛 [𝛽 (𝑋 − 𝑡) ⋅ 𝑜 (ℎ)] ⋅ 1  

 
Obviously, the first term on the right side of the above equation tends to 0 when 𝑛 →∞. For bounded 𝑁, the second, third and fifth term also tend to 0 when 𝑛 → ∞. 𝜉 can be 

any small value, and by definition, 𝑜 (ℎ) is also a small value, so we have, sup𝜽∈𝚯|𝑙(𝜽) − ℓ(𝜽)| → 0 

The consistency of the parameter estimators in the objective function 𝑙 (𝜽) has been 
given by Newey and Powell [18], so the parameter estimators in the objective function ℓ (𝜽) are also consistent. Thus, we complete the proof of Lemma 1. □ 

Lemma 2. Define, 𝑢 (𝜽, 𝜽 ) = 𝜓 𝑌 − 𝑔(𝒘 , 𝜽) 𝑞(𝒘 , 𝜽) − 𝜓 𝑌 − 𝑔(𝒘 , 𝜽 ) 𝑞(𝒘 , 𝜽 ) 

Under the conditions A1-A5, for any positive sequence 𝑑  converging to 0 as 𝑛 
tends to infinity, we have, sup∥𝜽 𝜽 ∥ 𝑛 {𝑢 (𝜽, 𝜽 ) − 𝐸[𝑢 (𝜽, 𝜽 )]} = 𝑜 (1) 

Proof of Lemma 2. The above formula can be proved by Lemma 4.6 in He and Shao [23]. 
To prove Lemma 2, it is only necessary to state that the conditions (B1), (B3) and (B5’) of 
Lemma 4.6 in He and Shao [23] are satisfied. 

For condition (B1), the measurability is clearly obvious. 
For condition (B3), we have, 𝑢 𝜽, 𝜽 (𝜏) ≤ 𝜓 𝑌 − 𝑔(𝒘 , 𝜽) {𝑞(𝒘 , 𝜽) − 𝑞(𝒘 , 𝜽 )}  +‖{𝜓 (𝑌 − 𝑔(𝒘 , 𝜽)) − 𝜓 (𝑌 − 𝑔(𝒘 , 𝜽 ))}𝑞(𝒘 , 𝜽 )‖ ≜ ‖I ‖ + ‖I ‖  

For I , applying the mean value theorem and Lemma 1, we have, ‖I ‖ = 𝜓 𝑌 − 𝑔(𝒘 , 𝜽) {𝑞(𝒘 , 𝜽) − 𝑞(𝒘 , 𝜽 )}  = 𝜓 𝑌 − 𝑔(𝒘 , 𝜽) 𝑞 (𝒘 , 𝜽 )(𝜽 − 𝜽 ) = 𝑜 (1) 

Hence, 𝐸(‖I ‖ ∣ 𝒘 ) = 𝑜 (1). 
For I , 
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‖I ‖ = ‖{𝜓 (𝑌 − 𝑔(𝒘 , 𝜽)) − 𝜓 (𝑌 − 𝑔(𝒘 , 𝜽 ))}𝑞(𝒘 , 𝜽 )‖ = 𝜏 − I 𝑌 ≤ 𝑔(𝒘 , 𝜽 ) 𝑌 − 𝑔(𝒘 , 𝜽)  − 𝜏 − I 𝑌 ≤ 𝑔(𝒘 , 𝜽) 𝑌 − 𝑔(𝒘 , 𝜽 ) 𝑞(𝒘 , 𝜽 )  ≤ 𝜏 − I 𝑌 ≤ 𝑔(𝒘 , 𝜽 ) 𝑌 − 𝑔(𝒘 , 𝜽)  − 𝜏 − I 𝑌 ≤ 𝑔(𝒘 , 𝜽) 𝑌 − 𝑔(𝒘 , 𝜽 ) 𝑞(𝒘 , 𝜽 )  ≤ 𝜏 − I 𝑌 ≤ 𝑔(𝒘 , 𝜽 ) {𝑔(𝒘 , 𝜽) − 𝑔(𝒘 , 𝜽 )}  + 𝜏 − I 𝑌 ≤ 𝑔(𝒘 , 𝜽 ) − 𝜏 − I 𝑌 ≤ 𝑔(𝒘 , 𝜽) (𝑌 − 𝑔(𝒘 , 𝜽 ))𝑞(𝒘 , 𝜽 )  ≜ ‖II ‖ + ‖II ‖  

For II , based on Lemma 1, we have, ‖II ‖ = 𝜏 − I 𝑌 ≤ 𝑔(𝒘 , 𝜽 ) {𝑔(𝒘 , 𝜽) − 𝑔(𝒘 , 𝜽 )} ≤ 𝑑 ‖𝑞(𝒘 , 𝜽 )‖ 

Hence, 𝐸(‖II ‖ ∣ 𝒘 ) = 𝑜 (1). 
For II , ‖II ‖ = 𝜏 − I 𝑌 ≤ 𝑔(𝒘 , 𝜽 ) − 𝜏 − I 𝑌 ≤ 𝑔(𝒘 , 𝜽) (𝑌 − 𝑔(𝒘 , 𝜽 ))𝑞(𝒘 , 𝜽 )  ≤ 𝑞(𝒘 , 𝜽 ) 𝑌 − 𝑔(𝒘 , 𝜽 ) ∙ |2𝜏 − 1| ∙ I{𝑔 (𝒘 , 𝜽, 𝜽 ) ≤ 𝑌 ≤ 𝑔 (𝒘 , 𝜽, 𝜽 )} 

where, 𝑔 (𝒘 , 𝜽, 𝜽 ) = min{ 𝑔(𝒘 , 𝜽), 𝑔(𝒘 , 𝜽 )} 𝑔 (𝒘 , 𝜽, 𝜽 ) = max{ 𝑔(𝒘 , 𝜽), 𝑔(𝒘 , 𝜽 )} 

Obviously, 𝑔 (𝒘 , 𝜽, 𝜽 ) ≤ 𝑔 (𝒘 , 𝜽, 𝜽 ). Depending on, ‖𝑔(𝒘 , 𝜽) − 𝑔(𝒘 , 𝜽 )‖ = ‖𝑞 (𝒘 , 𝜽 )(𝜽 − 𝜽 ) + 𝑅(𝑛)‖ ≤ ‖𝑞(𝒘 , 𝜽 )‖‖𝜽 − 𝜽 ‖ ≤ 𝑑 ‖𝑞(𝒘 , 𝜽 )‖ 

and the mean value theorem, we have, 𝐸( ‖II ‖ ∣∣ 𝒘 ) ≤ (2𝜏 − 1) ‖𝑞(𝒘 , 𝜽 )‖ ‖𝑌 − 𝑔(𝒘 , 𝜽 )‖  ∗ 𝐸[I{𝑔 (𝒘 , 𝜽, 𝜽 ) ≤ 𝑌 ≤ 𝑔 (𝒘 , 𝜽, 𝜽 )}] ≤ (2𝜏 − 1) ‖𝑞(𝒘 , 𝜽 )‖ ‖𝑌 − 𝑔(𝒘 , 𝜽 )‖  ∗ 𝑓 , (𝜂 )‖𝑔(𝒘 , 𝜽) − 𝑔(𝒘 , 𝜽 )‖ 



Symmetry 2022, 14, 1320 14 of 24 
 

 

≤ 𝑑 𝑓 , (𝜂 )(2𝜏 − 1) ‖𝑞(𝒘 , 𝜽 )‖ ‖𝑌 − 𝑔(𝒘 , 𝜽 )‖  

where 𝜂  is a value between 𝑔 (𝒘 , 𝜽, 𝜽 ) and 𝑔 (𝒘 , 𝜽, 𝜽 ). In summary, we have, 𝐸 𝑢 𝜽, 𝜽 (𝜏) ∣∣ 𝒘 ≤ 𝑎 𝑑  
where, 𝑎 = 𝑑 ‖𝑞(𝒘 , 𝜽 )‖ 1 + 𝑓 , 𝑛 / (2𝜏 − 1) ‖𝑞(𝒘 , 𝜽 )‖ ‖𝑌 − 𝑔(𝒘 , 𝜽 )‖  

and 𝑑 = 𝑛 / . Therefore, 𝑢 (𝜽, 𝜽 ) satisfies (B3). 
For condition (B5’), let 𝐴 = ∑ 𝑎 , for arbitrary constant 𝐶, we have, 𝑃 max ‖𝑢 (𝜽, 𝜽 )‖ ≥ 𝐶𝐴 / 𝑑 / (log 𝑛)  

≤ 𝑃 ‖𝑢 (𝜽, 𝜽 )‖ ≥ 𝐶𝐴 / 𝑑 / (log 𝑛)  

≤ 𝐸(‖𝑢 (𝜽, 𝜽 )‖ )𝐶 𝐴 𝑑 (log 𝑛) ≤ 𝑛 / 𝐴𝐶 𝐴 𝑑 (log 𝑛) = (log 𝑛)𝐶 𝑑 √𝑛 = 𝑜 (1) 

therefore, max ‖𝑢 (𝜽, 𝜽 )‖ = 𝑂 (𝐴 / 𝑑 / (log 𝑛) )  
So 𝑢 (𝜽, 𝜽 ) satisfies (B5’). Therefore, we complete the proof of Lemma 2. □ 

Proof of Theorem 1. By Lemma 1 and Lemma 2, we have, 

𝑛 𝜓 𝑌 − 𝑔 𝒘 , 𝜽 𝑞 𝒘 , 𝜽 − 𝜓 𝑌 − 𝑔(𝒘 , 𝜽 ) 𝑞(𝒘 , 𝜽 ) 

                                                      − 𝐸 𝜓 𝑌 − 𝑔 𝒘 , 𝜽 𝑞 𝒘 , 𝜽 = 𝑜 (1) 

By applying Taylor expansion for ∑ 𝐸 𝜓 𝑌 − 𝑔 𝒘 , 𝜽 𝑞 𝒘 , 𝜽  around 𝜽 , 
we have, 

𝐸 𝜓 𝑌 − 𝑔 𝒘 , 𝜽 𝑞 𝒘 , 𝜽  

= ∂𝐸[∑ 𝜓 𝑌 − 𝑔(𝒘 , 𝜽) 𝑞(𝒘 , 𝜽)]∂𝜽 𝜽 𝜽 𝜽 − 𝜽 + 𝑅  

≜ 𝑛𝐷 , 𝜽 − 𝜽 + 𝑅  
where 𝑅 = 𝑜 (√𝑛) and, 
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𝐷 (𝜽 ) = 𝑛 ∂𝐸 ∑ 𝜓 𝑌 − 𝑔(𝒘 , 𝜽) 𝑞(𝒘 , 𝜽)∂𝜽 𝜽 𝜽  

= 𝑛 ∂𝐸 𝜓 𝑌 − 𝑔(𝒘 , 𝜽) 𝑞(𝒘 , 𝜽)∂𝜽 𝜽 𝜽  

= 𝑛 ∂𝐸 𝜏 − I 𝑌 < 𝑔(𝒘 , 𝜽) 𝑌 − 𝑔(𝒘 , 𝜽) 𝑞(𝒘 , 𝜽)∂𝜽 𝜽 𝜽  

= 𝑛 ∂𝑞(𝒘 , 𝜽)𝐸 𝜏 − I 𝑌 < 𝑔(𝒘 , 𝜽) 𝑌 − 𝑔(𝒘 , 𝜽)∂𝜽 𝜽 𝜽  

= 𝑛 ∂𝑞(𝒘 , 𝜽)∂𝜽 𝐸 𝜏 − I 𝑌 < 𝑔(𝒘 , 𝜽) 𝑌 − 𝑔(𝒘 , 𝜽)  

+𝑞(𝒘 , 𝜽) ∂𝐸 𝜏 − I 𝑌 < 𝑔(𝒘 , 𝜽) 𝑌 − 𝑔(𝒘 , 𝜽)∂𝜽 𝜽 𝜽  

= 𝑛 𝑞(𝒘 , 𝜽) ∂𝐸 𝜏 − I 𝑌 < 𝑔(𝒘 , 𝜽) 𝑌 − 𝑔(𝒘 , 𝜽)∂𝜽 𝜽 𝜽  

= −𝑛 𝑞(𝒘 , 𝜽 )𝑞 (𝒘 , 𝜽 ) [(1 − 2𝜏)𝐹 (𝑔(𝒘 , 𝜽 )) + 𝜏] 
 

In addition, by 𝑛 / ∑ 𝜓 (𝑌 − 𝑔(𝒘 , 𝜽 ))𝑞(𝒘 , 𝜽 ) = 𝑜 (1), we have, 

−𝑛 {𝜓 (𝑌 − 𝑔(𝒘 , 𝜽 ))𝑞(𝒘 , 𝜽 )} − 𝑛 𝑛𝐷 (𝜽 )(𝜽 − 𝜽 ) − 𝑅 = 𝑜 (1) 

All in all, we have, 

√𝑛 𝜽 − 𝜽 = −𝑛 / 𝐷 (𝜽 ) 𝜓 𝑌 − 𝑔(𝒘 , 𝜽 ) 𝑞(𝒘 , 𝜽 ) + 𝑜 √𝑛  

which is equivalent to, √𝑛 𝜽 − 𝜽 → 𝒩(𝟎, [(1 − 2𝜏)𝐹 (𝑔(𝒘 , 𝜽 )) + 𝜏]𝐷 (𝜽 ) 𝐶 (𝜽 )𝐷 (𝜽 ) ) 

where 𝐶 (𝜽 ) = [( ) ( (𝒘 ,𝜽 )) ] ∑ 𝑞(𝒘 , 𝜽 )𝑞 (𝒘 , 𝜽 ). So far, the proof of the theo-
rem is completed. □ 
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Appendix B. Tables of Results 

Table A1. The simulation results of the independent identically distribution model with 𝒆~𝑵(𝟎, 𝟏) 
in simulation 1. 

  Seg Proposed 𝝉  𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜸 𝒕 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜸 𝒕 
0.1 Mean 0.446  0.030  −0.031  −0.002  1.373  0.017  0.033  −0.033  0.001  1.371  

 SSE 0.476  0.143  0.176  0.180  1.394  0.212  0.174  0.243  0.241  1.396  
 Min −0.092  −0.353  −0.460  −0.401  0.558  −0.714  −0.443  −0.649  −0.698  0.271  
 IQ1 0.344  −0.057  −0.130  −0.132  1.266  −0.117  −0.090  −0.196  −0.171  1.252  
 Median 0.430  0.027  −0.036  −0.002  1.370  0.001  0.038  −0.013  0.033  1.374  
 IQ3 0.569  0.114  0.076  0.124  1.499  0.151  0.132  0.134  0.158  1.500  
 Max 0.873  0.484  0.469  0.544  1.983  0.605  0.535  0.618  0.703  2.104  

0.3 Mean 0.200  0.005  −0.007  0.013  1.198  0.005  0.001  0.006  0.010  1.196  
 SSE 0.240  0.121  0.150  0.147  1.214  0.159  0.139  0.194  0.192  1.211  
 Min −0.130  −0.327  −0.442  −0.400  0.613  −0.389  −0.292  −0.509  −0.579  0.670  
 IQ1 0.111  −0.081  −0.098  −0.078  1.092  −0.105  −0.109  −0.148  −0.118  1.089  
 Median 0.189  0.002  −0.004  0.019  1.203  −0.007  −0.004  0.022  0.007  1.203  
 IQ3 0.276  0.088  0.086  0.105  1.306  0.098  0.104  0.146  0.157  1.305  
 Max 0.677  0.329  0.408  0.523  1.851  0.486  0.340  0.449  0.501  1.851  

0.5 Mean 0.015  0.007  −0.014  −0.010  0.995  0.010  0.015  −0.020  −0.016  0.990  
 SSE 0.126  0.107  0.133  0.148  1.012  0.162  0.131  0.183  0.178  1.007  
 Min −0.316  −0.347  −0.391  −0.449  0.500  −0.466  −0.450  −0.625  −0.609  0.477  
 IQ1 −0.066  −0.064  −0.108  −0.099  0.881  −0.091  −0.077  −0.129  −0.123  0.878  
 Median 0.025  0.003  −0.013  −0.015  0.995  0.007  0.023  −0.029  −0.018  0.988  
 IQ3 0.098  0.081  0.077  0.096  1.110  0.121  0.102  0.099  0.091  1.107  
 Max 0.364  0.268  0.516  0.385  1.589  0.417  0.343  0.711  0.442  1.589  

0.7 Mean −0.153  0.012  −0.009  −0.014  0.771  0.043  0.014  −0.011  −0.028  0.770  
 SSE 0.215  0.106  0.137  0.146  0.792  0.175  0.114  0.166  0.186  0.790  
 Min −0.566  −0.275  −0.377  −0.468  0.240  −0.497  −0.264  −0.397  −0.589  0.238  
 IQ1 −0.257  −0.063  −0.098  −0.113  0.654  −0.061  −0.065  −0.130  −0.155  0.662  
 Median −0.160  0.006  −0.004  −0.010  0.768  0.047  0.011  0.000  −0.034  0.764  
 IQ3 −0.052  0.067  0.092  0.069  0.890  0.148  0.081  0.107  0.086  0.881  
 Max 0.200  0.293  0.351  0.405  1.330  0.507  0.348  0.355  0.531  1.330  

0.9 Mean −0.448  −0.017  −0.011  −0.010  0.653  −0.016  −0.014  −0.019  −0.011  0.655  
 SSE 0.471  0.129  0.172  0.169  0.685  0.206  0.153  0.237  0.255  0.686  
 Min −0.917  −0.389  −0.492  −0.404  0.020  −0.617  −0.477  −0.579  −0.638  0.021  
 IQ1 −0.540  −0.084  −0.133  −0.114  0.524  −0.144  −0.103  −0.184  −0.169  0.536  
 Median −0.444  −0.015  −0.016  −0.011  0.645  −0.007  −0.025  −0.015  −0.026  0.645  
 IQ3 −0.335  0.055  0.090  0.110  0.770  0.103  0.081  0.150  0.176  0.772  
 Max −0.057  0.406  0.557  0.389  1.319  0.627  0.478  0.694  0.659  1.343  

Table A2. The simulation results of the independent identically distribution model with 𝒆~𝒕𝟑 in 
simulation 1. 

  Seg Proposed 𝝉  𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜸 𝒕 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜸 𝒕 
0.1 Mean 0.364  0.063  −0.130  0.062  1.394  0.012  0.062  −0.095  0.073  1.361  

 SSE 0.582  0.369  0.548  0.469  1.513  0.406  0.384  0.503  0.439  1.491  
 Min −1.629  −0.824  −3.523  −2.302  −0.464  −1.385  −0.733  −2.451  −1.499  −0.435  
 IQ1 0.104  −0.151  −0.405  −0.236  1.114  −0.243  −0.202  −0.389  −0.217  1.051  
 Median 0.403  0.023  −0.075  0.077  1.375  0.030  0.031  −0.021  0.103  1.353  
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 IQ3 0.654  0.272  0.225  0.338  1.708  0.254  0.254  0.228  0.359  1.681  
 Max 1.536  1.625  1.035  1.486  3.562  1.197  1.992  1.139  1.280  3.662  

0.3 Mean 0.156  0.038  −0.038  −0.024  1.168  0.025  0.027  −0.011  −0.026  1.168  
 SSE 0.303  0.217  0.287  0.248  1.217  0.232  0.203  0.236  0.214  1.220  
 Min −0.459  −0.402  −1.092  −0.788  −0.564  −0.538  −0.417  −0.674  −0.543  −0.565  
 IQ1 0.005  −0.106  −0.201  −0.196  0.957  −0.115  −0.124  −0.174  −0.179  0.971  
 Median 0.146  0.010  −0.041  −0.010  1.182  0.029  0.016  −0.019  −0.026  1.167  
 IQ3 0.309  0.179  0.144  0.160  1.386  0.151  0.174  0.146  0.109  1.378  
 Max 1.692  1.162  0.641  0.512  2.307  1.342  0.812  0.650  0.626  2.307  

0.5 Mean 0.020  0.009  −0.047  −0.006  1.026  0.009  −0.004  −0.018  0.000  1.030  
 SSE 0.251  0.202  0.252  0.251  1.097  0.220  0.196  0.221  0.204  1.104  
 Min −0.793  −0.704  −0.913  −0.914  −0.545  −0.601  −0.882  −0.896  −0.430  −0.684  
 IQ1 −0.117  −0.105  −0.223  −0.154  0.842  −0.128  −0.119  −0.137  −0.142  0.845  
 Median 0.009  −0.002  −0.062  −0.015  1.009  0.000  −0.006  −0.023  0.005  1.014  
 IQ3 0.140  0.117  0.157  0.155  1.150  0.118  0.103  0.122  0.146  1.162  
 Max 1.289  0.744  0.521  0.697  3.143  1.166  0.678  0.569  0.531  3.170  

0.7 Mean −0.062  0.064  −0.124  0.012  0.763  0.063  0.052  −0.062  0.011  0.751  
 SSE 0.325  0.276  0.634  0.276  0.867  0.281  0.229  0.265  0.233  0.825  
 Min −0.745  −0.801  −7.756  −0.748  −0.825  −0.556  −0.415  −1.368  −0.517  −0.902  
 IQ1 −0.249  −0.080  −0.239  −0.181  0.560  −0.096  −0.083  −0.207  −0.149  0.578  
 Median −0.095  0.058  −0.073  0.009  0.765  0.040  0.032  −0.056  0.010  0.761  
 IQ3 0.079  0.175  0.107  0.181  0.981  0.200  0.169  0.107  0.164  0.982  
 Max 2.582  2.013  0.599  0.936  3.613  2.079  1.833  0.597  0.580  1.492  

0.9 Mean −0.534  −0.072  −0.045  0.000  0.566  0.153  0.097  −0.231  0.003  0.606  
 SSE 4.936  2.794  2.942  0.480  0.890  0.556  0.430  0.794  0.461  0.897  
 Min −68.813  −38.697  −8.077  −1.187  −2.735  −0.730  −1.108  −7.872  −1.376  −1.378  
 IQ1 −0.583  −0.177  −0.410  −0.305  0.236  −0.183  −0.153  −0.440  −0.273  0.249  
 Median −0.326  0.054  −0.171  0.001  0.599  0.062  0.046  −0.161  −0.019  0.573  
 IQ3 −0.010  0.337  0.099  0.260  0.945  0.434  0.316  0.093  0.273  0.916  
 Max 4.566  3.347  39.707  3.021  3.283  3.237  2.345  0.942  1.315  3.283  

Table A3. The simulation results of the independent identically distribution model with 𝒆~𝟎. 𝟗𝑵(𝟎, 𝟏) + 𝟎. 𝟏𝒕𝟑 in simulation 1. 

  Seg Proposed 𝝉  𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜸 𝒕 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜸 𝒕 
0.1 Mean 0.542  0.005  −0.020  −0.001  1.412  0.153  0.001  −0.015  0.011  1.412  

 SSE 0.561  0.119  0.158  0.156  1.428  0.248  0.148  0.229  0.222  1.427  
 Min 0.147  −0.279  −0.475  −0.505  0.686  −0.293  −0.365  −0.753  −0.713  0.683  
 IQ1 0.456  −0.073  −0.108  −0.093  1.306  0.004  −0.098  −0.139  −0.130  1.308  
 Median 0.537  −0.005  −0.026  0.011  1.413  0.162  −0.018  −0.023  0.031  1.408  
 IQ3 0.624  0.073  0.067  0.099  1.530  0.278  0.082  0.141  0.154  1.528  
 Max 0.920  0.547  0.490  0.420  1.873  0.646  0.651  0.772  0.580  1.873  

0.3 Mean 0.221  0.001  −0.013  −0.003  1.214  0.058  −0.007  −0.008  −0.007  1.217  
 SSE 0.255  0.102  0.136  0.152  1.227  0.166  0.112  0.162  0.186  1.230  
 Min −0.259  −0.273  −0.327  −0.344  0.763  −0.558  −0.291  −0.443  −0.523  0.763  
 IQ1 0.136  −0.060  −0.104  −0.117  1.132  −0.026  −0.084  −0.113  −0.133  1.132  
 Median 0.227  0.001  −0.008  −0.004  1.213  0.073  −0.011  −0.007  −0.013  1.215  
 IQ3 0.298  0.059  0.076  0.105  1.308  0.147  0.065  0.096  0.098  1.309  
 Max 0.584  0.351  0.380  0.389  1.595  0.578  0.301  0.437  0.630  1.596  

0.5 Mean 0.004  −0.008  −0.004  −0.013  1.016  −0.007  −0.004  −0.009  −0.006  1.017  
 SSE 0.110  0.096  0.131  0.132  1.029  0.135  0.106  0.163  0.154  1.030  
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 Min −0.254  −0.348  −0.367  −0.469  0.650  −0.365  −0.385  −0.444  −0.465  0.689  
 IQ1 −0.062  −0.071  −0.097  −0.098  0.917  −0.093  −0.080  −0.130  −0.108  0.919  
 Median 0.002  −0.009  0.000  −0.019  1.006  −0.002  −0.002  0.001  −0.002  1.007  
 IQ3 0.082  0.063  0.091  0.072  1.113  0.079  0.076  0.095  0.082  1.110  
 Max 0.364  0.255  0.395  0.343  1.548  0.414  0.234  0.481  0.456  1.548  

0.7 Mean −0.194  0.003  −0.016  −0.018  0.799  −0.020  0.003  −0.013  −0.016  0.797  
 SSE 0.234  0.110  0.147  0.140  0.818  0.145  0.122  0.183  0.174  0.815  
 Min −0.519  −0.265  −0.430  −0.428  0.215  −0.378  −0.274  −0.589  −0.429  0.216  
 IQ1 −0.275  −0.082  −0.115  −0.121  0.693  −0.120  −0.082  −0.124  −0.136  0.698  
 Median −0.195  0.007  −0.001  −0.007  0.796  −0.027  0.009  −0.018  −0.012  0.797  
 IQ3 −0.118  0.066  0.089  0.070  0.900  0.080  0.069  0.114  0.103  0.894  
 Max 0.595  0.456  0.307  0.313  1.297  0.406  0.361  0.405  0.395  1.297  

0.9 Mean −0.547  −0.005  −0.015  0.009  0.626  −0.150  −0.008  −0.025  0.002  0.630  
 SSE 0.569  0.120  0.174  0.182  0.648  0.243  0.147  0.236  0.242  0.652  
 Min −0.899  −0.326  −0.433  −0.485  0.226  −0.723  −0.465  −0.647  −0.608  0.236  
 IQ1 −0.658  −0.088  −0.130  −0.139  0.532  −0.288  −0.116  −0.197  −0.173  0.526  
 Median −0.553  −0.001  −0.004  0.016  0.636  −0.146  −0.003  −0.030  −0.020  0.636  
 IQ3 −0.445  0.079  0.114  0.126  0.741  −0.014  0.078  0.141  0.195  0.740  
 Max −0.131  0.375  0.412  0.492  1.030  0.362  0.372  0.550  0.603  1.039  

Table A4. The simulation results of the heteroscedasticity model with 𝒆~𝑵(𝟎, 𝟏) in simulation 1. 

  Seg Proposed 𝝉  𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜸 𝒕 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜸 𝒕 
0.1 Mean 0.400 0.126 −0.141 0.021 1.504 −0.023 0.003 −0.079 0.035 1.462 

 SSE 0.467 0.210 0.784 0.293 1.585 0.291 0.167 0.522 0.310 1.521 
 Min −0.200 −0.593 −9.272 −0.791 0.590 −1.034 −0.549 −4.145 −0.922 0.590 
 IQ1 0.259 0.045 −0.264 −0.174 1.267 −0.185 −0.106 −0.308 −0.159 1.247 
 Median 0.408 0.137 −0.057 0.008 1.411 −0.014 −0.005 −0.022 0.046 1.402 
 IQ3 0.572 0.223 0.142 0.250 1.614 0.185 0.111 0.242 0.226 1.592 
 Max 1.036 0.496 0.670 0.937 4.059 0.902 0.584 0.886 1.059 3.959 

0.3 Mean 0.186 0.063 −0.036 −0.011 1.240 −0.003 −0.002 −0.043 −0.021 1.257 
 SSE 0.257 0.133 0.224 0.246 1.274 0.189 0.124 0.304 0.231 1.299 
 Min −0.483 −0.305 −0.879 −0.672 0.609 −0.601 −0.446 −1.316 −0.656 0.615 
 IQ1 0.073 −0.010 −0.168 −0.183 1.077 −0.119 −0.088 −0.224 −0.175 1.072 
 Median 0.188 0.069 −0.060 0.002 1.201 0.000 0.007 −0.033 0.000 1.205 
 IQ3 0.315 0.138 0.108 0.139 1.400 0.138 0.079 0.158 0.131 1.404 
 Max 0.576 0.483 0.662 0.734 2.460 0.471 0.527 0.818 0.606 3.157 

0.5 Mean −0.003 0.017 −0.004 0.038 0.966 0.019 0.018 −0.018 0.005 0.970 
 SSE 0.168 0.120 0.222 0.243 1.011 0.184 0.137 0.292 0.210 1.015 
 Min −0.559 −0.289 −0.580 −0.555 −0.073 −0.461 −0.304 −0.837 −0.525 −0.076 
 IQ1 −0.103 −0.067 −0.156 −0.108 0.777 −0.105 −0.065 −0.199 −0.134 0.809 
 Median −0.011 0.017 −0.010 0.023 0.959 0.015 0.006 −0.005 0.009 0.958 
 IQ3 0.091 0.102 0.155 0.193 1.149 0.137 0.103 0.176 0.146 1.157 
 Max 0.473 0.378 0.555 0.663 1.833 0.542 0.448 0.581 0.553 1.838 

0.7 Mean −0.180 −0.048 −0.024 0.004 0.795 0.000 0.008 −0.019 0.009 0.799 
 SSE 0.256 0.130 0.242 0.236 0.839 0.194 0.131 0.293 0.234 0.841 
 Min −0.768 −0.411 −0.802 −0.638 0.122 −0.680 −0.361 −1.018 −0.753 0.059 
 IQ1 −0.300 −0.131 −0.143 −0.171 0.642 −0.133 −0.085 −0.206 −0.152 0.644 
 Median −0.198 −0.050 −0.025 0.010 0.803 −0.006 0.010 −0.030 0.029 0.801 
 IQ3 −0.058 0.033 0.132 0.179 0.929 0.111 0.087 0.178 0.176 0.929 
 Max 0.437 0.407 0.600 0.579 2.037 0.634 0.479 0.684 0.578 2.037 
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0.9 Mean −0.432 −0.152 −0.053 −0.017 0.676 −0.001 −0.023 −0.057 −0.034 0.668 
 SSE 0.482 0.214 0.367 0.269 0.781 0.255 0.149 0.395 0.296 0.756 
 Min −0.998 −0.854 −3.220 −0.613 −0.230 −0.753 −0.450 −1.445 −0.693 −0.270 
 IQ1 −0.578 −0.252 −0.214 −0.178 0.454 −0.173 −0.146 −0.250 −0.227 0.458 
 Median −0.429 −0.134 −0.009 −0.011 0.654 0.002 −0.012 −0.023 −0.029 0.637 
 IQ3 −0.297 −0.043 0.145 0.165 0.828 0.176 0.093 0.182 0.166 0.808 
 Max 0.222 0.158 0.698 0.723 2.916 0.674 0.282 1.098 0.763 2.254 

Table A5. The simulation results of the heteroscedasticity model with 𝒆~𝒕𝟑 in simulation 1. 

  Seg Proposed 𝝉  𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜸 𝒕 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜸 𝒕 
0.1 Mean 0.490  0.270  −1.561  0.044  1.445  1.737  0.958  −2.496  0.036  1.401  

 SSE 2.003  1.349  11.857  0.757  1.734  24.604  12.851  20.379  0.506  1.678  
 Min −3.847  −1.192  −98.359  −1.662  −1.459  −2.236  −0.748  −91.346  −1.081  −2.009  
 IQ1 0.090  0.021  −0.593  −0.447  0.883  −0.301  −0.168  −0.652  −0.293  0.860  
 Median 0.413  0.200  −0.151  −0.043  1.355  0.030  0.046  −0.127  −0.020  1.323  
 IQ3 0.776  0.357  0.240  0.464  1.782  0.333  0.244  0.289  0.373  1.747  
 Max 26.441  18.120  4.681  4.545  4.657  347.012  181.233  1.389  2.174  4.730  

0.3 Mean 0.093  0.020  −0.228  −0.016  1.302  0.007  0.001  −0.170  −0.027  1.236  
 SSE 0.395  0.231  1.462  0.461  1.451  0.282  0.186  1.345  0.273  1.369  
 Min −3.043  −0.744  −17.518  −1.200  −0.091  −0.794  −0.598  −17.991  −0.733  −0.690  
 IQ1 −0.070  −0.108  −0.357  −0.318  0.951  −0.170  −0.098  −0.263  −0.187  0.946  
 Median 0.109  0.035  −0.052  −0.020  1.205  0.018  −0.001  −0.062  −0.039  1.185  
 IQ3 0.318  0.158  0.235  0.277  1.512  0.181  0.121  0.185  0.140  1.440  
 Max 0.832  0.709  0.979  2.286  4.253  1.389  0.721  0.863  0.978  4.139  

0.5 Mean −0.003  −0.007  −0.333  0.026  1.172  −0.012  −0.020  −0.205  0.019  1.127  
 SSE 0.546  0.367  1.143  0.387  1.377  0.285  0.204  0.793  0.232  1.300  
 Min −0.721  −0.786  −7.182  −1.134  −0.908  −0.731  −0.771  −5.516  −0.601  −0.588  
 IQ1 −0.280  −0.167  −0.444  −0.204  0.797  −0.167  −0.110  −0.301  −0.121  0.729  
 Median −0.048  −0.002  −0.108  0.066  1.064  −0.032  −0.034  −0.049  0.036  1.072  
 IQ3 0.168  0.120  0.162  0.276  1.404  0.128  0.079  0.145  0.171  1.341  
 Max 6.292  3.941  1.008  0.908  3.694  1.695  1.108  0.984  0.647  3.610  

0.7 Mean −0.057  −0.035  −0.296  −0.022  0.907  0.065  0.010  −0.339  −0.034  0.908  
 SSE 0.354  0.288  1.261  0.393  1.175  0.324  0.238  1.749  0.266  1.172  
 Min −0.816  −1.023  −12.200  −0.979  −0.398  −0.727  −0.788  −19.732  −0.724  −0.895  
 IQ1 −0.289  −0.208  −0.403  −0.308  0.452  −0.133  −0.123  −0.338  −0.197  0.456  
 Median −0.103  −0.034  −0.086  −0.041  0.782  0.030  0.019  −0.110  −0.045  0.784  
 IQ3 0.165  0.124  0.161  0.249  1.175  0.237  0.136  0.104  0.150  1.198  
 Max 1.471  0.955  0.972  1.330  3.780  1.912  1.177  1.080  0.730  3.861  

0.9 Mean −0.126  −0.059  0.189  −0.054  0.915  0.092  0.001  1.195  0.000  0.800  
 SSE 1.096  0.698  6.296  0.842  1.439  0.496  0.331  19.240  0.496  1.235  
 Min −1.327  −1.387  −20.019  −5.030  −1.913  −0.949  −0.950  −6.723  −1.326  −1.240  
 IQ1 −0.651  −0.388  −0.996  −0.510  0.271  −0.226  −0.194  −0.706  −0.334  0.269  
 Median −0.315  −0.169  −0.302  −0.058  0.733  0.069  −0.001  −0.224  −0.019  0.637  
 IQ3 0.092  0.113  0.213  0.436  1.365  0.360  0.150  0.252  0.289  1.306  
 Max 7.680  4.569  42.983  3.122  3.799  3.011  1.803  266.968  1.463  3.931  
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Table A6. The simulation results of the heteroscedasticity model with 𝒆~𝟎. 𝟗𝑵(𝟎, 𝟏) + 𝟎. 𝟏𝒕𝟑  in 
simulation 1. 

  Seg Proposed 𝝉  𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜸 𝒕 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜸 𝒕 
0.1 Mean 0.522  0.166  −0.054  0.017  1.448  0.143  0.045  −0.053  0.005  1.453  

 SSE 0.554  0.206  0.273  0.248  1.483  0.254  0.147  0.379  0.265  1.488  
 Min 0.019  −0.197  −0.739  −0.705  0.626  −0.460  −0.340  −0.998  −0.740  0.625  
 IQ1 0.406  0.087  −0.212  −0.153  1.257  0.015  −0.056  −0.297  −0.174  1.261  
 Median 0.526  0.174  −0.050  0.019  1.455  0.143  0.047  −0.030  0.018  1.459  
 IQ3 0.641  0.257  0.115  0.202  1.609  0.276  0.144  0.209  0.170  1.617  
 Max 1.083  0.454  0.670  0.723  2.477  0.818  0.412  0.767  0.634  2.476  

0.3 Mean 0.211  0.056  −0.041  0.003  1.253  0.040  0.009  −0.035  0.014  1.250  
 SSE 0.269  0.125  0.213  0.208  1.290  0.180  0.107  0.248  0.190  1.284  
 Min −0.355  −0.286  −0.943  −0.614  0.509  −0.429  −0.300  −1.181  −0.464  0.477  
 IQ1 0.111  −0.005  −0.195  −0.145  1.089  −0.087  −0.058  −0.174  −0.121  1.088  
 Median 0.207  0.067  −0.030  0.001  1.221  0.044  0.002  −0.009  0.011  1.227  
 IQ3 0.324  0.133  0.100  0.140  1.380  0.157  0.091  0.114  0.143  1.381  
 Max 0.672  0.290  0.509  0.645  2.445  0.480  0.249  0.555  0.493  2.270  

0.5 Mean −0.009  −0.007  −0.024  0.014  1.028  0.003  0.000  −0.043  0.007  1.029  
 SSE 0.157  0.096  0.201  0.211  1.053  0.172  0.103  0.263  0.194  1.053  
 Min −0.383  −0.208  −0.497  −0.481  0.520  −0.434  −0.290  −0.788  −0.568  0.501  
 IQ1 −0.112  −0.073  −0.152  −0.122  0.887  −0.097  −0.063  −0.229  −0.135  0.896  
 Median −0.002  −0.007  −0.043  0.005  1.024  0.024  0.010  −0.058  0.018  1.029  
 IQ3 0.086  0.060  0.112  0.155  1.155  0.112  0.075  0.132  0.129  1.155  
 Max 0.387  0.230  0.485  0.535  1.861  0.467  0.272  0.619  0.531  1.836  

0.7 Mean −0.234  −0.073  −0.039  0.011  0.840  −0.062  −0.019  −0.057  0.005  0.843  
 SSE 0.282  0.129  0.195  0.193  0.881  0.184  0.111  0.255  0.185  0.884  
 Min −0.640  −0.369  −0.561  −0.466  0.111  −0.501  −0.346  −0.896  −0.450  0.111  
 IQ1 −0.338  −0.137  −0.144  −0.126  0.691  −0.180  −0.090  −0.235  −0.119  0.682  
 Median −0.244  −0.073  −0.039  0.018  0.823  −0.066  −0.016  −0.053  −0.001  0.831  
 IQ3 −0.118  0.003  0.074  0.144  0.987  0.047  0.058  0.123  0.124  0.996  
 Max 0.315  0.195  0.414  0.575  1.644  0.529  0.246  0.589  0.518  1.644  

0.9 Mean −0.525  −0.169  −0.014  0.012  0.593  −0.150  −0.058  −0.016  0.023  0.600  
 SSE 0.560  0.222  0.250  0.282  0.674  0.268  0.165  0.356  0.275  0.682  
 Min −1.093  −0.678  −0.732  −0.631  −0.455  −0.612  −0.662  −1.109  −0.634  −0.455  
 IQ1 −0.671  −0.248  −0.166  −0.165  0.409  −0.309  −0.164  −0.262  −0.174  0.420  
 Median −0.538  −0.155  −0.022  −0.001  0.587  −0.157  −0.066  −0.014  0.010  0.585  
 IQ3 −0.411  −0.096  0.166  0.171  0.732  −0.025  0.033  0.240  0.196  0.728  
 Max 0.150  0.321  0.677  0.881  2.257  0.554  0.452  0.949  1.067  2.400  

Table A7. The simulation results of the symmetric scenario in simulation 2. 
  Seg Proposed 𝝉  𝜷𝟎 𝜷𝟏 𝜷𝟐 𝒕 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝒕 

0.1 Mean 3.958  0.792  −0.004  4.893  3.761  0.747  −0.009  4.900  
 SSE 3.972  0.798  0.125  4.910  3.777  0.754  0.169  4.917  
 Min 3.390  0.590  −0.460  4.280  3.255  0.534  −0.651  4.280  
 IQ1 3.864  0.743  −0.080  4.759  3.597  0.688  −0.110  4.761  
 Median 3.962  0.795  0.002  4.873  3.773  0.741  0.003  4.883  
 IQ3 4.069  0.830  0.078  5.011  3.906  0.810  0.108  5.020  
 Max 4.436  1.068  0.279  5.493  4.342  1.016  0.416  5.493  
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0.3 Mean 4.217  0.839  −0.006  4.706  4.121  0.819  −0.002  4.708  
 SSE 4.230  0.843  0.103  4.721  4.134  0.823  0.132  4.722  
 Min 3.921  0.700  −0.250  4.328  3.691  0.655  −0.351  4.328  
 IQ1 4.134  0.803  −0.090  4.602  4.013  0.777  −0.105  4.603  
 Median 4.206  0.842  −0.002  4.693  4.124  0.817  −0.010  4.694  
 IQ3 4.308  0.874  0.063  4.788  4.206  0.863  0.092  4.786  
 Max 4.632  0.974  0.362  5.275  4.599  1.006  0.371  5.275  

0.5 Mean 4.366  0.879  −0.001  4.494  4.358  0.880  0.001  4.495  
 SSE 4.379  0.883  0.114  4.508  4.371  0.884  0.125  4.509  
 Min 4.012  0.752  −0.334  4.050  3.830  0.740  −0.354  4.052  
 IQ1 4.279  0.838  −0.080  4.382  4.242  0.831  −0.090  4.379  
 Median 4.366  0.879  0.001  4.498  4.357  0.880  −0.005  4.500  
 IQ3 4.438  0.920  0.080  4.589  4.463  0.926  0.093  4.590  
 Max 4.755  1.026  0.268  4.935  4.767  1.072  0.381  4.935  

0.7 Mean 4.531  0.913  −0.007  4.296  4.616  0.933  −0.014  4.303  
 SSE 4.544  0.916  0.102  4.310  4.629  0.938  0.119  4.317  
 Min 4.145  0.796  −0.290  3.856  4.211  0.776  −0.361  3.856  
 IQ1 4.456  0.876  −0.078  4.201  4.526  0.897  −0.102  4.200  
 Median 4.524  0.914  −0.009  4.292  4.604  0.932  −0.016  4.294  
 IQ3 4.598  0.946  0.060  4.406  4.718  0.969  0.076  4.409  
 Max 4.883  1.124  0.270  4.742  5.065  1.133  0.264  4.742  

0.9 Mean 4.793  0.963  −0.018  4.114  5.003  1.004  −0.015  4.117  
 SSE 4.808  0.968  0.126  4.129  5.020  1.009  0.170  4.131  
 Min 4.387  0.789  −0.385  3.454  4.510  0.825  −0.505  3.528  
 IQ1 4.685  0.917  −0.099  4.003  4.868  0.953  −0.125  4.009  
 Median 4.809  0.958  −0.017  4.109  5.008  0.998  −0.020  4.114  
 IQ3 4.882  1.002  0.052  4.234  5.133  1.055  0.084  4.237  
 Max 5.192  1.185  0.339  4.659  5.545  1.221  0.437  4.659  

Table A8. The simulation results of the asymmetric scenario in simulation 2. 

  Seg Proposed 𝝉  𝜷𝟎 𝜷𝟏 𝜷𝟐 𝒕 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝒕 
0.1 Mean 4.307  1.009  −0.508  2.564  4.120  1.385  −0.601  2.441  

 SSE 4.406  1.638  1.929  3.253  4.203  8.160  8.039  2.840  
 Min −5.072  −0.427  −11.460  0.018  −4.462  −0.404  −93.116  −0.017  
 IQ1 4.107  0.533  −0.514  1.575  3.886  0.385  −0.428  1.612  
 Median 4.381  0.875  −0.112  1.910  4.224  0.847  −0.027  1.968  
 IQ3 4.644  1.251  0.195  2.426  4.505  1.218  0.376  2.625  
 Max 5.606  11.926  7.420  9.206  5.110  114.223  1.325  8.829  

0.3 Mean 4.762  0.961  −0.543  2.043  4.712  0.931  −0.053  1.985  
 SSE 4.789  1.062  4.243  2.494  4.735  1.025  0.643  2.302  
 Min 3.512  −0.317  −51.275  0.723  3.927  −0.273  −7.557  0.706  
 IQ1 4.507  0.742  −0.270  1.482  4.517  0.716  −0.238  1.486  
 Median 4.768  0.971  −0.031  1.680  4.700  0.928  0.021  1.694  
 IQ3 4.919  1.207  0.172  1.965  4.908  1.175  0.230  1.979  
 Max 6.137  2.557  0.907  9.284  5.827  2.274  0.919  9.203  

0.5 Mean 4.970  1.035  −0.039  1.553  5.001  1.030  −0.034  1.554  
 SSE 4.989  1.087  0.307  1.634  5.019  1.084  0.314  1.643  
 Min 4.035  0.098  −1.069  0.704  4.342  −0.011  −1.202  0.720  
 IQ1 4.821  0.804  −0.205  1.279  4.863  0.831  −0.203  1.277  
 Median 4.964  1.025  −0.020  1.475  4.990  1.033  −0.015  1.480  
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 IQ3 5.125  1.233  0.169  1.724  5.144  1.239  0.147  1.724  
 Max 5.870  2.095  0.769  4.584  5.947  2.150  0.850  5.509  

0.7 Mean 5.240  1.054  −0.044  1.572  5.324  1.057  −0.017  1.518  
 SSE 5.263  1.150  0.457  1.894  5.346  1.137  0.404  1.747  
 Min 4.542  −0.217  −2.073  0.159  4.601  −0.186  −1.984  0.283  
 IQ1 5.065  0.848  −0.244  1.152  5.149  0.876  −0.200  1.157  
 Median 5.192  1.038  0.000  1.353  5.280  1.031  0.007  1.358  
 IQ3 5.367  1.257  0.184  1.635  5.453  1.220  0.186  1.624  
 Max 6.921  3.212  2.800  7.803  6.823  2.969  1.617  7.516  

0.9 Mean 5.733  1.106  0.041  1.783  6.062  1.003  0.144  2.119  
 SSE 5.781  1.412  1.375  2.394  6.118  1.197  1.138  2.851  
 Min 4.005  −0.329  −7.884  −0.487  4.801  −0.267  −2.182  −0.054  
 IQ1 5.343  0.674  −0.325  0.924  5.584  0.618  −0.272  1.013  
 Median 5.661  1.015  0.034  1.246  5.898  1.012  0.030  1.370  
 IQ3 5.956  1.384  0.346  1.967  6.333  1.369  0.386  2.305  
 Max 7.902  9.237  11.567  8.088  8.096  3.326  11.517  8.352  

Table A9. The annual average temperature in the Arctic region and time. 𝝉 Method  𝜷𝟎 𝜷𝟏 𝜷𝟐 𝒕 
0.2 Grid Estimate 13.029 −0.007 0.035 1975.425 

  SE 0.000 0.000 0.001 0.000 
 Seg Estimate 12.922 −0.007 0.035 1975.493 
  SE 0.014 0.001 0.002 1.476 
 proposed Estimate 12.922 −0.007 0.035 1975.493 
  SE 0.000 0.000 0.001 0.000 

0.3 Grid Estimate 13.911 −0.007 0.035 1974.748 
  SE 0.000 0.000 0.001 0.000 
 Seg Estimate 13.727 −0.007 0.035 1974.857 
  SE 0.015 0.002 0.002 1.582 
 proposed Estimate 13.170 −0.007 0.035 1975.204 
  SE 0.000 0.000 0.001 0.000 

0.5 Grid Estimate 13.384 −0.007 0.035 1974.748 
  SE 0.000 0.000 0.002 0.000 
 Seg Estimate 13.560 −0.007 0.035 1974.643 
  SE 0.014 0.002 0.002 1.587 
 proposed Estimate 13.560 −0.007 0.035 1974.643 
  SE 0.000 0.000 0.002 0.000 

0.7 Grid Estimate 12.873 −0.007 0.034 1974.748 
  SE 0.000 0.000 0.001 0.000 
 Seg Estimate 13.105 −0.007 0.034 1974.612 
  SE 0.014 0.002 0.002 1.708 
 proposed Estimate 13.105 −0.007 0.034 1974.611 
  SE 0.000 0.000 0.001 0.000 

0.8 Grid Estimate 12.458 −0.006 0.034 1974.748 
  SE 0.000 0.000 0.001 0.000 
 Seg Estimate 12.754 −0.006 0.034 1974.576 
  SE 0.015 0.002 0.003 1.781 
 proposed Estimate 12.754 −0.006 0.034 1974.576 
  SE 0.000 0.000 0.001 0.000 
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Table A10. The annual average flow of the River Nile and time. 𝝉 Method  𝜷𝟎 𝜷𝟏 𝜷𝟐 𝒕 
0.2 Grid Estimate 1100.048 −8.002 9.053 42.657 

  SE 52.296 2.266  2.965  8.115  
 Seg Estimate 1101.656  −8.175  9.035  40.468  
  SE 15.497 2.713  2.957  7.930  
 proposed Estimate 1099.208  −7.942  9.027  42.995  
  SE 46.481  1.658  2.975  0.000  

0.3 Grid Estimate 1133.474  −8.130  9.069  42.657  
  SE 51.070 2.312  2.882  8.362  
 Seg Estimate 1149.104  −9.198  9.133  38.146  
  SE 13.803 1.994  2.234  6.649  
 proposed Estimate 1132.675  −8.072  9.047  42.997  
  SE 47.380 1.511  2.737  0.000  

0.5 Grid Estimate 1183.102  −8.079  8.874  43.483  
  SE 43.630 2.161  2.437  8.974  
 Seg Estimate 1168.128  −7.176  8.461  48.676  
  SE 14.199 1.834  2.118  7.315  
 proposed Estimate 1184.582  −8.174  8.925  43.001  
  SE 43.908 1.219  1.999  0.000  

0.7 Grid Estimate 1213.501  −6.889  8.327  51.738  
  SE 37.726 2.371  2.540  12.134  
 Seg Estimate 1214.131  −6.924  8.327  51.471  
  SE 15.375 1.738  2.242  7.687  
 proposed Estimate 1214.131  −6.924  8.327  51.471  
  SE 32.335 0.870  1.655  0.000  

0.8 Grid Estimate 1241.886  −6.711  8.274  53.390  
  SE 39.351 1.489  2.073  8.418  
 Seg Estimate 1241.697  −6.701  8.276  53.474  
  SE 17.326 1.849  2.751  9.226  
 proposed Estimate 1241.697  −6.701  8.276  53.474  
  SE 37.032 1.066  2.070  0.000  
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