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Abstract: Unsteady axial symmetric flows of an incompressible and electrically conducting Casson 

fluid over a vertical cylinder with time-variable temperature under the influence of an external 

transversely magnetic field are studied. The thermal transport is described by a generalized mathe-

matical model based on the time-fractional differential equation of Cattaneo’s law with the Caputo 

derivative. In this way, our model is able to highlight the effect of the temperature gradient history 

on heat transport and fluid motion. The generalized mathematical model of thermal transport can 

be particularized to obtain the classical Cattaneo’s law and the classical Fourier’s law. The compar-

ison of the three models could offer the optimal model of heat transport. The problem solution has 

been determined in the general case when cylinder surface temperature is described by a function 

f(t); therefore, the obtained solutions can be used to study different convective flows over a cylinder. 

In the particular case of surface temperature varying exponentially in time, it is found that fractional 

models lead to a small temperature rise according to the Cattaneo model. 
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1. Introduction 

Casson liquids are suitable for heating/cooling operations due to its efficient impact 

on the energy transmission rate. The rheological model of Casson fluid [1], used to model 

the flow of pigment suspensions in the production of printing ink, is also capable of effec-

tively describing the flow characteristics of polymers, human blood, starch suspensions, 

foams, molten cosmetics, paints, synthetic lubricants etc. [2]. In view of the multiple prac-

tical applications of the Casson fluids, several studies have been conducted on flows of 

these fluids. 

Unsteady flows of a viscous, incompressible and electrically conducting Casson fluid 

past a moving vertical cylinder with time-variable temperature under the impact of mass 

diffusion, transversely uniform magnetic field, and chemical reaction have been studied 

by Kumar and Rizvi [3]. Using a numerical scheme based on the Crank-Nicolson implicit 

finite differences, the authors analyzed fluid motion and heat and mass transfer. 

Reddy at al. [4] numerically studied the entropy generation in the heat and momen-

tum transfer in time-dependent boundary layer flow of a Casson viscoplastic fluid over a 

uniformly heated vertical cylinder embedded in an isotropic, homogenous porous me-

dium. The hydrodynamic flow of incompressible Casson fluids over a yawed cylinder is 

investigated by Khan et al. [5] using the homotopy analysis method. Sarkar et al. [6] in-

vestigated magnetohydrodynamics boundary layer flows of Casson and Williamson 

nanofluids over an inclined cylindrical surface. The impact of linear order chemical reac-

tion and thermal radiation has been considered in the mathematical model. 
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The flow of Casson fluids mixed with nano size metallic particles, under the influence 

of an external magnetic field and thermal radiation, owing to a moving boundary cylinder 

have been studied by Naqvi et al. [7]. The Joule heating and dissipation are considered in 

convective heat transfer. Numerical solutions of the governing equations have been ob-

tained and results are presented in graphical illustrations to analyze the fluid motion and 

heat transfer. Ullah et al. [8] have studied flows of Casson fluids over a non-isothermal 

cylinder subject to suction/blowing and to the nonlinear stretching. The effects of porous 

medium, chemical reaction, viscous dissipation, and heat generation/absorption on the 

flow fields have been considered in this study. The numerical solutions are obtained using 

the similarity transformations and the Keller box method. 

The classical heat flow, based on the Fourier law leads to a parabolic differential 

equation of heat transfer. Later, some nonclassical theories of heat flow described by hy-

perbolic-type equations have been developed. 

Recent developments in technology of measurements highlighted some anomalous 

in heat transport that cannot be explained by the classical mathematical models of heat 

transport. Researchers in the field of heat transfer have developed other mathematical 

models that are able to describe the complex phenomena of diffusion processes. So, the 

mathematical models of heat transfer based on constitutive equations with fractional de-

rivatives in time or space have been developed and studied. 

The models using fractional derivatives are considered to be an excellent tool for de-

scribing the memory and hereditary properties of various materials and processes [9]. For 

these reasons, the fractional models are used in the modeling of various phenomena in 

thermoelasticity, physics, mechanics, control theory, biochemistry, bioengineering, eco-

nomics, etc. Povstenko [10] proposed a quasi-static uncoupled theory of thermoelasticity 

based on the heat conduction equation with a time-fractional Caputo derivative. The ther-

mal stresses corresponding to the fundamental solutions of a Cauchy problem for the frac-

tional heat conduction equation are found in one-dimensional and two-dimensional cases. 

An interesting review about anomalous energy transport in one dimensional region and 

several models of the non-local fractional heat conduction can be found in the reference 

[11]. The maximum temperature propagation in a finite medium using a single-phase-lag 

of heat equation with fractional Caputo derivatives has been studied by Kukla and Sie-

dlecka [12]. The authors proposed Robotnov functions and a harmonically ambient tem-

perature to study the heat source problems. The problem has been solved by using the 

eigenfunction expansion method and the Laplace transform technique with time-depend-

ent Robin and homogenous Neumann boundary conditions. The obtained solutions were 

used for determination of the maximum temperature trajectories. Liu et al. [13] have in-

vestigated the influence of the hall effect and radiation heat on unsteady fractional Max-

well fluids of magnetohydrodynamic flows and heat transfer in a square cavity. The cou-

pled model is formed from the momentum equation based on the Fourier law derivation 

of fractional heat-conduction equation and the fractional constitutive relationship. They 

obtained numerical solutions using the weighted and shifted Grünwald difference 

method in the temporal direction with the spectral method based on Lagrange-basis pol-

ynomials in the spatial direction. The stability and convergence of the numerical schemes 

are proved. Wang et al. [14] formulated a finite difference algorithm on bioheat transfer 

process during laser irradiation on the living biological tissues. The authors implemented 

the L1 approximation for the Caputo time fractional derivative. At the same time, they 

also applied central difference scheme for the Riesz fractional derivative to solve their 

problem. Effects of time and phase lag time, space fractional parameters and blood perfu-

sion rate on temperature distribution within living biological tissues have been examined 

by numerical simulations and graphical illustrations. Other interesting results about the 

fractional heat conduction equation can be found in the papers [15,16]. 

The aim of this paper is to investigate unsteady axial symmetric flows of incompress-

ible and electrically conducting Casson fluids over a vertical cylinder with time-variable 

temperature, under influence of an external transversely magnetic field. The thermal 
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transport is described by a generalized mathematical model based on the time-fractional 

differential equation of Cattaneo’s law with the Caputo derivative. In this way, our model 

is able to highlight the effect of the temperature gradient history on heat transport and 

fluid motion. The generalized mathematical model of thermal transport can be particular-

ized to obtain the classical Cattaneo’s law, respectively the classical Fourier’s law. 

In this article, we used the Caputo fractional derivative because many theoretical and 

experimental studies have shown that mathematical models based on this fractional de-

rivative lead to results that are in good agreement with the theoretical results. However, 

in a later study, the authors intend to study a model based on the generalized Atangana-

Baleanu derivative [17]. This fractional derivative generates by particularization the Ca-

puto, Caputo-Fabrizio and Atangana-Baleanu derivatives. The study of such a model will 

lead to a good comparison between the described model of whole order derivatives and 

the four fractional derivatives. 

The effect of the history of the temperature gradient on the thermal transport and the 

fluid movement has been highlighted by numerical simulations and graphic illustrations 

by considering the temperature of the cylindrical surface varying exponentially with time. 

A comparison of the three models, the generalized Cattaneo, the classic Cattaneo, and the 

Fourier, gives information on the optimal choice of the thermal transport model. 

2. Statement of the Problem 

Consider the unsteady flow of an incompressible, electrically conducting Casson 

fluid over a semi-infinite vertical circular cylinder of radius Ro. The 
~

z -axis of a cylindrical 

coordinate system ( ), ,r z  is taken along the axis of cylinder in the vertical upward di-

rection. The gravitational acceleration g is acting downward, zg ge= −  (Figure 1). A mag-

netic field
0 rB B e= , 0B =  constant is applied to the fluid. 

 

Figure 1. Flow geometry. 

The rheological equation of state for the Cauchy stress tensor of Casson fluid is given 

by 
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where ( )ij = , , 1,2,3i j =  is the shear stress tensor, ij ije e = , ije is the ( )thij  compo-

nent of the deformation rate tensor, c  is a critical value of the product  , B  is a plas-

tic dynamic viscosity of the non-Newtonian fluid, 

2
,B

yP
 


=  (2) 

where yP  denotes the yield stress of the fluid. If a shear stress less than the yield stress is 

applied to the fluid it behaves like a solid, whereas if a shear stress greater than yield stress 

is applied, the fluid starts to move. The non-Newtonian Casson fluids flow if c  . De-

noting 

,
2

y

B

P
 


= +  (3) 

the dynamic viscosity, we obtain the kinematic viscosity 

1

12
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y

B BB

B

P

v

 
 

    

++
 

= = = = + 
 

 
(4) 

where   is the mass density and   is called the Casson parameter. 

In this paper, we consider the velocity field of the form ( ) ( ), , , , zv r z t u r t e = . The 

fluid temperature T  is considered as function of ( , )r t , therefore ( ),T T r t= , and the 

heat flux vector is given by ( , ) rq q r t e= . Taking into consideration the above assumption 

and the Boussinesq’s approximation, the flow and heat transfer are governed by the fol-

lowing partial differential equations [1, 2]: 

The continuity equation 

( )1 1
0r z

uru u

r r r z





 
+ + =

  
 (5) 

The z -component of the linear momentum equation 

( )( )
2

0( , ) 1 1 ( , )
(1 ) , ( , )

Bu r t u r t
r g T r t T u r t

t r r r


 

 


   
= + + − − 

   
 (6) 

The balance energy equation 

( , )
P

T r t
c divq

t



= −


 (7) 

The Cattaneo-Vernotte’s constitutive equation 

( )
( )

( )( )
,

, , ,q

q r t
q r t k grad T r t

t



+ = −


 (8) 

where   is the thermal expansion coefficient,   is the electrical conductivity of the 

fluid, pc  is the specific heat, q  is the thermal relaxation time and k  is the thermal con-

ductivity of the fluid. Under the velocity field assumption, we have 
0, 0, ( , )r zu u u u r t= = = , therefore the continuity Equation (5) is identically satisfied. 

The divergence operator in cylindrical coordinate is 
1 1

( ) z

r

q q
divq rq

r r r z





 
= + +

  
. 

Since ( , )
r

q q r t= , 0q

= , 0

z
q = , we obtain 
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( )( )1
, .divq rq r u

r r


=


 (9) 

Also, ( )
( ) ( ) ( ), , ,1

, r z

T r t T r t T r t
gradT r t e e e

r r z




  
= + +

  
. Therefore, 

( )
( ),

, .r

T r t
gradT r t e

r


=


 (10) 

Along with the above equation, we consider the initial-boundary conditions 

( ) ( ) ( )  )

( ) ( ) ( )

( ) ( )

0

0 0 1

,0 0, ,0 , ,0 0, , ,

, 0, , , 0,

, 0, , .

u r T r T q r r R

u R t T R t T T f t t

u r t T r t T r



 



= = =  

= = + 

→ → →as

 (11) 

In the above relations function 1( )f t  is a piecewise function of exponential order to 

infinity. Using the following dimensionless parameters and functions, 

( )

3

0 0 0

2 2

0 0

2

0

0 0 12

0

, , , , , ,

, , Pr , ,
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a
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r t u T q Gr

R vR vT kT
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H B R f t f
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−
= = = = = =

 
= = = =  

 

 (12) 

we obtain the non-dimensional equations: 

21 1
1 a

u u
r GrT H u

t r r r

    
= + + −   

    
 (13) 

q T
q

t r

 

+ = −
 

 (14) 

1
Pr ( )

T
rq

t r r

 
= −

 
 (15) 

The non-dimensional forms of Equation (11) are 

( ) ( )  )( ,0) 0, ,0 0, ,0 0, 1, ,u r T r q r r= = =    (16) 

( ) ( ) ( ) ( ) ( )1, 0, 1, , lim , 0, lim , 0,
r r

u t T t f t u r t T r t
→ →

= = = =  (17) 

2.1. The Generalized Fractional Mathematical Model 

In this paper, we consider a generalized Cattaneo’s law given by the constitutive 

equation of the thermal flux, 

( ) ( )
( )

( 0

,
, , , 0,1C

t

T r t
q r t D q r t

r

 


+ = − 


 (18) 

where ( ),tD q r t  denotes the Caputo time-fractional derivative operator defined as 

[18,19] 

( )
( )

( ) ( )

( )
( )

0

0

1
, , 0 1,

1
,

,
, , 1.

t

C

t

t q r d

D q r t
q r t

q r t
t





   




−
−   −

= 


= = 


 (19) 

Let ( ),Ch t  be the Caputo kernel given by 
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( )
( )

, , 0 1.
1

C t
h t



 


−

=  
 −

 (20) 

Using (19) and (20), the time-fractional Caputo derivative is written as a convolution, 

namely, 

( ) ( )
( )

0

,
, , * .C C

t

q r t
D q r t h r t

t




=


 (21) 

Using (19), (21) and the properties of the Laplace transform [20], we obtain 

( )  ( ) 
( )

( )  ( )

( ) ( )  

0 1

1

, 1
, , . , ,0

ˆ , ,0 , 0,1 ,

C C

t

q r t
L D q r t L h r t L sL q x t q r

t s

s q r s s q r





  

−

−

  
 = = − =     

− 

 (22) 

where ( ) ( )  ( )
0

ˆ , , , stq r s L q r t q r t e dt



−= =   denotes the Laplace transform of function 

( ),q r t . 

3. Solution of the Generalized Mathematical Model 

To determine the solution of the proposed problem, the Laplace transform and Bessel 

functions are used. 

3.1. Solution of the Generalized Thermal Process 

In this section, we find the solution of the Equations (15) and (18) along with the 

initial and boundary conditions 

( ) ( ),0 0, ,0 0T r q r= =  (23) 

( ) ( ) ( )1, , lim , 0, 0.
r

T t f t T r t t
→

= =   (24) 

Applying the Laplace transform to Equations (15) and (18) and using (22) and (23) 

we obtain the transformed equations 

( )( )
1ˆ ˆPr ( , ) ,sT r s rq r s
r r


= −


 (25) 

( )
( )ˆ ,

ˆ1 ( , ) .
T r s

s q r s
r




+ = −


 (26) 

The Laplace transform ( )ˆ ,T r s  has to satisfy the boundary conditions  

( ) ( ) ( )ˆˆ ˆ1, , lim , 0.
r

T s f s T r s
→

= =  (27) 

Eliminating ( )ˆ ,q r s  between Equations (25) and (26) we have that ( )ˆ ,T r s  satisfies 

the differential equation 

( ) ( )
( )ˆ ,1ˆ , ,

T r s
s T r s r

r r r


 
=  

   

 (28) 

where  

( ) ( )Pr 1 .s s s = +  (29) 

Equation (28) is written in the equivalent form  

( ) ( )
( )( ) ( )

2
2

2

2

ˆ ˆ, , ˆ , 0,
T r s T r s

r r s T r s
r r


 

+ − =
 

 (30) 

that is a modified Bessel equation with the general solution [21,22], 
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( ) ( ) ( )( ) ( ) ( )( )
2

0 0
ˆ , ,T r s A s I r s B s K r s = +  (31) 

where ( )0I z , ( )0K z  are the modified Bessel functions of the first and second kind of 

order zero, and ( )A s , ( )B s  will be determined from the boundary conditions. 

Since ( )( )0lim
r

I r s
→

= +  and ( )( )0lim 0
r

K r s
→

= , we must consider ( ) 0A s =  in 

order to have a finite temperature for r → . Now, using the second boundary condition 

(27), we obtain the following form of the transformed temperature: 

( ) ( )
( )( )
( )( )

0

0

ˆˆ , .
K r s

T r s f s
K s




=  (32) 

Because the inverse Laplace transform of function (32) cannot be obtained in a simple 

analytical form, the numerical values of the temperature ( )  1 ˆ, ( , )T r t L T r s−=  are deter-

mined by using the Stehfest’s algorithm [23]. According with Stehfest’s algorithm, the 

temperature is approximated by 

( )
2

1

ln 2 ln 2ˆ, , ,
n

j

j

T r t D T r j
t t=

 
 
 

  (33) 

where  

( )
( )

( ) ( ) ( ) ( )

( )min ,

1

2

2 !
1 .

! ! 1 ! ! 2 !

nj n
j n

j

j
i

i i
D

n i i i j i i j

+

+ 
= 
 

= −
− − − −

  (34) 

In the above relations,  x  denotes the integer part of x , and n  is an integer 

positive number. 

Let’s note that for ( )0,1  and 0  , the solutions (32) and (33) give the tempera-

ture field corresponding to the generalized fractional Cattaneo thermal process. If 1 =  

and 0  , Equations (32) and (33) give the temperature of the classical Cattaneo thermal 

process. For 0 = , Equations (32) and (33) are the solutions of the thermal process de-

scribed by the classical Fourier’s law. 

3.2. Fluid Velocity 

The fluid velocity is given by the solution of differential Equation (13) along with the 

initial and boundary conditions (16) and (17). 

Applying the Laplace transform to Equation (13), using the initial condition (16), and 

the expression (32) of the temperature we obtain the following equation of the trans-

formed velocity ˆ( , )u r s : 

( ) ( )
( ) ( )

( )( )
( )( )

2 2
0

02

0 0 0

ˆ ˆ, ,1 1ˆˆ , , 1 .
K r su r s u r s s Ha Gr

u r s f s
r r r K s




  

  +
+ − + = +

 
 (35) 

A particular solution of Equation (35) in given by 

( )
( )

( )

( )( )
( )( )

0

2

0 0

ˆ
ˆ , .p

K r sGrf s
u r s

s s Ha K s



  
= −

− −
 (36) 

The homogenous equation associated with Equation (35) is the modified Bessel equa-

tion 

2
2 2

2

2

0

ˆ ˆ
ˆ 0.

u u s Ha
r r r u

r r 

   +
+ − = 

  
 

 (37) 
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whose general solution is 

( ) ( ) ( ) ( )( )0 0
ˆ , ( ) ,hu r s C s I r s D s K r s = +  (38) 

where 
( )

2

0

s Ha
s



+
=

. 

To have the finite velocity for r → , we must take ( ) 0C s = . The general solution 

of Equation (35) is 

( ) ( ) ( ) ( )( )0 0
ˆ , ( ) .u r s D s K r s M s K r s = +  (39) 

where 

( )
( )

( ) ( )( )2

0 0

ˆ
.

Gr f s
M s

s s Ha K s  
= −

 − −   

Using the boundary condition ˆ(1, ) 0u s = , we have 

( )
( ) ( )( )

( )( )
( )

( ) ( )( )
0

2

0 0 0

.
M s K s Gr f s

D s
K s s s Ha K s



   
= − =

 − − 

 (40) 

The transformed velocity field is given by 

( )
( )

( )

( )( )
( )( )

( )( )
( )( )

0 0

2

0 0 0

ˆ
ˆ , .

K r s K r sGr f s
u r s

s s Ha K s K s

 

   

 
 = −
  − −    

 (41) 

The numerical values of the velocity field in the real domain are obtained using the 

Stehfest’s algorithm, namely, 

( )
2

1

ln 2 ln 2
ˆ, , ,

n

j

j

u r t D u x j
t t=

 
 
 

  (42) 

where jD  is given by (34). 

4. Discussion 

The unsteady axial symmetric flow of an incompressible and electrically conducting 

Casson fluid over a vertical cylinder with time-variable temperature, in the presence of a 

transversely applied magnetic field is studied. The temperature of the cylinder surface is 

described by a function of time that is a piecewise continuous function for [0, )t   and 

of exponential order to infinity. 

In this study, we have considered a fractional generalized mathematical model based 

on the time-fractional differential equation of Cattaneo’s law with the Caputo derivative. 

In this way, our model is able to highlight the effect of the temperature gradient history 

on the heat transport and fluid motion. 

The generalized mathematical model of thermal transport can be particularized to 

obtain the classical Cattaneo’ law, when the memory parameter is 1 = , respectively the 

classical Fourier’s law when the thermal relaxation time   is equal to zero. In this way, 

the comparison of the three models leads to choose the optimal model of the heat 

transport. 

In order to analyze the influence of several system parameters on the heat transfer 

and fluid flow some numerical simulations are made considering the nondimensional cyl-

inder temperature given by the function ( )/10( ) 15 1 tf t e−= −  whose Laplace transform is 

15ˆ ( )
(10 1)

f s
s s

=
+

. The numerical results are presented in graphical illustrations in Figures 

2–9. 
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The variation of the dimensionless temperature ( , )T r t , for small values of time and 

for different values of the fractional parameter   are shown in Figure 2. The temperature 

profiles were drawn for three cases corresponding to the fractional mathematical model 

but also for the classic cases of thermal transport Cattaneo, respectively Fourier. 

As expected, the Fourier heat transfer model generates higher temperatures than the 

fractional and classic Cattaneo models. This is due to the fact that in the case of the latter 

models the history of the temperature gradient influences the evolution in time of the 

thermal flux, so the whole process of thermal transport. It should also be noted that the 

weight function that affects the temperature gradient in the case of the classic Cattaneo 

model is 1( ) exp( / ),k t t = − while in the fractional Cattaneo model it is 
1

2 ,( ) ( / ),k t t E t 

  −= −  where, , ( )E    is two-parameters Mittag-Leffler function [24]. 

Obviously, 2 1
1

lim ( ) ( )k t k t
→

= . This is visible in Figure 2 where, for 0.9 =  the temperature 

profile is close to that corresponding to 1 = . 

 

Figure 2. The profiles of the nondimensional temperature ( , )T r t  for different values of the frac-

tional parameter. 

The time variation of the nondimensional temperature ( , )T r t  is shown in Figure 3. 

As we discussed results obtained in Figure 2, it is more clearly in Figure 3 that the memory 

effects have different influences for small values of time, respectively large values of the 

time t. It is observed in Figure 3 that at small values of the time t, the fractional Cattaneo’s 

law leads to higher temperatures than that corresponding to the classical Cattaneo’s law, 

but, for large values of time, the fractional models generate the smallest temperatures. 

Moreover, for high values of time t, the temperature field tends to have a constant value. 

This value is the same for all the analyzed models. On the one hand, this property results 

from numerical simulation, but it can also be justified theoretically using the following 

property: 

0

ˆlim ( ) lim ( )
t s

f t sf s
→ →

=  (43) 

Using Equation (32) and the property (43), we obtain 
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( )
( )

( )
( )

0 0

0 0
0 0

( ) ( )
ˆlim ( , ) lim ( ) lim ( ) lim

( ) ( )t s t s

K r s K r s
T r t sf s f t

K s K s

 

 → → → →
= =  (44) 

Using the asymptotic approximations of Bessel functions [25] 

ln , 0,
2

( )
( ) 2

, 0,
2

z

K z

z



 





− − =


= 
      

 (45) 

if 0 1z   + , we get 
( )
( )

0

0
0

( )
lim 1

( )s

K r s

K s



→
= , therefore, lim ( , ) lim ( )

t t
T r t f t

→ →
= . In the consid-

ered case lim ( , ) lim ( ) 15
t t

T r t f t
→ →

= = . 

 

Figure 3. Time-variation of the nondimensional temperature ( , )T r t  for different values of the frac-

tional parameter. 

The variation of dimensionless temperature ( , )T r t  with the fractional parameter   

is shown in Figure 4. It is seen in this figure that the temperature is increasing with the 

fractional parameter. However, for high values of time, the influence of the fractional pa-

rameter on the temperature is insignificant. This is due to the time evolution of the frac-

tional kernel 2 ( )k t  that decreases to zero when t → .The influence of the thermal re-

laxation time on the thermal field is shown in Figure 5. It is seen that the temperature 
decreases with the relaxation time  . 
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Figure 4. The influence of the fractional parameter   for different values of the fractional param-

eter. 

 

Figure 5. The influence of the thermal relaxation   on the temperature field. 

Fluid motion is analyzed by the graphs in Figures 6–9. Figure 6 shows the velocity 

profiles versus the radial variable r, for different values of the fractional parameter  . It 

is observed that there is a perfect correlation between the evolution of fluid temperature 

and velocity concerning the memory parameter  , namely, the velocity values decrease 

with the memory parameter  . On the other hand, the velocity has a maximum value 

near the cylindrical surface and tends to zero away from it. 

Figure 7 shows the time variation of the fluid velocity in several spatial positions for 

different values of the time-variation. As in the case of temperature, for small values of 

time, the influence of thermal memory is significant, but it decreases for large values of 

time. Note that using Equations (41) and (43), we obtain the following expression for the 

velocity of the fluid for high values of time t: 

( )
( )

0 0

20
0 0

/
ˆlim ( , ) lim ( , ) 1 lim ( )

/t s t

K rHaGr
u r t su r s f t

Ha K Ha



→ → →

 
 = = −
 
 

 (46) 

The influence of the Casson parameter 0  on the fluid motion is shown in Figure 8. 

It can be seen that at low values of time, the fluid velocity is increasing with the Casson 

parameter 0 , but has an opposite character for high values of the Casson parameter. 

This fact is due to for increasing of Casson parameter the fluid viscosity increases, there-

fore the fluid motion is slowed down. 
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Figure 6. Velocity profiles ( ),u r t  versus r for different values of the fractional parameter  . 

 

Figure 7. Time variation of the fluid velocity ( ),u r t . 
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Figure 9 is drawn to highlight the influence of the Grashof number on fluid motion. 

Note that the fluid velocity increases with the Grashof number. This is obvious because 

increasing the value of the Grashof number leads to an increase in buoyancy. 

 

Figure 8. The variation of the fluid velocity with the Casson parameter o . 

 

Figure 9. The influence of Grashof number Gr on the fluid velocity. 
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