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Abstract: Coronavirus disease (COVID-19), which affects the whole world, continues to spread. This
disease has infected and killed millions of people worldwide. To limit the rate of spread of the
disease, early detection should be provided and then the infected person should be quarantined. This
paper proposes a Deep Learning-based application for early and accurate diagnosis of COVID-19.
Compared to other studies, this application’s biggest difference and contribution are that it uses Tree
Seed Algorithm (TSA)-optimized Artificial Neural Networks (ANN) to classify deep architectural
features. Previous studies generally use fully connected layers for end-to-end learning classification.
However, this study proves that even relatively simple AlexNet features can be classified more
accurately with the TSA-ANN structure. The proposed hybrid model provides diagnosis with 98.54%
accuracy for COVID-19 disease, which shows asymmetric distribution on Computed Tomography
(CT) images. As a result, it is shown that using the proposed classification strategy, the features of
end-to-end architectures can be classified more accurately.

Keywords: ANN; AlexNet; COVID-19; transfer learning; TSA

1. Introduction

The SARS-CoV-2 virus, which emerged in 2019, affected the whole world and is
still an ongoing problem all over the world [1,2]. Although it is proclaimed by the
World Health Organization (WHO) that the mortality rate of the virus is lower than
other coronaviruses, the high spread rate of the virus obligated the WHO to declare
the virus, also called COVID-19, as a pandemic on 11 March 2020 [3–5]. Due to the
contagious effect of COVID-19, curfews were imposed in many countries and social life
was restricted. Because of this restriction, people spent more time at home and used social
media platforms more intensively [6]. Worldwide, from 8 December 2020 to the present
(10 June 2022), more than 530 million people have been infected and 6.3 million deaths
have occurred due to COVID-19 [7]. Fever, dry cough, loss of appetite, and fatigue are
the most common symptoms of COVID-19. In some cases it is possible to encounter liver
injury, septic shock, and pneumonia [8].

The main diagnostic approaches in COVID-19 today are generally real-time Reverse
Transcription Polymerase Chain Reaction (rRT-PCR), chest Computed Tomography (CT)
imaging, X-ray imaging, etc. [9]. The rRT-PCR is a method that reveals the presence of a
specific genetic sequence in a pathogen which can be a virus. The most important advantage
of this method is the ability to create an almost instant result. Therefore, the rRT-PCR test
is the most-used diagnostic method to detect COVID-19 [10]. However, the percentage
of rRT-PCR positives in throat swab samples is reported as roughly 30–60% because of
limitations in sample collection, kit performance and transportation [11,12].

The most common alternative to rRT-PCR is chest Computed Tomography (CT) imag-
ing. CT images of different angles of the chest area are used for COVID-19 diagnosis. This
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method has better sensitivity in COVID-19 diagnosis than rRT-PCR tests [9,12]. Unlike the
rRT-PCR test, CT imaging does not need any extra equipment over hospital equipment.
Although the CT imaging method has many advantages as mentioned above, the main
disadvantage of the CT imaging method is that professional personnel are required for
the interpretation of CT images [13]. Although this need can be easily met under normal
conditions, the heavy workload of specialist doctors can cause problems in pandemic
conditions. All healthcare professionals are also under a heavy workload, as the COVID-19
pandemic is causing significant constraints on healthcare systems around the world [14].

Recently, Artificial Intelligence (AI), which represents a symmetrical imitation of
the human brain, is becoming more capable in many areas including medical imaging
tasks such as CT imaging, MR imaging, and X-ray imaging [13]. In literature, AI has
been employed for various tasks such as bone age determination, COVID-19 diagnosis,
abnormal problems in the chest or tuberculosis detection etc. [15–17]. Deep Learning (DL),
which is the trend application of artificial intelligence today, is now successfully used in
many medical diagnostic applications due to the huge amount of data available. One of
the most important features of DL is that it processes big data efficiently. It also eliminates
the need to manually extract image features. In this respect, it provides superiority to
Machine Learning (ML) methods such as Support Vector Machines (SVM) and Artificial
Neural Networks (ANN). In DL, hierarchical feature extraction is performed by deriving
high-level features from lower-level features.

Researchers have conducted numerous studies in the past to diagnose COVID-19
based on Convolutional Neural Networks (CNN) to take advantage of DL. Most of these
works use popular CNN architectures such as AlexNet, ResNet, Xception, etc. Wu et al. [18]
presented a ResNet50 architecture-based algorithm to identify COVID-19 patients, and
their accuracy rate was 76%. Ardakani et al. [19] presented a DL-based application using
CT scan images to diagnose COVID-19. They benchmarked different CNN models trained
on CT scan images with each other, and finally calculated that ResNet-101 and Xception
models had 99.51% and 99.02% accuracy rates, respectively. These models had better accu-
racy than the other CNN models. Jaiswal et al. [20] developed a transfer learning-based
application using the pre-trained Densenet 201 architecture. This CNN module classified
COVID-19 and non-COVID-19 data with 96.21% accuracy. Wang et al. [21] stated that
a clinical diagnosis can be achieved before pathogenic testing with AI techniques, and
in this context, they conducted a study that analyzed changes in CT images of infected
patients. For this, they modified the pre-trained Inception model. The overall accuracy
was 89.66%. Sethy and Behera [22] extracted features using a large number of different
pre-trained CNN models such as ResNet50, ResNet101, InceptionV3, GoogleNet, and
VGG16. The authors then provided the classification with SVM. They stated that the
ResNet-SVM structure provides high accuracy of 95.33%. Deng et al. [23] used five CNN
models, including Xception, ResNet50, etc., to diagnose COVID-19 from chest X-ray and
CT images. They achieved accuracies of 84% and 75% for Chest X-ray and CT scan im-
ages, respectively. Narin et al. [24] used CNN models, ResNet50, Inception-ResNetV2,
InceptionV3, ResNet152, and ResNet101 for diagnosis of COVID-19-infected patients
using chest X-ray images. The ResNet50 model gave the most successful classification ac-
curacy according to the performance values obtained using five-fold cross-validation.
Aslan et al. [13] performed a novel hybrid model to classify chest X-ray images as
COVID-19, Viral Pneumonia, or Normal. For hybrid architecture, they combined modified
AlexNet and Bidirectional Long Short-Term Memory (BiLSTM). At the end of the study,
the authors stated that the hybrid architecture achieved 98.702% classification success.
Mukherjee et al. [25] designed a CNN—tailored Deep Neural Network (DNN) that can
collectively train and test both CT scans and chest X-ray images. In practice, the authors
provided an overall accuracy of 96.28%. Aslan et al. [26] first performed lung segmenta-
tion with ANN for the detection of COVID-19 with CT images. They classified features
extracted from segmented lung images with deep CNN models using different machine
learning methods. They determined the parameters of each machine learning model
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by hyperparameter optimization. At the end of the study, the authors stated that the
highest accuracy was obtained with the DenseNet201-SVM structure, with an accuracy
of 96.29%. Serte et al. [27] used a generative adversarial network (GAN) in addition to
data augmentation to increase the number of CT samples in a small dataset. They then
fed the images generated with data augmentation and GAN into different CNN models
and performed COVID-19 detection. At the end of the study, 89% diagnostic accuracy
was achieved.

It is possible to observe that previously made DL-based methods often have high
classification success in detecting COVID-19. These studies are promising in terms of
early COVID-19 detection, but many hyperparameters which belong to the DL network
may increase also the success rate of the detection of infection. In literature, Artificial Bee
Colony (ABC) [28], Bayesian Optimization [29], Tree Seed Algorithm (TSA) [30], and other
optimization methods are used in various fields. These optimization techniques can tune
hyperparameters in the deep network for a stronger prediction. However, for the detection
of COVID-19, few studies have used optimization methods to improve current success.
Ucar and Korkmaz [31] used Bayesian optimization to fine-tune the hyperparameters of
the SqueezeNet CNN architecture, and as a result, they achieved a classification success of
98.3%. Nour et al. [32] designed a CNN model with five convolution layers for COVID-19
diagnosis. The deep-network features obtained with this CNN model were used to feed the
ML algorithms, the k-nearest neighbor, SVM, and decision tree. The hyperparameters of
the ML methods have been optimized using the Bayes optimization algorithm. As a result,
the highest classification accuracy of 98.97% was obtained with SVM. Elaziz et al. [33]
applied a modified Bayesian optimization algorithm together with an ML for the selection
of useful features from CT images. Toğaçar et al. [34] used MobileNetV2 and SqueezeNet
architectures to detect COVID-19. The most effective features were determined with the
Social-Mimic Optimization method. Then, the features were fused and classified with the
SVM algorithm, and their accuracy rate was 99.27%.

In this study, a DL-based COVID-19 detection system using CT-scans is proposed. A
publicly available SARS-CoV-2 CT scan dataset [35,36] is used in this study. The dataset
includes 1230 and 1252 CT scans of uninfected and infected patients, respectively. The
application of COVID-19 detection can be addressed in two steps. The first step performs
feature extraction and classification by modifying the pre-designed AlexNet architecture,
as in many previous studies. The second step gives the extracted features to the optimized
ANN classifier to improve the results in the first step. The ANN is trained by Tree Seed
Algorithm (TSA) optimization method. In order to determine the best structure, various
transfer functions and hidden layer neuron numbers are examined. The results prove that
optimized ANN increases classification success.

The contributions of this study are listed as follows:

• A high-accuracy diagnosis of COVID-19 has been performed automatically.
• To improve the classification performance of end-to-end architectures, ANN is applied

instead of fully connected layers.
• For a high classification performance, ANN is optimized by the TSA method.
• The proposed method can increase the diagnostic accuracy of previous studies using

the CNN model.
• The applied experimental work outperforms many previous studies.

The remainder of the paper is organized as follows. In Section 2, the dataset and
suggested methods are explained in detail. Section 3 contains the results of the proposed
method. Section 4 discusses the proposed method and makes comparisons with previous
studies. Finally, Section 5 concludes the work overall and provides information about
future work.

2. Materials and Methods

This section provides detailed information about the dataset, TSA optimization,
mAlexNet architecture, and the proposed hybrid model.
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2.1. SARS-CoV-2 Ct-Scan Dataset

In this study, a publicly available dataset called SARS-CoV-2 Ct-Scan Dataset [35,36]
is used due to having large numbers of data and the ability to compare previous studies
done with this dataset. Five researchers from Lancaster University United Kingdom
and Public Hospital of the Government Employees of Sao Paulo created this dataset
with 1252 infected patients’ CT scans and 1230 uninfected patients’ CT scans in May
2020. There are a totally of 2482 CT scans in the dataset. The data in this dataset were
generated by collecting asymmetrical CT scans of real patients in hospitals in Sao Paulo,
Brazil. CT scans of two patients with positive and negative diagnosis of COVID-19 are
shown in Figure 1.
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Figure 1. Positive and negative images in the SARS-CoV-2 Ct-Scan dataset. (a) CT scan of a patient
infected with COVID-19; (b) CT scan of a patient not infected with COVID-19.

2.2. The Tree Seed Algorithm (TSA)

The TSA algorithm is based on natural phenomena between trees and their spread
seeds. The land where trees are grown is assumed as search space. Each tree is a solution
candidate for the problem to be optimized. The seeds are produced by the trees in order
to grow a new tree, which is going to be a candidate for the solution of the problem.
The purpose of the optimization process is to generate new coordinates of the seeds
using the available information. Two equations used for this purpose are presented in
Equations (1) and (2) [30].

Sij = Tij+ ∝ij ×
(

Bj − Trj
)

(1)

Sij = Tij+ ∝ij ×
(
Tij − Trj

)
(2)

In Equations (1) and (2), Sij represents the jth dimension of ith seed and Tij is the jth
dimension of the ith tree. Bj is the jth dimension of the best tree ever found. Trj is the
jth dimension of the rth tree, which is randomly selected from the population. ∝ is the
scaling factor which is randomly produced between 1 and −1. In seed production, two
equations are presented, thus there has to be a criterion that determines which equation
will be used. This is controlled by the search tendency (ST) parameters in the range of 0
to 1. While the higher value of ST makes the algorithm condense on local solutions, the
lower ST value forces it to make a global search. Although the number of seeds produced
by a single tree was completely random, TSA’s performance analysis determined that TSA
performed best when the number of seeds produced by each tree was between 10% and
25% of the population size [30].

In the initial of the algorithm, the optimization parameters are created randomly in a
range of specific upper and lower bounds for each parameter. Then, for each dimension
of each seed of each tree in the population, Equation (1) or Equation (2) is randomly
applied and new seeds are created. The termination criteria are checked each iteration.
These criteria may be the number of iteration limits, error threshold or no change in error,
etc. When termination criteria are met, the best result in the population is reported. The
flowchart of TSA is presented in Figure 2.
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2.3. Proposed mAlexNet Architecture

Due to the high performance of CNNs in various image recognition applications,
they are highly preferred [37,38]. In this study, to classify the CT-scan images, a modified
AlexNet (mAlexNet) created by using transfer learning is used. AlexNet is made up of
25 layers together with a convolution layer, Rectified Linear Unit (ReLU), fully connected
(fc) layer, normalization layer, pooling layer, etc. The three layers at the end of the AlexNet
model have been slightly modified (fine-tuning) to be compatible with existing study inputs.
In order to distinguish whether a CT image shows COVID-19 or not, these final three layers
are removed. Other parameters of the pre-trained AlexNet architecture are retained. Instead
of the removed layers, new layers suitable for this study are added, as in Figure 3. This
new architecture is called the modified AlexNet (mAlexNet). In the fc8 layer of pre-trained
AlexNet, the number of the neurons is 1000. The number of features used for classification
in our application is 25. Therefore, the number of neurons in the fc8 layer is changed to
25 in the mAlexNet architecture. In Figure 3, the mAlexNet structure is presented. Table 1
shows the layer parameters and training options of mAlexNet. When the training options
are examined, it can be realized that the Mini Batch parameter, which provides the training
data to be divided into smaller parts, is 40. The optimization algorithm Stochastic Gradient
Descent with Momentum (SGDM) is applied to reduce the training error. Parameters of the
SGDM algorithm are also shown in Table 1.

θl+1 = θl − α∇E(θl) + γ(θl − θl−1) (3)
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Table 1. mAlexnet layer parameters and training options.

Layer Name Size Filter Size Stride Padding Output Channel Activation Function

conv1 55 × 55 11 × 11 4 0 96 relu
maxpool1 27 × 27 3 × 3 2 0 96 -

conv2 27 × 27 5 × 5 1 2 256 relu
maxpool2 13 × 13 3 × 3 2 0 256 -

conv3 13 × 13 3 × 3 1 1 384 relu
conv4 13 × 13 3 × 3 1 1 384 relu
conv5 13 × 13 3 × 3 1 1 256 relu

maxpool5 6 × 6 3 × 3 2 0 256 -
fc6 - - - - 4096 relu
fc7 - - - - 4096 relu
fc8 - - - - 25 relu
fc9 - - - - 2 softmax

Training Options

Optimization Alg. Maximum Epoch Mini Batch Size Initial Learning Rate (α) Momentum (γ)

SGDM 25 40 0.001 0.95

With SGDM, the weights of the network are updated according to the estimation error.
Equation (3) is used to update the weights. With this equation, the weights are updated
according to the loss function (E(θl)). In order for the error value to decrease after each
update, the loss function is moved in the direction of the negative gradient. The speed of
this movement depends on the learning rate (α). The contribution of the current weight
value to the weight value in the previous iteration is determined by the Momentum (γ)
coefficient. The values of α and γ parameters in Equation (3) are shown in Table 1.

2.4. Proposed TSA-ANN Model

This section discusses the classification of mAlexNet features using TSA-optimized
ANN (TSA-ANN). The mAlexNet architecture described in the previous section is com-



Symmetry 2022, 14, 1310 7 of 13

bined with the TSA-ANN structure as in Figure 4. 25; features extracted via mAlexNet are
given to the TSA-ANN structure for classification.
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The proposed ANN modsel consists of an input layer, two hidden layers, and an
output layer. In the input layer, there are 25 neurons. It is also the same as the size of the
input features. The number of neurons in both hidden layers is determined to be five by
the trial and error method. The output layer has a single neuron.

The activation functions used in the neural network are Hyperbolic Tangent Sigmoid
and Logarithmic Sigmoid functions. Since the range of the output layer is [0 1], the
activation function of the output layer is determined to be a Logarithmic Sigmoid function.
The activation functions of hidden layers are determined to be Hyperbolic Tangent Sigmoid
functions by the trial and error method. The Logarithmic Sigmoid and Hyperbolic Tangent
Sigmoid functions are presented in Equations (4) and (5), respectively.

AF(x) =
1

1 + e−x = logsig(x) (4)

AF(x) =
ex − e−x

ex + e−x = tansig(x) (5)
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The applied input data are transferred to each neuron in the first hidden layer by
multiplying the corresponded coefficient W(k,i,j). The (k, i, j) indexes indicate the connection
coefficient in the kth layer, between ith data and jth neuron. For each neuron, there
is also a bias value represented by B(k,j) symbol. Then, the sum all of the inputs to a
neuron is applied to an Activation Function (AF). The result of this function is the value
of the neuron. This value of the jth neuron in the kth layer V(k,j) can be calculated by the
following formula:

V(k,j) = AF

(
Nk−1

∑
i=1

V(k−1,i)W(k,i,j) + B(k,j)

)
(6)

where the Nk−1 is the number of neurons in the (k − 1)th layer. As seen from the formula,
in each layer, there are Nk−1 ∗ Nk W parameters and Nk B parameters. Thus, the total
number of parameters that need to be optimized is (Nk−1 + 1) ∗ Nk. In Table 2, the number
of neurons, activation functions, and parameter count of each layer are presented.

Table 2. Neural network properties.

Layers Number of Neurons Activation Function Parameter Count

Layer 1 (Input Layer) 25 - -
Layer 2 (1st Hidden Layer) 5 Hyperbolic Tangent Sigmoid 130
Layer 3 (2st Hidden Layer) 5 Hyperbolic Tangent Sigmoid 30

Layer 4 (Output Layer) 1 Logarithmic Sigmoid 6

As presented in Table 2, the weight and bias values of each layer after the input layer
of the ANN are optimized with TSA. This optimization process can be thought of as the
training phase of the network. For example, 25 × 5 + 5 = 130 parameters for Layer 2,
5 × 5 + 5 = 30 parameters for Layer 3 and 5 × 1 + 1 = 6 parameters for the output layer
should be optimized. This optimization process aims to minimize the error value. Therefore,
the objective function is related to the error between the target value and the predicted
value. A total of 166 network parameters need to be optimized for the training of the
network. During this period, the training dataset is used. The Mean Absolute Error (MAE)
(see Equation (7)) for the training dataset generated by the ANN with network parameters
is used as the objective function of TSA optimization. The n, y, and ŷ in Equation (7)
represent the number of data, the actual output value, and the estimated output value,
respectively. During the optimization, the error value is reduced in each iteration. After
the optimization is completed, the ANN is updated with the determined parameters. This
ANN is called a trained ANN from now on. The performance of the trained ANN is
determined by using a test dataset. These results are presented in detail in Section 3.

MAE =
1
n ∑|y− ŷ| (7)

3. Results

The performance of both architectures expressed above is calculated by using a test
dataset. Both architectures are created with the architectural parameters specified in Table 1.
Training and testing of the methods developed within the scope of this application are
carried out on a laptop computer with Intel Core i7-7700HG CPU, NVIDIA GeForce GTX
1050 4 GB, 16 GB RAM. Firstly, 80% of the COVID-19 dataset is used in the training of
the mAlexNet structure in Figure 3. The training graph is successfully obtained as seen
in Figure 5. Then, the performance of mAlexNet is tested with the remaining 20% of the
dataset, called the test dataset.
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Figure 6 shows the confusion matrix of mAlexNet and TSA-ANN implementations.
Figure 6a is the confusion matrix obtained by classifying test data with mAlexNet. Figure 6b
is the confusion matrix obtained as a result of the application that enables classification of
mAlexNet features with the optimized ANN (TSA-ANN) structure. The parameters used
for the optimization algorithm in the TSA-ANN application are as follows: population size:
50, number of iterations: 1000, and search tendency: 0.1. When both confusion matrices are
examined, it is seen that COVID-19 infected scans with asymmetrical patterns are more
successfully diagnosed with the TSA-ANN structure. Additionally, various performance
metrics such as accuracy, specificity, MCC, F1-score, recall, and precision are calculated and
presented. For each metric, formulations are given between Equations (8)–(13) [13,39,40].
These metrics prove the robustness and unbiasedness of the classification performance
obtained as a result of the proposed method. Table 3 shows the results for these performance
metrics. According to Table 3, both applications are successful in detecting COVID-19
infection using CT scans. But the performance of the hybrid TSA-ANN added mAlexNet
model is better than the single mAlexNet structure in terms of accuracy. The accuracy rates
of models are 97.92% and 98.54% for mAlexNet and mAlexNet + TSA-ANN, respectively.
Additionally, Precision, Sensitivity, F1-Score, MCC, and Specificity indicators are also better
in hybrid architecture, as seen in Table 3. It is possible to conclude that deep architecture
using the TSA-ANN classification has better performance and unbiased classification.

Accuracy =
tp + tn

tp + f p + tn + f n
× 100 (8)

Sensitivity =
tp

tp + f n
(9)

Specificity =
tn

tn + f p
(10)

Precision =
tp

tp + f p
(11)

F1-score =
2tp

2tp + f p + f n
(12)
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MCC =
(tp ∗ tn)− ( f n ∗ f p)√

(tp + f n) ∗ (tn + f p) ∗ (tp + f p) ∗ (tn + f n)
(13)

tp: True Positive
tn: True Negative
f p: False Positive
f n: False Negative
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Table 3. Performance metrics of the proposed models.

Model Accuracy Sensitivity Specificity Precision F1-Score MCC

mAlexNet 97.92 0.9820 0.9768 0.9732 0.9776 0.9582
mAlexNet + TSA-ANN 98.54 0.9775 0.9923 0.9909 0.9841 0.9708

To prove the robustness of the proposed method, the same application is also per-
formed on a different dataset. For this, the COVID-19 Radiology database [17] is preferred.
Only the COVID-19 and Normal classes in this dataset are used. However, the data num-
bers in this dataset are unbalanced. The number of COVID-19 classes is 219, while the
Normal (non-COVID) class number is 1341. Therefore, first, data augmentation is applied
for the class with few data, resulting in a total number of images of 2436. 80% of all data is
allocated as training and 20% as testing. Figure 7 shows the confusion matrices obtained
after applying the proposed method on the COVID-19 Radiology database. Figure 7a is
provided by mAlexNet and average accuracy is 99.38%. Figure 7b is provided by mAlexNet-
TSA-ANN with an average accuracy of 99.59%. The results show that the proposed method
is also effective in different datasets.
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4. Discussion

Many DL-based diagnostic methods developed so far have directly used CNN models.
However, different techniques can be used to improve the performance obtained with
a CNN model. The aim of this study is to show that the mAlexNet–TSA-ANN hybrid
structure is highly effective in detecting COVID-19. Moreover, this experiment was imple-
mented on AlexNet, which is simpler than other CNN models. The results showed that
even a fine-tuned AlexNet (mAlexNet) combined with the TSA-ANN method outperforms
many studies. Some of the previous studies suggesting different DL-based methods are
shown in Table 4. According to Table 4, it is seen that the proposed mAlexNet–TSA-ANN
structure is superior to previous studies using the same dataset.

Table 4. Benchmarking of the proposed mAlexNet-TSA-ANN with previous studies.

Study Method Accuracy (%)

Soares et al. [41] xDNN 97.38%
Özkaya et al. [42] CNN + SVM 94.03%
Tetila et al. [43] Inception-Resnet-v2 98.4%

Panwar et al. [44] Color Visualization (Grad-CAM) 95%
Wang et al. [45] Contrastive Learning 90.83 ± 0.93

Jaiswal et al. [20] DenseNet201 96.25%
Öztürk et al. [46] WOA-MLP 88.06%
Silva et al. [47] EfficientNet 98.50%

Yazdani et al. [48] Attentional Convolutional Network 92%
Proposed approach mAlexNet—TSA-ANN 98.54%

Although the proposed method is superior to previous studies in terms of accuracy, it
has some limitations. The most important limitation is that the developed optimization
approach slows down the training process of the network. Only the mAlexNet structure
realizes faster training. Another limitation is that the TSA optimization method used also
needs parameter optimization. In addition, the results obtained are valid only for the
datasets used. Its success on other different datasets is unpredictable. For a general success,
a study should be done that includes all different datasets.

5. Conclusions

Early detection of COVID-19 disease is crucial due to the high rate of spread among
humans. This study uses computed tomography (CT) images to quickly and accurately
diagnose COVID-19. Both proposed models include the AlexNet architecture. In the
first model, mAlexNet architecture is created and classification is performed. In the
second model, 25 features extracted from each image with mAlexNet are given to the
TSA-optimized ANN for classification. The different aspect of this study compared to other
studies is the use of the TSA-ANN-based hybrid model. The high accuracy achieved with
the hybrid architecture shows that the model is a powerful classifier. By feeding the trained
hybrid architecture with CT images, COVID-19 can be detected quickly. In future studies,
to increase the success of the system, the lungs will be determined from the CT images by
applying semantic segmentation. Then, the number of images will be increased with the
obtained lung images through data enhancement methods. It is planned to achieve higher
accuracy by testing different architectures with these images.
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