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Abstract: The quaternion linear canonical transform is an important tool in applied mathematics and
it is closely related to the quaternion Fourier transform. In this work, using a symmetric form of the
two-sided quaternion Fourier transform (QFT), we first derive a variation on the Heisenberg-type
uncertainty principle related to this transformation. We then consider the general two-sided quater-
nion linear canonical transform. It may be considered as an extension of the two-sided quaternion
linear canonical transform. Based on an orthogonal plane split, we develop the convolution theorem
that associated with the general two-sided quaternion linear canonical transform and then derive its
correlation theorem. We finally discuss how to apply general two-sided quaternion linear canonical
transform to study the generalized swept-frequency filters.

Keywords: uncertainty principle; general quaternion linear canonical transform; convolution; correlation;
generalized swept-frequency filters; Fourier transform

1. Introduction

The general two-sided quaternion Fourier transform was firstly proposed by Hitzer
in [1,2]. As we all know, it is a generalized form of the two-sided quaternion Fourier
transform. Hitzer further has defined the two-sided quaternion Fourier transform based
on the orthogonal planes split and demonstrated some fundamental properties of this
transform. In [3], Hitzer also extended general two-sided quaternion Fourier transform
within the context of Clifford algebra, named general two-sided Clifford Fourier transform,
and derived its convolution and correlation theorems.

In recent years, many researchers have shown interest in a kind of new signal repre-
sentation tool, known as the quaternion linear canonical transformations (QLCT). It is well
known that the QLCT is a nontrivial generalization of the classical linear canonical trans-
form [4,5]. It also can be regarded as the generalization of the quaternion Fourier transform
(QFT) because the QFT is a special case of the QLCT. Several useful properties of the QLCT
have been extensively studied (see, e.g., [6-~11] and references therein). As in the quaternion
Fourier transform case [12-18], there are three different kinds of two-dimensional quaternion
linear canonical transforms (QLCTs). They are called left-sided QLCT, right-sided QLCT, and
two-sided QLCT, respectively.

In this paper, based on the symmetric decomposition of the two-sided quaternion
Fourier transform (QFT), we first provide the derivation of a variation on the Heisenberg-
type uncertainty principle related to this transformation. The uncertainty principle de-
scribes the interaction between a quaternion function and its QFT. To achieve this, we recall
the component-wise uncertainty principle for the QFT and show that it is a special case
of the proposed uncertainty principle. We then propose general two-sided quaternion
linear canonical transform. We further provide a definition of its convolution operator.

Symmetry 2022, 14, 1303. https:/ /doi.org/10.3390/sym14071303 https://www.mdpi.com/journal /symmetry


https://doi.org/10.3390/sym14071303
https://doi.org/10.3390/sym14071303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6518-6705
https://doi.org/10.3390/sym14071303
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14071303?type=check_update&version=1

Symmetry 2022, 14, 1303

20f17

This definition is constructed by combining convolution definitions for the classical linear
canonical transform and the quaternion Fourier transform. We establish its convolution
theorem, which give a significant result of general two-sided quaternion linear canoni-
cal transform. This theorem is inspired by the work of Hitzer [19] who established the
convolution theorem associated with general two-sided quaternion Fourier transform.
Paper [20,21] proposed similar work for convolution theorem, but different type of the
quaternion linear canonical transform which established the convolution theorem for the
two-sided quaternion linear canonical transform. We finally derive correlation theorem
of continuous quaternion signals associated with the general two-sided quaternion linear
canonical transform.

The main content of this article is as follows. In Section 2, we recall the basic knowledge
of quaternion algebra and orthogonal planes split that will be needed during the paper.
Section 3 is devoted to the derivation of a variation on the Heisenberg-type uncertainty
principle related to the two-sided quaternion Fourier transform. In Section 4 we recall
the general two-sided quaternion Fourier transform. In Section 5 we discuss convolution
definition for general two-sided quaternion linear canonical transform and obtain its
convolution theorem. In Section 6, a correlation theorem related to general two-sided
quaternion linear canonical transform is presented. In Section 7 an application of general
two-sided quaternion linear canonical transform is studied. Lastly, the summary of this
article is included in Section 8.

2. Quaternions

For the basic notations and definitions on quaternion algebra, see [22-24]. Quater-
nions are hypercomplex numbers, which requires an associative noncommutative four-
dimensional algebra. They can be expressed as

H={h=hy+ihs+jhy, +khe; hq hg hyp, he € R},
where the elements i, j, and k have properties:
i2 =2 =K =ijk=-1 (1)

For every quaternion /1 € H, the scalar and vector parts of /1 are denoted by Sc(h) = h,
and vec(h) = h = ih, + jhy + k h, respectively.
The conjugate element 1 is given by

Ijl:hofihgfjhb*khc, (2)

which fulfills
hp = ph, Vh,p€H.

From (2) we obtain the norm of a quaternion / in the form

i) = Vit = /2 + 12 + 12+ 12, 3)
The modulus of a product of two quaternion obeys the property
lhpl = [hllpl.
It is not difficult to see that
Sc(h) <|h| and |h| < |A|. 4)

Applying the conjugate (2) and the norm of / gives the inverse of nonzero quaternion
h as
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a

-1 _
h = T

The inner product for two quaternion-valued functions #, g : R> — H is defined as
(h,g) = / h(2)3(2)dz,  dz=dzdz, 5)
R

for all z = (z1,z3) € R?. In particular, for i = g, we obtain

Hh”]LZ(RZ;JHI) =/(hh) = </]RZ |h(z)|2dz)1/2' (6)

For1 < g < oo, (6) becomes

g = ([ mearaz) " o

Following Hitzer’s work [1], we introduce the definition of orthogonal 2D planes split
(OPS) with respect to any two pure unit quaternions Iy, I, as follows

Definition 1. Let I;, I, € H be an arbitrary pair of pure quaternions I;, I, I? = 13 = —1,
including the cases I = 1. For any h € H we introduce the h. OPS split parts with respect to
the two pure unit quaternion Iy, I as

hy = %(h + L1hlp). 8)
Moreover one has for o, f € R
ey el = o@FPp, — (BT, )
and
Pl et — e(ﬁﬂFa)IzE — Ee(ﬁw)h_ (10)

Observe that fora = 71/2, = 0and &« = 0, B = 7r/2 Equation (9) will lead to
hhs = Fhil,  hily = Fhhe. (11)

3. A Variation on Heisenberg’s Inequality for Quaternion Fourier Transform

We start this part by introducing the definition of the two-sided quaternion Fourier
transform (QFT) and present its useful properties. We use these results to obtain one of the
main results in this study.

Definition 2. Given h in L' (R?;H). We define
Fulh}(u) = /R2 e~ y(2)e % iz, (12)
We call Fy{h} the two-sided quaternion Fourier transform of h.

Definition 3. For any h € L'(R?; H for which Fy{h} € L'(R?;H), its inverse is defined by

]:ﬁl{]:H{h}}(Z) =h(z) = (271_[)2 /Rz eiulzl]:H{h}(u)ejuzzz dut. (13)
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Now we put u; = 27w; and up = 27wy on the right-hand sides of (12) and (13), one
can easily obtain

Fy{h}(w) = /2 e N (2)e T2 ]z, (14)
R
and
h(z) = / 2T Fy () ()P deo. (15)
R
By (14) the decomposition of the quaternion function f will lead to
Fr{h}(w) = /R . 2N (I (2) + iha(2) + jhy(2) + khe(2)) e/2792%2 2z, (16)
In the symmetric form, the above identity may be rewritten as
Fulhy(w) = [ e (ho(z) + iha(z) + j(2) + ihe(2)]) €27 dz
= Friho}(w) +iFu{ha}(w) + Frui{hp}(@)j + iFuihc}(w)f.  (17)
Now we define the module of Fy{f}(w) as
2 2 2 2\1/2
Fl @) = (1Pt} @)P + | Frrlha} (@) P + 1 Fa (o} @) + | e} (@)2) (18)

Furthermore, we obtain the L7 (R2; H))-norm

1/
IFuthHliy = ( [, 1Faib@law) 9)

Lemma 1. Suppose that h € L'(R%; H) N L2(R?; H). If a%h with k = 1,2 exists and belongs to
L%(R?;H), then for every n € N we have

fﬁl{air}}h}(z) = (—i2mz1)" F{h}(z), (20)
and
f;l{az,;h}(z) = Fu{h}(z)(—j2mz)". 1)

Proof. For n = 1 applying (15) results in

0 : 0 .
—1 — i27Tw 21 J21twyzo
Fy {awlh}(z) /Rze —awlh(w)e dw

— J ei2nwlzlh(w)ej2nw2z2 dw
R2 8w1

= / 271212 () eI gy
R2
= 2nz1 Fp{h}(—z1, —21)
= (—i2n(=z1)) Fu{h}(—z1,—z1)
= (—=12my1) Ful{h}(y), yi=-z,i=12, (22)
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and
]:71 ih (Z) _ / ei2nw]zlh(w)iej2muzzz dw
H 1 9w, R2 dwy
— - €i2nwlzlh(w)ej27rwzzz j27T22dw
= Fu{h}(—z1,—21)(—j2n(-22))
= Fu{l}(y)(—2my2), yi=—z,i=12 (23)

By repeating this process n — 1 additional times, we obtain (20). Using a similar argument
as Equation (20), we can obtain the proof for Equation (21). O

By Riesz’s interpolation theorem, we obtain the Hausdorff-Young inequality (see [25]),
that is

[ Fr{n}]

Hy < Nl (24)

where 1 < p <2 with % + % = 1. Taking the inversion formula of the QFT on both sides
of (24), one has

Il < 1175 {1}

H,p- (25)

Below we state and prove the uncertainty principle associated with the two-sided
quaternion Fourier transform. Firstly, we recall the component-wise uncertainty principle
for the QFT that will be established in next theorem.

Theorem 1. Suppose that h € L(R?;H) N L?(R%; H) and that %h exists. Then

1 2
2 2 2 2 2 —
LA [ @)l > s ([ h@Pd), k=12 @9
Remark 1. It should be noticed that Theorem 1 is valid for all types of the QFT.

It can be observed that for 1 < p < 2 we may change L2- norm to L”- norm on
left-hand side of (26) and obtain the next result.

Theorem 2. Under the conditions as above, we have

z)paz) Ea @ hdw) | > L [ hz)Pds k=12 27
(/Rzzk| (z)] z) (/szk w{h} ()| w) —E/Rzuz” z k=12 27)

Proof. Due to (4) and the Holder’s inequality, we have

N
/R h(z)Pdz = —25c< /R 24h(z)5h(2) dx>

/Rzkh(z)a;h(z) dx

gz(/R |zkh(z)|pdz>1/p(/R|azkh(z)|”/dz)upl

0
= 2||z¢hllp ||af,/:kh|\p/-

<2
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By virtue of the Hausdorff-Young inequality (25) we obtain
0
Izl
< ”-7: l{ h}”Hp
1/p
= ([ (17 Gl P+ 1P ) P+ 175 g P P )P ) )
For k = 1, we see from (20) that
15 1{ L

B (,/ﬂ.gz <|(—i27le)fH{ho}|’”+ |(—i27z1) Fr{ha}|?

1/p
+|(=i27rz1) Fu {ly } P + <—i27r21>fH{”f}’p> dz)
1/p
=2 [, GH1Fu ol + 2 ha} P+ Bl + 2| Fa () ) dz)

_ 27r(/Rz zf|fH{f}|§z,dz>l/p.

For k = 2, we can apply similar arguments as above using (21), and obtain

1/p
17t e i = 2 [ APt} dz)
Hence,
1/p
/Rz () dz < 4rtl|z¢h]], (/Rz w5|fH{h}|gdw) .

This ends the proof of the theorem. [

Remark 2. The non-commutativity of the QFT kernel implies that Theorem 2 is slightly different
to the right-sided QFT (compare to Theorem 12 of [26]). Below, Theorem 3 is not valid for the

right-sided QFT and left-sided QFT.

Theorem 3. Ifh € L' (R?%,H) N L2(R?;H) and Fy{h} exists and is also in L?(R?; H), then
4 P
PP p PooF )P 2
LG+ @z [ o] +od) Fulh @)l do > o ([ e)R:) o8
for1 <p <2
Proof. Simple computation shows that
/R(zf+z§)|h(z)|’”dz/R(wf+w5)|]-'H{h}(w)|pdw
/ |sz/ W | Fey{n} (w |”dw+/ |sz/2w§|fH{h}(w)|Pdw
+/ z)|Pdz /2w1|}'H{h} w \zdw+/Rzzz z)|P dz /]szg|}'H{h}(w)|pdw.
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By (26) we obtain

/Rz(zf +28)|h(z)|P dz /Rz(wf+w§)\fH{h}(w)|P dw

The proof is complete. [

It can be observed that for p = 2 Theorem 3 changes to

[ PRz [ 6P iFa @) do = 2 (. |h<z>|2dz)2, 9)

which is directional uncertainty principle for the two-sided quaternion Fourier transform
and right-sided quaternion Fourier transform [26].

4. General Two-Sided Quaternion Fourier Transform

In the following we introduce general two-sided quaternion Fourier transform, which
is taken from some papers by Hitzer [2,3].

Definition 4. For any h € LY(R?;H), the general two-sided quaternion Fourier transform of
a quaternion function h with respect to two pure quaternions Iy, I, such that I} = I3 = —1is
defined as

FUB ) (u) = /R JeThEnp(z)e b gy, (30)
provided that the integral exists.
Especially, when I} = i and I, = j then (30) becomes
Fulh}(u) = /R e R (z)e 2 i, (31)

which is two-sided quaternion Fourier transform defined in (12).
For any FI'2{n} € L!(R?;H) the general quaternion Fourier transform mentioned
above can be inverted by

h(z) = (2711)2 /]1{2 ez Fhiub fpy () eh22v2 gy, (32)

From linearity of the integral (30) we obtain the general two-sided quaternion Fourier
transform for the OPS splith = h_ + h as

Fhlfn}(u) = FOvlfn +hy}(u)
= FUl{n_Y(u) + Fv2 {h Y (u). (33)
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Definition 5. Suppose that h € L*(R%;H) and hy = }(h + Lhly). The general quaternion
Fourier transform for the h with respect to two linearly independent unit quaternions Iy and I is
defined by

F{ny = Fivhingy = [ ehampy e gz (34)
R
By using relation (9), the above identity can be rewritten in the form

— 6*11(21141¢22Mz)hi dz. (36)
R2

5. General Two-Sided Quaternion Linear Canonical Transform

Because general two-sided QLCT is a generalization of two-sided QLCT, many use-
ful properties of two-sided QLCT can be extended for general two-sided QLCT such as
linearity, time shift, frequency shift, energy conservation, and uncertainty principles with
some modifications. Another very important property of general two-sided QLCT is the
convolution theorem. We first provide a definition of general two-sided QLCT and its
relation to two-sided QLCT. We also present a theorem which describes the relationship
between the orthogonal 2D plane split and general two-sided QLCT.

5.1. Definition of General Two-Sided QLCT

Definition 6 (General Two-sided QLCT). Suppose that By = (a1, b1, cy,d1) = {Zl Zl} €
1 1

SL(2,R) and By = (ap, by, cp,d3) = [Zz 22] € SL(2,R). Forany h € L*(R%; H), the general
2 a2
two-sided quaternion linear canonical transform of a quaternion function h with respect to two pure
quaternions Iy, I such that I} = 13 = —1 is defined as
Kg, (z1,u1)h(2)Kpg, (22, us) dz, for byb 0
LI [y (u) = Jr2 1131<( 1 )1) (2)Ks, (22, u2) e 1)27*é -
=2 \/76 1 1h(d1u1,d2u2)\ﬁe )% forbib, =0,
where the kernel functions of the general two-sided QLCT above are given by
1 11( 2 2o+ u,,)
K , — 2b11b111b112, 38
By (z1,11) e (38)
and
1 12(222 2 2y + 20 )
K, (z3,up) = e? \b 27 022 R T2 39
B, (22, 12) Nor (39)

On the condition that the general two-sided QLCT parameters satisfy bjb, = 0 or
b1 = by = 0, the general two-sided QLCT of a signal is essentially a quaternion chirp
multiplication and is of no particular interest for our objective interests. Therefore, without
loss of generality we focus mainly on the general two-sided QLCT in the case of b1b, # 0.
For specific parameter matrices By = By = (a;,b;,¢;,d;) = (0,1,—1,0) with i = 1,2, the
general two-sided QLCT definition (37) is reduced to general two-sided QFT definition,

that is,
b i — bz 5_12% e I, 1 e 2%
Bll Bz{h}( ) R2 ﬁe ™ 1h(Z)€ 2= \/7 Fflrl{h}( ) \/2771_ (40)
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The inversion formula of the general two-sided QLCT is given by
“Lh L phlL
Ly 5 ? Ly 5, {h}](2) = h(z)
= [, K, 1, 11) L, {1} () K, (22, 102)
= / Ky 1 (u1,21 ﬁgl {h}(u) Ky, 1 (u2,22) du
1 Il(ﬂ22*121u1+4u2+ I,I
= 27-[17162 b %17 by 2! 513111232{}1}( u)
X o e%(%z%fézzuﬁ%u%g) du, (41)

271'b7_

provided that the integral exists.
Based on Definition 5 we can easily obtain the following important theorem, which
will be required to derive the main result in the sequel.

Theorem 4 (compare to [27]). Let h € L*(R%H) be a quaternion function such that
he = %(h + I1hly). The general two-sided quaternion linear canonical transform for the h with
respect to two linearly independent pure quaternions Iy and I can be expressed of the form

Ll
L5 {he}
_ 1 1 hy 12<(Z§Z§ b2222u2+b2u2+ )jF(%Z%*%Zluﬁ%u%%)) dz, (42)
V2rby Jr2 \/27by
and
Ll
Lg5,{h+}
= 1 " 1 ((blzlfﬁzl’“*b ”1+ )1(?'222 b222u2+b2u2+ ))h dz (43)
V2rh; Jee /oy |
respectively.

5.2. Convolution Theorem for General Two-Sided QLCT

In the classical domain [28], a convolution operator is widely known as a signal
processing algorithm in the theory of linear time-invariant systems. The output of any
continuous time system is obtained by the convolution of the input signal with the system
impulse response. The convolution is also important in designing the filters and in the
reconstruction of the signals. According to these facts, the usefulness of convolution can be
extended in a new domain. Furthermore, it is very interesting to consider the convolution
definition and convolution theorem in the general two-sided QLCT domain. It shall be
found that the convolution definition for the general two-sided QLCT is constructed by
combining the quaternion convolution and the LCT convolution definitions [29,30].

Definition 7. For any two quaternion functions h, k € ! (Rz ; H), we define the convolution and
correlation operators related to the general two-sided QLCT as

(hwk)(z) = /R2 n(e)e" B Pz g kB2 gy (44)

and

(hok)(z) = /Rz n(e)e i Dpp gyt gy (45)

respectively.
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The above definition enables us to build the following important theorem which
describes how the convolution of two quaternion-valued functions interacts with its general
two-sided QLCT.

Theorem 5. Let h,k € L' (R?H) be two quaternion-valued functions. If the decompositions of h
and k are defined by

he = %(hi Lhly), ki = %(kj: LikDp), (46)
then convolution of h and k related to the general two-sided QLCT can be expressed as
(hek)(z) = | £l o Yae R LR e ywe ™R du
+ /]RZ LMY, —up)e "R LY [ e ™R du
+ /RZ L35, {h+}(—ul,uz)e_ll%Egl’%z{k,}(u)e_h% du
+ [, L5l B} (—u)e VR 2 (ke R au. 47)

Proof. Using an inverse transform of the general two-sided QLCT (41), we can rewrite the
left-hand side of (47) as

1 1l(Ll(Zl—fl)z—l(21—f1)u1+d*1u2+5) Lz (h—3F) oLl
— ht/ e 12\ by b 172 ) ol 2/ pii2 L1 (y
/]R2 (#) R2 /271D Bl’Bz{ H)

1 1(12_2_;_ ‘LZZE) a )
6122 bz(Zz t2) 52(22 t2)”2+b2”2+2 elzhzzz(tz Z)dtdu

2
1 I aqty I tug dyug L1
_ W 5 e LW T pluh
_/]R h(t) - 27rb1e 1e” be 21 elde v Ly 5 (k) (u)

2 2

apts touiy dyus 2ptip

L22 | I r —L3%2

X ﬂez%z e? 2% ohieT 2 dtdy. (48)
i

]H

An application of two different splits to & and k defined by (46) gives us

(hxk)(z)
2 2
1 LAt A Lo L34
= (h—(t) + h(t)) e Mgt hiae Tl
R2 R2 \/27Tbq
aztz to1l d2uz ZoU
x (LB Tk} () + LB Tk} () a2 2 0 cRE e 2R dt du

\/27’[172
2 diu?
1 41 o ha o an _pAam
:/ / h_(t) e 128 g1 by o128y ol E T Tl
R2 JR2

\/27Tb1

2 2
B g huy DU A
Il 1 L22 T I
x L] stz{kf}(u)ﬁe”bz e? e olie 2 dtdu
, by
2 diu?
1 20 phn 29 . _pAan
—I—/Z/th(t) el et b et 2l
R? JR

\/27Tb1

x Ly ki }(u)

2 2
Bly o buy o dyity 2y
by o0 oy b e 2R dt du

1
—¢
V27thy
alt% dq u%

1 nhy tuq aur 1z
+ h+(t)7(31l T TP R Tk PR
R2 JR2

vV 27’(191
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2 2
Dy buy D iy
I, 1 L22 I L52 pn —[,272
L2 {k_}(u)—m—==e"T2 e 2 > M2 el 20 dtdu
1,B2 /27th,
2 2
at tu dqu zq1u
1 Il 1*1 711 1%1

+/ / h+(t)71 el 2 oMb ol Zbilell%e by
R2 JR? V2mhy

2 dou2
1 I a2ty 1, 242 29 Rk
X £g{1§2{k+}(u)72 = €2 2ty o2 ohae 2 dtdy,
, by
and thus
(hxk)(z)

alt% dlu%

R R S
e et o W eThTp_ (1)

1
/RZ R2 /27ty
0Bty | did 211
LL5= I o =L AL, -1
X ———=e¢' Mgt ' Mo ihe N LY Tk Y(u)e P2 dtdu
\/27‘(172 152
agt] tuq dlu%
boag 27y 12 2my e_lz%h,(t)

Zpup

' 1
e
R2 JR2 \/27Thy

2 2
1 _1 apty L dpus. _pAam _1, 2%
X ———e e 1h e Uy e 1 LIVl (e V(y)e 2 dtdu
v 27thy B1,B,
2 diu?
1 _pai ke h
¥ Lo fo T e B R (1)
R2 JR2 \/27Tbq
2 dou?
1 Iﬁlfzuzllzfﬂ_lmll _, 2%
X ————e e e W ae N L2 Lk Y(u)e P2 dtdu
27ty By,B;

2 2
tllfl g dl”]
“haw R e2ih (1)

1
S
R2 JR2 \/27TDy
2 2
1 22 _phwn by o pam _1,%2k2
¢ Phe Vhe 1 ehTe U h £l gk Y (u)e 2 didu.

X
NeT B1.by

It means that we have

1(M,2 2 a2
Izz(ﬁtl_ﬁtluﬁ_ﬁuﬁ_g)h,(t)

1 LL(222—2thu +d—zuz+ﬂ> = —p2%2
— 13 (BBt 21d+3 dte ' L2 {k_Y(u)e 72 du
By,B;

1 1(mp2_2 dp 20
+/2 / 6122<h1t1 blt1u1+blu1+2)h_(t)
r? | JR

Zoup

1 —L3(R2E2+2Hu +%224n A .y
2\ T Mg, T 175 phila 2%
X —— ( 22705 2 ) dte ULy 5 ks Hu)e = %2 du

1 1 l( %2, 2 L
/ R 122(blt1+b1t1u1+b1u1+2)h+<t)
R

1(%2.2_2 24 A 1,242
n3(38 bz*2“2+bz“z+z)] dte " LpR (K Hu)e R du
1,D2

1 -ni(pa+Ehm+itd+])
2\ "1 I 1T 2
Ly ity )

1 _ 11(thz+;t u yLzuerz) o An _LR2%
2\ 2T 2T, T 175y phb 275,
e 22" b 2 dte =" Ly'3 {ky}Hu)e = "2 du
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_1, 52"
= [, LB e h ﬁéi%z{kf}(u)e 2 du
A8 (710
+/ Eilél{h N, —wo)e B LB (ke y e du
) B , _,2"2
[ LaS ey e R LB G e du

—h,- —nan p _ 2%
+/Rzﬁzsl?s2f {h (e LR (kY (we T du.

The proof is complete. [

From Theorem 5 we know that when B; = B, = (0,1, —1,0), the convolution theorem
for the general two-sided QLCT above reduces to convolution theorem for general two-
sided QFT [19], that is,

h*k / Eg.l%z{h } ) _IlzlulLlllf%z{kf}(u)g_bzzlb du
+/ Elegil{h Hur, —uz)e _Ilzlulﬁll {k+}(u)e_1222”2 du
+ / B]l,zBil {hi}( ”1/uz)efllzlulﬁgl’%z{kf}(u)gffzzzuz du

+ /R LB (we Ll (kY (e 222 d, 49)

6. Correlation Theorem for General Two-Sided QLCT

In the following we derive correlation theorem associated with the general two-sided
QLCT. In this case we only apply two same splits to two quaternion function / and k as
shown in the following theorem.

Theorem 6. Let h,k € L' (R?;H) be two quaternion-valued functions. If the decompositions of h
and k are defined by

1 1
he = 5 (h& L), ke = 5 (k< Likl), (50)

then the correlation of h and k related to general two-sided QLCT can be expressed as

I A AP Zl”l+22“2
(k) / CBllng{h }H )'Céll%z{k Hau)e A )du
1’12— _Il(zlhul_zzbuz)

T 31 Y, ) Lg% ey H(w)e™ 0 T du
—f, 11,12— _ 1(2%]111_’_2%142)

T EBlsz{th}(ulfuz)ﬁB]BZ{kf}(u)e T dy

+/ Rl 2R B e K
Bl BZ + Bl Bz + .

Proof. Taking into account inverse transform of the general two-sided QLCT (41), we have

(hxk)(2)
1 L2722 (4, hpir) %2 B A ———
- ok e B ) i
a d a z
L (e ) hita ) gy g

a3

1 %22 pe 28 ed g nn
= Joo Ju MO e R R R R ()
R JR 7T
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(52)

214

HlZl
A g
120 o U0 dEdu

2 2
1 7 at] I dlu I I, A4
T lele]ble hie™ 12b1€ U dtdu.
Ttoy
Subsequent calculation yields
(hxk)(z)
2 2
1 _ . mby  huy dyus 925 2y
_/ / t)+hy(t )) e 122172612 b e 122;;231246 122b2€ L,
R2 JR2 \27tby
af g g
11,12 Il 12 IlZT Il b LT
X k_ k e 1 1e 11e
( Ble{ } B Bz{ +} )) /72 b
2 2
1 2B huy o hi 22 _ 2k
_/2/2_ 2b822b262b2622b261"e 272, o 1278,
R? JR 7'L' D
- altl d 2 2 zq1q
I,I —I I I I
311532{ ~Hu) bé’ 12b1€1”1€ hie™ 12b1e Y0 dtdu
V271hy
2
1 _p722 om0 L2 _p3n
/2/2 2b622b262b2622b261ne 279, p7 1278,
RZ JR 7T
- lllf% d1“1 alz% z11q
ol —1 Lt LA g
x L' g Ak} () —== %2 =¢ MR T T T e
2
1 723 om0 L22 39
/2/2 2b622b282b2622b281"e 29, p 1278,
R% JR 7T
2
nltl tuq dlu zqUq
1,1 —I L —I I —
x L g, {k-}(u >ﬁe VI MR G F e R gy
21ty
2 Pl 22
1 ﬂztz 2142 25 zp1y
/2/2 ZbeIZszelzbZEI hie” IZszeIZ
R JR: 7'L'
2 2 2
”ltl tug dl”1 zqUq
1,[ - I o —T —I; =5
x Ly g, {k+ 3 )ﬁe RS R R
1
This leads to
(hxk)(z)
12 tr1l dou2
—I aty 22 _p 21 e
= o Je vammt e e RN
JR? JR 7T
2 dqu
1 pda 24 e PP A U
Wi 22 ezble R Ly 5 Ak-}(m)e B dt du
7oy
a2r2 dzu
_[ [ 7'(
13 1 E han (1)

+/]RZ R2 \/an

1 a]tl B d]u - O
X =2, L R Eh'lz (ks }Hue
271'b1
1 ﬂzfz dzu
+/22¢77h%6h%*%eth>
R2 JR2 /27T

1 _pai phnm pdad 7ok ﬂ—
Tt I IR LG (kY (e
701 B

2
a2t2 tyuy dzu
Ilzb2€ L, ell sz e Il4h+( t)

1
+ /]RZ R2 \/27‘[[)

ﬂlf g dl

1 - -
- w e 2 ot ke e ke b2 Ell’lz {k+}(

271.’[91

214
N dtdu

214y
N dtdu

214
N gt du.



Symmetry 2022, 14, 1303 14 of 17

Consequently, we obtain

1 —n3(RB-Ehun+Ri+3)
— [ e 12\p 27522 b222h7(t)
2 R2

e Y o L |
X ! eile(%t t]ulﬂ’lu 2 >] dre 2 E’B“Iéz{k_}(u)e W

1 _rnl(mp2 2 dy 2.1
[/ e 112(b2t2 h2t2u2+b2u2+2>hi(t)
2 R2

1 (e 2hmt g B R = L1}
x e22<b1 it 3)] gy L% {kYw)e 0 du
1 1(%22_ 2 o x
[/ ellz<b2t2 b2t2”2+b2u2+2>h+(t)
2 R2

By,By

1(92.2 2 dy 2

1 Li(Ra- t 1w+ a2 +7 B B R e N e e
X \/m622<b1 T )} dte 2 Ly s kY (w)e "0 du
rh i (3 4+272)
= [ £ oy £ ko pwe R au
[l £hh (K r TR g
+ BlB{ M, u2) L 5 {ky }(u)e u
1 1+ %uz)du

IR
+ / Lol e b u) £ (k- pwpe "
o L L)

-
[l S £ (ke MO TR au,

The proof is complete. [

7. An Application

In this part, we aim to consider a simple application of the general two-sided QLCT
for studying the generalized swept-frequency filters. The output of swept-frequency filters
(compare to [31,32]) is then defined as

y(z) = e (e FHh(z)e 2 ER) ug r(2) ] o3

=i [ (e hdh(r)e b E D)z - 1)) drel #3, 53)
R

where *, stands for quaternion convolution operator in the QFT domain. Assume that r(z)
is real impulse response of the shift-invariant filter. By taking the general two-sided QLCT
on both sides of (53), we see that

Egl%z{y}(u)
/ / blzl b 21”1+b “1*2)
\/an R2 JR2

X {(ellZ(Z%_Tl)h(r)eh22(2%_722))1’(2—1) ! e_lz(bzzz bzzzuﬁbzuer >dz dt.

\/27‘(172
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If the matrix parameters are chosen as By = (ay,by,¢1,d1) = (c1,1,—1,0) and
By = (a,by,¢2,d2) = (c2,1,—1,0), then the above identity can be expressed as

rhb {
Ly B, y}(u)
e*ll%z% efllzlulefll%

= i e f

(212 Q2 2 1 .2
x | (" 2@ p(1)e2? (B2 (z — 1) e hFBe kb 42| dr
\/27‘[172
1 —L 372 —hziu ,—L T 1 —L%222 —Dhzuy ,— L~
= — e M2 e AT A (T)r (2 — T) —=—==e 27%2¢ 22"M2¢" 24 dzdT.
V2mby Jr2 JR2 27tby

By changing the variables with z — T = y in the above expression we have

il _ 1 —L 32 - LI I
L = o [ e T e e i et yry)

% #eflﬂzuz e~ by~ 3G o~ L dydr. (54)
27sz

Rewriting (54) as

e—Il %11'12 e—IlTlule—Il% e_Ilylulh, (T)V(y)

L = [ |
AL V271tby JR? JR?

C

% \/Zlibe—lzfzuz e—Izyzuze—Iz%Tzze—Iz% dydt

429

1 A LT
+ - /2/26 hy 1 p=hnum,=hy, Il]/luthr(T)r(y)

\V 27to1 JR? JR

1 Q.2
% etz 6_12}/21426_12727—26_12% dyd-r

27th

3

_ / 8711%11'12 87111'11116711% h,(‘l,’) 1 6712%21'2267121'21426712%
V21, JR2 JR2 \V27tby
% e—lzywlr(y) e a2 g dy
+ l / / 6711 %TIZ 6711’1’11416711% h_l,_(T) l 6712%’1'226712’1’21/[26712%
V27tby JR? JR2 V27thy
x ey (y) e~ vtz g gy, (55)

Consequently, we finally arrive at

I P 1 §; _ B
Bll,l_%;z{y}( u) = Bll,éz{h Hu )/ bty (y) e~ l2¥2t2 gy

LY ) [ entirty) e dy 6)

8. Conclusions

In this work, based on the symmetric form of the two-sided quaternion Fourier
transform, we have proved a variation on the Heisenberg-type uncertainty principle related
to the two-sided quaternion Fourier transform. We also have introduced the general two-
sided QLCT and provided its convolution definitions. In view of orthogonal plane split,
we have derived convolution and correlation theorems related to general two-sided QLCT.
We also have discussed its application to study the generalized swept-frequency filters.
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