
Citation: Lin, B.; Li, J.; Bai, R.; Qu, R.;

Cui, T.; Jin, H. Identify Patterns in

Online Bin Packing Problem: An

Adaptive Pattern-Based Algorithm.

Symmetry 2022, 14, 1301. https://

doi.org/10.3390/sym14071301

Academic Editor: Aviv Gibali

Received: 24 May 2022

Accepted: 19 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Identify Patterns in Online Bin Packing Problem: An Adaptive
Pattern-Based Algorithm
Bingchen Lin 1 , Jiawei Li 1,*, Ruibin Bai 1, Rong Qu 2, Tianxiang Cui 1 and Huan Jin 1

1 School of Computer Science, University of Nottingham Ningbo China, Ningbo 315000, China;
bingchen.lin@nottingham.edu.cn (B.L.); ruibin.bai@nottingham.edu.cn (R.B.);
tianxiang.cui@nottingham.edu.cn (T.C.); huan.jin@nottingham.edu.cn (H.J.)

2 School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK;
rong.qu@nottingham.ac.uk

* Correspondence: jiawei.li@nottingham.edu.cn

Abstract: Bin packing is a typical optimization problem with many real-world application scenarios.
In the online bin packing problem, a sequence of items is revealed one at a time, and each item must
be packed into a bin immediately after its arrival. Inspired by duality in optimization, we proposed
pattern-based adaptive heuristics for the online bin packing problem. The idea is to predict the
distribution of items based on packed items, and to apply this information in packing future arrival
items in order to handle uncertainty in online bin packing. A pattern in bin packing is a combination
of items that can be packed into a single bin. Patterns selected according to past items are adopted
and periodically updated in scheduling future items in the algorithm. Symmetry in patterns and
the stability of patterns in the online bin packing problem are discussed. We have implemented the
algorithm and compared it with the Best-Fit in a series of experiments with various distribution of
items to show its effectiveness.

Keywords: bin packing problem; heuristic; pattern recognition; stability

1. Introduction

Combinatorial optimisation problems have extensive applications in many real-world
applications. However, most of them are NP-hard and finding the optimal solutions
becomes computationally prohibitive because of combinatorial explosion. The existing
approaches to these problems can broadly be classified into analytical-model-driven meth-
ods and data-driven methods. Analytical-model-driven methods focus on the analytical
properties of the mathematical model but suffer from robustness issues over uncertain-
ties from the input data. Heuristic algorithms generally compute feasible solutions with
low computational complexity, not optimum. Data-driven methods often formulate the
combinatorial problems as online optimization problems and try to tackle the problem
in a generative fashion. One of the main drawbacks of the these data-driven methods is
their inability to efficiently exploit the core structures and properties of the problem. More
specifically, existing data-driven methods primarily focus on the objectives to be optimized,
but neglect various complex inter-dependencies among the decision variables in the form of
constraints. This can be illustrated with the following example for the bin packing problem.

A one-dimensional bin packing problem aims to use the minimum number of bins
of identical size to pack a set of items of different sizes. In its offline version, the sizes of
the items are given prior to the packing. Let B denote the capacity of the bins to be used.
The problem is to pack all the items of n types, with each item type i having a size si and
quantity qi. Let yj be a binary variable to indicate whether bin j is used in a solution (yj = 1)
or not (yj = 0). Let xij be the number of times item type i is packed in bin j. The problem
can be formulated as follows:

Symmetry 2022, 14, 1301. https://doi.org/10.3390/sym14071301 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14071301
https://doi.org/10.3390/sym14071301
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-7046-7189
https://orcid.org/0000-0002-0102-2581
https://doi.org/10.3390/sym14071301
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14071301?type=check_update&version=1

Symmetry 2022, 14, 1301 2 of 16

minimize ∑U
j=1 yj (1)

subject to: ∑U
j=1 xij = qi for i = 1, · · · , n (2)

∑n
i=1 sixij ≤ Byj for j = 1, · · · , U (3)

where U is the maximal number of possible bins available to use.
In an online bin packing problem, we consider an infinite sequence of items without

prior knowledge of their sizes. Each item needs to be packed at the time of arrival. Heuristic
algorithms are commonly used to solve this kind of problem with uncertainty, since optimal
solutions are impossible to acquire.

If the distribution of items in an online BPP is known, it is possible to acquire near-
optimal solutions by utilizing such knowledge. A straightforward idea is to compute
the distribution of arrival items via statistics and then apply the distribution in packing
forthcoming items. We have developed a pattern-based heuristic algorithm for BPP based
on the assumption that patterns maintain stability corresponding to distribution of items.
A pattern denotes a combination of items fitting for packing in a bin. Consider the example
in Table 1.

Table 1. An example of online BPP. si is item type size and B = 10.

BPP {si} = {2, 4, 5, 3, 2, 2, 2, 3, 3, 4, 2, 4, 5, 3, 2, 2, 2, 3, 3, 4}
Solutions Best-Fit: {2, 4, 3}, {5, 2, 2}, {2, 3, 3, 2}, {4, 4, 2},

{5, 3, 2}, {2, 3, 3}, {4}
opt. solution: {2, 5, 3}, {4, 2, 4}, {2, 2, 3, 3}
{2, 5, 3}, {4, 2, 4}, {2, 2, 3, 3}

The well-known Best-Fit heuristic produces sub-optimal solution for the case. It can
be seen that the optimal solution contains patterns {2, 5, 3}, {4, 2, 4}, and {2, 2, 3, 3}. If an
algorithm learns the patterns from statistics of the packed items and applies the information
in packing the remaining items, it will be able to implement solutions close to the optimal
solution if the following sequence of items satisfies the same distribution.

In this paper, we propose an adaptive pattern-learning algorithm for online BPP that
identifies patterns, dynamically updates the item size distribution, and plans the future
packing in an adaptive manner. The contribution of this study is threefold. First, it is the first
time that the distribution of items is predicted and used in packing via patterns. The idea
of retrieving information from packed items and using the information in planning future
items may be applied to other optimization problems with uncertainty. Second, we analyze
the stability of patterns by showing that a small error in the estimation of item distribution
will only cause small deviation from the optimal solution. Third, an algorithm that identifies
and updates patterns is developed for online BPP, which outperforms Best-fit on average
bin usages and computational complexity for a large set of benchmark instances.

2. Literature Review
Bin-Packing Algorithms

In this section, a detailed definition of the online bin-packing problem would be
summarized as a foundation, and competitive ratio, a widely used measurement for
algorithm performance, would be introduced. Reviews of several classical algorithms
would also be given.

The classical bin packing problem is defined by an infinite supply of bins with capacity
B and a list L of k items (or elements). Recall that the aim is to pack the items into a
minimum number of bins under the constraint that the sum of the sizes of the items in
each bin is no greater than B. A bin-packing problem is called “online” when each element
needs to be packed as soon as it is inspected, without the knowledge of other future items.

The performance of an approximation algorithm is majorly measured by its worst
case behavior, which could be quantified by an asymptotic worst-case ratio (asymptotic

Symmetry 2022, 14, 1301 3 of 16

performance ratio). For online problems such as the online bin-packing problem, it is also
called a competitive ratio, which would be used in this paper. Let A(L) denotes the number
of bins used by Algorithm A to pack the items of L; OPT denotes an optimal algorithm,
which always uses a minimal number of bins. Let Vα be the set of all lists L for which the
maximum size of the items is bounded from above by α. For every k ≥ 1,

RA(k, α) = sup
L∈Vα

{
A(L)

k
: OPT(L) = k

}
(4)

Based on Equation (4), the competitive ratio (or asymptotic performance ratio) could
be formulated as a function of α:

R∞
A (α) = limk→∞RA(k, α) (5)

As shown by Equation (5), R∞
A (α) measures the quality of the packing decisions made

by algorithm A in the worst case, compared with the optimal result. Additionally, plainly,
R∞

A (α) ≥ 1. Based on Equations (4) and (5), a more universal form could be derived,
which is

A(L) ≤ R∞
A (α)OPT(L) + K (6)

for every list L ∈ Vα. Conventionally, if α is not specified, the competitive ratio of algorithm
A could be denoted as R∞

A ≡ R∞
A (1). In this paper, uncommon cases where α 6= 1 are not

studied, so no specification would be made.
Based on the measure above, many simple but effective online algorithms were pro-

posed. In describing an online bin-packing algorithm, we use the current item to indicate
the next item to be packed before a decision point. So right after a packing decision, the
item current item changes from ai to ai+1. One of the simplest approaches is to pack items
in sequence according to

Next-Fit (NF): After packing the first item, NF packs each successive item in the last
opened bin, if the bin could contain that item. Otherwise, the last opened bin would be
closed and the current item would be placed in a new empty bin.

The advantage of Next-Fit is that it is quite an efficient algorithm, with the time
complexity of O(n). The disadvantage of this algorithm is a relatively poor competitive
ratio: R∞

NF = 2 [1].
A conspicuous aspect of its performance is that it closes bins that could be used for

packing future items. A direct modification to this algorithm is to keep all the bins open
throughout the packing process. A greedy way is to locate a bin with largest remaining
capacity, which is

Worst-Fit (WF): If there is no open bin that can contain the current item, then WF packs
the item into a new empty bin. Otherwise, WF packs the current item into a bin with the
largest remaining capacity. If there is more than one such bin, WF chooses the one with the
lowest index.

Although it could be expected that WF performs better than NF, it does not. It is
proved that R∞

WF = R∞
NF [2].

Another simple rule is to scan through all the opened bins one by one and put the
item into the first bin that fits the item.

First-Fit (FF): If there is no open bin that could contain current item, then FF packs the
item into a new empty bin. Otherwise, FF packs the current item into the lowest-indexed
bin that fits.

To achieve a better performance, a natural complement to WF has also been studied.
Instead of choosing the bin with highest remaining capacity, it aims to pack the item into a
bin such that the waste is minimized.

Best-Fit (BF): If there is no open bin that could contain current item, then WF packs
the item into a new empty bin. Otherwise, BF packs the current item into a bin with the

Symmetry 2022, 14, 1301 4 of 16

lowest remaining capacity. If there is more than one such bin, BF chooses the one with the
lowest index.

By adopting proper data structure, the time complexity of FF, BF and WF is O(n log n).
It has been proved that R∞

FF = R∞
BF = 1.7 [1].

FF, BF, and WF share many common characteristics. One of them is the satisfaction of
Any-Fit constraint, proposed by [ref]. Any-Fit constraint is that, in a packing decision, if
bin j is empty, it cannot be chosen unless the current item will not fit in any bin to the left of
bin j. By fulfilling the constraints, FF, BF, and WF are also called Any-Fit algorithms. They
are straightforward, incremental, and do not classify open bins into different categories.
The upper and lower bound of competitive ratio of these algorithms have been proved,
which are R∞

FF ≤ R∞
A ≤ R∞

WF [2].
Other than incremental Any-Fit algorithms, many bounded-space algorithms have also

been explored. An algorithm is bounded-space if the number of open bins at any time in the
packing process is bounded by a constant. For example, First-Fit utilizes one bounded-space.
The motivation and practicality of developing this type of algorithm are clear. For example,
to load trucks at a depot, one cannot have an infinite number of trucks at the loading
dock. One of the most trivial algorithms is a modified version of Next-Fit called Next-k-Fit
(NFk) [3]. It packs items following the First-Fit rule, but only considers k most recently
opened bins; when a new bin has to be opened, the opened bin with lowest index would
be closed. As expected, the competitive ratio of NFk tends to 1.7 with k increasing. Based
on the idea of bounded-space, a potential improvement direction, as pointed out by [4] and
summarized by [5], is to consider adopting the reservation technique, to proactively retain
empty space for future items. This idea had already appeared in some research.

Ref. [6] proposed a bounded-space algorithm Harmonick(Hk). This algorithm is
based on a special, non-uniform partitioning of item size interval (0, 1]. The “harmonic
partitioning” is used to classify items into k groups: Ij =

(
1

j+1 , 1
j

]
(1 ≤ j ≤ k− 1) and

Ik =
(

0, 1
k

]
. Ij-element is defined as an element of which the size belongs to interval

Ij. Similarly, bins are also classified into k categories and an Ij-bin is defined to contain
Ij-element only. Ij-elements could only be packed into an Ij-bin following the rule of
Next-Fit, and thus, at most k bins could be open at the same time. It has been proved that
R∞

H∞
≈ 1.69103, lower than all Any-Fit algorithms. The bottleneck of the algorithm is the

waste of space of I1-element, of which the range of size is
(

1
2 , 1
]
. For an item with size just

over 1
2 , almost half of the capacity of the packed bin would be wasted. However, it has

been proved that bounded-space algorithm cannot do better than Harmonick.
Yao [4] firstly broke through this barrier with the Refined First-Fit (RFF) algorithm,

which has unbounded space. Unlike Harmonick, this algorithm does not parameterize the
partitioning but divides the (0, 1] statically into

(
0, 1

3

]
,
(

1
3 , 2

5

]
,
(

2
5 , 1

2

]
,and

(
1
2 , 1
]
. Other than

packing type−i item into type−i bin, every sixth type-2 item would be packed by First-Fit
into type-4 bins. It has been proved that R∞

RFF = 5
3 ≈ 1.666. Compared with Harmonic3,

RFF separates the
(

1
3 , 1

2

]
with 2

5 , and assigns
(

1
3 , 2

5

]
to complement the bin space wasted by(

1
2 , 1
]

items.
With the idea from RFF, many algorithms based on Harmonick managed to better

use the wasted space of I1-bins, including Refined Harmonic [6], Modified Harmonic [7]
Harmonic+1 [8], Harmonic++ [9], etc. The latest lower bound of this problem is 1.54037 [10].

Like Hk and RFF, every algorithm with the idea of a reservation technique tends to
combine two or more types of items with some rules to avoid being short sighted. Hk
combines every Ij-element into Ij-bins so that all the closed bins must have a remaining

capacity less than 1
j+1 . For example, a closed I5-bins with item size range

(
1
6 , 1

5

]
always

have five items inside, which means that the utilized capacity would be higher than 5
6 ,

which means that the wasted space would always be less than 1
6 . It is clear that as j

Symmetry 2022, 14, 1301 5 of 16

increasing, the utilisation of bins would increase. The calculation of competitive ratio of
this algorithm [6] shows this trend: as k rises, the competitive ratio never worsens.

Recall that based on the limitation of the wasted space caused by large items, espe-
cially ones larger than 1

2 , one improvement is to fill the wasted space with other items.
Very recently, after many Harmonic-based algorithms, Ref. [11] summarized a general
framework SuperHarmonic: it classifies incoming items of one type into red items and blue
items. Then, intuitively, it packs the blues bottom up and packs the reds top down to reduce
waste. Other than harmonic partitioning, it also integrates manual partitioning. Based on
this framework, algorithm SonOfHarmonic reaches the competitive ratio of 1.5813.

Other than harmonic-based approaches, many methods with various performance
measures have been developed for BPP. Attempting to combine strength of different heuris-
tics, hyper-heuristics that chose one suitable heuristic from a set of heuristics were proposed
to solve a particular portion of a problem instance [12]. The performance of different heuris-
tics on a historical basis was measured and a decision was made on heuristics selection for
the next segment of instance. The success rate, compared to BF and FF, was adopted as a
performance measure.

An adaptive rule-based algorithm was developed in [13]. Instead of using a value
to choose different heuristics, it automatically configured the behavior of an algorithm
by computing a threshold value based on available data elements. This could be seen as
a generic meta-heuristic framework and could be applied to multiple online problems,
including bin packing, lot sizing and scheduling. The algorithm was assessed using an
experimental competitive ratio.

Inspired by approximate interior-point algorithms for convex optimization, Ref. [14]
proposed a interior-point-based algorithm. It is fully distribution-oblivious, meaning that
it does not make decisions based on distribution information, i.e., it is learning based.
Under its average case analysis, the algorithm was proven to exhibit O(

√
T) additive

suboptimality compared to offline solutions, which is lower than all existing distribution-
oblivious algorithms, which have O(T).

In [15] attempts were made to directly apply human intuition to solve 2D BPP. They
recorded human behaviors from game-play and created multiple Human-Derived Heuris-
tics (HDH) in the form of decision trees.

A Deep Reinforcement Learning (DRL) method was adopted learn the policies to
solve a 3D online BPP [16]. Since the target scenario is the factory assembly line, the next
few coming items could be determined in advance with this problem formulation. Space
utilization and stacking stability were used as performance measures.

Little research has been conducted to establish a full understanding of combining
a parameterized partition set of items to form patterns. This will be investigated in the
following sections.

3. Patterns in Bin Packing Problem

The concept of patterns is used in various domains of computer science: design
patterns in software engineering, traditional pattern recognition in signal processing, etc.
To some extent, they aim to summarize an abstract combination or paradigm from various
instances or specific examples, and to be reused for advantageous performance or efficiency
in computation or engineering. In BPP, patterns could also be applied to accelerate the
packing process and improve the space utilization of bins. Consider a simple example
below (Table 2).

Table 2. A simple example of online BPP. si is item type size and B = 1.

BPP {si} = {0.33, 0.32, 0.41, 0.49, 0.59, 0.58}
Solutions Best-Fit: {0.33, 0.32}, {0.41, 0.49}, {0.59}, {0.58}

Harmonic3: {0.33, 0.32}, {0.41, 0.49}, {0.59}, {0.58}
opt. solution: {0.33, 0.58}, {0.41, 0.49}, {0.32, 0.59}

Symmetry 2022, 14, 1301 6 of 16

In this example, Best-Fit and Harmonic3 use four bins. The optimal solution uses three
bins. As the first bin in the solution of Harmonic3 has reserved space for other I1 items, it
is not fair in such a small problem instance. However, based on direct inspection of the
item distribution, it could be found that there are two items in (0.3, 0.4] and two items in
(0.5, 0.6]. If we have performed some bin packing with a similar item size distribution, we
could derive this knowledge from history item size distribution and apply it in packing,
and an optimal solution may be easier to find.

The reservation technique adopted by several Harmonic-based algorithms also implies
an implicit adoption of patterns. However, their designs are based on asymmetrical
harmonic partitioning rather than a fully symmetrical design. They also do not have a
mechanism to apply prior knowledge. Our work would be based on a symmetrical design
of partitions and distribution-based patterns.

3.1. Discretize Items

In our algorithm, similar to the Harmonic-based algorithm, an item is given a type
based on its size. In Harmonic-based algorithms, the partitioning is either purely based on
harmonic partitioning or a mixture of manual partitioning and harmonic partitioning. We
use symmetrical partitioning in this study. We divide (0, 1] into N sections, where N is a
whole number. We use Si to represent the i-th section, i = 1, 2, . . . , N, the range of which is
(i−1

N , i
N]. A direct comparison is give in Table 3.

Table 3. Partitioning comparison: Hk vs. our algorithm.

i Ii in H7 Si in Our Algorithm with N = 7

1 (1
2 , 1] (0, 1

7]

2 (1
3 , 1

2] (1
7 , 2

7]

3 (1
4 , 1

3] (2
7 , 3

7]

4 (1
5 , 1

4] (3
7 , 4

7]

5 (1
6 , 1

5] (4
7 , 5

7]

6 (1
7 , 1

6] (5
7 , 6

7]

7 (0, 1
7] (6

7 , 1]

A pattern is defined as a collection of types of items to be packed into a bin. In classical
Hk algorithm, types of items are packed in a bin, which means that, for Ii items, the pattern
is i− 1 items in a bin. In our algorithm, various types of items are combined as a pattern.
Patterns are listed in a large-item-first manner. Pi stands for the i-th pattern. For example,
when N = 17, the first nine patterns are listed in Table 4.

Table 4. Example patterns with 17 sections.

i Pi

1 {S17}

2 {S1, S16}

3 {S2, S15}

4 {S1, S1, S15}

5 {S3, S14}

6 {S1, S2, S14}

7 {S1, S1, S1, S14}

8 {S4, S13}

9 {S1, S3, S13}

Symmetry 2022, 14, 1301 7 of 16

Compared with Harmonic, our method of partitioning and constructing patterns
could adapt the incoming items distribution, of which the detailed algorithm would be
explained in Section 4.

The quality of a pattern could be measured by the wasted space of a bin after packing.
It could help determine the priority of patterns and other parameter settings for the packing
process. It could be worst-case wasted space based solely on the pattern itself, or average-
case worsted space relying on both the pattern and the distribution. To compute the average
case, knowledge of the item size distribution is required. Algorithm A2, which would
be explained in Section 4, could be used to compute the average-case wasted space. As
the item size distribution is usually unknown before the whole packing process started,
worst-case wasted space is more applicable for analysis.

For worst-case wasted space, we could easily find the maximum space wasted by a
bin packed with the pattern. If we divide (0, 1] into N sections, then the range of a section
is of width 1

N . If we have a pattern with n items included, then the range of occupied space
of a bin packed by the pattern would be of width n× 1

N . The worst-case wasted space is
1− n× 1

N . It could be derived that, as n increases, more space would be wasted; as the N
increases, less space would be wasted. This implies that, to achieve higher performance,
the number of sections needs to be set sufficiently high; and patterns containing less items
could be given higher priority for matching.

3.2. Symmetry in Patterns

As the sizes of items are evenly categorized, we find symmetry in distribution of
patterns in solutions. We encode patterns as integer arrays with number of sections. The
i-th integer in an array is the number of items in section i in the corresponding pattern. In
this way, we could construct an extended table to include patterns’ array representations
(Table 5). Note that this array representation of pattern would also be used in the algorithm.

Table 5. Example patterns with 17 sections and array representation.

i Pi Pi Array Representation

1 {S17} [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

2 {S1, S16} [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

3 {S2, S15} [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

4 {S1, S1, S15} [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

5 {S3, S14} [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

6 {S1, S2, S14} [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

7 {S1, S1, S1, S14} [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

8 {S4, S13} [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

9 {S1, S3, S13} [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

Based on this representation, a table (Figure 1) could be constructed by stacking rows
of patterns. The height of this table is the number of patterns, whereas the width of it is the
number of sections. To intuitively reveal the symmetry, colors are added to some cells in
the table: green for one item in the section and yellow for more than one item in the section.

The patterns with two items are prioritized in pattern selection, since these patterns
do not contain common items (Figure 2). Any change in the number of one pattern does
not have an influence on other patterns. A simple vertical symmetry could be found in the
chart, where the axis of symmetry lies between S8 and S9.

Alternatively, we have defined sub-prioritized patterns that contain three items in
each pattern (Figure 3). As marked by bold borders, a similar pattern of vertical symmetry
appears in each rectangle.

Symmetry 2022, 14, 1301 8 of 16

Figure 1. Colored original pattern distribution. (First 22 patterns; green cells indicate one item in the
section; yellow cells indicate more than one item in the section).

Figure 2. Prioritized patterns (green cells).

It could be hypothesized that symmetry appears regularly in the pattern discretion. As
the number of sections increases, there are symmetrical patterns in different sets of pattern
distribution. It is non-trivial to understand this feature: when the maximum number of
items of a section of a pattern is restricted to 1, after we set the section count N, all patterns
have a constraint of total size in sections of N. If we have M items including item A and
item B, and sizes of other (M− 2) items are determined, then A + B would be a constant
under this condition. As A becomes bigger, B would become smaller.

Figure 3. Sub-prioritized patterns (The green cells in black bold boxes).

This feature gives our algorithm an advantage in handling symmetrical distributions.
For example, Figure 4. shows a normal item size distribution. If we set 10 sections for
partitioning, it could be seen that the frequency in S5−i and S5+i is the same, i = 1, 2, 3, 4.
As S5−i and S5+i could clearly form a pattern, all patterns could be packed by patterns with
a guarantee of wasted space.

Symmetry 2022, 14, 1301 9 of 16

Figure 4. Example item size distribution (normal distribution with µ = 0.45, σ = 0.1).

This feature would also enhance the packing of an approximately symmetrical dis-
tribution. Recall the previous example shown in Table 2. If we have accumulated some
knowledge from history items and derive a prediction about the item size distribution, i.e.,
two S4 items, two S5 items, and two S6 items, we could easily use the pattern {S4, S6} and
{S5, S5} to guide the packing, which could generate an optimal solution.

3.3. Stability of Patterns in BPP

We deduce that patterns are stable in the solutions of BPP, so that a small error in the
estimation of item distribution will only cause small deviation from optimal solutions.

Assume that the optimal solution of a BPP of n items {xi}, (i = 1, . . . , n) is OPT{xi} = m,
where m is the number of bins used in the solution. Consider another BPP of n items {x′i}
in which all items are same as {xi} except one item. Let m′ be the number of bins used in
the optimal solution of {x′i}. It is straightforward to deduce that m′ is at most m + 1 and at
least m− 1.

Consider a solution to {x′i} which uses all the patterns of OPT{xi}. We prove that the
bins used in this solution are m′ + 1 in the worst case.

Proof: Let x′j be the item that is different from xj and P be the pattern that contains xj

in {xi}. If x′j ≤ xj, x′j, all other items can be packed into m bins according to the patterns of
OPT{xi}. So it is no more than m′ + 1 because m′ is at least m− 1.

If x′j > xj, the solution requires at most m + 1 bins, while there must be m′ ≥ m.
Assume that m′ < m in this situation, e.g., m′ = m− 1, this is conflict with OPT{xi} = m
since {xi} can be packed into m− 1 bins. Thus, this solution is m′ + 1 in the worst case.

Using patterns in online BPP depends on accurate estimation of item distribution,
which should be updated dynamically in the process of bin packing.

4. A Pattern-Based Algorithm for Online BPP
4.1. Algorithm

We developed a pattern-based algorithm for online BPP. This algorithm generates a
plan for pattern usage based on previous distributions and packs the items according to
the plan. It includes three sub-algorithms: pattern generation, pattern update and packing.
In this section, this algorithm is described and evaluated.

Firstly, the data structures are explained. This algorithm keeps recording the sizes of
the incoming items into the distribution dist according to sections S. S could be seen as
equally sized intervals ranging over (0, 1]. Nsection is the number of intervals, which could
be used to configure the algorithm. For convenience, we use Sn to represent section n,
n = 1, 2, . . . , Nsection. The range of Sn is (n−1

Nsection
, n

Nsection
]. An Sn item refers to an item with

size in Sn. dist is a list of frequencies, with a size of Nsection. distn records the frequency of
historical items with size in Sn.

patterns could be generated given Nsection and Npattern, which is the number of patterns.
patterns could be seen as a two-dimensional table, representing fixed combinations of
differently sized items. The size of patterns is Npattern × Nsection. patternsij refers to the
number of Sn item in the j-th pattern. Npattern could be used to configure the algorithm.

Symmetry 2022, 14, 1301 10 of 16

Based on patterns and dist, the pattern plan plan can be generated and updated. plan
can be seen as a list of integer numbers. plann is the remaining quota of patternsn. Values in
plan are decremented after patterns are applied, and updated regularly based on updated
distance. The update frequency could be predefined with Nsampling, which determines the
number of items processed between two plan updates.

Bin waiting queues w are a two-dimensional array of queues, with an identical size of
patterns. wij is a queue of patternsi bins waiting for Sj items. Once a new bin is generated,
it is pushed into the corresponding queues. One bin may be in several queues of w. Guided
by w, every bin follows an unchangeable pattern until it is fully removed from all queues.
Every time an item is packed into a bin, the corresponding occurrence pops out of the queue.

As sometimes an item cannot be matched to a pattern, Best-Fit would be used as a
fallback option. Bb is a vector of all bins packed or to be packed by Best-Fit. It also receives
bin packed to patterns regularly.

Secondly, the internal flow of this algorithm is explained. For clarity, we divide the en-
tire algorithm into four parts: Main (Algorithm 1), Pattern Generation (See Appendix A:
Algorithm A1), Pattern Update (See Appendix A: Algorithm A2) and Packing (See
Appendix A: Algorithm A3). As can be seen in the Main function, this algorithm runs
in iterations. One item is packed in one iteration. During the initialization stage, the
patterns are generated, with other variables being empty or zero. In the first iteration, items
are recorded into dist and processed by standard Best-Fit algorithm since plan is not yet
generated and initially remains blank. Once the item counter reaches Nsampling, it is reset,
and the plan is updated based on dist. Then, the algorithm starts packing with patterns.
The dist continues to accumulate, on which the plan is updated every Nsampling items.

Algorithm 1 Pattern-Based Online Bin Packing.

function MAIN(Nsampling, Nsection)
initialize the distribution recorder dist
patterns← GENERATE PATTERNS(Nsection, Npattern)
initialize the pattern plan plan
initialize bin waiting queues w with size of Npattern × Nsection
initialize a vector of Best-Fit bins Bb
itemCounter ← 0
while has next item item do

itemCounter ← itemCounter + 1
idx ← item/Nsection
distidx ← distidx + 1
PACK ITEM(plan,dist,patterns,Bb,w,item)
if itemCounter = Nsampling then

itemCounter ← 0
plan←UPDATE PATTERN PLAN(dist,patterns)

The Pattern Generation function generates available patterns. It searches for pos-
sible size combinations with the priority of producing patterns with large item sizes. It
starts with a pattern with single largest item type and iteratively changes the type of the
smallest item one at a time. If total size of the current pattern is equal to the bin capacity,
it records the pattern. If total size of the current pattern is less than the bin capacity, it
duplicates the current smallest item type. If the total size of the current pattern is larger
than the bin capacity, it downsizes the currently smallest item type. If the smallest item
type has reached zero, the item is removed from the pattern and the second smallest item
type is downsized. It stops when the current pattern is empty or the recorded pattern count
has reached Npatterns.

The Update Pattern plan function is to update the pattern plan based on dist. It
scales down the historical item size distribution (dist) to a smaller distribution (distp) with
size of Nsampling, and treat this as a prediction for the next Nsampling items. Based on the

Symmetry 2022, 14, 1301 11 of 16

prediction, it generates quotas for each pattern so that most items in distp are prescheduled
into a pattern. Note that the generation of quotas are sequential. Former patterns would
be processed first. When a pattern is scheduled, the included items would be subtracted
from distp.

The Pack Item function is to pack items into bins. After the item is classified into a
section, it would firstly attempt to use patterns with large item sizes, i.e. low indices. When
attempting to use a pattern, if there is a bin in the corresponding queue in w, the bin pops.
If it cannot find a bin in the queue and there is still quota available in plan for this pattern,
a new bin is created for packing and pushed into corresponding queues. If neither of two
options above are available and this pattern does not include the section of this item, it
attempts to use the next pattern. If no pattern is available, it falls back to use Best-Fit for
packing with Bb. When the bin is found fully packed by a pattern, it is added to Bb.

4.2. Experiments

We have assessed the capability of this algorithm by coding with C++. First, we
compare its performance with Best-Fit on Bin Usage for packing. We generate 10,000
medium-sized items with four distribution: a uniform distribution over (3000, 6000], a
triangular distribution with mode of 4500 over (3000, 6000], a uniform distribution over
(2000, 6000] and a triangular distribution with mode of 4000 over (2000, 6000]. The algorithm
is configured with Npattern = 100, Nsection = 17, and Nsampling = 250. The result (Figure 5)
shows that, on some distributions where items have medium sizes, our algorithm has an
advantage in bin usage compared to Best-Fit. Note that on other distributions or with other
configurations, Best-Fit might have lower bin usage.

Figure 5. Performance comparison with Best-Fit by bin usage with sampling unit size 250 on uniform
and triangular distribution over (0.3, 0.6] and (0.2, 0.6].

We compared the cause of the difference. Figure 6 shows the distribution of the wasted
space of two algorithms over the uniform distribution over (0.3, 0.6]. It could be seen that
in most of wasted space intervals, the frequency produced by our algorithm is less than
Best-Fit. The overall trend is roughly a decrease in frequency as wasted space grows. The
difference is that the frequency produced by Best-Fit shows a mild downward trend of
frequency as waste space increases, while our algorithm gives a increase at first, followed
by a sharp decrease. It means that although Best-Fit produces more accurate packing (with
wasted space less than 0.05), our algorithm produces much more sub-accurate packing
(with wasted space between 0.05 and 0.1). In this case, our algorithm sacrifices some
possibility of packing tightest bins and largely enhances the possibility of packing bins
with slightly lower tightness.

Symmetry 2022, 14, 1301 12 of 16

Figure 6. Performance comparison with Best-Fit by bin wasted space with sampling unit size 250 on
uniform distribution over (0.3, 0.6]. Intervals with frequency less than 20 are ignored.

To further investigate the behavior of our algorithm, we compared the frequency and
wasted space of each type of bin in the result (Figure 7). Recall that, in the algorithm,
every bin is given a category at the beginning of its packing. In this case, there are four
categories of bin: bins packed by pattern 20, bins packed by pattern 31, bins packed by
pattern 46 and bins packed by Best-Fit as a fallback option. It could be seen that over 2

3 of
bins are packed by patterns. The most used patterns are pattern 31 and pattern 46, which
produce the least average wasted space. Although Best-Fit are used as a fallback option,
and produces bins with higher wasted space, it does not cover the advantage brought by
patterns in performance.

Figure 7. Comparison between each type of bin within our algorithm with frequency and wasted
space with sampling unit size 250 on uniform distribution over (0.3, 0.6].

We also compare its performance with Best-Fit on CPU running time. Under the
experiment settings above, on the same environment (Table 6), we repeated tests 100 times
and recorded the average CPU time values. The result is shown in Figure 8. Under such
circumstances, the CPU time consumed by our algorithm is 13% to 66% lower than that
of Best-Fit.

Table 6. Experiment environment.

CPU Intelr Core™ i7-12700KF@3.6 GHz

RAM 16 GiB@4800 MHz

OS Windows 11 Professional 21H2

SDK Visual Studio 2019 (v142)

Build Conf. Release x64

Symmetry 2022, 14, 1301 13 of 16

Figure 8. Performance comparison by CPU time with sampling unit size 250 on uniform and
triangular distribution over (0.3, 0.6] and (0.2, 0.6].

In reality, the distribution of incoming item sizes is predictable based on historical
data, but often changes over time. As our algorithm is based on distribution learning,
distribution deviations would not change the result severely, especially when the changes
are minor. An experiment designed to simulate this scenario, and to prove the feature
of stability, is explained in Section 3.3. On different uniform distribution, some items are
randomly selected and reassigned sizes in (0, 1], which simulates changes in the distribution.
With gradually deviated distributions, we record bin usage and internal pattern usage on
different types of original distributions.

As can be seen in Figure 9, with the number of items with re-assigned sizes increasing,
on different original distributions, the bin usage changes linearly towards the same static
value, which is confirmed to be the bin usage over a uniform size distribution (0, 10,000].
This shows that a change to the original distribution would not severely degrade the
performance of our algorithm. Instead, our algorithm would adapt to the change and
deliver a reasonable result.

Figure 9. Bin usage with varied uniform distributions (0.2, 0.5], (0.225, 0.525], (0.25, 0.55],
(0.275, 0.575], (0.3, 0.6], (0.325, 0.625], (0.35, 0.65], (0.375, 0.675], and (0.4, 0.7] with sampling unit
size 250; varied size over (0, 1] for a random Item.

A minor change to the distribution causes an even more minor change to the internal
pattern usage. Figure 10 shows that, with distribution slightly changed, the internal
patterns would be changed as well. However, the change is minor. Figure 11 shows that
on distribution (0.3, 0.6], the deviation of the overall pattern usage does not exceed the
varieties of items. With deviation of item size increasing from 0 to 20, the pattern usage
fluctuates between −6 and 1. It proves that even with a varied item size, the usage of
pattern is mild and stable.

Symmetry 2022, 14, 1301 14 of 16

Figure 10. Usage of pattern 19, 30 and 45 with varied uniform distributions (0.3, 0.6] with sampling
unit size 250.

Figure 11. Overall pattern usage with varied uniform distributions (0.3, 0.6] with sampling unit
size 250.

5. Conclusions

In this research, we have analyzed the symmetry and stability of patterns in BPP
and developed a pattern-based algorithm with parameterized symmetrical partitioning
method for online BPP. The experimental results show that the proposed algorithm has a
better performance for average bin usage, average wasted space and computational time
compared with the heuristics of Best-Fit and First-Fit. The experiments also reveal that
patterns still maintain stable in online BBP, even when the distribution varies slightly in an
online BPP. This pattern based method provides a way to handle uncertainty in online BPP,
which has the potential to be extended to general optimization problems with uncertainty.

The pattern-based algorithm depends on both estimation of item distribution and
pattern selection. The proposed algorithm adopts heuristics to select patterns which do
not compute the optimal patterns for a given distribution of items, despite the compu-
tational simplicity. This limitation may be overcome by using some meta-heuristics or
machine learning methods to search pattern combinations for a given item distribution.
A machine learning method may be efficient for pattern selection by computing near op-
timal pattern combinations with moderate computational complexity. This will be our
future research focus.

Author Contributions: Software and investigation, B.L.; methodology and formal analysis, J.L.;
supervision, project administration, R.B.; resources, R.Q.; validation, T.C. and H.J.; writing—original
draft preparation, B.L.; writing—review and editing, J.L.; visualization, B.L.; funding acquisition, J.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This study is funded by a NSFC (code 72071116) and Ningbo 2025 key technology projects
(code 2019B10026, E01220200006).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Symmetry 2022, 14, 1301 15 of 16

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Algorithm A1 Online Bin Packing Pattern Generation.

function GENERATE PATTERNS(Nsection, Npattern)
initialize patterns with size of Npattern × Nsection
initialize t with size of Nsection
np ← 0
t0 ← Nsection
i← 0
while t0 6= 0 & np < Npattern do

sum← 0
for all n in t do

sum← sum + n
if sum = Nsection then . Record pattern

for all n in t do
patternnpn ← patternnpn + 1

np ← np + 1
ti ← ti − 1

else if sum < Nsection then . Pattern too small
if ti 6= 0 then . Duplicate

ti+1 ← ti
i← i + 1

else . Remove item
i← i− 1
ti ← ti − 1

else . Pattern too large
ti ← ti − 1 . Downsize

return patterns

Algorithm A2 Online Bin Packing Pattern Update.

function UPDATE PATTERN PLAN(dist,patterns)
initialize distp
Ndist ← countSamples(dist)
for i = 0 to Nsection do . Generate prediction

distpi ← disti × (Nsampling/Ndist)

initialize plan
for i = 0 to Npattern do . Generate pattern plan

usable← f alse
valmin ← ∞
for j = 0 to Nsection do

if patternsij 6= 0 then
val ← distpj/patternsij
if val < valmin then

usable← true
valmin ← val

if usable then
plani ← valmin
for j = 0 to Nsection do

distpj ← distpj − valmin × patternsij

return plan

Symmetry 2022, 14, 1301 16 of 16

Algorithm A3 Online Bin Packing Pack by Patterns.

function PACK ITEM(plan,dist,patterns,Bb,w,item)
m← f loor[i/(C/Nsection)]
packed← f alse
initialize current bin b as null
for i = 0 to Npattern do

if patternsim > 0 then
if QUEUE SIZE(wim) > 0 then

b← POP(wim)
else if plani > 0 then

plani ← plani − 1
b← GetNewBin()
for j = 0 to Nsection do

for h = 0 to patternsij do
PUSH(wij, b)

POP(wim)

if b 6= null then
PACK IN(b, item)
if NOT EXIST(w, b) then

PUSH(Bb, b)
packed← true

if packed = f alse then
BEST-FIT(Bb, item)

References
1. Johnson, D.S.; Demers, A.; Ullman, J.D.; Garey, M.R.; Graham, R.L. Worst-Case Performance Bounds for Simple One-Dimensional

Packing Algorithms. SIAM J. Comput. 1974, 3, 299–325. [CrossRef]
2. Johnson, D.S. Fast algorithms for bin packing. J. Comput. Syst. Sci. 1974, 8, 272–314. [CrossRef]
3. Johnson, D.S. Near-Optimal Bin Packing Algorithms. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA,

USA, 1973.
4. Yao, A.C.-C. New Algorithms for Bin Packing. J. ACM 1980, 27, 207–227. [CrossRef]
5. Coffman, E.G.; Csirik, J.; Galambos, G.; Martello, S.; Vigo, D. Bin Packing Approximation Algorithms: Survey and Classification.

In Handbook of Combinatorial Optimization; Springer: New York, NY, USA, 2013, pp. 455–531.
6. Lee, C.C.; Lee, D.T. A simple on-line bin-packing algorithm. J. ACM 1985, 32, 562–572. [CrossRef]
7. Ramanan, P.; Brown, D.J.; Lee, C.C.; Lee, D.T. On-line bin packing in linear time. J. Algorithms 1989, 10, 305–326. [CrossRef]
8. Richey, M.B. Improved bounds for harmonic-based bin packing algorithms. Discret. Appl. Math. 1991, 34, 203–227. [CrossRef]
9. Seiden, S.S. On the online bin packing problem. J. ACM 2002, 49, 640–671. [CrossRef]
10. Balogh, J.; Békési, J.; Galambos, G. New lower bounds for certain classes of bin packing algorithms. Theor. Comput. Sci. 2012,

440–441, 1–13. [CrossRef]
11. Heydrich, S.; van Stee, R. Beating the Harmonic Lower Bound for Online Bin Packing. In Proceedings of the 43rd International

Colloquium on Automata, Languages, and Programming (ICALP 2016), Rome, Italy, 12–15 July 2016; pp. 41:1–41:14. Available
online: http://drops.dagstuhl.de/opus/volltexte/2016/6321 (accessed on 10 December 2021).

12. Silva-Gálvez, A.; Lara-Cárdenas, E.; Amaya, I.; Cruz-Duarte, J.M.; Ortiz-Bayliss, J.C. A Preliminary Study on Score-Based
Hyper-heuristics for Solving the Bin Packing Problem. In Pattern Recognition; Lecture Notes in Computer Science; Springer
Science+Business Media: Berlin/Heidelberg, Germany, 2020; Chapter 30, pp. 318–327.

13. Dunke, F.; Nickel, S. A data-driven methodology for the automated configuration of online algorithms. Decis. Support Syst. 2020,
137, 113343. [CrossRef]

14. Gupta, V.; Radovanović, A. Interior-Point-Based Online Stochastic Bin Packing. Oper. Res. 2020, 68, 1474–1492. [CrossRef]
15. Ross, N.; Keedwell, E.; Savic, D. Human-Derived Heuristic Enhancement of an Evolutionary Algorithm for the 2D Bin-Packing

Problem. In Parallel Problem Solving from Nature—PPSN XVI; Springer: Cham, Switzerland, 2020; pp. 413–427.
16. Zhao, H.; She, Q.; Zhu, C.; Yang, Y.; Xu, K. Online 3D bin packing with constrained deep reinforcement learning. In Proceedings of

the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; AAAI Press: Palo Alto, CA, USA, 2021, Volume 35,
pp. 741–749.

http://doi.org/10.1137/0203025
http://dx.doi.org/10.1016/S0022-0000(74)80026-7
http://dx.doi.org/10.1145/322186.322187
http://dx.doi.org/10.1145/3828.3833
http://dx.doi.org/10.1016/0196-6774(89)90031-X
http://dx.doi.org/10.1016/0166-218X(91)90087-D
http://dx.doi.org/10.1145/585265.585269
http://dx.doi.org/10.1016/j.tcs.2012.04.017
http://drops.dagstuhl.de/opus/volltexte/2016/6321
http://dx.doi.org/10.1016/j.dss.2020.113343
http://dx.doi.org/10.1287/opre.2019.1914

	Introduction
	Literature Review
	Patterns in Bin Packing Problem
	Discretize Items
	Symmetry in Patterns
	Stability of Patterns in BPP

	A Pattern-Based Algorithm for Online BPP
	Algorithm
	Experiments

	Conclusions
	Appendix A
	References

