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Abstract: We show that the results we had previously obtained on diagonals of 9- and 10-parameter
families of rational functions in three variables x, y, and z, using creative telescoping, yielding
modular forms expressed as pullbacked 2F1 hypergeometric functions, can be obtained much more
efficiently by calculating the j-invariant of an elliptic curve canonically associated with the denomina-
tor of the rational functions. These results can be drastically generalized by changing the parameters
into arbitrary rational functions of the product p = x y z. In other cases where creative telescoping
yields pullbacked 2F1 hypergeometric functions, we extend this algebraic geometry approach to other
families of rational functions in three or more variables. In particular, we generalize this approach
to rational functions in more than three variables when the denominator can be associated to an
algebraic variety corresponding to products of elliptic curves, or foliations in elliptic curves. We also
extend this approach to rational functions in three variables when the denominator is associated
with a genus-two curve such that its Jacobian is a split Jacobian, corresponding to the product of two
elliptic curves. We sketch the situation where the denominator of the rational function is associated
with algebraic varieties that are not of the general type, having an infinite set of birational automor-
phisms. We finally provide some examples of rational functions in more than three variables, where
the telescopers have pullbacked 2F1 hypergeometric solutions, because the denominator corresponds
to an algebraic variety that has a selected elliptic curve.

Keywords: diagonal of a rational function; pullbacked hypergeometric function; modular form;
Hauptmodul; creative telescoping; telescoper; elliptic curve; j-invariant; K3 surface; split Jacobian;
extremal rational surface; birational automorphism; algebraic variety of general type
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1. Introduction

In previous papers [1,2], using creative telescoping [3], we have obtained diagonals
(for the introduction of the concept of diagonals of rational functions, see [4–11]) of 9- and
10-parameter families of rational functions, given by (classical) modular forms expressed
as pullbacked 2F1 hypergeometric functions [12]. The natural emergence of diagonals of
rational functions (the lattice Green functions are the simplest examples of such diagonals
of rational functions [13–18]) in lattice statistical mechanics is explained in [19,20]. This
can be seen as the reason for the frequent occurrence of modular forms and Calabi–Yau
operators in lattice statistical mechanics [21–27]. In other previous papers [17,18] dedicated
to Heun functions that are either diagonals of simple rational functions, or only solutions of
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telescopers [28,29] of simple rational functions of three or four variables, we have obtained
many order-three telescopers having squares of Heun functions as solutions that turn
out to be squares of pullbacked 2F1 hypergeometric functions corresponding to classical
modular forms and even Shimura automorphic forms [30,31], strongly reminiscent of periods
of extremal rational surfaces [32,33], and other foliations of K3 surfaces in elliptic curves. In
other words, one finds experimentally that the 2F1 hypergeometric functions emerging in
the calculation of the diagonals of rational functions, or of the solutions of the telescopers
of rational functions, seem to be only special 2F1(a, b; c; x) hypergeometric functions with
a selected set of parameters a, b, c (see the list (B.1) in Appendix B of [17], corresponding
to classical modular forms) (see Felix Klein’s connection of the 2F1(1/12, 5/12; 1; x) Gauss
hypergeometric function with modular forms; for instance, in the very pedagogical and
heuristic paper, [12]), together with a finite set of parameters, such as 7/24, 11/24, 5/4,
corresponding to Shimura automorphic forms [30,31]), pullbacked by selected pullbacks.
This last paper [17] also underlined the difference between the diagonal of a rational
function Diag(R), and the solutions of the telescoper of the same rational function.

These results strongly suggested to find an algebraic geometry interpretation for all of
these exact results, and more generally, they suggested to provide an alternative algebraic
geometry approach of the results emerging from creative telescoping (the reader may refer
to [34] for an extensive survey of “creative telescoping” approaches).

This is the purpose of the present paper. In particular, we are going to show that
most of these pullbacked 2F1 hypergeometric functions can be obtained efficiently through
algebraic geometry calculations, thus providing a more intrinsic algebraic geometry in-
terpretation of the creative telescoping calculations that are typically differential algebra
calculations [28,29,34,35].

Creative telescoping [28,29,34,36] is a methodology to deal with parametrized symbolic
sums and integrals that yields differential/recurrence equations for such expressions. This
methodology became popular in computer algebra in the past 25 years. By the “telescoper”
of a rational function, say R(x, y, z), we here refer to the output of the creative telescoping
program [3], applied to the transformed rational function R̃ = R(x/y, y/z, z)/(yz). Such
a telescoper is a linear differential operator T in x and ∂

∂x , such that T + ∂
∂y ·U + ∂

∂z ·V
annihilates R̃, where the so-called “certificates” U, V are rational functions in x, y, z. In
other words, the telescoper T represents a linear ODE that is satisfied by Diag(R).

The paper is essentially dedicated to the solutions of telescopers of rational functions
that are not necessarily diagonals of rational functions. These solutions correspond to
periods [37] of algebraic varieties over some cycles that are not necessarily vanishing [38]
cycles (in French: “cycles évanescents” [5,39]) as with the case of the diagonals of rational
functions. The reader who is interested in the connection between the process of taking
diagonals, calculating telescopers, and the notion of periods, de Rham cohomology (i.e.,
differential forms) and other Picard–Fuchs equations can read in detail the thesis of Pierre
Lairez [35] (see also [40]). We sketch just some of these ideas in Appendix A.

The purpose of this paper is not to give an introduction to creative telescoping [28,29],
but to provide many pedagogical (non-trivial) examples of telescopers using (one can
obtain these telescopers using Chyzak’s algorithm [41] or Koutschan’s semi-algorithm [3,42]
(the termination is not proven). For the examples displayed in this paper, Koutschan’s
package [3] is more efficient) the HolonomicFunctions Mathematica package extensively [3].

The paper is organized as follows. We first recall in Section 2 the exact results
of [1,2] for the 9- and 10-parameter families of rational functions using creative telescoping,
yielding modular forms expressed as pullbacked 2F1 hypergeometric functions. We show
in Section 3 that these exact results can be obtained, much more efficiently, by calculating
the j-invariant of an elliptic curve that is canonically associated with the denominator of
the rational function, and we underline the fact that one can drastically generalize these
results, the parameters becoming quite arbitrary rational functions. Section 4 generalizes
the previous calculations to denominators of the rational functions of more than three
variables, corresponding to the products (or foliations) of elliptic curves. In Section 5, we
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show how modular forms expressed as pullbacked 2F1 hypergeometric functions occur for
rational functions in three variables when the denominator is associated with a genus-two
curve such that its Jacobian is a split Jacobian corresponding to the product of two elliptic
curves. In Section 6, we sketch the situation where the denominator of the rational function
is associated with algebraic varieties of low Kodaira dimension, having an infinite set of
birational automorphisms. We finally provide some examples of rational functions in more
than three variables, where the telescopers have pullbacked 2F1 hypergeometric solutions,
the denominator corresponding to an algebraic variety having a selected elliptic curve in
the variety explaining these pullbacked 2F1 solutions.

2. Classical Modular Forms and Diagonals of 9- and 10-Parameter Families of
Rational Functions

In previous papers [1,2], using creative telescoping [3], we have obtained diagonals
of 9- and 10-parameter families of rational functions, given by (classical) modular forms
expressed as pullbacked 2F1 hypergeometric functions. Let us recall these results.

2.1. Nine-Parameter Rational Functions Giving Pullbacked 2F1 Hypergeometric Functions for
Their Diagonals

Let us recall the nine-parameter rational function in three variables, x, y and z:

1
a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y + d y2 z + e z x2 . (1)

Calculating (using the HolonomicFunctions Mathematica package [3]) the telescoper of
this rational function (1), one obtains an order-two linear differential operator annihilating
the diagonal of the rational function (1). The diagonal of the rational function (1) can be
written [1,2] as a pullbacked hypergeometric function:

1
P4(x)1/4 · 2F1

( 1
12

,
5
12

; 1; 1 − P6(x)2

P4(x)3

)
, (2)

where P4(x) and P6(x) are two polynomials of degree four and six in x, respectively. The
Hauptmodul pullback in (2) has the form:

H =
1728

j
= 1 − P6(x)2

P4(x)3 =
1728 · x3 · P8(x)

P4(x)3 , (3)

where j is the j-invariant and P8(x) is a polynomial of degree eight in x. Such a pullbacked
2F1 hypergeometric function (2) corresponds to a classical modular form [1,2].

2.2. Ten-Parameter Rational Functions Giving Pullbacked 2F1 Hypergeometric Functions for Their
Diagonals

Let us recall the 10-parameter rational function in three variables, x, y and z:

R(x, y, z) = (4)
1

a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y + d1 x2 y + d2 y2 z + d3 z2 x
.

Calculating the telescoper of this rational function (4), one obtains an order-two linear
differential operator annihilating the diagonal of the rational function (4). The diagonal of
the rational function (4) can be written [1,2] as a pullbacked hypergeometric function:

1
P3(x)1/4 · 2F1

( 1
12

,
5
12

; 1; 1 − P6(x)2

P3(x)3

)
, (5)
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where P3(x) and P6(x) are two polynomials of degree three and six in x, respectively.
Furthermore, the Hauptmodul pullback in (5) is seen to be of the form:

H =
1728

j
= 1 − P6(x)2

P3(x)3 =
1728 · x3 · P9(x)

P3(x)3 . (6)

where P9(x) is a polynomial of degree nine in x. Again, (5) corresponds to a classical
modular form [1,2].

3. Deducing Creative Telescoping Results from Effective Algebraic Geometry

Obtaining the previous pullbacked hypergeometric results (2) and (5) required [1,2]
an accumulation of creative telescoping calculations, and a lot of “guessing”, using all of
the symmetries of the diagonals of these rational functions (1) and (4). We are looking for
a more efficient and intrinsic way of obtaining these exact results. These two pullbacked
hypergeometric results (2) and (5), are essentially “encoded” by their Hauptmodul pullbacks
(3) and (6), or, equivalently, their corresponding j-invariants. The interesting question,
which will be addressed in this paper, is whether it is possible to canonically associate
elliptic curves whose j-invariants correspond precisely to these Hauptmoduls H = 1728

j .

3.1. Revisiting the Pullbacked Hypergeometric Results in an Algebraic Geometry Perspective

One expects such an elliptic curve to correspond to the singular part of the rational
function, namely, the denominator of the rational function. Let us recall that the diagonal
of a rational function in (for example) three variables is obtained through its multi-Taylor
expansion [19,20]:

R(x, y, z) = ∑
m

∑
n

∑
l

am, n, l · xm yn zl , (7)

by extracting the “diagonal” terms, i.e., the powers of the product p = xyz:

Diag
(

R(x, y, z)
)

= ∑
m

am, m, m · xm. (8)

Consequently, it is natural to consider the algebraic curve corresponding to the intersec-
tion of the surface defined by the vanishing condition D(x, y, z) = 0 of the denominator
D(x, y, z) of these rational functions (1) and (4), with the hyperbola p = x y z (where
p is seen, here, as a constant). This amounts, for instance, to eliminating the variable z,
substituting z = p

x y in D(x, y, z) = 0.

3.1.1. Nine-Parameter Case

In the case of the rational functions (1), this corresponds to the (planar) algebraic curve:

a + b1 x + b2 y + b3
p

x y
+ c1 y

p
x y

+ c2 x
p

x y
+ c3 x y

+d y2 p
x y

+ e
p

x y
x2 = 0, (9)

which can be rewritten as a (general, nine-parameter) biquadratic:

a x y + b1 x2 y + b2 x y2 + b3 p + c1 p y + c2 p x + c3 x2 y2

+d p y2 + e p x2 = 0. (10)

Using formal calculations (namely, using with(algcurves) in Maple, and in particular, the
command j_invariant) one can easily calculate the genus of the planar algebraic curve
(10), and find that it is actually an elliptic curve (of genus one). Furthermore, one can
(almost instantaneously) find the exact expression of the j-invariant of this elliptic curve
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as a rational function of the nine parameters a, b1, b2, · · · , e in (1). One actually finds
that this j-invariant is precisely the j, such that the Hauptmodul H = 1728

j is the exact
expression (3). In other words, the classical modular form result (2) could have been
obtained, almost instantaneously, by calculating the j-invariant of an elliptic curve that
is canonically associated with the denominator of the rational function (1). The algebraic
planar curve (10) corresponds to the most general biquadratic of two variables, which
depends on nine homogeneous parameters. Such a general biquadratic is known to be an
elliptic curve for generic values of the nine parameters. (So many results in integrable models
correspond to this most general biquadratic: the Bethe ansatz of the Baxter model [43,44],
the elliptic curve foliating the 16-vertex model [44], so many QRT birational maps [45], etc.)

Thus, the nine-parameter exact result (2) can be seen as a simple consequence of the
fact that the most general nine-parameter biquadratic is an elliptic curve.

3.1.2. Ten-Parameter Case

In the case of the rational function (4), substituting z = p
x y in D(x, y, z) = 0, one

obtains the 10-parameter bicubic:

a x y2 + b1 x2 y2 + b2 x y3 + b3 p y + c1 p y2 + c2 px y + c3 x2 y3

+ d1 x3 y3 + d2 y3 + d3 p2 = 0. (11)

As before, we find that this planar algebraic curve is actually an elliptic curve (Generi-
cally, the most general planar bicubic is not a genus-one algebraic curve. It is a genus-four
curve.) and that the exact expression of its j-invariant is precisely the j of the Hauptmodul
H = 1728/j in (6).

Thus, this 10-parameter result (5) can again be seen as a simple consequence of the
fact that there exists a family of 10-parameter bicubics (see (11)) which are elliptic curves
for generic values of the 10 parameters.

These preliminary calculations are a strong incentive to attempt to replace the differ-
ential algebra calculations of creative telescoping with more intrinsic algebraic geometry
calculations, or at least, to perform effective algebraic geometry calculations to provide an
algebraic geometry interpretation of the exact results obtained from creative telescoping.

3.2. Finding Creative Telescoping Results from j-Invariant Calculations

One might think that these results are a consequence of the simplicity of the denom-
inators of the rational functions (1) or (4), being associated with biquadratics or selected
bicubics. In fact, these results are very general. Let us, for instance, consider a nine-
parameter family of planar algebraic curves that are not biquadratics or (selected) bicubics:

a1 x4 + a2 x3 + a3 x2 + a4 x + a5 + a6 x2 y + a7 y2 + a8 y + a9 x y = 0. (12)

One can easily calculate the genus of this planar curve and see that this genus is actually
one for arbitrary values of the an’s. Thus the planar curve (12) is an elliptic curve for generic
values of the nine parameters a1, · · · , a9. It is straightforward to see that the algebraic
surface S(x, y, z) = 0, corresponding to:

z · (a1 x4 + a2 x3 + a3 x2 + a4 x + a5 + a6 x2 y + a7 y2 + a8 y) + a9 p = 0, (13)

will automatically be such that its intersection with the hyperbola p = x y z gives back
the elliptic curve (12).

Using this kind of “reverse engineering” suggests that we should consider the rational
function in three variables x, y, and z:

R(x, y, z) =

1
1 + z · (a1 x4 + a2 x3 + a3 x2 + a4 x + a5 + a6 x2 y + a7 y2 + a8 y)

, (14)
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which will be such that its denominator is canonically associated with an elliptic curve.
Again, we can immediately calculate the j-invariant of that elliptic curve. If one calculates
the telescoper of this eight-parameter family of rational functions (14), one finds that this
telescoper is an order-two linear differential operator with pullbacked hypergeometric
solutions of the form:

A(x) · 2F1

( 1
12

,
5
12

; 1; H
)

, (15)

where A(x) is an algebraic function, and where again, the pullback-Hauptmodul,
H = 1728/j, precisely corresponds to the j-invariant of the elliptic curve.

More generally, in seeking for planar elliptic curves, one can, for the given values of
two integers M and N, look for planar algebraic curves:

n=N

∑
n=0

m=M

∑
m=0

am, n · xn ym = 0, (16)

defined by the set of am, n’s that are equal to zero, apart from N homogeneous parameters
am, n being, as in (10), (11), or (13), independent parameters. Finding such an N -parameter
family of (planar) elliptic curves automatically provides an N -parameter family of rational
functions such that their telescopers have a pullbacked 2F1 hypergeometric solution, which
we can simply deduce from the j-invariant of that elliptic curve.

Recalling the results of Section 2.2, the natural question to ask now is whether it
is possible to find families of such (planar) elliptic curves that depend on more than 10
independent parameters.

Before addressing this question, let us recall the concept of birationally equivalent
elliptic curves. Let us consider the monomial transformation:

(x, y) −→ (xM yN , xP yQ), (17)

where M, N, P, Q are integers, such that M · Q − P · N = 1; then, its compositional
inverse is the monomial transformation:

(x, y) −→
( xQ

yN ,
yM

xP

)
. (18)

This monomial transformation (17) is thus a birational (This transformation is rational and
its compositional inverse is also rational (here, monomial)) transformation. A birational
transformation transforms an elliptic curve, such as (12), into another elliptic curve with
the same j-invariant: these two elliptic curves are said to be birationally equivalent. In
the case of the birational and monomial transformation (17), the elliptic curve (12) is
changed into (one can easily verify for particular values of the M, N, P, Q, and ak’s, using
with(algcurves) in Maple, that the j-invariants of (12) and (19) are actually equal.):

a1 · x4 M y4 N + a2 · x3 M y3 N + a3 · x2 M y2 N + a4 · xM yN + a5 (19)

+a6 · x2 M +P y2 N +Q + a7 · x2 P y2 Q + a8 · xP yQ + a9 · xM +P yN +Q = 0.

With this kind of birational monomial transformation (17), we see that one can obtain
families of elliptic curves (19) of arbitrary large degrees in x and y. Consequently, one can
find 9- or 10-parameter families of rational functions of arbitrary large degrees yielding
pullbacked 2F1 hypergeometric functions. There is no constraint on the degree of the
planar algebraic curves (19): the only relevant question concerns the maximum number
of (linearly) independent parameters in families of planar elliptic curves, which is shown
to be 10. The demonstration (we thank Josef Schicho for providing this demonstration) is
sketched in Appendix B.
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3.3. Pullbacked 2F1 Functions for Higher Genus Curves: Monomial Transformations

Let us recall another important point. We have already remarked in [1,2] that once we
have an exact result for a diagonal of a rational function of three variables R(x, y, z), we im-
mediately obtain another exact result for the diagonal of the rational function R(xn, yn, zn)
for any positive integer n. As a result, we obtain a new expression for the diagonal changing
x into xn. In fact, this is also a result on the telescoper of the rational function R(x, y, z): the
telescoper of the rational function R(xn, yn, zn) is the x → xn pullback of the telescoper of
the rational function R(x, y, z). Having a pullbacked 2F1 solution for the telescoper of the
rational function R(x, y, z) (respectively, the diagonal of the rational function R(x, y, z)),
we will immediately deduce a pullbacked 2F1 solution for the telescoper of the rational
function R(xn, yn, zn) (respectively, the diagonal of the rational function R(xn, yn, zn)).

Along this line, let us change, in the rational function (1), (x, y, z) into (x2, y2, z2):

R2(x, y, z) = (20)
1

a + b1 x2 + b2 y2 + b3 z2 + c1 y2 z2 + c2 x2 z2 + c3 x2 y2 + d y4 z2 + e z2 x4 .

The diagonal of this new rational function (20) will be the pullbacked 2F1 exact expression
(2), where we change x → x2. The intersection of the algebraic surface corresponding
to the vanishing condition of the denominator of the new rational function (20), with the
hyperbola p = x y z (i.e., z = p

x y ), is nothing but Equation (10), where we have changed

(x, y; p) into (x2, y2; p2):

a x2 y2 + b1 x4 y2 + b2 x2 y4 + b3 p2 + c1 p2 y2 + c2 p2 x2 + c3 x4 y4

+ d p2 y4 + e p2 x4 = 0, (21)

which is no longer (if we perform the same calculations with the 10-parameter rational
function, (4) we get an algebraic curve of genus 10 instead of 9) an elliptic curve, but a
curve of genus 9.

With that example, we see that classical modular form results, or pullbacked 2F1 exact
expressions such as (2), can actually emerge from higher genus curves like (21). As far as these
diagonals, or telescopers, of rational function calculations are concerned, higher genus curves
like (21) must in fact be seen as “almost” elliptic curves up to an x → xn covering.

Such results for monomial transformations like (x, y, z) → (xn, yn, zn) can, in fact,
be generalized to more general (not birational (in contrast with transformations such as
(17))) monomial transformations. This is sketched in Appendix C.

3.4. Changing the Parameters into Functions of the Product p = x y z

All these results for the parameterized families of rational functions can be drastically
generalized when one remarks that allowing any of these parameters to be a rational
function of the product p = x y z also yields the previous pullbacked 2F1 exact expression,
as in (2), where the parameter is changed into that rational function of x (see [1]). Let
us consider a simple (two-parameter) illustration of this general result. Let us consider
a subcase of the previous 9- or 10-parameter families, introducing, for example, the two-
parameter rational function:

1
1 + 2 x + b2 · y + 5 y z + x z + c3 · x y

. (22)

The diagonal of this rational function (22) is the pullbacked hypergeometric function:

1
P2(x)1/4 · 2F1

( 1
12

,
5

12
; 1; 43200 · x4 · P4(x)

P2(x)3

)
, (23)
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where:

P2(x) = 1 − 8 · (b2 + 10) · x + 8 · (2 b2
2 − 20 b2 + 15 c3 + 200) · x2, (24)

and:

P4(x) = −675 c4
3 · x4 + 4 c2

3 · (b2 + 10) · (4 b2
2 − 100 b2 + 45 c3 + 400) · x3

+(64 b4
2 − 32 b3

2 c3 − 8 b2
2 c2

3 − 1280 b3
2 + 1280 b2

2 c3

−460 b2 c2
3 − 5 c3

3 + 6400 b2
2 − 3200 b2 c3 − 800 c2

3) · x2 (25)

−(b2 + 10) · (32 b2
2 − 16 b2 c3 − c2

3) · x + 2 b2 · (2 b2 − c3),

Let us now consider the previous rational function (22) where the two parameters b2
and c3 become some rational functions of the product, p = x y z, for instance:

b2(p) =
1 + 3 p
1 + 7 p2 , c3(p) =

1 + p2

1 + 2 p
where: p = x y z. (26)

The new corresponding rational function becomes more involved, but one can easily calcu-
late the telescoper of this new rational function of three variables x, y and z, and find that
it is, again, an order-two linear differential operator having the pullbacked hypergeometric
solution (23) where b2 and c3 are now replaced by ( p is now x) the functions:

b2(x) =
1 + 3 x
1 + 7 x2 , c3(x) =

1 + x2

1 + 2 x
. (27)

In that case, one obtains a diagonal that is the pullbacked hypergeometric solution:

(1 + 2 x)1/4 · (1 + 7 x2)1/4 · q−1/4
8

× 2F1

( 1
12

,
5

12
; 1;

43200 · x4 · (1 + 7 x2)2 · q20

(1 + 2 x) · q3
8

)
, (28)

where q8 and q20 are two polynomials with integer coefficients of degree 8 and 20 in x. The
exact expression (28) is nothing but (23) (with (24) and (25)), where b2 and c3 have been
replaced by the rational functions (27). Similar calculations can be performed for the more
general rational functions (1) or (4), when all the (9 or 10) parameters are more involved
rational functions.

When performing our creative telescoping symbolic calculations using the Holonomic-
Functions package [3], such results may look quite impressive. From the algebraic geometry
viewpoint, it is almost tautological (An algebraic geometer will probably see this as a triv-
ial remark: diagonalization is an algebraic procedure and nothing really happens to the
coefficients. Therefore if one replaces the coefficients by anything else, one will find those
replaced coefficients in the end result.), if one takes for granted the result of our previous
Sections 3.1 and 3.2, namely, that the pullbacked hypergeometric solution of the telescoper
corresponds to the Hauptmodul 1728/j, where j is the j-invariant of the elliptic curve
corresponding to the intersection of the algebraic surface corresponding to the vanish-
ing condition of the denominator, with the hyperbola p = x y z: this calculation of the
j-invariant is performed for p fixed, and arbitrary (9 or 10) parameters a, b1, · · · . It is
clearly possible to force the parameters to be functions (The functions should be rational
functions if one wants to stick with the diagonals and telescopers of rational functions, but
the result remains valid for algebraic functions, or even transcendental functions with rea-
sonable Taylor series expansions at x = 0: for instance, for 2F1 hypergeometric functions,
one obtains a differentially algebraic function corresponding to the composition of 2F1
hypergeometric functions.) of p, the j-invariant being changed accordingly. Of course, in
that case, the parameters in the rational function are the same functions, but of the product
p = x y z.
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One thus obtains pullbacked hypergeometric solutions (classical modular forms) for
an (unreasonably) large set of rational functions in three variables, namely, the families of
the rational functions (1) or (4), but now where the 9 or 10 parameters are 9 or 10 totally
arbitrary rational functions (with Taylor series expansions) of the product p = x y z.

We see experimentally that changing the parameters of the rational function into
functions actually works for the diagonals of rational functions, as well as for the solutions
of telescopers of rational functions, depending on the parameters.

4. Creative Telescoping on Rational Functions of More than Three Variables
Associated with Products or Foliations of Elliptic Curves

Let us show that such an algebraic geometry approach to creative telescoping can
be generalized to the rational functions of more than three variables, when the vanishing
condition of the denominator can be associated with the products of elliptic curves, or more
generally, algebraic varieties with foliations in elliptic curves.

• The telescoper of the rational function in the four variables x, y, z and w:

x y z
(1 + z)2 − x · (1− x) · (x − x y z w) · y · (1− y) · (y − x y z w)

, (29)

gives an order-three self-adjoint linear differential operator which is, thus, the symmetric
square of an order-two linear differential operator. The latter has the pullbacked hypergeo-
metric solution:

S1(x) = (1 − x + x2)−1/4 · 2F1

( 1
12

,
5

12
; 1;

27
4
· x2 · (1 − x)2

(x2 − x + 1)3

)
(30)

= 2F1

(1
2

,
1
2

; 1; x
)

.

In [18], we underlined the difference between the diagonal of a rational function and
solutions of the telescoper of the same rational function. In this case, the diagonal of the
rational function (29) is zero (The reason for this is that the integration takes place over a
cycle that is homologically equivalent to the trivial cycle. The cycle becomes trivial after
taking the limit p → 0. Integrals over non-vanishing cycles usually give logarithms of p,
as with the second solution to the hypergeometric function 2F1(1/2, 1/2; 1; x).) , and is thus
different from the pullbacked hypergeometric solution (30), which is a “period” [37] of the
algebraic variety corresponding to the denominator over some (non-vanishing (diagonals of
rational functions correspond to periods over vanishing cycles [5,38])) cycle. From now on,
we will have a similar situation in most of the following examples of this paper.

This example is a simple illustration of what we expect for the products of elliptic
curves, or of algebraic varieties with foliations in elliptic curves. Introducing the product
p = xyzw, the vanishing condition of the denominator of the rational function (29) yields
the surface S(x, y, z) = 0:

(1 + z)2 − x · (1− x) · (x − p) · y · (1− y) · (y − p) = 0. (31)

For fixed p and fixed y, Equation (31) can be seen as an algebraic curve:

(1 + z)2 − λ · x · (1− x) · (x − p) = 0 (32)

with: λ = y · (1− y) · (y − p).

For fixed p and fixed y, λ can be considered as a constant, the algebraic curve (32) being
an elliptic curve with an obvious Weierstrass form:

Z2 − x · (1− x) · (x − p) = 0 where: Z =
1 + z√

λ
. (33)



Symmetry 2022, 14, 1297 10 of 33

The j-invariant of (32), or (a shift z → z + 1 or a rescaling z2 → z2

λ does not change the
j-invariant of the Weierstrass elliptic form) (33), is well-known and yields the Hauptmodul H:

H =
1728

j
=

27
4
· p2 · (1 − p)2

(p2 − p + 1)3 (34)

For fixed p and fixed x, Equation (31) can be seen as an algebraic curve:

(1 + z)2 − µ · y · (1− y) · (y − p) = 0 (35)

for: µ = x · (1− x) · (x − p),

which is also an elliptic curve with an obvious Weierstrass form and the same Hauptmodul
(34). This Hauptmodul is precisely the one that occurs in the pullbacked hypergeometric
solution (30).

More generally, the rational function of the four variables x, y, z and w:

x y z
(1 + z)2 − x · (1− x) · (x − R1(p)) · y · (1− y) · (y − R2(p))

, (36)

where p = x y z w, and where R1(p) and R2(p) are two arbitrary rational functions
(with Taylor series expansions) of the product p = x y z w, yields a telescoper that has
an order-four linear differential operator that is the symmetric product (As the present
paper belongs to the literature on symbolic computation and not on pure mathematics
for algebraic geometers, we use the standard Maple (DEtools) terminology of symmetric
powers and symmetric products of linear differential operators [46]. Note that “symmetric
product” is not a proper mathematical name for this construction on the solution space; it is
a homomorphic image of the tensor product. The (Maple/DEtools) reason for choosing the
name symmetric_product is the resemblance with the function symmetric_power.) of two
order-two linear differential operators having, respectively, the pullbacked hypergeometric
solutions (30) where x is replaced by R1(x) and R2(x). These two hypergeometric solutions
thus have the two Hauptmodul pullbacks:

H1 =
1728

j1
=

27
4
· R1(p)2 · (1 − R1(p))2

(R1(p)2 − R1(p) + 1)3 , (37)

H2 =
1728

j2
=

27
4
· R2(p)2 · (1 − R2(p))2

(R2(p)2 − R2(p) + 1)3 , (38)

obtained by calculations similar to the ones previously performed on (31) but, now, for the
Weierstrass form corresponding to the denominator (36).

A solution of the telescoper of (36) is thus the product of these two pullbacked hy-
pergeometric functions. Let us give a simple illustration of this general result, with the
next example.

• The telescoper of the rational function in the four variables x, y, z and w:

x y z
(1 + z)2 − x · (1− x) · (x − x y z w) · y · (1− y) · (y − 3 x y z w)

, (39)

corresponding to (36), with R1(p) = p and R2(p) = 3 p, gives an order-four linear
differential operator that is the symmetric product of two order-two operators having,
respectively, the pullbacked hypergeometric solution (30) and the solution (30) where the
variable x has been changed into 3 x:

S2(x) = S1(3 x) (40)

= (1 − 3 x + 9 x2)−1/4 · 2F1

( 1
12

,
5
12

; 1;
243

4
· x2 · (1 − 3 x)2

(1 − 3 x + 9 x2)3

)
.
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Creative Telescoping on Rational Functions of Five Variables Associated with Products or Foliations
of Three Elliptic Curves

Let us now introduce the rational function in five variables x, y, z, v and w:

x y z v
D(x, y, z, v, w)

, (41)

where the denominator D(x, y, z, v, w) reads:

Dp = (42)

(1 + v)2 − x · (1− x) · (x − p) · y · (1− y) · (y − 3 p) · z · (1− z) · (z − 5 p),

where: p = x y z v w.

The telescoper of the rational function (41) of five variables gives (Such a creative telescoping
calculation requires “some” computing time to achieve the result.) an order-eight linear
differential operator, which is the symmetric product of three order-two linear differential
operators having, respectively, the pullbacked hypergeometric solution (30), which is the
solution (30) where x has been changed into 3 x, namely (40), and the solution (30), where
x has been changed into 5 x:

S3(x) = S1(5 x) (43)

= (1 − 5 x + 25 x2)−1/4 · 2F1

( 1
12

,
5
12

; 1;
675

4
· x2 · (1 − 5 x)2

(1 − 5 x + 25 x2)3

)
.

In other words, the order-eight telescoper of the rational function (41) has the product
S = S1 · S2 · S3, of (30), (40), and (43) as a solution. From an algebraic geometry viewpoint,
this is a consequence of the fact that, for fixed p, the algebraic variety Dp = 0, where
Dp is given by (42), can be seen, for fixed y and z, as an elliptic curve E1 of equation
Dy,z,p(v, x) = 0, for fixed x and z, as an elliptic curve E2 of equation Dx,z,p(v, y) = 0,
and also, for fixed x and y, as an elliptic curve E3 of equation Dx,y,p(v, z) = 0, the j-
invariants jk, k = 1, 2, 3 , of these three elliptic curves Ek yielding (in terms of p), precisely,
the three Hauptmoduls Hk = : 1728

jk

27
4
· x2 · (1 − x)2

(x2 − x + 1)3 ,
243

4
· x2 · (1 − 3 x)2

(1 − 3 x + 9 x2)3 ,
675
4
· x2 · (1 − 5 x)2

(1 − 5 x + 25 x2)3 , (44)

occurring as pullbacks in the three Sk’s of the solution S = S1 · S2 · S3, of the telescoper
of (41).

Remark 1. Other examples of rational functions of three, four, and five variables where the denomi-
nators also correspond to Weierstrass (respectively, Legendre) forms, are displayed in Appendix D.
They provide simple illustrations of rational functions where the denominator is associated with
K3 surfaces (See the emergence of the product of elliptic curves from a Shioda–Inose structure on
surfaces with Picard number 19 in [47]. In [47], Ling Long considers one-parameter families of K3
surfaces with generic Picard number 19. The existence of a Shioda–Inose structure implies that there
is a one-parameter family of elliptic curves.), or Calabi–Yau threefolds. In these cases, the algebraic
varieties have simple foliations in terms of two or three families of elliptic curves, and the solutions
of the corresponding telescopers can be selected 3F2 and 4F3 hypergeometric functions (see (A28) in
Appendix D), naturally associated with K3 surfaces and Calabi–Yau operators [27].

5. Creative Telescoping of Rational Functions in Three Variables Associated with
Genus-Two Curves with Split Jacobians

In papers [17,18], dedicated to Heun functions that are solutions of telescopers of
simple rational functions of three and four variables, we have obtained (See Equation (83)
in Section 2.2 of [18].) an order-four telescoper of a rational function of three variables,
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which is the direct sum of two order-two linear differential operators, each having classical
modular form solutions that can be written as pullbacked 2F1 hypergeometric solutions.
Unfortunately, the intersection of the algebraic surface corresponding to the denominator
of the rational function with the p = x y z hyperbola yields a genus-two algebraic curve.

Let us try to understand, in this section, how a genus-two curve can yield two classical
modular forms. Let us first recall the results in Section 2.2 of [18].

5.1. Periods of Extremal Rational Surfaces

Let us recall the rational function in just three variables [18]:

R(x, y, z) =
1

1 + x + y + z + x y + y z − x3 y z
. (45)

Its telescoper is actually an order-four linear differential operator L4, which not only factor-
izes into two order-two linear differential operators, but is actually the direct sum (LCLM) of
two (These two order-two linear differential operators, L2 and M2, are not homomorphic)
order-two linear differential operators, L4 = L2 ⊕ M2. These two (non-homomorphic)
order-two linear differential operators contain, respectively, the two pullbacked hypergeo-
metric solutions:

S1 = (1 + 9 x)−1/4 · (1 + 3 x)−1/4 · (1 + 27 x2)−1/4 (46)

× 2F1

( 1
12

,
5

12
; 1;

1728 · x3 · (1 + 9 x + 27 x2)3

(1 + 3 x)3 · (1 + 9 x)3 · (1 + 27 x2)3

)
,

and:

S2 =
1

(1 + 4 x − 2 x2 − 36 x3 + 81 x4)1/4 (47)

× 2F1

( 1
12

,
5
12

; 1;
1728 · x5 · (1 + 9 x + 27 x2) · (1 − 2 x)2

(1 + 4 x − 2 x2 − 36 x3 + 81 x4)3

)
.

The diagonal of (45) is actually the half-sum of the two series (46) and (47):

Diag
(

R(x, y, z)
)

=
S1 + S2

2
. (48)

As far as our algebraic geometry approach is concerned, the intersection of the al-
gebraic surface corresponding to the denominator of the rational function (45) with the
hyperbola p = x y z gives the planar algebraic curve (corresponding to the elimination of
the z variable by the substitution z = p

x y ):

1 + x + y +
p

x y
+ x y + y

p
x y

− x3 y
p

x y
= 0. (49)

One easily finds that this algebraic curve is (for p fixed) a genus-two curve, and that
this higher genus situation does not correspond to the “almost elliptic curves” described in
Section 3.2, namely, an elliptic curve transformed by a monomial transformation. How can a
“true” genus-two curve yield two j-invariants, namely, a telescoper with two Hauptmodul
pullbacked 2F1 solutions? We are going to see that the answer is that the Jacobian of this
genus-two curve (An algebraic geometer will probably recall that it is very well-known
that a genus-two curve may have Jacobian isogenous to a product of elliptic curves. This is
not the case in general. The genus-two curves that have a (non-constant) map to an elliptic
curve have this property. Our purpose in Section 5.3 is to perform a creative telescoping
calculation in such a selected situation.) is in fact isogenous to a product E × E ′ of two
elliptic curves (split Jacobian).
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5.2. Split Jacobians

Let us first recall the concept of split Jacobian with a simple example. In [48], one has a
crystal-clear example of a genus-two curve C:

y2 − (x3 + 420 x− 5600) · (x3 + 42 x2 + 1120) = 0, (50)

such that its Jacobian J(C) is isogenous to a product of elliptic curves with j-invariants j1 =
−27 · 72 = −6272 and j2 = −25 · 7 · 173 = −1100512, corresponding to the following
two values of the Hauptmodul, H = 1728

j : H1 = −27/98 and H2 = −54/34391. Let
us consider the genus-one elliptic curve:

v2 = u3 + 4900 u2 + 7031500 u + 2401000000, (51)

of j-invariant j = j2 = −25 · 7 · 173. We consider the following transformation (This
transformation is rational but not birational. If it were birational, then it would preserve
the genus. Here, one goes from genus one to genus two):

u = − 882000 · (x− 14)
x3 + 420 x− 5600

, v =
49000 · (x3 − 21 x2 − 140)

(x3 + 420 x− 5600)2 · y. (52)

This change of variables (52) actually transforms the elliptic curve (51) in u and v into the
genus-two curve (50) in x and y. This provides a simple example of a genus-two curve
with split Jacobian through K3 surfaces.

More generally, let us consider the Jacobian of a genus-two curve C. The Jacobian is
simple if it does not contain a proper abelian subvariety, otherwise the Jacobian is reducible,
or decomposable or “split”. For this latter case, the only possibility for a genus-two curve is
that its Jacobian is isogenous to a product E × E ′ of two elliptic curves (along these lines,
see also the concepts of Igusa–Clebsch invariants and Hilbert modular surfaces [48–51]).
Equivalently, there is a degree-n map C → E to some elliptic curves. Classically, such
pairs (One also has an anti-isometry Galois invariant E ′ ' E under Weil pairing. The
decomposition corresponds to real multiplication by the quadratic ring of discriminant n2)
C, E arose in the reduction of hyperelliptic integrals to elliptic ones [48]. The j-invariants
correspond, here, to the two elliptic subfields: see [48].

5.3. Creative Telescoping on Rational Functions in Three Variables Associated with Genus-Two
Curves with Split Jacobians: A Two-Parameter Example

Let us now consider the example with two parameters, a and b, given in Section 4.5
on page 12 of [48]. Let us substitute the rational parameterization (see also [52], Section 6,
page 48):

u =
x2

x3 + a x2 + b x + 1
, v =

y · (x3 − b x − 2)
(x3 + a x2 + b x + 1)2 , (53)

in the elliptic curve:

R · v2 = R · u3 + 2 · (ab2 − 6 a2 + 9 b) · u2 + (12 a− b2) · u − 4, (54)

where:

R = 4 · (a3 + b3) − a2b2 − 18 ab + 27. (55)

This gives the genus-two curve Ca, b(x, y) = 0 , with:

Ca, b(x, y) = R · y2 + (4 x3 + b2 x2 + 2 b x + 1) · (x3 + a x2 + b x + 1). (56)



Symmetry 2022, 14, 1297 14 of 33

The j-invariant of the elliptic curve (54) gives the following exact expression for the Haupt-
modul H = 1728

j :

H =
108 · (b− 3)3 · (4 a3 + 4 b3 − a2b2 − 18 ab + 27)2 · (b2 + 3 b + 9)3

(a2b4 + 12 b5 − 126 ab3 + 216 ba2 + 405 b2 − 972 a)3 . (57)

Let us consider the telescoper of the rational function of three variables x y/Da(x, y, z) ,
where the denominator Da(x, y, z) is Ca, b(x, y) , given by (56), but for b = 3 + x y z:

Da(x, y, z) = Ca, 3+ xyz(x, y)

= x6y3z3 + x7y2z2 + 4 x3y5z3 + 9 x5y2z2 + 6 x6yz + 3 x4y2z2 + 36 y4x2z2

+6 x5yz + 4 x6 + 27 x4yz + 9 x5 + 18 x3yz + 108 xy3z + 18 x4 + 3 x2yz

+32 x3 + 27 x2 + 135 y2 + 9 x + 1

+ (x6y2z2 + 6 x5yz + 2 x4yz + 4 x5 − 18 xy3z + 9 x4 + 6 x3 + x2 − 54 y2) · a

−y2 · (xyz + 3)2 · a2 + 4 y2 · a3. (58)

This telescoper of the rational function:

Ra(x, y, z) =
x y

Da(x, y, z)
, (59)

is an order-four linear differential operator L4, which is actually the direct sum, L4 =
LCLM(L2, M2) = L2 ⊕ M2, of two order-two linear differential operators, having two
pullbacked hypergeometric solutions. One finds out that one of the two pullbacks precisely
corresponds to the Hauptmodul H given by (57) for b = 3 + x.

Let us consider the a = 3 subcase (the discriminant in b of 4 a3 + 4 b3 − a2b2 −
18 ab + 27 reads: (a− 3)3 · (a2 + 3 a + 9)3 ; consequently, the exact expressions are simpler
at a = 3). For a = 3, the Hauptmodul H = 1728

j , given by (57) becomes for b = 3 + x:

H =
4 · x · (27 + 4 x)2 · (x2 + 9 x + 27)3

(9 + x)3 · (4 x2 + 27 x + 27)3 . (60)

The telescoper of the rational function (59), with Da(x, y, z) given by (58) for a = 3,
is an order-four linear differential operator, which is the direct sum of two order-two linear
differential operators L4 = LCLM(L2, M2) = L2 ⊕ M2, with these two order-two linear
differential operators having the pullbacked hypergeometric solutions:

(27 + 4 x)−1/2 · x−5/4 · 2F1

( 1
12

,
5

12
; 1; 1 +

27
4 x

)
, (61)

for L2, and:

3 + x
(9 + x)1/4 · (4 x2 + 27 x + 27)1/4 · x3/2 · (27 + 4 x)1/2

× 2F1

( 1
12

,
5
12

; 1;
4 · x · (27 + 4 x)2 · (x2 + 9 x + 27)3

(9 + x)3 · (4 x2 + 27 x + 27)3

)
, (62)

for M2, where we see clearly that the Hauptmodul in (62) is precisely the Hauptmodul
(60). The Jacobian of the genus-two curve is a split Jacobian corresponding to the product
E1 ×E2 of two elliptic curves; the j-invariant of the second elliptic curve corresponds to the
Hauptmodul H = 1728

j given by (57) when the j-invariant of the first elliptic curve reads:

j1 =
6912 x

27 + 4 x
, (63)
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corresponding to the Hauptmodul 1728
j1

= 1 + 27
4 x in (61). This second invariant is, as it

should, exactly the j-invariant of the second elliptic curve E ′, given page 48 in [52]:

j(E ′) =
256 · (3 b − a2)3

4 a3c − a2b2 − 18 abc + 4 b3 + 27 c2 , (64)

for c = 1, a = 3 and b = 3 + x.

5.4. Creative Telescoping on Rational Functions of Three Variables Associated with Genus-Two
Curves with Split Jacobians: A Simple Example

Another simpler example of a genus-two curve with pullbacked 2F1 solution (not a
product of pullbacked 2F1) of the telescoper can be given if one considers the genus-two
algebraic curve Cp(x, y) = 0 given in Lemma 7 of [53] (see also [54,55]):

Cp(x, y) = x5 + x3 + p · x − y2. (65)

Let us introduce the rational function x y/D(x, y, z) , where the denominator D(x, y, z)
is given by:

D(x, y, z) = C(p= xyz)(x, y) = x5 + x3 + x2 y z − y2. (66)

The telescoper of this rational function is an order-two linear differential operator that has
the two hypergeometric solutions:

x−1/4 · 2F1

(1
8

,
5
8

;
3
4

; 4 x
)

(67)

which is a Puiseux series at x = 0 and:

x−1/4 · 2F1

(1
8

,
5
8

; 1; 1 − 4 x
)

. (68)

These two hypergeometric solutions can be rewritten as (the fact that 2F1

(
1
8 , 5

8 ; 1; z
)

can be

rewritten as 2F1

(
1

12 , 5
12 ; 1; H(z)

)
where the Hauptmodul H(z) is solution of a quadratic

equation is given in Equation (H.14) of Appendix H of [18]):

A(x) · 2F1

( 1
12

,
5

12
; 1;

1728
J

)
, (69)

where the j-invariant J, in the Hauptmodul 1728
J in (69), corresponds exactly to the

degree-two elliptic subfields:

J2 − 128 · (2000 x2 + 1440 x + 27)
(1 − 4 x)2 · J − 4096 · (100 x− 9)3

(1 − 4 x)3 = 0, (70)

given in the first equation of page 6 of [53].

Remark 2. In contrast to the previous example of Section 5.3, where we had two j-invariants
corresponding to the two order-two linear differential operators L2 and M2 of the direct-sum
decomposition of the order-four telescoper, here, we have just one order-two telescoper, which is
enough to “encapsulate” the two j-invariants (70), since they are Galois-conjugate.

6. Rational Functions with Tri-Quadratic Denominator and N-Quadratic Denominator

We attempt to find telescopers of rational functions corresponding to (factors of) linear
differential operators of “small” orders; for instance, order-two linear differential operators
with pullbacked 2F1 hypergeometric functions, classical modular forms, or their modular
generalizations (order-four Calabi–Yau linear differential operators [27], etc.). As we saw
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in the previous sections, this corresponds to the fact that the denominator of these rational
functions is associated with an elliptic curve, or the products of elliptic curves, with K3
surfaces or with threefold Calabi–Yau manifolds corresponding to algebraic varieties with
foliations in elliptic curves (Even though K3 surfaces or threefold Calabi-Yau manifolds are
not abelian varieties, the Weierstrass–Legendre forms introduced in Appendix D amount
to saying that K3 surfaces can be “essentially viewed” (as far as creative telescoping
is concerned) as foliations in two elliptic curves, and threefold Calabi–Yau manifolds
as foliations in three elliptic curves), since this paper attempts to reduce the differential
algebra creative telescoping calculations to effective algebraic geometry calculations. (One has
birational automorphisms in projective spaces [56,57], but since this paper is dedicated to
(efficient) formal calculations, we work exclusively in affine coordinates (see for instance
(A41), (A42), and (A43) below.) For algebraic geometers, an elliptic curve is a smooth
complete genus-one curve with a choice of a base point. Here our elliptic curves are, in
fact, an affine piece of a genus-one curve with no base point, but this does not really matter,
because the j-invariant, which is all we care about in these kinds of creative telescoping
calculations, is determined by that much information and structures, we want to focus on
rational functions with denominators that correspond to selected algebraic varieties [44,58],
beyond algebraic varieties corresponding to products of elliptic curves or foliations in
elliptic curves (K3 surfaces, threefold Calabi–Yau manifolds, and higher curves with split
Jacobian corresponding to products of elliptic curves, . . . ), namely, algebraic varieties with
an infinite number of birational automorphisms (the best explicit illustration of this situation
emerges in integrable models [44,58–60]). This infinite number of birational symmetries
excludes algebraic varieties of the “general type” (with a finite number. (There are even
precise bounds for the number of automorphisms. The upper bound is 84 (g− 1) for curves
of genus g, and these bounds have been extensively studied in higher dimensions [61–63])
of birational symmetries.) For algebraic surfaces, this amounts to discarding the surfaces
of “general type” that have Kodaira dimension two, focusing on Kodaira dimension one
(elliptic surfaces), Kodaira dimension zero (abelian surfaces, hyperelliptic surfaces, K3
surfaces, and Enriques surfaces), or even Kodaira dimension −∞ (ruled surfaces and
rational surfaces).

In contrast with algebraic curves, where one can easily and very efficiently calculate
the genus of the curves to discard algebraic curves of higher genus and, in the case of
genus one, obtain the j-invariant using formal calculations (use with(algcurves) in Maple,
and the commands “genus” and “j_invariant”), it is, in practice, quite difficult to see for
higher dimensional algebraic varieties, that the algebraic variety is not of the “general
type”, because it has an infinite number of birational symmetries. For these (low Kodaira
dimension) “selected cases” that we are interested in, calculating the generalization of the
j-invariant (Igusa–Shioda invariants, etc.) is quite hard.

Along this line, we want to underline that there exists a remarkable set of algebraic
surfaces, namely the algebraic surfaces corresponding to tri-quadratic equations:

∑
m=0,1,2

∑
n=0,1,2

∑
l=0,1,2

am,n,l · xm yn zl = 0, (71)

depending on 27 = 33 parameters am,n,l . More generally, one can introduce algebraic
varieties corresponding to N-quadratic equations:

∑
m1=0,1,2

∑
m2=0,1,2

· · · ∑
mN=0,1,2

am1, m2,··· , mN · xm1
1 xm2

2 · · · xmN
N = 0. (72)

With these tri-quadratic (71), or N-quadratic (72) equations, we will see, in Appendices E.1
and E.2, that we have automatically (selected) algebraic varieties that are not of the “general
type”, having an infinite number of birational symmetries, which is precisely our require-
ment for the denominator of rational functions with remarkable telescopers. (Telescopers
with factors of “small enough” order, possibly yielding classical modular forms, Calabi–
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Yau operators, etc. Rational functions with denominators of the “general type” will yield
telescopers of very large orders.)

Let us first, as a warm-up, consider, in the next subsection, a remarkable example of
tri-quadratic (71), where the underlying foliation in elliptic curves is crystal clear.

6.1. Rational Functions with Tri-Quadratic Denominator Simply Corresponding to Elliptic Curves

Let us first recall the tri-quadratic equation in three variables x, y and z:

x2y2z2 − 2 · M · xyz · (x + y + z) + 4 · M · (M + 1) · xyz

+M2 · (x2 + y2 + z2) − 2 M2 · (xy + xz + yz) = 0, (73)

already introduced in Appendix C of [64]. This algebraic surface, symmetric in x, y, and z,
can be seen for z (respectively, x or y) fixed, as an elliptic curve whose j-invariant is
independent of z, yielding the corresponding Hauptmodul:

H =
1728

j
=

27 · M2 · (M− 1)2

4 · (M2 −M + 1)3 . (74)

This corresponds to the fact that this algebraic surface (73) can be seen as a product of two
instances of the same elliptic curve with the Hauptmodul (74). This is a consequence of
the fact that, introducing x = sn(u)2, y = sn(v)2 and z = sn(u + v)2, and M = 1/k2,
this algebraic surface (73) corresponds to the well-known formula for the addition on an
elliptic sine (see Equation (C.3) in Appendix C of [64]):

sn(u + v) =
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1 − k2 sn(u)2 sn(v)2 . (75)

For M = x y z w, the LHS of the tri-quadratic Equation (73) yields a polynomial of four
variables x, y, z, and w, which we denote T(x, y, z, w):

T(x, y, z, w) = (76)

x2y2z2 − 2 · x2y2z2 w · (x + y + z) + 4 · (xyzw + 1) · x2y2z2 w

+x2y2z2w2 · (x2 + y2 + z2) − 2 x2y2z2w2 · (xy + xz + yz).

The telescoper of the rational function in four variables x, y, z, and w,

x y z
T(x, y, z, w)

, (77)

is an order-three (self-adjoint) linear differential operator that is the symmetric square of the
order-two linear differential operator, having the following pullbacked 2F1 hypergeometric
solution:

x−1/2 · (x2 − x + 1)−1/4

× 2F1

( 1
12

,
5

12
; 1;

27 · x2 · (x− 1)2

4 · (x2 − x + 1)3

)
. (78)

As it should, the Hauptmodul in (78) is the same as the Hauptmodul (74). The algebraic
surface (73) can be seen as the product of two instances of the same elliptic curve with the
Hauptmodul (74): As expected, the solution of the order-three telescoper is the square of
the pullbacked 2F1 hypergeometric function (78) with that Hauptmodul.

More generally, we can also consider another tri-quadratic equation of three variables
x, y, and z, and two parameters M and N:

x2y2z2 − 2 M · xyz · (x + y + z) + N · xyz (79)

+M2 · (x2 + y2 + z2) − 2 M2 · (xy + xz + yz) = 0.
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This surface, symmetric in x, y, and z, can be seen for z (respectively, x or y) fixed as
an elliptic curve whose j-invariant is again independent of z, yielding the corresponding
Hauptmodul:

H =
1728

j
=

1728 · M6 · (64 M3 − N2)

(48 M3 − N2)3 . (80)

Let us consider the following change of variables M = m2 and N = 8 · m3 + p in (79).
For p = x y z w, the LHS of the tri-quadratic Equation (79) yields a polynomial in four
variables x, y, z, and w, which we denote Tm(x, y, z, w):

Tm(x, y, z, w) =

x2y2z2 − 2 m2 · xyz · (x + y + z) + (8 · m3 + x y z w) · xyz

+m4 · (x2 + y2 + z2) − 2 m4 · (xy + xz + yz). (81)

For z (respectively, x or y) fixed, the corresponding Hauptmodul (80) reads:

H =
1728 · m12 · p · (16 m3 + p)
(16 m6 + 16 m3 · p + p2)3 . (82)

The telescoper of the rational function in four variables x, y, z, and w,

x y z
Tm(x, y, z, w)

, (83)

is an order-three (self-adjoint) linear differential operator that is the symmetric square of an
order-two linear differential operator, having the following pullbacked 2F1 hypergeometric
solution:

(16 m6 + 16 m3 · x + x2)−1/4 ·

× 2F1

( 1
12

,
5

12
; 1;

1728 · m12 · x · (16 m3 + x)
(16 m6 + 16 m3 · x + x2)3

)
. (84)

As it should, the Hauptmodul in (84) is the same as the Hauptmodul (82). The algebraic
surface (79) can be seen as the product of two instances of the same elliptic curve with the
Hauptmodul (80) (or (82)). As expected, the solution of the order-three telescoper is the
square of the pullbacked 2F1 hypergeometric function (84) with the Hauptmodul (82).

Remark 3. Let us perform some (slight) deformations of the rational function (77), changing the
first −2 coefficient in (76) into a −3 coefficient. One thus considers the polynomial T(x, y, z, w):

T(x, y, z, w) = (85)

x2y2z2 − 3 · x2y2z2 w · (x + y + z) + 4 · (xyzw + 1) · x2y2z2 w

+x2y2z2w2 · (x2 + y2 + z2) − 2 · x2y2z2w2 · (xy + xz + yz).

The telescoper of the rational function in four variables,

x y z
T(x, y, z, w)

, (86)

is an (irreducible) linear differential operator L4 of (only) order four, which is non-trivially homo-
morphic to its adjoint. (Its exterior square has a rational solution. However this order-four linear
differential operator is not MUM (maximum unipotent monodromy [27,65,66]).) A priori, we
cannot exclude the fact that L4 could be homomorphic to the symmetric cube of a second-order linear
differential operator, or to a symmetric product of two second-order operators. Furthermore, it could
also be, in principle, that these second-order operators admit classical modular forms as solutions
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(pullbacks of special 2F1 hypergeometric functions). However, these options can both be excluded by
using some results from differential Galois theory [67], specifically from [68] (Prop. 7, p. 50) for the
symmetric cube case, and from [68] (Prop. 10, p. 69) for the symmetric product case; see also [69]
(§3). Indeed, if L4 were either a symmetric cube or a symmetric product of order-two operators,
then its symmetric square would contain a (direct) factor of order 3 or 1. This is ruled out by a
factorization procedure which shows that the symmetric square of L4 is (LCLM-)irreducible.

This example does not correspond to an addition formula such as (75), but the polynomial
T(x, y, z, w) still corresponds to a tri-quadratic. Consequently, it is an algebraic variety with an
infinite number of birational automorphisms, as shown in Appendix E.1.

6.2. Rational Functions with Tri-Quadratic Denominator: Fricke Cubics Examples Associated with
Painlevé VI Equations

Let us consider other simple examples of tri-quadratic surfaces that occur in different
domains of mathematics and physics.

Among the Fricke families of cubic surfaces, the family [70–72]:

x y z + x2 + y2 + z2 + b1 x + b2 y + b3 z + c = 0, (87)

of affine cubic surfaces parameterized by the four constants (b1, b2, b3, c) is known [71]
to be a deformation of a D4 singularity that occurs at the symmetric (Manin’s) case b1 =
b2 = b3 = −8, c = 28.

Among the symmetric b1 = b2 = b3 cases, some selected sets of the four constants
(b1, b2, b3, c) emerge: the Markov cubic b1 = b2 = b3 = c = 0, Cayley’s nodal cubic
b1 = b2 = b3 = 0, c = −4, Clebsch’s diagonal cubic b1 = b2 = b3 = 0, c = −20, and
Klein’s cubic b1 = b2 = b3 = −1, c = 0.

Some of these symmetric cubics can be seen as the monodromy manifold of the
Painlevé VI equation (see Equation (1.7) in [73], see also Equations (1.2) and (1.4) in [72]):
the Picard–Hitchin cases (0, 0, 0, 4), (0, 0, 0, −4), (0, 0, 0, −32), Kitaev’s cases (0, 0, 0, 0),
(−8,−8,−8, −64), and especially Manin’s case (−8,−8,−8, 28).

Let us consider the (symmetric) rational function in three variables, x, y, and z [71]:

R(x, y, z) =
1

x2 + y2 + z2 + x y z + c
, (88)

that takes into account the other Picard–Hitchin cases (as well as the Markov cubic
b1 = b2 = b3 = c = 0, Cayley’s nodal cubic b1 = b2 = b3 = 0, c = −4, and
Clebsch’s diagonal cubic b1 = b2 = b3 = 0, c = −20 cases) (0, 0, 0, 4), (0, 0, 0, −4),
(0, 0, 0, 32). The rational function (88) has an order-two telescoper that has a simple pull-
backed hypergeometric solution:

1
x + c

· 2F1

(1
3

,
2
3

; 1; − 27 x2

(x + c)3

)
(89)

= (x + c)−1/4 · q3(x)−1/4 · 2F1

( 1
12

,
5

12
, 1; − 1728 · x6 · p3(x)

(x + c)3 · q3(x)3

)
,

where (the values c = 0 and c = −4 are the only values such that the discriminant in x of
p3(x) can be zero):

p3(x) = x3 + 3 · (c + 9) · x2 + 3 · c2 · x + c3,

q3(x) = x3 + 3 · (c + 8) · x2 + 3 · c2 · x + c3,

Eliminating z = p
x y in the denominator of (88) gives the genus-four algebraic curve:

x2y2 · (x2 + y2) + (p + c) · x2y2 + p2 = 0. (90)
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Again, the question is to see whether the Jacobian of this genus-four algebraic curve
(88) could also correspond to a split Jacobian, with a j-invariant corresponding to the
Hauptmodul in (89).

7. Telescopers of Rational Functions of Several Variables

Let us consider the rational function in four variables x, y, z, u:

R(x, y, z, u) =
1

1 + 3 y + z + 9 y z + 11 z2 y + 3 u x
. (91)

The telescoper of this rational function of four variables is an order-two linear differential
operator L2 that has the pullbacked hypergeometric solution:

(1 − 2592 x2)−1/4 (92)

× 2F1

( 1
12

,
5
12

; 1; − 419904 · x3 · (5 − 12 x − 19440 x2 + 2665872 x3)

(1 − 2592 x2)3

)
.

The diagonal of (91) is the expansion of this pullbacked hypergeometric function (92):

1 + 648 x2 − 72900 x3 + 1224720 x4 − 330674400 x5 + 23370413220 x6 (93)

−1276733858400 x7 + 180019474034400 x8 − 12013427240614800 x9 + · · ·

If one considers the intersection of the vanishing condition of the denominator of (91) with
the hyperbola p = x y z u, eliminating, for instance, u = p

x y z in the vanishing condition
of the denominator of (91), one gets a condition, independent of x, that corresponds to a
genus-one curve:

11 y2z3 + 9 y2z2 + 3 y2z + yz2 + yz + 3 p = 0. (94)

The Hauptmodul of this elliptic curve (94) reads:

H = − 419904 · p3 · (5 − 12 p − 19440 p2 + 2665872 p3)

(1 − 2592 p2)3 , (95)

which corresponds precisely to the Hauptmodul pullback in (92).

Remark 4. The expansion (93) of (92) is not only the diagonal of the rational function R(x, y, z, u)
in four variables (91); it is also the diagonal of the rational function of three variables R(x, y, z, 1).
Actually, using Section 3, one sees easily that eliminating x = p

y z in the vanishing condition of
the denominator of R(x, y, z, 1) gives exactly the same elliptic curve (94).

Let us now generalize the rational function (91) of four variables x, y, z, u, by intro-
ducing the rational function of N + 3 variables x, y, z, u1, u2, · · · , uN :

R(x, y, z, u1, u2, · · · , uN) (96)

=
1

1 + 3 y + z + 9 y z + 11 z2 y + 3 x · u1 u2 · · · uN
.

The telescoper of this rational function of N + 3 variables is the same order-two telescoper as
for (91), which has the pullbacked hypergeometric solution (92). Again, one can verify that
the diagonal of (96) is the expansion (93) of the pullbacked hypergeometric function (a pure
algebraic geometer will probably consider this result as trivial from the computational point
of view, saying that the variety is a fiber bundle over a family of elliptic curves with constant
fiber (see also below)) (92). If one considers the intersection of the vanishing condition
of the denominator of (96) with the hyperbola p = x y z u1 u2 · · · uN , eliminating, for
instance, uN = p

x y z u1 ··· uN−1
in the vanishing condition of the denominator of (96), one
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again obtains a condition, independent of x but also of u1, . . . , uN , that corresponds to the
genus-one curve (94):

11 y2z3 + 9 y2z2 + 3 y2z + yz2 + yz + 3 p = 0. (97)

The Hauptmodul of this elliptic curve (97) is again equal to the Hauptmodul (95), which
corresponds precisely to the Hauptmodul pullback in (92).

Other examples, corresponding to the simple polynomial deformations of (91), such
that their diagonal is the pullbacked 2F1 hypergeometric function (92), are displayed in
Appendix F. This (infinite) family of rational functions corresponds to a different algebraic
geometry scenario: the “canonical” algebraic surface corresponding to the intersection of
the vanishing condition of the denominator of the rational function with the hyperbola
p = xyz, is foliated in (generically high genus) algebraic curves depending on the vari-
able x. One sees (experimentally) that the Hauptmodul of the pullbacked 2F1 hypergeo-
metric functions corresponds to the Hauptmodul of the x = 0 algebraic curve, which is an
elliptic curve (the algebraic curves for other values of x are not necessarily elliptic curves,
they can be algebraic curves of quite large genus). In contrast to the other examples and
results of this paper, we have no algebraic geometry interpretation of this experimental
result yet.

8. Conclusions

Diagonals of rational functions emerge quite naturally in lattice statistical mechan-
ics [19,20]. This explains the frequent occurrence of modular forms, represented as pull-
backed 2F1 hypergeometric functions [1,2] in lattice statistical mechanics [21–27].

We have shown that the results that we had obtained on diagonals of 9- and 10-
parameter families of rational functions in three variables, using creative telescoping yield-
ing classical modular forms expressed as pullbacked 2F1 hypergeometric functions [1,2],
can be obtained much more efficiently by calculating the j-invariant of an elliptic curve that
is canonically associated with the denominator of the rational functions. In the case where
creative telescoping yields pullbacked 2F1 hypergeometric functions, we generalize this
result to other families of rational functions of three, and even more than three, variables,
when the denominator can be associated with products of elliptic curves or foliations in
terms of elliptic curves, or when the denominator is associated with a genus-two curve
with a split Jacobian corresponding to the products of elliptic curves.

We have seen different scenarios. In the first cases, we have considered denominators
corresponding to products of elliptic curves: in these cases, the solutions of the telescoper
were products of pullbacked 2F1 hypergeometric functions. We have also considered
denominators corresponding to genus-two curves with split Jacobians isogenous to the
products of two elliptic curves, and in these cases, the solutions of the telescoper were the
sums of two pullbacked 2F1 hypergeometric functions, sometimes with one pullbacked 2F1
hypergeometric function being enough to describe the two Galois-conjugate j-invariants
(see Section 5.4). We also considered the denominators corresponding to algebraic varieties
where the Hauptmodul pullback in the pullbacked 2F1 hypergeometric functions emerges
from a selected (x = 0, see Appendices F.1 and F.2) elliptic curve of the algebraic variety.
We also encountered denominators corresponding to algebraic manifolds with an infinite
set of birational automorphisms and elliptic curves foliation, no longer yielding classical
modular forms represented as pullbacked 2F1 hypergeometric functions, but more general
modular structures associated with selected linear differential operators such as Calabi–Yau
linear differential operators [27,65] and their generalizations.

The creative telescoping method on a rational function is an efficient way to find the
periods of an algebraic variety over all possible cycles (not only the vanishing cycles [5,38]
corresponding to the diagonals of rational functions). The fact that the solution of the
telescoper corresponds to “periods” [37] over all possible cycles is a simple consequence of
the fact that creative telescoping corresponds to purely differential algebraic manipulations
on the integrand independently of the cycles, thus being blind to analytical details. In this
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paper, we show that the final result emerging from such differential algebra procedures
(which can be cumbersome when the result depends on 9 or 10 parameters) can be ob-
tained almost instantaneously from a more fundamental intrinsic pure algebraic geometry
approach, calculating, for instance, the j-invariant of some canonical elliptic curve. This
corresponds to a shift Analysis → Differential Algebra → Algebraic Geometry. In alge-
braic geometry studies of more involved algebraic varieties than the product of elliptic
curves, foliation in elliptic curves (Calabi–Yau manifolds, etc.) is often a tedious and/or
difficult task (finding Igusa–Shioda invariants, etc.), and formal calculation tools are not
always available or user-friendly. Ironically, for such involved algebraic varieties, creative
telescoping may then become a simple and efficient tool to perform effective algebraic
geometry studies.

Some work remains to be done. While in the present paper, we have focused on
studying the relationship between the denominator of a rational function and its diagonal,
it would be interesting to explore the impact that variations of the numerator have on the
telescoper or on the diagonal. Then, one may expect that all these algebraic–geometric
findings could be exploited in the design of novel and more efficient creative telescoping
algorithms for multivariate rational functions.
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Appendix A. Diagonals of Rational Functions and Picard–Fuchs Equations

For simplicity, let us consider the rational functions of three variables and double
integrals [74]. The diagonal of a rational function of three variables is obtained through its
multi-Taylor expansion [19,20]:

R(x, y, z) = ∑
m

∑
n

∑
l

am, n, l · xm yn zl , (A1)

by extracting the “diagonal” terms, i.e., the powers of the product p = xyz:

Diag
(

R(x, y, z)
)

= ∑
m

am, m, m · pm. (A2)
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Such diagonals are closely related to the integrals of rational functions. For example,

Diag
(

R(x, y, z)
)

is the constant term (in y, z) in the infinite expansion:

R
( p

y z
, y, z

)
= ∑

m, n, l≥ 0
am, n, l · pm yn−m zl−m, (A3)

which can be represented by the integral [35]:

1
(2 π i)2

∮ ∮
R
( p

y z
, y, z

) dy
y
∧ dz

z
. (A4)

The diagonal (A2) is also the constant term (in y, z) of:

R
( p

y
,

y
z

, z
)

= ∑
m, n, l≥ 0

am, n, l · pm yn−m zl−n, (A5)

which is of the form:

1
(2 π i)2

∮ ∮ Np(y, z)
Dp(y, z)

dy
y
∧ dz

z
, (A6)

where the numerator Np(y, z) and the denominator Dp(y, z) are polynomials. It is well-
known that such integrals satisfy a linear differential equation with respect to p having
rational functions in p as coefficients, called the Picard–Fuchs equation. (The order of this
linear differential equation is generally equal to the rank of the algebraic de Rham cohomol-
ogy of Dp(y, z) = 0. For curves of genus g, this rank is 2 g.) The problem of determining
such linear differential equations was commenced by Griffiths [75] with the assumption
that the variety Dp(y, z) = 0 is smooth, but later techniques were developed to include
examples with singular points [35,40]. The linear differential equations (Gauss–Manin
systems and telescopers) occurring in integrable models [16,23,24] are of an order that is
much larger than order two (Since it is well-known that the Picard–Fuchs equation corre-
sponding to the (Weierstrass) elliptic curve corresponds to the hypergeometric function
2F1(1/12, 5/12; 1; 1/J)) and almost never correspond to smooth varieties. Creative telescop-
ing (for a detailed introduction to creative telescoping [36], see for instance [34]), and more
specifically, the programs [3] corresponding to a fast approach to creative telescoping [42],
are a powerful way to find these linear differential operators annihilating these diagonals of
rational functions in the cases emerging naturally in theoretical physics, integrable models,
and enumerative combinatorics, for which the order of the linear differential operators is
quite large [16,23,24] and the variety Dp(y, z) = 0 is (most of the time) not a smooth one.
All the pedagogical (but non-trivial) examples of telescopers displayed in this paper can be
viewed by an algebraic geometer as a presentation of examples of families of varieties and
their Picard–Fuchs equations.

Appendix B. Maximum Number of Parameters for Families of Planar Elliptic Curves

We have seen in Section 3 that the previous results on the diagonals of 9- or 10-
parameter families of rational functions of three variables being pullbacked 2F1 hypergeo-
metric functions (and in fact, classical modular forms) can actually be seen as corresponding
to the fact (well-known in integrable models and integrable mappings) that the most gen-
eral biquadratic corresponding to elliptic curves is a 9-parameter family, and that the most
general ternary cubic corresponding to elliptic curves is a 10-parameter family. One can,
for instance, recall page 238 of [76], which amounts to a consideration of the collection of
all cubic curves in CP2 with the homogeneous equation:

a x3 + b x2 y + c x y2 + d y3 + e x2 z + f x z2 + g y2 z

+h y z2 + i z3 + j x y z = 0, (A7)
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and the associated problems of passing through nine given points. One can also recall the
ternary cubics in [77,78] and other problems of elliptic curves of high rank [79] (see the
concept of Neron–Severi rank).

Since the rational functions of three variables that we consider are essentially encoded
by the denominator of these rational functions, and in the cases we have considered, the
emergence of pullbacked 2F1 hypergeometric functions (and in fact, classical modular
forms) corresponds to the fact that the intersection of these denominators with the hyper-
bola p = x y z corresponds to elliptic curves, one sees that these rational functions are
essentially classified by the possible n-parameter families P(x, y) = 0 of elliptic curves.

If one considers a polynomial:

P(x, y) = ∑
m

∑
n

am,n · xm yn, (A8)

with generic coefficients am,n ∈ C, then the genus of the algebraic curve defined by P is
determined by the support supp(P) = {(m, n) ∈ N2 : am,n 6= 0}. More precisely, the genus
equals the number of interior integer lattice points inside the convex hull of supp(P) [80]
(see also the discussion in [81]). For example, the support of the 10-parameter family (11)
consists of the following 10 points in N2:

(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)

which forms a right triangle of side length 3. Only one of these points is an interior point,
namely (1, 2); hence, the genus is 1.

Therefore, we may ask: which integer lattice polytopes exist that have exactly one
interior point, and what is the largest such polytope? Not surprisingly, the answer is
known: there are (up to transformations like translation, rotation, and shearing) exactly 16
different polytopes with a single interior point [82] (see also Figure 5, page 548 in [83]), the
above-mentioned right triangle being the one with the highest total number of lattice points.

This shows that there cannot be a family of elliptic curves with more than 10 parameters.

Appendix C. Monomial Transformations Preserving Pullbacked
Hypergeometric Results

More generally, recalling Section 4.2 in [2], and Section 4.2, page 17, in [1], let us
consider the monomial transformation:

(x, y, z) −→ M(x, y, z) = (xM, yM, zM)

=
(

xA1 · yA2 · zA3 , xB1 · yB2 · zB3 , xC1 · yC2 · zC3
)

, (A9)

where the Ai’s, Bi’s, and Ci’s are positive integers, such that A1 = A2 = A3 is excluded
(as well as B1 = B2 = B3 and C1 = C2 = C3), and that the determinant (Note a typo in
Footnote 28, page 17, of [1], as well as in the second footnote, page 18, in [2]. The sentence
has been truncated. One should read: For n = 1, the 3× 3 matrix (A10) is stochastic and
transformation (A9) is a birational transformation if the determinant of the matrix (A10) is
±1) of the 3 × 3 matrix [1,2]: 

A1 B1 C1

A2 B2 C2

A3 B3 C3

, (A10)
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is not equal to zero (We want the rational function R̃ = R(M(x, y, z)) deduced from the
monomial transformation (A9) remains a rational function of three variables, and not of
two, or one, variables), and that:

A1 + B1 + C1 = A2 + B2 + C2 = A3 + B3 + C3. (A11)

We will denote by n = Ai + Bi +Ci the integer in these three equal sums (A11). Condition
(A11) is introduced in order to impose that the product (Recall that taking the diagonal of a
rational function of three variables extracts, in the multi-Taylor expansion, only the terms
that are n-th powers of the product x y z) of xM yM zM is an integer power of the product
of x y z: xM yM zM = (x y z)n.

If we take a rational functionR(x, y, z) in three variables and perform such a mono-
mial transformation (A9) (x, y, z) → M(x, y, z), on this rational function R(x, y, z),
we obtain another rational function that we denote by R̃ = R(M(x, y, z)). Now, the
diagonal of R̃ is the diagonal of R(x, y, z) where we have changed x into xn:

Φ(x) = Diag
(
R
(

x, y, z
))

, Diag
(
R̃
(

x, y, z
))

= Φ(xn). (A12)

Appendix D. Weierstrass and Legendre Forms

The telescoper of the rational function in three variables:

x y
(1 + y)2 − x · (1− x) · (x − x y z)

, (A13)

associated (the diagonal extracts the terms function of the product p = x y z in the
multi-Taylor series) with the elliptic curve in a Weierstrass form:

(1 + y)2 − x · (1− x) · (x − p) = 0, (A14)

is the order-two linear differential operator:

L2 = −1 + 4 · (1− 2 x) · Dx + 4 · x · (1 − x) · D2
x, (A15)

which has the hypergeometric solution:

2F1

(1
2

,
1
2

; 1; x
)

(A16)

= (1 − x + x2)−1/4 · 2F1

( 1
12

,
5

12
; 1;

27
4
· x2 · (1 − x)2

(1 − x + x2)3

)
.

The elliptic curve (A14) has the Hauptmodul:

H =
27
4
· p2 · (1 − p)2

(1 − p + p2)3 . (A17)

in agreement with the pullback in (A16).

Appendix D.1. K3 Surfaces as Products or Foliations of Two Elliptic Curves

The examples of Section 4 correspond to denominators which are algebraic varieties
that can be seen as Weierstrass elliptic curves for fixed values of all the variables except two.
Let us show other simple telescopers for rational functions with denominators which are
algebraic varieties with some foliation in elliptic curves (such as K3 surfaces or Calabi–Yau
threefolds).

The telescoper of the rational function in four variables:

x y z
(1 + z)2 − x · (1− x) · y · (x − y) · (y − x y z w)

, (A18)
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associated with the K3 surface written in a Legendre form (along this line, see the first
equation, page 19 of [84])

(1 + z)2 − x · (1− x) · y · (x − y) · (y − p) = 0, (A19)

is an order-three self-adjoint (the order-three linear differential operator is thus the symmetric
square of an order-two linear differential operator) linear differential operator, L3:

L3 = x · (2 θ + 1)3 − 8 · θ3, (A20)

which has the following 3F2 solution (which is also, because of Clausen’s formula, the
square of a 2F1 function):

3F2

(1
2

,
1
2

,
1
2

; 1, 1; x
)

= 2F1

(1
4

,
1
4

; 1; x
)2

. (A21)

The K3 surface (A19) can be seen as being associated with the product of two Weierstrass
elliptic curves (K3 surfaces are not abelian varieties, but they are “close” to abelian varieties:
from a creative telescoping viewpoint, they essentially can be seen as products of two
elliptic curves) of Hauptmoduls, respectively:

Hx =
27
4
· p2 · (1 − p)2

(1 − p + p2)3 , Hy =
27
4
· y2 · (1 − y)2

(1 − y + y2)3 . (A22)

This order-three linear differential operator L3 is the symmetric square of the order-two
linear differential operator:

M2 = −1 + 8 · (2− 3 x) · Dx + 16 · x · (1 − x) · D2
x, (A23)

which has the hypergeometric solutions:

2F1

(1
4

,
1
4

; 1; x
)

=
(

1 − x
4

)−1/4
· 2F1

( 1
12

,
5

12
; 1; − 27 · x2

(x − 4)3

)
. (A24)

Appendix D.2. Calabi–Yau Threefolds as Foliation in Three Elliptic Curves

The telescoper of the rational function in five variables x, y, z, v, and w:

x y z v
(1 + w)2 − x · (1− x) · y · (x − y) · z · (y − z) · (z − x y z v w)

, (A25)

associated (the diagonal extracts the terms function of the product p = x y z v w in the
multi-Taylor series) with the Calabi–Yau threefold written in a Legendre form:

(1 + w)2 − x · (1− x) · y · (x − y) · z · (y − z) · (z − p) = 0, (A26)

is an order-four (self-adjoint) linear differential operator L4:

L4 = 16 · θ4 − x · (2 θ + 1)4, (A27)

which is a Calabi–Yau operator (This linear differential operator is self-adjoint, its exterior
square is of order five, and it is MUM (maximum unipotent monodromy [27,65,66])) with
the 4F3 solution:

4F3

(1
2

,
1
2

,
1
2

,
1
2

; 1, 1, 1; x
)

. (A28)

For y and z fixed, the Calabi–Yau threefold (A26) is foliated in genus-one curves:

(1 + w)2 − λ · x · (1− x) · (x − y) = 0, (A29)
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where λ is the constant expression (p is fixed):

λ = y · z · (y − z) · (z − p). (A30)

The Hauptmodul of these genus-one curves is independent of p and z, reading:

Hy,z =
27
4
· y2 · (1 − y)2

(1 − y + y2)3 . (A31)

Similarly for x and z fixed, the Calabi–Yau threefold (A26) is foliated in genus-one curves:

(1 + w)2 − µ · y · (x − y) · (y − z) = 0, (A32)

where µ is the constant expression (p is fixed):

µ = x · z · (1 − x) · (z − p). (A33)

The genus-one curves (A32) can be written in a simpler Weierstrass form:

(1 + w)2 − ρ · Y ·
(

1 −Y
)
·
(

Y − z
x

)
= 0, (A34)

where the constant ρ reads ρ = µ · x3, and the variable y has been rescaled into Y = y/x.
The Hauptmodul of these genus-one curves (A32) is the same as the Hauptmodul of the
genus-one curves (A29), and corresponds to expression (A31) where y has been changed
into z/x (see the canonical form (A34)), namely:

Hx,z =
27
4
· x2 · z2 · (x − z)2

(x2 − x z + z2)3 . (A35)

Similarly for x and y fixed, the Calabi–Yau threefold (A26) is foliated in genus-one curves,

(1 + w)2 − ν · z · (y − z) · (z − p) = 0, (A36)

where ν reads:

ν = x · (1− x) · y · (x − y). (A37)

A reduction to a canonical Weierstrass form similar to (A34) gives immediately the Haupt-
modul of the genus-one curve (A36), which reads:

Hx,y =
27
4
· y2 · p2 · (y − p)2

(y2 − y p + p2)3 . (A38)

The Calabi–Yau threefold (A26) thus has a foliation in a triple of elliptic curves E1, E2,
and E3.

Appendix E. Rational Functions with Tri-Quadratic and N-Quadratic Denominators

Appendix E.1. Rational Functions with Tri-Quadratic Denominators

Let us consider the most general tri-quadratic surface:

∑
m=0,1,2

∑
n=0,1,2

∑
l=0,1,2

am,n,l · xm yn zl = 0, (A39)

depending on 27 = 33 parameters am,n,l . It can be rewritten as:

A(x, y) · z2 + B(x, y) · z + C(x, y) = 0. (A40)
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It is straightforward to see that condition (A40) is preserved by the birational involution Iz:

Iz :
(

x, y, z
)

−→
(

x, y,
C(x, y)
A(x, y)

· 1
z

)
, (A41)

and we have, of course, two other similar birational involutions, Ix and Iy, that single out x
and y, respectively. The (generically) infinite-order birational transformations Kx = Iy · Iz,
Ky = Iz · Ix , and Kz = Ix · Iy are birational symmetries of the surface (A39) or (A40).
They are related by Kx · Ky · Kz = identity. Note that the birational transformation
Kx preserves x. The iteration of the (generically) infinite-order birational transformation
Kx gives elliptic curves. Since Equations (A39) or (A40) is preserved by Kx, which also
preserves x, the equation of the elliptic curves corresponding to the iteration (The birational
transformation Kx maps the elliptic curve onto itself (self-map). One can use the iteration
of the birational transformation Kx to actually visualize the elliptic curve [44,85]) of Kx is
actually (A39) for fixed values of x. Equation (A39), for fixed values of x, is a (general)
biquadratic curve in y and z, and is thus an elliptic curve depending on x. Therefore,
one has a canonical foliation of the algebraic surface (A39) in elliptic curves. Of course,
the iteration of Ky (resp. Kz) also yields elliptic curves, and similarly yields two other
foliations in elliptic curves.

We have a foliation in two families of elliptic curves E and E ′ of the surface. Conse-
quently, this tri-quadratic surface (A39), having an infinite set of birational automorphisms
and an infinite set of birational symmetries, cannot be of the “general type” (it has Kodaira
dimension of less than 2).

Appendix E.2. Rational Functions with N-Quadratic Denominators

The calculations of Appendix E.1 can straightforwardly be generalized to N-quadratic
equations, writing the N-quadratic (72) as:

A(x1, x2, · · · , xN−1) · x2
N + B(x1, x2, · · · , xN−1) · xN

+C(x1, x2, · · · , xN−1) = 0, (A42)

and introducing the birational involution IN :

IN :
(

x1, x2, · · · , xN

)
(A43)

−→
(

x1, x2, · · · , xN−1,
C(x1, x2, · · · , xN−1)

A(x1, x2, · · · xN−1)
· 1

xN

)
.

Similarly to Appendix E.1, we can introduce N involutive birational transformations Im
and consider the products of two such involutive birational transformations Km,n = Im · In.
These Km,n’s are (generically) infinite-order birational transformations preserving the N− 2
variables that are not xm and xn.

Using such remarkable N-variable algebraic varieties, with an infinite set of birational
automorphisms, one can build rational functions of N + 1 variables, any of the parameter
of the algebraic variety, becoming an arbitrary rational (or even an arbitrary algebraic)
function of the product p = x1 x2 · · · xN , with a Taylor series expansion at p = 0, the
diagonal of rational functions becoming diagonal of algebraic functions of the product
p = x1 x2 · · · xN in order to build the denominator of the rational function. The telescopers
of such rational functions are seen (experimentally using creative telescoping) to be of
substantially smaller order than the ones for rational functions whose denominators are,
after reduction by p = x1 x2 · · · xN , associated with algebraic varieties of “general type”.



Symmetry 2022, 14, 1297 29 of 33

Appendix F. Telescopers of Rational Functions of Several Variables: Some Examples

Let us consider here the following family of rational functions in four variables:

R(x, y, z, u) = (A44)
1

1 + 3 y + z + 9 y z + 11 z2 y + 3 u x + x · P(x, y, z)
,

where P(x, y, z) is an arbitrary polynomial of the three variables x, y, and z.

Appendix F.1. Telescopers of Rational Functions of Several Variables: A Second Example with
Four Variables

Let us now consider the rational function in four variables x, y, z, u:

R(x, y, z, u) = (A45)
1

1 + 3 y + z + 9 y z + 11 z2 y + 3 u x + 9 x + 2 x y + 5 x z + 7 x2 y
.

which corresponds to P(x, y, z) = 9 + 2 y + 5 z + 7 x y. The telescoper of this rational
function of four variables is the same order-two linear differential operator L2 as for the
telescoper of (91). It has the same pullbacked hypergeometric solution (92). The diagonal
of the rational function (A45) is the expansion of (92), namely (93).

Performing the intersection of the codimension-one algebraic variety:

1 + 3 y + z + 9 y z + 11 z2 y + 3 u x + 9 x + 2 x y + 5 x z + 7 x2 y = 0,

corresponding to the denominator of (A45), with the hyperbola p = x y z u , amounts to
eliminating, for instance, u (writing u = p

x y z ). This gives Pu = 0 , where Pu reads:

Pu = 7 x2y2z + 2 xy2z + 5 xyz2 + 9 xyz + 11 y2z3 + 9 y2z2

+3 y2z + yz2 + yz + 3 p. (A46)

Assuming x to be constant, the previous condition Pu(y, z) = 0 is an algebraic curve.
Calculating its genus, one finds immediately that it has genus one. Calculating its j-
invariant, one deduces the expression of the Hauptmodul Hp,x = 1728

J as a rational
expression of p and x:

Hp,x =
1728

J
= − 46656 p3 · (7x2 + 2x + 3)2 · N

D3 , (A47)

where N is a polynomial expression of degree eight in w and three in p, and D is a
polynomial expression of degree four in w and two in p. In the x → 0 limit of the
Hauptmodul Hp,x = 1728

J , one finds:

Hp = − 419904 · p3 · (5 − 12 p − 19440 p2 + 2665872 p3)

(1 − 2592 p2)3 , (A48)

which is actually the Hauptmodul in (92). In other words, the exact expression of the
diagonal of the rational function (A45), which is (92), and is essentially encapsulated in
the Hauptmodul in (92), could have been obtained from the x = 0 selection of the
Hauptmoduls Hp,x.
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Appendix F.2. Telescopers of Rational Functions of Several Variables: A Third Example with
Four Variables

Let us consider the rational function in four variables x, y, z, u:

R(x, y, z, u) = (A49)
1

1 + 3 y + z + 9 y z + 11 z2 y + 3 u x + x · (y2 z2 + x y3)
,

which corresponds to P(x, y, z) = y2 z2 + x y3 in the family (A44). Again, the telescoper
of this rational function of four variables is the same order-two linear differential operator
L2 as for the telescoper of (91). It has the same pullbacked hypergeometric solution (92).
Actually, the diagonal of the rational function (91) is the expansion (93) of the pullbacked
hypergeometric function (92). In this case (A49), the elimination of u = p

x y z in the
vanishing condition of the denominator (A49) gives the algebraic curve:

x2 y4 z + x y3 z3 + 11 y2 z3 + 9 y2 z2 + 3 y2 z + y z2 + y z + 3 p = 0. (A50)

For x fixed (and of course, p fixed) this algebraic curve (A50) is a genus-five curve, but, of
course, in the x = 0 case, it reduces to the same genus-one curve as for the first example
(91), namely:

11 y2 z3 + 9 y2 z2 + 3 y2 z + y z2 + y z + 3 p = 0. (A51)

which corresponds to the Hauptmodul (A48).
The generalization of this result is straightforward. Let us consider the rational

function in four variables x, y, z, and u:

R(x, y, z, u) = (A52)
1

1 + 3 y + z + 9 y z + 11 z2 y + 3 u x + x · P(x, y, z)
,

where P(x, y, z) is an arbitrary polynomial of the three variables x, y, and z. On a large
set of examples, one verifies that the diagonal of (A52) is actually the expansion (93) of the
pullbacked hypergeometric function (92):

1 + 648 x2 − 72900 x3 + 1224720 x4 − 330674400 x5 + 23370413220 x6 (A53)

−1276733858400 x7 + 180019474034400 x8 − 12013427240614800 x9 + · · ·

However, as far as creative telescoping calculations are concerned (using the Holonomic-
Functions package [3]), the telescoper corresponding to different polynomials P(x, y, z)
quickly becomes a quite large non-minimal linear differential operator. For instance, even for
the simple polynomial P(x, y, z) = x + y, one obtains a quite large order-10 telescoper. Of
course, since this telescoper has the pullbacked hypergeometric function (92) as a solution,
it is not minimal; it is right-divisible by the order-two linear differential operator having
(92) as a solution. It is straightforward to see that the previous elimination of u = p

x y z
in the vanishing condition of the denominator (A52) gives an algebraic curve (of arbitrary
large genus for increasing degrees of the polynomial P(x, y, z)):

11 y2 z3 + 9 y2 z2 + 3 y2 z + y z2 + y z + 3 p + y z · P(x, y, z) = 0. (A54)

which reduces again, in the x = 0 case, to the same genus-one curve (A51).
With that general example (A52), we see that there is an infinite set of rational functions

depending on an arbitrary polynomial P(x, y, z) of three variables whose diagonals are
actually a pullbacked 2F1 hypergeometric solution, namely (92).
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