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Abstract: Metal rolls in a non-ferrous-metal manufacturing workshop manifest the characteristics of
symmetry, multiple scales and mutual covering, which poses great challenges for metal roll detection.
To solve this problem, firstly, an efficient attention mechanism algorithm named ECLAM (efficient
capture location attendant model) is proposed for capturing spatial position features efficiently, to
obtain complete location information for metal rolls in a complex environment. ECLAM can improve
the ability to extract the spatial features of backbone networks and reduce the influence of the non-
critical background. In addition, in order to give feature maps a larger receptive field and improve
the weight of location information in multi-scale feature maps, a nonlinear feature fusion module
named LFFM (location feature fusion module) is used to fuse two adjacent feature images. Finally, a
multi-scale object detection network named L-MSNet (location-based multi-scale object detection
network) based on the combination of ECLAM and LFFM is proposed and used to accurately detect
multi-scale metal rolls. In the experiments, multi-scale metal roll images are collected from an actual
non-ferrous-metal manufacturing workshop. On this basis, a pixel-level image dataset is constructed.
Comparative experiments show that, compared with other object detection methods, L-MSNet can
detect multi-scale metal rolls more accurately. The average accuracy is improved by 2% to 5%, and
the average accuracy of small and medium-sized objects is also significantly improved by 3% to 6%.

Keywords: warehouse management; deep learning; object detection; attention mechanisms;
feature fusion

1. Introduction

Warehouse management plays a vital role in the production and management of
manufacturing enterprises. New intelligent material management systems based on com-
puter vision can detect materials automatically and determine their quantity and location
immediately using a monitoring camera. This type of management has attracted extensive
attention due to its real-time performance and applicability.

Traditional material visual inspection algorithms use the designed operator to extract
image features and classify the image, in order obtain the category and position of the
material. However, it is very difficult to use some previously designed operators to detect
materials in a variety of complex industrial scenes. With the rapid development of artificial
intelligence technology, deep learning algorithms have achieved a significant breakthrough.
Compared with the traditional detection methods, object detection algorithms based on
deep learning usually have not only stronger feature extraction ability but also the ad-
vantages of more robust generalization and higher accuracy. Therefore, a considerable
amount of research has been undertaken on making full use of deep-learning-based de-
tection methods to detect materials in a complex industrial scene. Sun et al. [1] proposed
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an application of Faster R-CNN (faster region with convolutional neural networks) [2]
based on autonomous navigation to detect the shelf legs and tags, which is useful for
automated guided vehicles (AGVs) in warehouses. Max Schwarz et al. [3] replaced the
language model of the DenseCap [4] network with linear SVM (support vector machine)
to accurately detect objects in warehouses. Han et al. [5] proposed a lightweight model
by introducing channel-level sparsification of YOLOv3 (you only look once, version 3) [6].
They fused the channels between shallow feature maps and deep feature maps to obtain
more detailed features of stacked parcels.

However, the above research is mainly limited to single-scale object detection in a
simulated scene. There are still some problems associated with metal roll detection in
warehouses, such as strong metal reflection, image noise, and so on, as shown in Figure 1.
Furthermore, metal rolls in the warehouse are densely stacked and can block each other.
Most importantly, the image pixel sizes of the front and rear metal rolls are very different;
those for the rear metal rolls are less than one-fifteenth of those for the front metal rolls.
Lastly, due to the small image pixel size of the rear metal rolls and serious occlusion, a
large number of features are lost. Multi-scale metal rolls caused by the spatial change in
this complex environment pose a significant challenge for intelligent visual detection.
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Figure 1. Metal rolls in a non-ferrous-metal processing warehouse: (a) a metal roll image taken from
the top; (b) a metal roll image taken from the side.

Therefore, a new object detection method is proposed to solve the problem of detection
of multi-scale metal rolls in a complex environment. The main contributions of this paper
are as follows:

(1) A novel attention mechanism, the efficient capture location attention module (ECLAM),
is proposed to make the backbone network focus on the extraction of the spatial loca-
tion features of multi-scale metal rolls.

(2) A new feature fusion module named a location feature fusion module (LFFM), based
on ECLAM, is proposed in this paper. In contrast to other traditional feature fusion
algorithms, LFFM adopts a nonlinear superposition method to improve the weight of
spatial location features in feature maps.

(3) Based on the feature maps that include plenty of spatial location information extracted
by ECLAM and LFFM, a new detection method named a location-based multi-scale
object detection network (L-MSNet) is proposed to accurately detect multi-scale metal
rolls in a complex environment.

The rest of this paper is organized as follows. Section 2 presents some state-of-the-art
object detection methods. Section 3 introduces the overall structure of L-MSNet. The
proposed ECLAM and LFFM algorithms are elaborated in Section 4. Section 5 presents a
series of experiments to examine the performance of the proposed algorithms. The paper
ends with a brief conclusion and suggestions for future work.
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2. Related Work

At present, some practical algorithms are available to solve multi-scale object detec-
tion problems, such as RetinaNet [7], FCOS (fully convolutional one-stage object detec-
tion) [8], ATSS (adaptive training sample selection) [9], and PAA (probabilistic anchor
assignment) [10].

RetinaNet is a one-stage anchor-based detector that uses a new cross-entropy loss
function named focal loss to solve the problem of data imbalance in multi-scale object
detection, in order to improve the detection accuracy. In contrast with RetinaNet, FCOS
adopts an anchor-free algorithm, which makes it possible for multi-scale objects to be
detected by canceling the preset anchor and solves the detection problem posed by extreme
differences in object scales. There are three differences between RetinaNet and FCOS: (1) the
distinction between negative samples and positive samples; (2) the status of the start of the
regression; and (3) the number of anchors for each location. Experimental results [8] show
that FCOS outperforms RetinaNet on various datasets.

According to the results, Zhang et al. [9] further explored the above three differences.
They found that the key distinction between anchor-free and anchor-based methods is how
the positive and negative training samples are defined, and the accuracy of the detection
model is closely related to the selection of positive and negative samples during train-
ing. They proposed an ATSS algorithm that can dynamically select high-quality training
samples to improve the accuracy of multi-scale object detection. ATSS uses an adaptive
anchor assignment which computes the standard deviation and mean of IoU values from
some close anchors for each ground truth. Nevertheless, although this method can slightly
improve the accuracy, it is not suitable for multiple strong, high-quality anchors. There-
fore, PAA adaptively selects positive and negative samples through maximum likelihood
probabilities to optimize the training process for anchor-based networks, to solve the above
problem and improve the detection accuracy for objects in a complex environment.

Although various methods were used in the above literature to improve the detection
accuracy of multi-scale objects, all of them ignored some essential features, i.e., the spatial
location features. The spatial location features in a complex environment contain the
distribution information of the objects. The proposed L-MSNet method can obtain the
spatial location features of small and medium-sized metal rolls densely stacked in the
distance in the image, which is helpful for accelerating the convergence speed of networks
and improving the detection accuracy for multi-scale metal rolls.

3. The Structure of L-MSNet

Aiming at the problem of multi-scale metal roll detection in a complex environment, a
multi-scale object detection network called L-MSNet is proposed, based on spatial location
features, as shown in Figure 2. L-MSNet is composed of four parts: the backbone network
based on ResNet-50 (residual network 50 layers, ResNet-50) [11] and a feature pyramid
network based on an attention mechanism (attention-based FPN); the candidate region
generator consisting of an RPN (region proposal network) and ROI Align (region of interest
align); the FC (full connection layer) classifier, and the FCN (fully convolutional network)
image segmentation module [12].
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L-MSNet uses ResNet-50 and the attention-based FPN as the backbone network, to
extract the features of metal rolls. ResNet-50 adopts the bypassing connection method,
which allows the extracted feature information to spread across multiple hidden layers so
that the shallow features and deep features in the network are integrated, to avoid the loss or
overfitting of basic features. Then, the extracted basic feature maps are fed into the attention-
based FPN. The structure of the attention-based FPN is shown in Figure 2. Firstly, the
critical location information of the feature map is extracted through the proposed attention
algorithm ECLAM. Then, the multi-scale feature maps are efficiently fused through the
proposed LFFM algorithm. Finally, multi-scale feature maps are constructed, which express
the key location information more significantly and in more detail.

The RPN aims to generate some regions of interest (ROIs) on the feature maps effi-
ciently and quickly. Firstly, the RPN generates a series of anchor points on the multi-scale
feature maps. There are usually three to five regions of interest for each anchor point. By
setting multi-scale ROIs, metal rolls can be detected more easily. On this basis, metal rolls
can be located by ROI Align, which is based on a bilinear difference algorithm. Finally, the
multi-scale feature maps with rich and key location information are input into the FC and
FCN to complete detection and segmentation. The loss function of L-MSNet is shown in
Equation (1).

L = Lcls + Lbox + Lmask (1)

where L is a multi-task loss that includes three parts, Lcls is a classification loss, Lbox is a
bounding-box loss, and Lmask is a binary cross-entropy loss which averages all pixels.

4. Method
4.1. Attention Mechanisms

As a bionic technology, an attention mechanism aims to enhance the ability of the
backbone network to extract critical features from the data and suppress other unimportant
features. In recent years, attention mechanisms have been widely used in deep learning,
leading to many achievements [13–15]. There are three kinds of attention mechanisms
commonly used in the field of computer vision: local attention, global attention, and multi-
head attention. The first two attention mechanisms are realized on the basis of soft attention
and hard attention. Local attention focuses on only one or several small windows in an
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image, for the sake of paying attention to capture the nuances. Local attention is conducive
to detecting small and medium-sized objects. Global attention focuses on capturing the
long-distance dependence in an image and pays attention to the global information. Global
attention is conducive to detecting large-scale objects. A multi-head attention mechanism is
constructed of several attention mechanisms. Multi-head attention enables models to learn
critical features in multiple subspaces, which can enhance the feature extraction ability of
backbone networks.

4.2. Efficient Capture Location Attention Module

Figure 3 shows the structure of ECLAM which mainly includes two parts. One carries
out a series of operations to factorize the input feature map X ∈ RC×H×W into two one-
dimensional feature vectors Mh ∈ RC×H×1 and Mw ∈ RC×1×W in the horizontal and
vertical directions, respectively, where C is the number of channels, and H and W denote
the height and width, respectively. The other gives different weights to various features in
X through the extracted attention vectors Mh and Mw, in order to obtain the final feature
map Y ∈ RC×H×W , which contains rich and key location information. The overall process
of ECLAM is summarized in Equation (2), where ⊗ denotes element-wise multiplication.

Y = X⊗Mw ⊗Mh (2)
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More specifically, first of all, the mean pooling operation is implemented for each line
and column of the input intermediate feature map X ∈ RC×H×W . The sizes of the two
pooling kernels are (1, W) and (H, 1). As a result, the output of pooling R(h)h

c ∈ RC×H×1

and R(w)w
c ∈ RC×1×W can be formulated as

R(h)h
c =

1
W ∑W

i=0 Xc(h, i) (3)

R(w)w
c =

1
H ∑H

i=0 Xc(j, w) (4)

where R(h)h
c denotes the mean pooling result of the c-th channel at the i-th line. Similarly,

R(w)w
c is the mean pooling result of the c-th channel at the j-th column. By encoding

each channel of the input feature map X along the vertical and horizontal coordinates,
respectively, a 2D feature map X is turned into two 1D vectors. This allows ECLAM to
capture long-range dependencies and furnish the location features of metal rolls. What
is more, a local channel attention structure represented by L is constructed from batch
normalization (BN) [16], 1× 1 convolution (Conv1×1), and a SELU (scaled exponential linear
units) activation function [17] and used to aggregate the local channel context, as shown in
Equation (5). Therefore, the results Mh and Mw can be expressed as Equations (6) and (7),
respectively,

L(f) = Conv1×1(SELU(BN(Conv1×1(SELU(f))))) (5)

Mh = σ(BN(L(R(h)i
c))) (6)
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Mw = σ(BN(L(R(h)j
c))) (7)

where σ represents the sigmoid function, and f is a feature map for processing by L. In
addition, Conv1×1 represents a convolution operation with a 1× 1 kernel. Mh and Mw
contain two Conv1×1 operations, whose sizes are C/r × C × 1× 1 and C × C/r × 1× 1,
respectively, and r is the reduction ration for reducing parameters. In this way, channels in
the intermediate process can be reduced in order to prevent excessive calculation caused
by too many channels. Through the above equations, Mh and Mw can be acquired from
the input feature maps X simultaneously. All elements in both Mh and Mw can indicate
whether metal rolls are placed in the corresponding lines and columns or not. Accurate
location features are of great benefit in helping the backbone network recognize metal
rolls better.

4.3. Location Feature Fusion Module

The traditional feature pyramid network (FPN) [18] is commonly used to solve the
problem of multi-scale object detection by continuous downsampling and upsampling. The
traditional FPN can make feature maps that contain both the shallow and deep information
of an image, expanding the receptive field of large-scale feature maps. However, this fusion
method cannot enhance the weight of location information in multi-scale feature maps.
Furthermore, the location information will be gradually lost with continuous fusions.

In this paper, LFFM is proposed to enhance the weight of location information in
multi-scale feature maps. Figure 4 shows the structure of LFFM.
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denotes a convolution operation with a 3 × 3 kernel in order to remove alias effects.

In contrast to the element addition of the traditional FPN, LFFM uses a nonlinear
fusion between two adjacent feature maps to improve the weight of location information.
The overall process of LFFM can be summarized by the following equations:

X = Conv3×3(X1 ⊕X2) (8)

Mw = Mw1 ⊕Mw2 (9)

Mh = Mh1 ⊕Mh2 (10)

where X1 ∈ RC×H×W and X2 ∈ RC×H×W refer to a low-level feature map and a high-
level feature map, respectively. Mh1 ∈ RC×H×1 and Mh2 ∈ RC×H×1 can be calculated by
Equation (6) with X1 and X2, respectively. Similarly, Mw1 ∈ RC×1×W and Mw2 ∈ RC×1×W

can be calculated by Equation (7). After completing the above calculation, the final output
Y ∈ RC×H×W can be obtained using Equation (2). In contrast to the traditional FPN,
LFFM not only ensures that each feature map contains high-level semantic information
but also makes the location information in multi-scale feature maps more detailed and
significant. By introducing LFFM, L-MSNet can effectively and accurately detect metal
rolls in complex environments.
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Figure 2 shows the structure for embedding LFFM in the FPN, where Conv1×1 is used
to reduce the number of channels. In the process of L-MSNet detecting metal rolls, large-
scale metal rolls are detected with small-scale feature maps, in order to accelerate the speed
of detection. Accordingly, in order to improve the detection accuracy, a large-scale feature
map is used to detect small-scale metal rolls. The selection basis is shown in Equation (11)

l = [l0 + log2(
√

wh/224)] (11)

where l is the level of the attention-based FPN, [ ] is the round function, and h and w
represent the length and width of the region of the proposal, respectively. The factor
224 is derived from the standard size of ImageNet, and l0 corresponds to the level of
the attention-based FPN when h and w are 224 and 224, respectively. The level of the
feature map corresponding to each region of the proposal can be accurately calculated
using Equation (11), which can help to avoid excessive calculation during detection. In
contrast to the traditional FPN, the novel attention-based FPN adds ECLAM and LFFM,
which ensures that the multi-scale feature maps contain complete key location information.
Subsequent experiments prove that L-MSNet based on ECLAM and LFFM can better detect
multi-scale metal rolls in complex environments.

5. Experiments and Analysis
5.1. Experimental Settings
5.1.1. Dataset and Implementation Details

The datasets used in the following experiments were all collected from actual large
non-ferrous-metal warehouses. We adopted the well-known COCO dataset [19] format to
construct a metal roll dataset, and the details are shown in Table 1.

Table 1. Dataset analysis results.

Attribute Name Attribute Value

Image type RGB
Number of images 368

Image size 1408 × 1088 and 1920 × 1088
The distribution ratio of image sizes About 3:1

Metal roll numbers in images About 2000
The maximum metal roll About 586,000 pixels
The minimum metal roll About 500 pixels

All the metal rolls were labeled accurately at the pixel level by LabelMe [20] labeling
software. These images can be roughly divided into two viewing angles: the side and
the top, as shown in Figure 1. It can be seen that metal rolls are closely stacked together
in the image, blocking each other, and some long-distance metal rolls occupy fewer than
32× 32 pixels. In addition, the images are affected by equipment, light, the site, and other
factors and contain varying degrees of metal reflection, image noise, and pedestrian oc-
clusion, which are common phenomena in production. The use of non-idealized data can
improve the robustness of L-MSNet and its application in production. In the process of
training and testing, images are randomly divided into two groups in a ratio of 7:3. In
addition, a series of operations such as noise, rotation, and occlusion are performed on the
training images to increase the number of training images, as shown in Figure 5.
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The software and hardware names and version numbers used in the experiments are
shown in Table 2. In addition, for parameter setting, an Adam optimizer [21] was used in
this study. The initial learning rate was set to 0.003, the batch size was set to 10, and the
number of iterations was 10,000. Furthermore, the number of Conv1×1 channels C and the
reduction rate r of ECLAM were set to 256 and 32.

Table 2. Experimental environment configuration.

Attribute Name Attribute Value

Operating system version Ubuntu18.04.3 LTS
Graphics NVIDIA GeForce RTX 2080Ti × 4
Processor Intel(R) Xeon(R) Silver 4114 CPU @2.20 GHz × 2

RAM 256 G
CUDA 11.1

Data processing Python 3.7.10, OpenCV 4.5.2
Deep learning framework Pytorch 1.8.0, Detectron 2.0.4

5.1.2. Evaluation Indexes

In order to verify the effectiveness of L-MSNet, especially for the detection effect for
metal rolls with different scales, four evaluation indexes were used: the average precision
(AP), average precision for small objects (APs), average precision for medium objects (APm),
and average precision for large objects (APl). AP denotes the average precision when the
intersection over union (IoU) increases from 0.5 to 0.95 in steps of 0.05. APs refers to objects
occupying an area in the image of less than 32× 32 pixels. Similarly, APm indicates objects
occupying an area between 1024 and 9216 pixels, and APl represents objects whose area is
larger than 9216 pixels. The precision is calculated using Equation (12)

Precision =
TP

TP + FP
(12)

where TP refers to the total number of positive samples which are predicted as positive and
FP is the count of false negative samples which are predicted as positive. The precision is the
fraction of true positive samples in the group of samples declared positive by the classifier.

5.2. Experimental Results and Analysis
5.2.1. Ablation Experiments

L-MSNet without ECLAM and PFFM is regarded as the benchmark model. In order to
verify the influence of ECLAM and LFFB, a series of ablation experiments was carried out.
By embedding the ECLAM algorithm in the x-axis and y-axis in L-MSNet, the effectiveness
of ECLAM in the x-axis and y-axis directions, respectively, was verified. The experimental
results are shown in Table 3.
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Table 3. Results of the benchmark model obtained by adding ECLAM in different directions.

Base X Y AP (%) APs (%) APm (%) APl (%)
√

— — 59.2 36.7 56.2 78.6√ √
— 60.5 38.6 58.1 79.2√

—
√

60.3 38.3 58.2 79.2√ √ √
62.3 39.2 61.1 80.4

It can be seen from Table 3 that adding unidirectional attention can improve the
detection performance of the benchmark model, and the effects of the two directions on the
benchmark model are basically same. Embedding unidirectional ECLAM can improve the
AP of the benchmark model by about 2.1% to 2.3%. Accordingly, by adding the ECLAM
algorithm in the x-axis and y-axis directions, the four evaluation indexes of the benchmark
model can be greatly improved. In particular, APs and APm are improved by 2.5% and
4.9%, respectively, compared with the benchmark model. The experimental results show
that ECLAM can improve the detection accuracy of multi-scale metal rolls by extracting
the location features in two directions.

Based on the above experiments, the LFFM algorithm was added to L-MSNet. The
detection results of LFFM and the traditional FPN were compared to verify the superiority
of LFFM for the fusion of location features. The experimental results are shown in Table 4.
After embedding LFFM, the detection effect of L-MSNet on metal rolls reached the optimal
level of 63.8%. Compared with the traditional FPN, the four evaluation indexes AP, APs,
APm, and APl increased by 1.5%, 2.3%, 2.4%, and 0.8%, respectively. The results show
that LFFM can efficiently enhance the weight of location information in multi-scale feature
maps, further improving the accuracy of L-MSNet.

Table 4. Results for the benchmark model with the addition of LFFM.

Base ECLAM FPN LFFM AP (%) APs (%) APm (%) APl (%)
√

—
√

— 59.2 36.7 56.2 78.6√ √ √
— 62.3 39.2 61.1 80.4√ √ √ √

63.8 41.5 63.5 81.2

5.2.2. Comparative Experiments

Mask R-CNN [22] is a general network framework that has been developed based
on Faster R-CNN. It is used to solve the problem of multi-scale object detection and has
resulted in considerable achievements in many fields [23,24]. In order to verify the detection
performance of the algorithm fairly and intuitively, the backbone network of Mask R-CNN
was set as ResNet-50 + FPN. The detection results for both are shown in Figure 6. In order
to clearly distinguish the differences between them, the differences in the image are marked
and enlarged within red boxes. According to the comparison results, the first column
contains some images of large-scale metal rolls. L-MSNet network correctly detected all
metal rolls in the image, while Mask R-CNN missed some of them. The second and third
columns clearly show the advantages of L-MSNet in detecting small and medium-sized
metal rolls. Here, L-MSNet successfully detected more metal rolls. Even small and medium-
sized metal rolls with serious occlusal problems could be successfully detected with higher
confidence scores. The experimental results show that L-MSNet can solve the problem of
detecting multi-scale metal rolls better than Mask R-CNN.
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In order to further verify the effectiveness of L-MSNet, L-MSNet was compared with
mainstream target detection modules such as RetinaNet [7], FCOS [8], ATSS [9], PAA [10],
BorderDet [25], and Yolov5m [26]. The backbone network for each module was ResNet-
50 + FPN. The results are shown in Table 5.

Table 5. Comparison of the detection results between L-MSNet and other algorithms.

Modules AP (%) APs (%) APm (%) APl (%) Param.

RetinaNet 58.6 34.1 57.8 77.9 38.0 M
FCOS 58.5 36.5 55.4 77.4 32.3 M
ATSS 60.7 36.2 58.7 81.1 32.2 M
PAA 61.0 37.5 58.1 81.4 32.3 M

BorderDet 61.6 37.2 60.2 81.4 33.6 M
Yolov5m 61.3 37.4 60.1 80.7 35.7 M
L-MSNet 63.8 41.5 63.5 81.2 39.8 M

According to Table 5, The average precision of L-MSNet was the best, especially for
the detection of small and medium-sized metal rolls. Compared with other modules, the
average precision of L-MSNet was about 2~5% higher than the others. Furthermore, the
APs and APm values of L-MSNet were about 3~7% higher than those of other modules.
For detecting large metal rolls, although the APl for PAA and BorderDet was 0.2% higher
than for L-MSNet, the evaluation indexes APs and APm for L-MSNet were much higher,
i.e., more than 4% and 5% higher, respectively. The average precision of L-MSNet was
also significantly better than those of PAA and BorderDet. Moreover, although L-MSNet
has slightly more parameters than the other networks, the precision of L-MSNet was
significantly higher than the others. It is quite acceptable for a non-ferrous-metal man-
ufacturing workshop to build a more accurate warehouse system by introducing some
additional parameters.
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The experimental results show that the detection effect of L-MSNet on multi-scale
metal rolls is clearly better than that of other modules, which fully proves the effectiveness
of this method. In order to solve the problem of multi-scale metal roll detection in complex
environments, the attention algorithm ECLAM makes the ResNet-50 backbone network
focus on extracting location features from the RGB images and constructing feature maps
containing rich key location information. Furthermore, LFFM enhances the weight of
location information in multi-scale feature maps by nonlinearly fusing two adjacent feature
maps. By taking advantage of ECLAM and LFFM, L-MSNet can accurately detect multi-
scale metal rolls in a complex environment.

6. Conclusions and Future Work

Aiming at the problem of detection of multi-scale metal rolls in a complex environment,
a novel detection method was proposed to overcome the difficulties. The proposed method
used the attention algorithm ECLAM to integrate the spatial position information in
the horizontal and vertical directions, which can ensure that the backbone focuses on
extracting the spatial position features of multi-scale metal rolls. On this basis, a new
nonlinear location feature fusion algorithm LFFM was proposed, to fuse the spatial location
information between two adjacent feature maps. LFFM ensures that location features
which are extracted by ECLAM are expressed more significantly and in more detail. Taking
advantage of ECLAM and LFFM, a new detection network L-MSNet was proposed, to
detect multi-scale metal rolls accurately in a complex environment. The experimental
results showed that L-MSNet had high detection accuracy for metal rolls in a complex
environment. Compared with other state-of-the-art detection networks such as RetinaNet,
FCOS, and ATSS, the average precision of L-MSNet was about 2~5% higher than the
others, and the APs and APm values of L-MSNet were about 3~6% higher than for the other
modules. The detection of large-scale metal rolls was also improved.

At present, metal roll images are independent of each other, and the features do not
take into account the synergistic effect. In our future research work, we will build a multi-
camera cooperative work system to detect metal rolls from multiple angles, in order to
achieve high-precision dynamic detection of metal rolls. What is more, we will segment
the metal rolls in the images more finely, in order to locate the metal rolls precisely in
the non-ferrous-metal manufacturing workshop, which is also important for building an
intelligent warehouse management system.
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