
Citation: Candan, M. Some

Characteristics of Matrix Operators

on Generalized Fibonacci Weighted

Difference Sequence Space. Symmetry

2022, 14, 1283. https://doi.org/

10.3390/sym14071283

Academic Editors: Carlo Cattani,

Praveen Agarwal and Shilpi Jain

Received: 9 May 2022

Accepted: 14 June 2022

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Some Characteristics of Matrix Operators on Generalized
Fibonacci Weighted Difference Sequence Space
Murat Candan
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Abstract: The forthcoming property of this manuscript is its calculating of the goal of norms and
lower bounds of matrix operators taken from the weighted sequence space `p(w) onto a novel one
defined in the present article as the generalized Fibonacci weighted difference sequence space. In this
process, first of all the Fibonacci difference matrix F̃(r, s) and the space composed of sequences of
which F̃(r, s)-transforms lie in `p(w̃), where r, s ∈ R are defined. Additionaly, since the seminormed
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1. Introduction

Fibonacci numbers, postulated in 1202 by the Italian mathematician, provides the
foundation for his book titled Liber Abaci. Fibonacci numbers have a wide range of
applications, from the growth of plants and the crystallographic structures of certain solids
to the development of computer algorithms written for searching databases. Much has
been written and drawn about these numbers so far that these numbers have applications
in mathematics, computer science, physics and biology. The simplest method of generating
a numeric sequence with a well-defined algorithm is to use one or two kernel values and
appropriate recurrence relation. The most well-known sequences, which can be given as
an example of such sequences is the Fibonacci sequence. The sequence fn = fn−1 + fn−2
(for n > 2) is obtained by a relation defined recursively. The sequence ( fn) stars with the
kernel values of f1 = 1 and f2 = 1, and each term after the 2nd term is equal to the sum
of the two consecutive terms immediately preceding it. The Fibonacci numbers and the
Golden ratio are closely related, and after a certain point, the ratio of the larger one to the
smaller one of two consecutive Fibonacci numbers gives the Golden ratio. Before diving
into the details, we should clarify an issue that will be used frequently in this study about
Fibonacci sequences; 1

2 ≤
fn

fn+1
≤ 1 for the sequence ( fn) for all n ∈ N := {1, 2, . . . }. For

different approximations using Fibonacci numbers, references [1,2] can be viewed. The
collection of all real or complex number sequences forms a vector space which we denote by
ω, under the operations of coordinate-wise addition and well-known scalar multiplication.
The subspaces of ω are important in such applications because each of them is called a
sequence space.

Let us remember the definition of another concept we are going to need in the
manuscript. When an infinite matrix A = (ank) is given having complex numbers ank
as entries in which n, k ∈ N, for a sequence x, it can be written as:

(Ax)n := ∑ ankxk; (n ∈ N, x ∈ D00(A)),
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in which D00(A) describes the defined subspace of ω composed of x ∈ ω for which the
summation exists as a finite sum. For a simple notation, from now on, the summation
having no limits ranges from 0 to ∞.

The XA is known as the matrix domain of an infinite matrix A for any subspace X of
the all real-valued sequence space w is described as:

XA := {x = (xk) ∈ ω : Ax ∈ X}

which is a sequence space. There are varied techniques for producing new sequence spaces
out of old ones such as X. One of them is using any matrix domain produced by an
infinite matrix A such as XA. For a brief explanation about the topic, the sequence spaces,
namely X and XA, may overlap but either of them may contain the other one. For detailed
information, the reader can refer to the book “Summability Theory and Its Applications”
by Başar [3] and therein.

In recent years, we have seen a dramatic increase in constructing new sequence spaces
using matrix domain in summability areas such as sequence spaces.

Many papers [4–8] we have examined so far have something in common, that is, they
involve the matrix domain.

In [9], Candan defined the generalized Fibonacci difference matrix F̂(r, s) = ( f̂nk(r, s)) by:

f̂nk(r, s) =


s fn+1

fn
, k = n− 1

r fn
fn+1

, k = n
0, 0 ≤ k < n− 1 or k > n

and built some new difference sequence spaces by using this matrix. Candan revealed
many features of the spaces he constructed by taking advantage of the matrix from different
angles in his different articles. Fibonacci numbers investigated by different authors have
many applications. Where some of these can be found in the references [10–18].

In recent years, via utilizing the matrix described by Kara and Başarır in [19], Talebi
and Dehghan [20] proposed a space derived from the Fibonacci weighted sequence space
denoted by Fw,p, which is composed of all the sequences of which F-transforms lie in
`p(w) = {x = (xk) ∈ ω : ∑∞

k=1 wk|xk|p < ∞}, for which 1 ≤ p < ∞ and also at the same
time w = (wk) is defined as a decreasing non-negative sequence of real numbers.

The finding of the best upper bound for some known matrix operators denoted by T
from `p(w) onto Fw,p has been tried. In connection with this statement, it should be noted
that an upper bound found out for a matrix operator denoted by T defined from a sequence
space X into another one denoted by Y can be given by the following value of U:

‖Tx‖Y ≤ U‖x‖X ,

in which ‖.‖X and ‖.‖Y denote the widely known norms prescribed on the spaces X and
Y, respectively. Here, U is not dependent on x. Among those, the best value of U can be
characterized as the operator norm for T.

Furthermore, several scholars have tried to find out the lower bounds for those matrix
operators. This concept was firstly put forward in Ref. [21] about the Cesàro matrix. After
that, the other ones such as in Refs. [22–25] have investigated the lower bounds for some
matrix operators defined on the sequence space denoted by `p and at the same time on
the weighted sequence space denoted by `p(w) having the Lorentz sequence space. In a
similar way, a lower bound of a matrix operator defined as T : X → Y is defined as the
value of L, which satisfies the following inequality:

‖Tx‖Y ≥ L‖x‖X .

This inequality can also be utilized for some functional analysis applications. To give
an example, finding the necessary and sufficient conditions for which an operator has
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got its inverse and at the same time finding the operator kernel, including only the zero
vector for this case. Because of these reasons, the knowledge of the lower bound for an
operator is important. In recent years, Dehghan and Talebi [26] have paid attention to the
largest possible lower bound value about some of the matrices on the Fibonacci sequence
spaces. Futhermore, Foroutannia and Roopaei [27] take into consideration the problem of
calculating both the norm and lower-upper bounds for some operators defined on weighted
difference sequence spaces. One can refer to those papers [28–34] and those therein for
related problems about some classical sequence spaces.

In this article, it is assumed that w = (wn) and also w̃ = (w̃n) are sequences consisting
of positive real terms. In the present article, a new space called as the generalized Fibonacci
weighted difference sequence space is introduced via the generalized Fibonacci difference
matrix. Moreover, some characteristics of this sequence space are investigated. Among
others, it has been observed that although this space is a semi-normed one it is not neces-
sarily a normed one. Let us remember that a semi-normed satisfies every axiom of a norm
but the semi-norm of a vector must be zero without including the zero vector. Again, it is
also a semi-inner product space for the value of p = 2. Furthermore, an isomorphism is
obtained by utilizing this space. Next, the norm for some matrix operators is defined on
the generalized Fibonacci weighted difference sequence space. In the next step, the lower
bound problem for the operators described from `p(w) into the generalized Fibonacci
weighted difference sequence space. Due to this fact, the seminorm or norm obtained
in this study satisfies the absolute homogeneity condition, it shows that the topological
characteristics on the seminormed space or normed space are distributed symmetrically all
over the space.

2. Fibonacci Weighted Difference Sequence Spaces Generalized with Real Numbers r
and s

We have seen in the previous chapter that many issues lead to constructing new
sequence space. Furthermore, the concepts we offered were inherently large. Let us start
by defining the following matrix F̂ = ( f̂nk(r, s)), which is similar but different to the matrix
presented by Candan [9] earlier:

f̃nk(r, s) =


s fn

fn+1
, k = n + 1

r fn+1
fn

, k = n
0, 0 ≤ k < n or k > n + 1

where r, s ∈ R. We will see later that this matrix enables us to construct an efficient structure
for solving algebraic and topological properties. By applying the matrix domain definition
to this matrix, we define the new sequence space whose result is in the `p(w̃) space,
as follows:

`p(w̃, F̃(r, s)) =

{
x = (xn) ∈ ω :

∞

∑
n=1

w̃n

∣∣∣∣r fn+1

fn
xn + s

fn

fn+1
xn+1

∣∣∣∣p < ∞

}
,

in which 1 ≤ p < ∞. We note here that the space is a semi-normed space with the
semi-norm defined by:

‖x‖p,w̃,F̃ =

(
∞

∑
n=1

w̃n

∣∣∣∣r fn+1

fn
xn + s

fn

fn+1
xn+1

∣∣∣∣p
)1/p

.

To calculate the veracity of this claim, we now give an example. Considering the
sequence xn = 1

r (
−s
r )1−n f 2

n , because of r fn+1
fn

xn + s fn
fn+1

xn+1 = 0 we get ‖x‖p,w̃,F̃ = 0, after

that, from the definition of the norm, it is seen that ‖.‖p,w̃,F̃ defined on `p(w̃, F̃(r, s)) is not
a norm.
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Before beginning the general theory, at first, we will state the following fundamental
theorem, showing the set just described has an important role in its algebraic structure.

Theorem 1. The set `p(w̃, F̃(r, s)) is linear space, namely, sequence space.

Proof. We omit the proof which can be found in standard process.

Let us continue with the following theorem regarding an algebraic property of this
newly defined sequence space.

Theorem 2. It is true that the inclusion relation `p(w̃) ⊂ `p(w̃, F̃(r, s)) is strictly valid.

Proof. If we take an arbitrary x ∈ `p(w̃), the following calculation demonstrates that
inclusion is valid:

w̃n

∣∣∣∣r fn+1

fn
xn + s

fn

fn+1
xn+1

∣∣∣∣p ≤ w̃n22p−1(|rxn|p + |sxn+1|p)

≤ 22p−1max(|r|p, |s|p)w̃n(|xn|p + |xn+1|p)

by summing n from 1 to ∞, in which 1 ≤ p < ∞.
To illustrate that the inclusion relation is strictly valid, when the sequence w̃ is taken

(1, 1, 1, . . . ), let us consider again the sequence (xn) =
(

1
r (
−s
r )1−n f 2

n

)
∈ `p(w̃, F̃(r, s)). It

is easy to deduce from that (xn) /∈ `p(w̃).

Theorem 3. When H = {x = (xn) ∈ `p(w̃, F̃(r, s)) : r fn+1
fn

xn + s fn
fn+1

xn+1 = 0 for all n ∈ N},
the quotient space `p(w̃, F̃(r, s))/H is linearly isomorphic to the space `p(w̃).

Proof. The basic approach to the proof of this theorem is to define a new T transforma-
tion from the space `p(w̃, F̃(r, s)) to `p(w̃) that utilizes the definition of the fundamental

matrix transformation, for all x ∈ `p(w̃, F̃(r, s)) clearly Tx =
(

r fn+1
fn

xn + s fn
fn+1

xn+1

)
. Since

it is quite obvious to show that T is linear, we are first concerned here with showing
that T is surjective. One of the ways of doing so for any y = (yk) ∈ `p(w̃) is to write

xn = 1
r ∑∞

k=n
(−s

r
)k−n f 2

n
fk fk+1

yk for all n ∈ N in the norm of `p(w̃, F̃(r, s)). In this case, we
obtain the following equations by simple calculations:

‖x‖p
p,w̃,F̃ =

∞

∑
n=1

w̃n

∣∣∣∣∣r fn+1

fn

1
r

∞

∑
k=n

(
−s
r

)k−n f 2
n

fk fk+1
yk + s

fn

fn+1

1
r

∞

∑
k=n+1

(
−s
r

)k−n−1 f 2
n+1

fk fk+1
yk

∣∣∣∣∣
p

=
∞

∑
n=1

w̃n

∣∣∣∣∣yn + fn fn+1

[
∞

∑
k=n+1

(
−s
r

)k−n 1
fk fk+1

yk −
∞

∑
k=n+1

(
−s
r

)k−n 1
fk fk+1

yk

]∣∣∣∣∣
p

=
∞

∑
n=1

w̃n|yn|p

= ‖y‖p
p,w̃

< ∞

which implies that x = (xn) ∈ `p(w̃, F̃(r, s)). Going back to the T transform described
above, it is very straightforward to say that Tx = y. Because of the fact that the image of
the space `p(w̃, F̃(r, s)) under the transformation T is `p(w̃) and also ker T = H, we have
that `p(w̃, F̃(r, s))/H is linearly isomorphic to the space `p(w̃) when considering the first
isomorphism theorem.

Let us give an example to show that the transformation T defined above is not injective.
Indeed, for (xn) = ( 1

r (
−s
r )1−n f 2

n) we obtain Tx = 0; in other words, ker T 6= {0}.
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Theorem 4. Under the conditions that p is different from two and also the space `p(w̃, F̃(r, s)) is
not described as semi-inner product space, `2(w̃, F̃(r, s)) is a semi-inner product space.

Proof. First of all, we will answer the question that the semi-norm ‖.‖2,w̃,F̃ using a semi-
inner product can be induced. It is convenient to introduce at this stage the notation
zk = w̃1/2

k

(
r fk+1

fk
xk + s fk

fk+1
xk+1

)
for all k ∈ N and 〈z, z〉2 = ∑∞

k=1 |zk|2. In fact taken

arbitrary, x ∈ `2(w̃, F̃(r, s)), we have:

‖x‖2,w̃,F̃ =
√
〈z, z〉2.

Furthermore, it is easy to check from the following equations that the semi-norm
‖.‖p,w̃,F̃ cannot be derived considering a semi-inner product just described:

‖x + y‖2
p,w̃,F̃ + ‖x− y‖2

p,w̃,F̃ = 4(w̃2/p
1 + w̃2/p

2 ) 6= 4(w̃1 + w̃2)
2/p = 2(‖x‖2

p,w̃,F̃ + ‖y‖
2
p,w̃,F̃),

in which x = ( 2r+s
2r2 ,− 1

2r , 0, 0, . . . ), y = ( 2r−s
2r2 , 1

2r , 0, 0, . . . ) and p 6= 2.

3. The Norm of Matrix Operators from `1(w) to `1(w̃, F̃(r, s))

After defining a function from the space `1(w) to the space `1(w̃, F̃(r, s)), in this chapter
we will calculate that it is a norm. Before proceeding to develop general theory, let us start
up with a very simple definition.

The matrix A = (ank) is known as quasi-summable when A is the upper triangular
matrix, namely, ank = 0 for n > k. As it can be clearly seen the matrix satisfies ∑k

n=1 ank = 1
for all k ∈ N.

Theorem 5. The matrix T = (tnk) is a bounded matrix operator from the space `1(w) to the space
`1(w̃, F̃(r, s)) if M = supk∈N

sk
wk

< ∞, in which λk = ∑∞
n=1 w̃n

∣∣∣r fn+1
fn

tnk + s fn
fn+1

tn+1,k

∣∣∣. In that
case, the norm of operator is obtained as ‖T‖1,w,w̃,F̃ = M.

For all n ∈ N, taking both wn = 1 and w̃n = 1 specially, the transformation T is a bounded
operator from the space `1 to the space `1(F̃(r, s)) and also ‖T‖1,F̃ = supk∈N sk.

Proof. We consider a sequence x = (xn) in `1(w), therefore:

‖Tx‖1,w̃,F̃ =
∞

∑
n=1

w̃n

∣∣∣∣∣ ∞

∑
k=1

(
r

fn+1

fn
tnk + s

fn

fn+1
tn+1,k

)
xk

∣∣∣∣∣
≤

∞

∑
n=1

∞

∑
k=1

w̃n

∣∣∣∣r fn+1

fn
tnk + s

fn

fn+1
tn+1,k

∣∣∣∣|xk|

=
∞

∑
k=1

∞

∑
n=1

w̃n

∣∣∣∣r fn+1

fn
tnk + s

fn

fn+1
tn+1,k

∣∣∣∣|xk|

=
∞

∑
k=1

λk|xk|

≤ M
∞

∑
k=1

wk|xk|

= M‖x‖1,w.

What is seen from these equations is the fact that ‖T‖1,w,w̃,F̃ ≤ M since
‖Tx‖1,w̃,F̃
‖x‖1,w

≤ M.

We proceed by introducing the sequence ei = (0, 0, . . . , 0,
i.
1, 0, . . . ) for each i ∈ N for

computing the converse inequality, and then obtain ‖ei‖1,w = wi and also ‖Tei‖1,w̃,F̃ = λi.
Because of these, it is easy to see that ‖T‖1,w,w̃,F̃ ≥ M first, and then ‖T‖1,w,w̃,F̃ = M.
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Theorem 6. Let us assume that S = (snk) is the upper triangular matrix having the non-negative
entries and also assume that (wn) is an increasing given sequence. When the inequality snk ≥
sn+1,k is valid for each values of n ∈ N, constant k ∈ N, at the same time s = −r < 0 and
M′ = supk∈N ∑k

n=1 snk < ∞, then S is defined as a bounded operator described from `1(w) to
`1(w, F̃(r, s)). Furthermore, the norm of this given operator satisfies the inequality given in the
form ‖S‖1,w,F̃ ≤ rM′. When the specific condition of S is being a quasi-summable matrix is taken
into consideration, the condition ‖S‖1,w,F̃ = r is obtained.

Proof. Due to the hypothesis, we need to say that the matrix S = (snk) that satisfies
snk ≥ sn+1,k (for all n, k = 1, 2, . . . ) condition is upper triangular and also the sequence
(wn) is increasing. With simple calculations, and taking into consideration s = −r < 0, the
following is derived:

λk =
∞

∑
n=1

wn

∣∣∣∣r fn+1

fn
snk + s

fn

fn+1
sn+1,k

∣∣∣∣
=

k−1

∑
n=1

wn

(
r

fn+1

fn
snk − r

fn

fn+1
sn+1,k

)
+ wkr

fk+1
fk

skk

≤ wk

[
k−1

∑
n=1

(
r

fn+1

fn
snk − r

fn

fn+1
sn+1,k

)
+ r

fk+1
fk

skk

]

= wk

[(
r

f2

f1
s1k − r

f1

f2
s2k

)
+ · · ·+

(
r

fk
fk−1

sk−1,k − r
fk−1

fk
skk

)
+ r

fk+1
fk

skk

]
= wk

[
r

f2

f1
s1k +

(
r

f3

f2
− r

f1

f2

)
s2k + · · ·+

(
r

fk+1
fk
− r

fk−1
fk

)
skk

]
= rwk

k

∑
n=1

snk.

Clearly, ‖S‖1,w,F̃ = r supk∈N
λk
wk
≤ r supk∈N ∑k

n=1 snk = rM′ from Theorem 5.
Let us assume that S is a quasi-summable matrix, therefore M′ = 1 and hence ‖S‖1,w,F̃ ≤ r.

To get the inverse inequality, let us take into account the sequence e1 = (1, 0, 0, . . . ). From
this it follows that ‖e1‖1,w = w1 and ‖Se1‖1,w,F̃ = rw1, namely ‖S‖1,w,F̂ ≥ r. As a result,
‖S‖1,w,F̃ = r is obtained.

Let us state that, In Theorem 6, if there is no constriction on r and s, then since:

λk =
∞

∑
n=1

wn

∣∣∣∣r fn+1

fn
snk + s

fn

fn+1
sn+1,k

∣∣∣∣
≤ (|r|+ |s|)wk

k

∑
n=1

fn−1 + fn+1

fn
snk

≤ (|r|+ |s|)wk

k

∑
n=1

(
sup
n∈N

fn−1 + fn+1

fn

)
snk

the inequality is valid, the following is obtained ‖S‖1,w,F̃ ≤ 3(|r|+ |s|)M′.
In the light of the above mentioned theorems, we are here concerned with calculating

the norm of some specific quasi-summable matrices. Initially, we consider the transpose of
the well-known Riesz matrix R̃ = (r̃nk) described as follows:

r̃nk =

{
qn
Qk

, n ≤ k
0, n > k,

(1)

in which (qn) is a non-negative sequence with q1 > 0 and Qk = q1 + · · ·+ qk for all k ∈ N.
If we take qn = 1 for all n ∈ N, we derive the transpose of the Cesàro matrix of order one,
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which is also known as a Copson matrix (see [25]). We indicate this specific matrix by
C̃ = (c̃nk), in which:

c̃nk =

{ 1
k , n ≤ k
0, n > k.

Corollary 1. When (qn) is a decreasing sequence and (wn) is an increasing sequence, in that case,
R̃ is a bounded operator from the space `1(w) into the space `1(w, F̃(r, s)) and, also ‖R̃‖1,w,F̃ = r
for s = −r < 0.

Proof. First of all, since (qn) is a decreasing sequence from the hypothesis, the following
inequality r̃nk = qn

Qk
≥ qn+1

Qk
= r̃n+1,k holds for all n ∈ N, each fixed k ∈ N. For R̃, is a

non-negative upper triangular matrix and (wn) is an increasing sequence. It follows from
Theorem 6 that R̃ is a bounded operator from `1(w) into `1(w, F̃(r, s)). Moreover, due to
the fact that ∑k

n=1 r̃nk = 1 for every k ∈ N, R̃ is a quasi-summable matrix. If s = −r < 0,
then it is clear that ‖R̃‖1,w,F̃ = r from Theorem 6.

Corollary 2. If supk∈N
∑k

n=1 w̃n
kwk

< ∞, then the matrix C̃ defined above is a bounded operator from

the space `1(w) into `1(w̃, F̃(r, s)) and ‖C̃‖1,w,w̃,F̃ ≤ (2|r|+ |s|) supk∈N
∑k

n=1 w̃n
kwk

.

Proof. To show its consistency with the previous work, let us first do the proof for any
k ∈ N and special case r ≥ −s > 0 of r and s; under this condition, we get:

λk =
∞

∑
n=1

w̃n

∣∣∣∣r fn+1

fn
c̃nk + s

fn

fn+1
c̃n+1,k

∣∣∣∣
=

(
k−1

∑
n=1

w̃n

∣∣∣∣r fn+1

fn

1
k
+ s

fn

fn+1

1
k

∣∣∣∣
)
+ w̃kr

fk+1
fk

1
k

=
1
k

[
k−1

∑
n=1

w̃n

(
r

fn+1

fn
+ s

fn

fn+1

)
+ w̃kr

fk+1
fk

]

≤ r
k

k

∑
n=1

w̃n
fn+1

fn
≤ 2r

k

k

∑
n=1

w̃n.

Thus, considering the Theorem 5, the norm ‖C̃‖1,w,w̃,F̃ ≤ 2r supk∈N
∑k

n=1 w̃n
kwk

is obtained.
If r = 1, s = −1 are taken here, the result obtained by İlkhan [14] in Corollary 2 is found.

If we give the proof in general:

λk =
∞

∑
n=1

w̃n

∣∣∣∣r fn+1

fn
c̃nk + s

fn

fn+1
c̃n+1,k

∣∣∣∣
≤ 1

k

[
k−1

∑
n=1

w̃n

(
|r| fn+1

fn
+ |s| fn

fn+1

)
+ w̃k|r|

fk+1
fk

]

=
|r|
k

k

∑
n=1

w̃n
fn+1

fn
+
|s|
k

k−1

∑
n=1

w̃n
fn

fn+1
≤ 2|r|+ |s|

k

k

∑
n=1

w̃n.

for r, s ∈ R, then we obtain that ‖C̃‖1,w,w̃,F̃ ≤ (2|r|+ |s|) supk∈N
∑k

n=1 w̃n
kwk

from Theorem 5.

When the result obtained for the special cases of r and s is compared with the result
obtained without any restrictions, since the general result is greater than the particular
ones, there is not any contradictory situation.

Theorem 7. Let us suppose that T = (tnk) is a matrix having the non-negative entries and the
inequalities tnk ≥ tn+1,k hold for all n ∈ N and each fixed k ∈ N and r ≥ −s > 0 are valid. If
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∑∞
n=1

(
r fn+1

fn
+ s fn−1

fn

)
tnk < ∞ for each k ∈ N and also M′′ = supk∈N ∑∞

n=1

(
r fn+1

fn
+ s fn−1

fn

)
tnk <

∞, then the matrix T is a bounded operator from the space `1 to `1(F̃(r, s)) and the norm of operator
is ‖T‖1,F̃ ≤ M′′. When the fact that the specific condition of T is being a quasi-summable matrix is
taken into consideration for s = −r < 0, then the condition ‖T‖1,F̃ = r is derived.

Proof. For arbitrary k ∈ N, we have:

λk =
∞

∑
n=1

(
r

fn+1

fn
tnk + s

fn

fn+1
tn+1,k

)
=

∞

∑
n=1

(
r

fn+1

fn
+ s

fn−1

fn

)
tnk.

If Theorem 5 is used here, it is found that norm ‖T‖1,F̃ ≤ M′′. The rest of the proof can be
done similarly to the proof of Theorem 6.

The matrix H = (hnk) defined as hnk =
1

n+k for all n, k ∈ N is called the Hilbert matrix
operator. Here, we will discover the norm of the operator just mentioned.

Now, let us give the following integral to be used in the proofs:∫ ∞

0

1
tα(t + c)

dt =
π

cα sin απ
,

in which 0 < α < 1.

Theorem 8. Let wn = 1
nα for all n ∈ N, in which 0 < α < 1. In this case, the Hilbert matrix

operator H just described is bounded from the space `1(w) to the space `1(w, F̃(r, s)) and also the
norm ‖H‖1,w,F̃ ≤ π

sin απ (2|r|+ |s|).

Proof. For all n ∈ N, we have:

λn =
∞

∑
i=1

wi

∣∣∣∣r fi+1

fi
hin + s

fi
fi+1

hi+1,n

∣∣∣∣
≤

∞

∑
i=1

1
iα

(
|r| fi+1

fi

1
i + n

+ |s| fi
fi+1

1
i + n + 1

)
≤
∫ ∞

0

1
tα

(
2|r| 1

t + n
+ |s| 1

t + n + 1

)
dt

=
π

sin απ

(
2|r|
nα

+
|s|

(n + 1)α

)
.

It follows that:

nαλn ≤
π

sin απ

[
2|r|+ |s|

(
n

n + 1

)α]
≤ π

sin απ
(2|r|+ |s|).

Considering Theorem 5, this means that ‖H‖1,w,F̃ ≤ π
sin απ (2|r|+ |s|).

Again in proof, if r ≥ −s > 0 is taken to see the consistency with the result obtained
by İlkhan [14], it follows that:

nαsn ≤
π

sin απ

[
2r +

s
2

(
n

n + 1

)α]
≤ π

sin απ

(
2r +

s
2α+1

)
.

Considering Theorem 5, this means that ‖H‖1,w,F̃ ≤ π
sin απ (2r + s

2α+1 ).

4. The Norm of Matrix Operators from `p(w) to `p(w, F̃(r, s))

In this section, we discuss calculating the norm of some matrix operators from the
space `p(w) to the space `p(w̃, F̃(r, s)). Now, we are going to present an essential lemma,
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which is obtained by Jameson and Lashkaripour, since this important result is used in
the proofs.

Lemma 1. [25] Let us suppose that S = (snk) is a matrix operator having the nonnegative entries
snk ≥ 0, also suppose that (un) and (tk) are positive sequences given such that:

u1/p
n

∞

∑
k=1

snk

t1/p
k

≤ A (for n ∈ N, A ∈ R)

and,
1

t(1−p)/p
k

∞

∑
n=1

u(1−p)/p
n snk ≤ B (for k ∈ N, B ∈ R)

in that case, that inequality ‖S‖p ≤ B1/p

A(1−p)/p is valid, in which p > 1.

Now, let us state and prove another necessary lemma.

Lemma 2. Let us assume that the equality snk =
(

w̃n
wk

)1/p(
r fn+1

fn
tnk + s fn

fn+1
tn+1,k

)
is valid for

the matrix operators T = (tnk) and S = (snk). At the same time, we have ‖T‖p,w,w̃,F̃ = ‖S‖p, for
p ≥ 1. Under the conditions of this hypothesis, T is bounded operator from the space `p(w) to the
space `p(w̃, F̃(r, s)) iff S is bounded operator onto the space `p.

Proof. If a sequence x = (xk) lying in the space `p(w) is taken as arbitrary, and a sequence

y = (yk) is defined as yk = w1/p
k xk for all k ∈ N by making use of it, then we derive

the equality ‖x‖p,w = ‖y‖p. Therefore, the proof should be clear with the following
rudimentary calculations:

‖T‖p
p,w,w̃,F̃ = sup

x∈`p(w),x 6=0

‖Tx‖p
p,w̃,F̃

‖x‖p
p,w

= sup
x∈`p(w),x 6=0

∑∞
n=1 w̃n

∣∣∣∑∞
k=1

(
r fn+1

fn
tnk + s fn

fn+1
tn+1,k

)
xk

∣∣∣p
∑∞

k=1 wk|xk|p

= sup
y∈`p

∑∞
n=1

∣∣∣∣∑∞
k=1

(
w̃n
wk

)1/p(
r fn+1

fn
tnk + s fn

fn+1
tn+1,k

)
yk

∣∣∣∣p
∑∞

k=1 |yk|p

= sup
y∈`p

∑∞
n=1|∑∞

k=1 snkyk|p

∑∞
k=1 |yk|p

= sup
y∈`p

‖Sy‖p
p

‖y‖p
p

= ‖S‖p
p.

Theorem 9. Let us assume that the matrix operator R̃ is as defined in (1), and also assume that
(qn) is a decreasing sequence having q1 = q2 = 2 and limn→∞ Qn = ∞. For all n ∈ N, if the

sequence (wn) is taken as
(

2Qn−1
qn

)p
with Q0 = 1, in that case, R̃ is bounded operator from the

space `p(w) to the space `p(F̃(r, s)) and ‖R̃‖p,w,F̃ = r for p > 1 and s = −r < 0.

Proof. In Lemma 2, we are going to utilize the matrix R̃ in place of T. So, the matrix
S = (snk) is described by:
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snk =


rqk

2Qk−1Qk

(
fn+1

fn
qn − fn

fn+1
qn+1

)
, n < k

1
2 r fk+1

fk

q2
k

Qk−1Qk
, n = k

0, n > k

and besides that, ‖R̃‖p,w,F̃ = ‖S‖p is obtained.
We derive:

∞

∑
k=1

snk =
1
2

r
fn+1

fn
qn

qn

Qn−1Qn
+

1
2

(
r

fn+1

fn
qn − r

fn

fn+1
qn+1

) ∞

∑
k=n+1

qk
Qk−1Qk

=
1
2

r
fn+1

fn
qn

(
1

Qn−1
− 1

Qn

)
+

1
2

(
r

fn+1

fn
qn − r

fn

fn+1
qn+1

)
1

Qn

=
1
2

r
fn+1

fn

qn

Qn−1
− 1

2
r

fn

fn+1

qn+1

Qn

≤ r

for all n ∈ N. We also derive:

∞

∑
n=1

snk =
1
2

qk
Qk−1Qk

[
k−1

∑
n=1

(
r

fn+1

fn
qn − r

fn

fn+1
qn+1

)]
+

1
2

r
qk

Qk−1Qk

fk+1
fk

qk

=
1
2

qk
Qk−1Qk

r
k

∑
n=1

qn ≤ r

for all n ∈ N. Now, In Lemma 1, if we take un = tn = 1 for all n ∈ N, we get A ≤ r and B ≤ r
which requires that ‖R̃‖p,w,F̃ ≤ r. Now, for e1 = (1, 0, 0, . . . ), we get ‖e1‖p,w = 2Q0

q1
= 1

and ‖R̃e1‖p,F̃ =
((

r f2
f1

q1
Q1

)p) 1
p
= r and then ‖R̃‖p,w,F̃ ≥ r.

Theorem 10. Let wn = 1
nα for all n ∈ N, in which 1− p < α < 1 and p > 1. In that case, the

Hilbert matrix operator H is a bounded operator from the space `p(w) to the space `p(w, F̃(r, s))
also following inequality:

‖H‖p,w,F̃ ≤ max
{

π

sin βπ
(2|r|+ |s|), π

sin γπ
(2|r|+ |s|)

}
,

is valid, in which β = 1−α
p and γ = p−1+α

p .

Proof. Let us define the matrix S = (snk) as follows:

snk =

(
k
n

)α/p( fn+1

fn

r
n + k

+
fn

fn+1

s
n + k + 1

)
for all n, k ∈ N. In this case, ‖H‖p,w,F̃ = ‖S‖p which obtained by using Lemma 2. Specifi-
cally, when we choose un = tn = n in Lemma 1 for all n ∈ N, we find that:
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un
1
p

∞

∑
k=1

snk

tk
1
p
= n1/p

∞

∑
k=1

1
k1/p

(
k
n

)α/p( fn+1

fn

r
n + k

+
fn

fn+1

s
n + k + 1

)

≤ nβ
∞

∑
k=1

1
kβ

(
2|r|

n + k
+

|s|
n + k + 1

)
≤ nβ

∫ ∞

t=0

1
tβ

(
2|r|

t + n
+

|s|
t + (n + 1)

)
dt

= nβ

(
2|r|π

nβ sin βπ
+

|s|π
(n + 1)β sin βπ

)
≤ π

sin βπ
(2|r|+ |s|)

for all n ∈ N also:

1

t
1−p

p
k

∞

∑
n=1

un
1−p

p snk =
1

k(1−p)/p

∞

∑
n=1

n(1−p)/p
(

k
n

)α/p( fn+1

fn

r
n + k

+
fn

fn+1

s
n + k + 1

)

≤ kγ
∞

∑
n=1

1
nγ

(
2|r|

n + k
+

|s|
n + k + 1

)
≤ kγ

∫ ∞

t=0

1
tγ

(
2|r|
t + k

+
|s|

t + (k + 1)

)
dt

= kγ

(
2|r|π

kγ sin γπ
+

|s|π
(k + 1)γ sin γπ

)
≤ π

sin γπ
(2|r|+ |s|)

for all k ∈ N, where β = 1−α
p and γ = p−1+α

p . We therefore obtain that:

‖H‖p,w,F̃ ≤ max
{

π

sin βπ
(2|r|+ |s|), π

sin γπ
(2|r|+ |s|)

}
.

from Lemma 1.

5. Lower Bounds of Matrix Operators from `p(w) to `p(w̃, F̃(r, s))

An important problem that arises in this work is how to calculate the lower bound
of an operator T defined from the space `p(w) to space `p(w̃, F̃(r, s)). Therefore, here we
obtain the lower bound of the operator T for the largest L value that satisfies the following
inequality

‖Tx‖p,w̃,F̃ ≥ L‖x‖p,w

for every decreasing sequence x = (xk) with xk ≥ 0.
We need the following Lemma to perform the calculations in the proofs in this section.

Lemma 3 ([25]). Let us assume that both (qn) and (xn) are non-negative sequences, and that (xn)
is also a decreasing sequence satisfying condition limn→∞ xn = 0. For Qn = ∑n

i=1 qi with Q0 = 1
also Rn = ∑n

i=1 qixi, the following statements holds, in which p ≥ 1 and n ∈ N.

1. Rp
n − Rp

n−1 ≥ (Qp
n −Qp

n−1)xp
n.

2. When the series ∑∞
i=1 qixi converges, the following inequality is satisfied.(

∞

∑
i=1

qixi

)p

≥
∞

∑
n=1

Qp
n(xp

n − xp
n+1).

Theorem 11. When T = (tnk) is a matrix operator of which entries are non-negative and defined
from the space `p(w) to the space `p(w̃, F̃(r, s)), in which p ≥ 1, the following inequality tnk ≥
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tn+1,k is valid for all n ∈ N, each fixed k ∈ N, also the series ∑∞
n=1 wn diverges to infinity, in that

case, for every decreasing sequence x = (xk) having xk ≥ 0, we have:

‖Tx‖p,w̃,F̃ ≥ L‖x‖p,w,

in which Lp = infn∈N
Sn
Wn

, Wn = ∑n
k=1 wk and Sn = ∑∞

i=1 w̃i

(
∑n

k=1

(
r fi+1

fi
tik + s fi

fi+1
ti+1,k

))p

for r > −s > 0.

Proof. Under the conditions of the hypothesis expressed in the theorem, we can make the
proof as follows. Since ∑∞

n=1 wn = ∞, we get limk→∞ xk = 0, and at the same time, it can be

obtained that the series ∑∞
k=1

(
r fn+1

fn
tnk + s fn

fn+1
tn+1,k

)
xk is convergent for all n ∈ N. On the

other hand, by using Lemma 3 and also using Abel summation, we have:

‖Tx‖p
p,w̃,F̃ =

∞

∑
n=1

w̃n

(
∞

∑
k=1

(
r

fn+1

fn
tnk + s

fn

fn+1
tn+1,k

)
xk

)p

≥
∞

∑
n=1

w̃n

∞

∑
i=1

(
i

∑
k=1

(
r

fn+1

fn
tnk + s

fn

fn+1
tn+1,k

))p

(xp
i − xp

i+1)

=
∞

∑
i=1

[
∞

∑
n=1

w̃n

(
i

∑
k=1

(
r

fn+1

fn
tnk + s

fn

fn+1
tn+1,k

))p]
(xp

i − xp
i+1)

=
∞

∑
i=1

Si(xp
i − xp

i+1) ≥ Lp
∞

∑
i=1

Wi(xp
i − xp

i+1) = Lp‖x‖p
p,w

which completes the proof.

The following Lemma can be verified in a similar technique with the proof of Proposition 1
in [25].

Lemma 4. Let us assume that T = (tnk) be a matrix operator of which entries are non-negative and
defined from the space `p(w) to the space `p(w̃, F̃(r, s)), in which p ≥ 1. If the following inequality:

r
fn+1

fn
tnk + s

fn

fn+1
tn+1,k ≥ r

fn+1

fn
tn,k+1 + s

fn

fn+1
tn+1,k+1

is valid also tnk ≥ tn+1,k for all k ∈ N, each fixed n ∈ N and r ≥ −s > 0, if the series ∑∞
n=1 wn is

divergent the infinity, then we have:

Lp ≥ inf
n∈N

[np − (n− 1)p]
tn

wn
,

in which tn = ∑∞
i=1 w̃i

(
r fi+1

fi
tin + s fi

fi+1
ti+1,n

)p
.

Theorem 12. Let H = (hnk) is the Hilbert matrix operator, wn = 1
np+α and w̃n = 1

nα for every
n ∈ N, in which p ≥ 1, 0 ≤ p + α ≤ 1 and r ≥ −s > 0. For every decreasing sequences x = (xk)
that are not negative terms, we have:

‖Hx‖p,w̃,F̃ ≥ L‖x‖p,w

in which Lp ≥ ∑∞
i=1

1
iα(i+1)p(i+2)p .

Proof. It is clear that both the Hilbert matrix H = (hnk) and the sequence (wn) fulfill the
conditions listed in Lemma 4, therefore, we obtain:
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Lp ≥ inf
n∈N

[np − (n− 1)p]
tn

wn

≥ inf
n∈N

np−1np+α
∞

∑
i=1

1
iα

(
r

fi+1

fi

1
i + n

+ s
fi

fi+1

1
i + n + 1

)p

≥ inf
n∈N

n2p+α−1
∞

∑
i=1

1
iα

(
r

i + n
+

s
i + n + 1

)p
.

The rest of the proof can be derived in the same way as in the proof of Theorem 4.3
in [27].

Conclusions

In the present article, the norm of matrix operators described among the weighted
sequence space `p(w) and the Fibonacci weighted difference sequence space denoted by
`p(w̃, F̃(r, s)) for 1 ≤ p < ∞ has been put forward. During the process for this aim,
several special matrices like quasi-summable matrices (the transposes of both Riesz and the
transpose of Cesàro matrices having order one) and also Hilbert matrix have been utilized.
First of all, the space `p(w̃, F̃(r, s)) has been introduced and several characteristics of the
space have been investigated. Namely, an isomorphism is obtained by utilizing this space.
Later, the norm for some matrix operators is defined on the generalized Fibonacci weighted
difference sequence space. Finally, the lower bound for the matrix operator defined from
`p(w) to `p(w̃, F̃(r, s)) has been calculated.
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3. Başar, F. Summability Theory and Its Applications; Bentham Science Publishers: İstanbul, Turkey, 2012; ISBN 978-1-60805-252-3.
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18. Kara, E.E.; İlkhan, M. Some properties of generalized Fibonacci sequence spaces. Linear Multilinear Algebra 2016, 64, 2208–2223.
[CrossRef]
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