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Abstract: This study presents the detailed experimental results of fine structures and dynamics in
a stratified flow past a sphere, which is towed with constant velocity in a transparent basin. We
developed experimental procedures based on the complete solutions of the truncated fundamental
fluid equations. These complete solutions describe the waves and fine accompanying ligaments, as
well as the vortices and other flow structures. To visualize the flow, a variety of classical schlieren and
electrolytic precipitation procedures were used. Ligaments appear in the schlieren images of the flow
as fine interfaces and fibers. They strengthen the influence of the relatively weak density gradient in
a continuously stratified fluid (CSF). The symmetry in the wake is discrete at small Froude numbers
with the domination of buoyancy effects. At increased velocity and high Froude numbers, when the
inertial and non-linear effects turn out to be significant, an axial symmetry becomes continuous.

Keywords: stratified fluid; towing sphere; schlieren instrument; electrolytic precipitation; internal
waves; prismatic wake; vortex column; rings

1. Introduction

Denser particles sink, while lighter particles float under the impact of buoyancy forces.
Naturally, a stratification in a heterogeneous liquid or gas occurs (a stratification is a
continuous variation of density ρ(z) over depth z).

The stratification is discrete when the density changes abruptly. It happens at the
boundaries of immiscible media; for example, between the atmosphere and
the hydrosphere.

With density changes, we observe the variations of such physical properties as the
velocity of sound propagation, the refractive index of light [1]. They allow observing the
patterns of flows in the bulk or on the surface of a liquid either with the naked eye [2] or
using optical [3,4] and acoustic instruments [5].

The development of space technologies for remote sensing has opened up new ways
for tracking the temporal variability of naturally occurring structures in the atmosphere
and the oceans [6]. The received images of natural phenomena are useful for further
development of the theory of fluid flows, and for the improvement of their numerical
simulation and laboratory modeling.

The natural length scale Λ = |d ln ρ(z)/dz|−1, the frequency N =
√

g/Λ, or the
buoyancy period Tb = 2π/N are applied to describe the continuous stratification of
incompressible liquids in environmental, industrial, or laboratory settings.

Natural oscillations of stratified media were noticed as early as the 18th century [2]
and their frequency was calculated a century later [7]. There are two types of continuous
stratification. Strong stratification, with N ∼ 1 s−1, is typical for laboratory conditions, and
the weak one with N ∼ 0.01 s−1 characterizes the ocean and planetary atmospheres, as well
as two types of uniform density fluids that are nearly homogeneous ( N → 0 ∼ 10−5 6= 0)
or actually homogeneous, with N ≡ 0. The condition of an actually uniform density
ρ ≡ 0 leads to the degeneration of the fundamental equations system and to a confusing of
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“motion” and “flow” concepts. The motion, which is considered to be a transformation of a
metric space into itself, and the flow, which is a physical process of matter, momentum, and
energy transfer, become mathematically undistinguishable in approximation of an actually
homogeneous liquid [8].

A standard classification of flows, including laminar (layered) and irregular (turbulent)
flows [9,10], is based on the characteristic structural features of flow patterns. Specific
forms of phenomena at a smaller scale allow distinguishing waves and vortices [9,10]. They
were visualized with a pen and brush beginning with the expressive drawings of Leonardo
da Vinci and other Renaissance artists [11], and then by optical instruments [12].

Numerous experiments [12] showed that at low velocities the symmetries of homoge-
neous fluid flows around obstacles depend on the shape of the body even in the case of a
spatially uniform flow.

The aesthetic aspect of the symmetric flow patterns influences positively the mathe-
matical description with the reduced dimension of the problem.

Correspondingly, the solutions of classical flow problems are significantly simplified
(in particular, for the flows around a sphere or a disk [9,10]). The natural flow pattern in
the bulk of a homogeneous liquid does not depend on the directions of the velocity vector
with respect to the gravity acceleration vector.

Surprisingly, even if the stratification is weak (i.e., the density variations on the body
size can hardly be registered by modern instruments), it is noticed both in the dynamics
and in the structure of the flow.

In a heterogeneous medium there are directions, with the gradients of a gravitational
force potential, g = −∇Φ, determining the free-fall acceleration g and the density gradient
∇ρ. The action of noncollinear gradients directly produces vorticity in the liquid flow [13].

The greatest gradients are placed near the surface of the submerged body, where
the action of various anisotropic mechanisms of energy and matter transfer is the most
pronounced. In a moving fluid the energy is transferred by macroscopic processes (by the
flows with the local velocity v and different waves with the group velocity cg), as well as
by microscopic processes (the slow atomic–molecular diffusion as well as fast processes of
direct transfer of internal energy into thin flow components [8]).

The calculations show that the stratification removes the degeneracy in the singular
components of the complete solution of the linearized set of fundamental equations (i.e.,
the multiplicity of the dispersion equation roots for homogeneous liquids [8]).

Simultaneously, it elucidates a number of hydrodynamic paradoxes [14].
The anisotropy of the stratified media affects the redistribution of energy between

the structural components in a thin layer near the surface of the submerged body. The
purpose of our study is to reveal the influence of a continuous stratification on the symmetry
breaking in the flow past a sphere—a perfectly symmetric body.

2. A Brief History of Flow around a Sphere Studies

There were a number of theoretical and practical reasons why scientists took interest
in studying the flow around a uniformly moving sphere.

For many centuries, balls made of various materials (from natural stones to metal
alloys) served as artillery shells and moveable parts in many transport mechanisms. In
the middle of the 18th century, with the development of universities, the problem of flow
around a sphere became the object of intensive theoretical and experimental research. The
studies were carried out inquisitively, as a consequence of scientific development logic, and
under government contracts in Russia [15], UK [16], Germany [17], and France [18]. The
result of this research work was the creation of the continuity equation for an incompressible
fluid and a compressible gas [19] and the formulation of the first closed system of equations
for ideal fluid flows [20]. Paradoxical results of their application to the drag on a sphere
problem were established very soon.

New energy transfer equations (for heat transfer [21]) contributed to the development
of Navier’s theory of fluid motion, incorporating shear stresses caused by viscous fric-
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tion [22]. G.G. Stokes re-derived Navier’s equations of a viscous fluid motion in terms of
the continuous medium conception [23].

Analyzing the damping of oscillations of a pendulum gravimeter, he calculated the
drag on a sphere in axial symmetric flow [24] in a linear approximation and created the
basis of subsequent experimental and theoretical studies.

In experiments, marking impurities in the form of small immiscible liquid drops, solid
particles or gas bubbles were introduced to discrete visualization of the flow pattern in
a homogeneous liquid [12]. Schlieren instruments, sensitive to variations in the density
gradient, were used for continuous visualization of the flow patterns in a stratified medium
in addition to separated markers [4,25]. The method was chosen based on the analysis of
the system of governing equations and in agreement with traditional approaches.

3. System of Stratified Fluid Mechanics Equations

The effects of compressibility and heat transfer are usually neglected in the case of
slow, compared to the velocity of sound, flows of low-viscosity liquids with high heat
capacity [10,26].

The equations of state for the Gibbs potential and the thermal diffusivity equation are
omitted from the general system of equations as well [8]. The unperturbed (initial) density
profile ρ0(z) replaces the equation of state (in a coordinate frame used further axis z is
vertical and opposed to the gravity acceleration g; the body moves along axis x).

The main physical quantities characterizing the state and flow of stratified media
are density (ρ(x, t)), momentum (p = ρv), or velocity (v = p/ρ), defined as the ratio
of invariant parameters, concentrations of the stratifying S = S0(z) + s, and visualizing
c components. The truncated system of equations for an incompressible stratified fluid
with the linearized equation of state includes the equations of continuity, momentum
transfer, diffusion for the stratifying component, and visualizing impurity, in the Boussinesq
approximation, and takes the following form [8,10,26]

div v = 0; ρ = ρ00

(
1− z

Λ
+ s + c

)
;

∂v
∂t

+ v(∇·v) = − 1
ρ00
∇P + ν∆v− (s + c)g; (1)

∂s
∂t

+ v·∇s = κS∆s +
vz

Λ
;

∂c
∂t

+ v·∇c = κC∆c.

Here, ν is the kinematic viscosity, κS and κc are stratifying agent and the impurity
diffusion coefficients, ρ00 is the density on a reference level, and s and c are the density
and impurity perturbations (contraction coefficients are included in the definition). The
boundary conditions on the surface of a fixed or a uniformly moving sphere with velocity
U are traditional. They are no-slip for velocity and impermeability for substances on the
surface of the sphere or the surface flux for a visualizing component jn = jc [8,27].

System (1) is characterized by a set of physical parameters, transforming into a number
of temporal and spatial scales. The density profile defines the scale of stratification Λ. The
ratio of a sphere diameter D to velocity U forms the kinematic time scale τD = D/U. The
attached internal wavelength is ň= UTb.

Kinetic coefficients determine a relatively large viscous wave scale LνN = 3
√

gν/N as
well as a fine scale Lνg = 3

√
ν2/g and transverse scales of the ligaments due to viscosity

δνN =
√
ν/N or diffusivity of the stratifying δκs

N =
√
κs/N and of the visualizing impurity

δκc
N =

√
κc/N.

The thicknesses of an additional group of ligaments depend directly on the body
velocity δνU = ν/U, δκs

U = κs/U, δκc
U = κc/U [8,27]. The dynamics of the fine components

is characterized by a small intrinsic time scale, τνU = δνU/U, reflecting a possible ability
of fast rearrangement of the flow pattern. A large number of small scales (for laboratory
conditions δνN ∼ δνω ∼ 1 mm, δκN ∼ 0.05 mm, δνU ∼0.1 mm for N ∼ 1 s−1, kinematic
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viscosity ν = 0.01 cm2/s, and a table salt diffusion coefficient κ ∼ 1.4·10−5 cm2/s) show
the complexity of the fine structures of stratified flows. It requires their investigation
methods and instruments with a high temporal and spatial resolution.

Ratios of scales define the traditional dimensionless combinations, which are the
Reynolds number, Re = D/δνU = UD/ν (and its analogues—Peclet number with diffusion
coefficients Pe = UD/κ); Froude number, Fr = (λ/2πD)2 = (U/ND)2, equaling the re-
ciprocal value of the energetic criterion; Richardson number, Ri = ω2

U/N2,ωU = (∂U/∂z),
which is widely used in the theory of stratified turbulent flows [28]; a large length scale
ratio, C = Λ/D; Schmidt number, Sc = ν/κs; and others not so frequently used.

The classification of flow components is based on a complete solution of the linearized
system (1), followed from implementations of the compatibility condition [29]. It includes
waves and supplementary ligaments.

Internal waves in the bulk of a CSF are visualized by schlieren instruments [4,25].
Registered variations in the magnitude and gradient of the optical refractive index illustrate
the displacements of fluid particles from equilibrium positions [30].

The schlieren images of the internal waves coincide with the calculations based on the
linear theory of the amplitude-phase properties of the attached waves. These waves are
created by a horizontally moving sphere and along an inclined trajectory [31–33].

Ligaments are described by the singular components of the complete solutions of
fundamental equations system [8,10,26] and its reduced version (1). They correspond to
thin high-gradient interfaces and fibers in the wake past an obstacle [34]. A special class
of fine flows (diffusion-induced flows (DiF)) is formed due to the inhomogeneity of the
molecular transfer of the stratifying component and interruption of the transfer on the
impermeable surface of a rigid body. We can observe them near a motionless body in a fluid
at rest [9,35], but when the motion starts, DiF transform into fine disturbances. These fine
disturbances in the vicinity of a moving body are drawn out by the shear flow as interfaces
and filaments in the wake. They are extended by the mean flow and slowly widened under
the action of molecular processes [36].

The formation of each structural component, which is the wake as a whole, vortices,
and internal waves, as well as the general and fine deformation of the density profile,
contributes to the drag force. A relatively small contribution of wave effects to a total drag
coefficient at large values of the Froude number increases with a decreasing sphere velocity,
reaching the maximum in the interval 0.7 < Fr < 1 or 4.4 < (λ/D) < 6.3 [31,37,38] and
decreases further when the body velocity grows. It follows from the theory of linear
internal waves. Moreover, the results agree with measurements [37–40]. Additional
simplifications, including the assumption of the absence of diffusion κS = 0 [41] or the
equality of dissipative coefficients of kinematic viscosity and diffusivity Sc = ν/κS = 1 [42],
are made when constructing the numerical solutions of a complex multiscale system (1).

The system (1) turns into the classical Navier–Stokes equations with the approximation
of an actually constant density, in which the diffusion equations and the term with the force
of gravity in the momentum transfer equation are excluded [10]. The patterns of pressure
fields, velocity, and vorticity components determine the laminar or turbulent nature of
the flow. The detailed calculations of the streamlines, pressure, and the vorticity fields in
the wake past the sphere in the mode of a toroidal rear vortex formation, as well as the
shape and position of the separation line, were carried out [43].The determination of the
position of singular points on the flow separation line and the classification of the shapes of
vortex elements in the wake supplement the calculations of forces acting on the sphere [44].
The calculated flow pattern past the sphere in the range 20 < Re < 400 gave the angular
position of the circular separation line of the wake with the vortex structure [45].

Fine visualization of the vortex structure of the axisymmetric dyed wake past the
sphere at low Reynolds numbers (the soluble dye was washed off the surface of a freely
falling body) helps register the attached rear toroidal vortex outer shape. Its axisymmetric
envelope gradually changes from a concave form into a conical and convex forms with an
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increasing velocity [46]. Comparison with the previous experiments shows that the rear
vortex exists at Re ∼ 10 and even lower values of velocity Re ≈ 3.5.

Difficulties in studying flows with low body velocities are associated with uncon-
trolled background fluid motions. They occur because of the temperature or atmospheric
pressure variations and mechanical movements of the basin excited by street traffic. For the
visualization of the liquid flow pattern around a sphere, a soluble dye as well as lumines-
cent compositions have been applied, which glow brightly in ultraviolet light, highlighting
hydrogen bubbles and small particles. These small particles allow the recording of the flow
velocity and flow patterns with 2D and 3D PIV tools.

Oil slicks, smoke, small particles, drops, and silk threads are used in wind tunnels
in approximation that the impurity is “passive”; i.e., it is completely carried by the flow.
However, this assumption should be confirmed in each specific case, taking into account the
difference in the molecular properties of the studied and visualizing media, the Brownian
motion of small particles, as well as the transfer and rotation of free solids in the shear flow.

At high velocities, when compressibility effects are evident, the schlieren instrument [3,4]
becomes the most effective tool for the visualization of a general flow pattern and singular
fine components such as shock waves, wake envelopes, sharp interfaces, and thin fibers
(ligaments), which transfer energy, momentum, and density perturbations from the body
boundary into shock waves and the wake [47,48].

4. Visualization of a Stratified Flow around a Sphere

The study of the stratification effects is usually carried out in a transparent basin
filled with a sodium chloride solution of variable concentration using the “continuous
displacement” method [49,50]. The linear relationship of background density and the
optical refractive index [51] allow the application of various optical imaging methods,
which accompany the techniques for homogeneous media [3,4,12]. The direct shadow and
various versions of the schlieren methods, both the classical ones with a slit diaphragm and
the Foucault knife [3,4,51,52] and technically more simple “synthetic” or moiré schlieren
methods, have been applied to the study of stratified flows [53,54]. Although classical
schlieren instruments have a higher sensitivity and spatial resolution than moiré tools, in
practice the latter have become more widespread due to the consistency with modern PC
image processing.

The high chemical activity of the NaCl solution was used for visualization in an
“electrolytic precipitation” method; i.e., electrochemical anodic oxidation of lead, tin, or
their alloys under the action of direct electric current [55,56]. Small particles of metal oxides
and chlorates with a size of about one micrometer, formed as a result of a complex of
chemical reactions, produce a white translucent suspension. The shape and location of
the electrodes determine the position of the source and the density of the suspension The
flow pattern resembles the tinting of flows with smoke or microdrops in wind tunnels and
soluble dyes in the aquatic environment [12].

In the process of studying the effect of stratification on the flow pattern around a
sphere, we mainly paid attention to the description of internal waves, which caused the
displacements of fluid particles from equilibrium positions [30,31] as well as high gradient
interfaces and fibrous. Fine flow components characterizing ligaments were not identified
by most of the traditional imaging methods [12], including moiré or “synthetic schlieren”
methods [53,54], nor suspended particles, because of the limited spatial and temporal
resolution (the impact of temporal resolution importance was illustrated in [12] as well).

5. Laboratory Experiment Technique

The studies of the flow patterns around a sphere towed in a CSF or homogeneous fluid
were carried out on the setups “Wave Fields Fine Structure Modeling (WFF) and “Labora-
tory Mobile Tank (LMT)”, as a part of the Unique Science Facility “Hydrophysical Complex
of the IPMech RAS”. This complex was used for the modeling of hydrodynamic processes
in the environment, their impact on underwater technical objects, as well as the distribution
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of impurities in the ocean and atmosphere (USF HPC IPMech) [57]. The setups differ in
the size of the working basins (0.7 × 0.25 × 0.7 m3 for WFF and 2.20 × 0.40 × 0.60 m3

for LMT) and a number of auxiliary mechanisms. A photo of the WFF setup is shown in
Figure 1; a detailed description of the LMT setup is given in [28]. The models are towed
by one movable or two thin threads (tight, stabilizing the trajectory, and a towing wire)
with constant and variable velocities. Schlieren images of the flows were produced by the
IAB-458 instrument (a field view is 23 cm).
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Figure 1. Experimental setup WFF USF of the “HPC IPMech RAS”.

The basin was filled with an aqueous solution of common salt of variable concentration
with a selected density profile by the continuous displacement method [49,50]. Flow
patterns were observed around a sphere made of Plexiglas with a diameter of D =1, 2, 3, 4,
5 cm, which was placed (U = 0) in the tank or towed at a constant velocity U. A tin belt or
segment was placed on some sphere surfaces (Figure 2). Formed particles from monoxide
and oxide of tin, tin dichloride, and tin acids with a size of about 1 µm under the action of a
direct electric current were transported by the flow. When the electric current increased, the
larger particles were formed and the wake containing them began to sink as a whole, which
was especially noticeable in a homogeneous liquid. The surface of the sphere was carefully
polished before each experiment and the traces of the metal oxidation were removed.
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The main stratification parameter, the buoyancy period Tb, was measured with an
optical instrument [58] or an electrical conductivity sensor [59] in a short internal wave
field around a density marker—a vertical wake past a rising gas bubble or a sinking crystal
(salt or sugar). The bubble floated (the crystal sank) vertically if the Reynolds number,
determined by its diameter D and velocity U, satisfied the condition Re = UD/ν < 201.
In these experiments, the buoyancy period was in the range 3.5 < Tb < 14 s.

A vertical slit was installed in the illumination part of the IAB-458, and a Foucault knife
or Maksutov’s thread was placed in the receiving part of the instrument to visualize the



Symmetry 2022, 14, 1278 7 of 24

fields of the horizontal component of the refractive index and density gradient, respectively.
A colored schlieren method (“natural rainbow” schlieren [52]) with a horizontal slit and a
linear grating in the receiving part visualized the vertical component of the refractive index
gradient. With auxiliary optics, the spatial resolution of the instrument was better than
0.01 cm.

6. Laboratory Studies of Stratified Flows

The center of mass of the stratified fluid layer is located below the geometric center
in the gravity field. It means that a non-equilibrium medium with the density profile
has supplies of available potential energy. The latent energy is converted into the kinetic
energy of the liquid flow in a thin layer of DiF near an inclined impermeable surface, on
which the molecular transfer of the stratifying component is interrupted. There is flow if
the gravity field is formed, even in the absence of additional external forcing. The nature
of such flows is the difference between atomic–molecular interactions in the bulk of a
liquid and near a solid body boundary. The mechanism of fine flow structure formation by
interruption of the diffusion flux is universal and exists in all types of non-uniform density
liquid and gas flows. Firstly, the theory of stationary DiF on an infinite inclined plane was
developed [9,35]. The profiles of salinity and velocity of this stationary flow are similar

and characterized by a common combination scale, δ = 4
√
νκS/N2 sin2 α, where α is the

inclination angle of the plane to the horizon. The solution diverges at small values of the
angle α of plane inclination.

The salinity and velocity perturbation profiles are characterized by different transverse
length scales for salinity and velocity perturbations in asymptotic solutions for small-time
approximation, presented firstly in [60] and in first terms of the exact solution expansions
constructed in [61].

In the local coordinate frame (ξ, ζ), axis ζ is normal to the plane; the asymptotic
solution in the small-time approximation for salinity perturbations is characterized by
the length scale δκS

N =
√
κS/N, where time t is normalized by the buoyancy period

τ = t/Tb [60],

s′ = −2
δ
κS
N
√
τ

Λ
ierfc

(
ζ

2δκS
N
√
τ

)
, (2)

The asymptotic expression for the velocity of the induced velocity is described by both
scales δκS

N δνN =
√
ν/N [60],

u(ζ) = N2 δs τ
3/2

ν−κs

[
i3erfc

(
ζ

2δν
√
τ

)
− i3erfc

(
ζ

2δs
√
τ

)]
sin 2α,

inerfc(z) =
∞∫
z

in−1erfc(x)dx, i0erfc(z) = 2√
π

∞∫
z

e−x2
dx, i−1erfc(z) = 2√

π
e−z2

.
(3)

The flow components with incommensurable length scale values show the total un-
steadiness of the phenomena.

The flow pattern consists of a sequence of counter flows with rapidly decaying am-
plitude. Due to the smallness of the transverse scales, it does not practically depend on
the shape of the body everywhere, except for its poles, which are the extreme points of the
obstacle in the vertical plane [62]. Thin DiF are not resolved by the mostly used methods of
a flow visualization.

The geometry of the problem and the consistency of the diffusion flux on the over-
hanging surface (an excess of salt accumulates on this surface) form a directed downward
flow.

The flow is directed upward on an open inclined surface where a salt deficit is observed.
Accordingly, the flow around the sphere is symmetric with respect to the vertical axis and
is antisymmetric with respect to the plane of the horizontal equator. Asymptotic and
numerical solutions of the system (1) for DiF on a sphere are presented in [63].
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Here, the sections of the sequence of emerging toroidal vortices, which form conver-
gent and divergent jets near the upper pole of the sphere, are shown in Figure 3. Amplitudes
of perturbations rapidly decay with distance from the body surface.
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Figure 3. Pattern of the DiF flow on a fixed sphere of a small diameter (d = 2 cm, Tb = 6.34 s):
(a,b)—streamlines from the analytical solution and numerical simulation t = 0.5 Tb; (c,d)—salinity
disturbance isolines and streamlines, t = Tb.

The results of the numerical and analytical solution of the system (1) agree quite well.
In the non-stationary pose, new circular cells appear subsequently near the pole of the
sphere with a buoyancy period. Each new cell shifts the entire system of perturbations
that have arisen earlier onto the sphere surface. The general shape of the flow structure
does not depend on the size of the sphere; however, the thickness of the cells and the flow
velocity increase with the growth of the body diameter.

The comparison of calculations of the flow pattern at short and long times (Figures 3 and 4)
shows that the number of cells, as well as the value of the maximum velocity, steadily
increases, and the rate of change gradually fades. However, the flow does not have a
stationary limit. The free symmetric body remains motionless on the horizon of neutral
buoyancy due to the geometry of the flow.
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its apex (Figure 6a). It causes self-motion of the asymmetric body [65,66].  

The fact that the height of the pressure deficit area even somewhat exceeds the height 
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salinity, and the horizontal component of its gradient are concentrated in thin layers ad-
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Figure 4. Central section of a DiF pattern on the upper half of the sphere (Tb = 6.34 s): (a,b)—D =

2, 4 cm, τ = t/Tb = 1662, 1075; there are salinity disturbances on the left side of the figures, and
streamlines on the right side (image scales are different).

In the schlieren photographs of the flow around a motionless sphere, the symmetrical
pattern contains a sequence of widening dark and light bands near the poles. The angle
of inclination of the bands to the horizon monotonically decreases with distance from the
source (Figure 5a,b). The shape of the flow near the poles of a sphere, which indicates a
noticeable change in the density gradient in a thin layer, is in good agreement with the
calculation [63]. A geometrically similar flow is located at the edge of a cell of thermocon-
centration convection over a localized (“point”) heat source in a CSF. It was interpreted as
“dissipative-gravitational waves” in [64].
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Figure 5. Schlieren pattern of DiF, Tb = 6 s: (a,b)—on a sphere D = 5 cm (Maksutov’s thread and
Foucault knife), and (c) on a wedge of length L = 10 cm and the base height h = 2 cm suspended on
the horizon of neutral buoyancy.

A general change in the density distribution influences the molecular diffusion in
the flow fluid near the inclined surface of an impermeable body. The intensification of
the density gradient in an almost resting liquid confirms the non-stationarity and spatial
inhomogeneity of the process of a flow formation. It transforms a weak mean gradient into
a stronger one in the thin layer. Numerical calculations of the DiF were carried out on the
basis of the system of Equation (1) near various bodies that are an inclined plate [62], a
sphere [63], or a horizontal wedge [65–67].

DiF transport the substance along the side faces of the wedge and creates a deficit
of mass ahead of the apex. The asymmetric distribution of pressure in the flow pattern
induced by diffusion on a motionless wedge includes the area of pressure deficit in front of
its apex (Figure 6a). It causes self-motion of the asymmetric body [65,66].
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Figure 6. Calculated DiF pattern near a fixed wedge (length L = 10 cm, shelf height h = 2 cm) in
CSF at rest, Tb = 6.3 s: (a,b)—disturbances of the pressure and the horizontal component of the
density gradient.

The fact that the height of the pressure deficit area even somewhat exceeds the height
of the body base, ensures the efficiency of its action. In this case, the variations in velocity,
salinity, and the horizontal component of its gradient are concentrated in thin layers
adjacent to the lateral surface of the wedge (Figure 6b).

In the experiment, the interfaces are weakly expressed ahead of the body apex and
are distinctly expressed at the edges of the base, as is shown in the schlieren image of the
flow in Figure 5c. The self-motion of a wedge is experimentally demonstrated in [65,67]; a
detailed calculation and schlieren visualization of the flow pattern is given in [66].

7. Rectangular Cross-Section of the Density Wake Past a Sphere at Low
Froude Number

As the sphere starts to move in the horizontal plane, the pattern of DiF as a whole and
its symmetry changes radically. To visualize the fine structure of the wake past the sphere
and its spatial shape we used sensitive schlieren methods and electrolytic precipitation.

Careful examination of the images in Figure 7 shows that the axisymmetric DiF near
the poles of the sphere is transformed into unsteady upstream internal waves that are
continuations of the attached waves past and above the sphere. Ligaments correspond to
extended double light/dark stripes adjoining the poles past the sphere in Figure 7a,c [8].
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Figure 7. Schlieren images of the flow around a sphere moving slowly from right to left in CSF:
(a,b)—Tb = 8.0 s, N = 0.785 s−1, D = 4 cm, U = 0.04; 0.06 cm/c, Fr = U2/N2D2 = 1.6 × 10−4,
Re = 16; 24, conventional and natural rainbow schlieren methods; (c)—Tb = 4.5 s, N = 1.4 s−1,
D = 5 cm, U = 0.08 cm/s, Re = 40, Fr = 1.3 × 10−4 (vertical slit—Foucault knife).

DiF are transformed into the inclined beams of non-stationary internal waves, which
are oriented in the direction of the sphere motion in front of the body. Light bands near
the upper and the lower poles ahead of the sphere in Figure 7a,c, outline the blocked fluid
moving together with the body. The blocked fluid is characterized with a more uniform
density profile than the initial one. The boundaries of the blocking zone are better expressed
in the color schlieren image of the flow in Figure 7b (“natural rainbow” method). Here they
are represented by an inclined blue strip, extending from the lower pole of the sphere and
pale from the upper pole, oriented in the direction of the body’s velocity; it is converging
with distance.

Contractions and expansions of the colored bands in a schlieren image of above the
sphere flow (Figure 7b) visualize the crests and troughs of the attached internal waves. On
the whole, according to linear theory, the calculations of the phase surfaces of the internal
wave shapes [30,31,68] are consistent with the visualization images, even at the smallest
values of the body velocity [69]. Here and below, the ligaments are presented by thin
interfaces separating the internal waves and density wake.

The images of the electrolytic precipitation suspension, shown in Figure 8, illustrate
the spatial geometry of the density wake past a slowly moving sphere (and small value of
the Froude number, respectively). Fine particles are formed on the transverse tin belt.
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Figure 8. Patterns of electrolytic precipitation suspension past a slowly moving sphere in CSF,
Tb = 4.5 s, N = 1.4 s−1, D = 5 cm, U =0.03 cm/s, Re = UD/ν = 15, Fr = 1.8 × 10−5; (a,b) top and
side view.

In the top view, the dense suspension is distributed evenly over the surface of the
sphere and the plane wake. In the side view, only the edges of the wake are colored. They
are in contact with the sphere poles. The sharpness of the separation lines on the sphere
surface indicates the planar geometry of the shells bounding the wake. They are formed
by converging flows, which sharpen DiF on the impermeable sphere surface. The general
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shape and the narrowness of the colored wake in the horizontal plane as well as the high
altitude in the vertical plane determine the selection of a rectangle for approximating the
cross-sectional shape of the density wake [69,70]. The maximum suspension concentration
is observed on the edges of the rectangular flow section.

The discrete symmetry of the cross-section shape of the wake with respect to the
horizontal and vertical planes, which passes through the motion line of the body center,
indicates the dominance of the buoyancy effects over inertial and nonlinear effects. Their
symmetry reflects the perfect continuous symmetry of the body. The initial density gradient
intensification in the vicinity of the body enhances the consequences of buoyancy effects in
the creeping flow mode. At low velocities of the sphere, the liquid mainly flows around an
obstacle along isopycnal (close to horizontal) lines.

Structural differences in the geometry of the flow components become more distinct
with an increasing sphere velocity [70]. In the schlieren flow pattern in Figure 9a, the
blocked fluid is visualized by dark and light spots in front of the body. They are bounded
by tilted rays of non-stationary internal waves extending from the poles of the sphere.
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Figure 9. Schlieren images of a stratified flow around a uniformly moving sphere at small Froude
numbers: (a) Tb = 12.0 s, N = 0.52 s−1, D = 4 cm, U = 0.43 cm/s, Re = 132, Fr = 0.04,
(b)Tb = 3.0 s, N = 2.09 s−1, D = 5 cm, U = 0.5 cm/s, Re = 250, Fr = 0.002.

Curvilinear bands extending from the separation points of sharp almost horizontal
interfaces on the rear part of the sphere represent attached internal waves. The fine
interfaces outline the density wake. The sharpness of the boundaries separating the
domains with different kinds of a flow demonstrates strong interaction between the fine
ligaments with more long internal waves [71] in different flow regimes past a sphere [69,72].

The three successive curved vertical lines in Figure 9a are deformed markers, which
create the arising gas bubbles [59]. The vertical line is the initial bubble wake deformed
by the shear flow with time. A profile with an almost uniform central part surrounded
by two inclined sections visualizes the constant velocity in the center of the wake inside
two wide shear layers. The third marker line directly adjacent to the surface of the body
illustrates the patterns of velocity distribution on the boundaries of the wake. Here, the
heights of the velocity shear layers and the thickness of the ligaments submerged in their
central parts differ in more than an order of magnitude, as in the nonstationary DiF
(Formulas (2) and (3)).

With a further increase in the velocity of the body, the length and amplitude of the
attached waves grow. A group of five attached waves is presented in Figure 9b. The
shapes of the color bands ahead and past a sphere reflect the difference in upstream and
downstream density profiles. A more homogeneous domain of a blocking fluid is bounded
by non-stationary waves. Behind the body, the ligaments forming the density wake en-
velopes are expressed. The linear theory for the uniform motion of the sphere satisfactorily
describes the phase surfaces of the attached waves, both along a horizontal [31,68] and an
inclined trajectory [32]. The selection of the position and the intensity of the model sources
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and sinks allows achieving satisfactory agreement between the numerical and measured
displacement amplitudes [32,68].

With an increase in the body velocity at Fr << 1, the length and amplitude of all types of
internal waves increase. It concerns non-stationary upstream waves, attached downstream,
and trapped waves inside a density wake with their own profiles of velocity and density.
The trapped waves inside the wake correspond to a set of tilted antisymmetric dark and
light bands past the body, limited by high-gradient diverging interfaces in Figure 10a.
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The curvilinear phase surfaces of the attached waves adjoin the wake boundaries
almost vertically. Their contour is distorted by the shear flow at the wake boundary, the
height of which noticeably exceeds the thickness of the interfaces.

A further increase in the body velocity enhances the generation of waves, sharpens
the gradients in the wake envelope, and activates the interaction between the various
components of the flow. At first the wake expands uniformly with distance from the body
and then contracts in accordance with the wave pattern (Figure 10b). The wake envelopes
become wavy with sharpened crests and flattened troughs.

The deformation of the density marker indicates that the flow velocity profile in
the wake changes from a stepped profile (in Figure 9a) to a profile of Poiseuille’s type
(in Figure 10b). At the same time, the retained sharpness of the envelopes maintains a
generally rectangular cross-sectional shape of the density wake. The shear flow at the top
of the wake expansion folds its high-gradient envelopes into pronounced flat vortices with
a horizontal axis (Figure 10b).

Although the thickness of the ligaments, which confine the wave field, is much smaller
than the length of waves, they limit the propagation of waves rather efficiently. The
sharpness of the boundary indicates the effectiveness of the interaction of the different
length-scale components of the flows. They are waves and ligaments consisting of a
complete solution of the system of fundamental equations [8,27,71].

The spatial structure of the flow in this range of parameters is illustrated by patterns of
electrolytic precipitation, shown in Figure 11. Plane convex separation lines on the surface
of the sphere outline the flatness of the upper horizontal “lids” of the density wake. Two
vertical convex separation lines, indicating the flatness of the lateral border of the density
wake, are also distinct.
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Figure 11. Electrolytic precipitation of a stratified flow past a uniformly moving sphere at small
Froude numbers: (a)Tb = 4.5 s, N = 1.4 s−1, D = 5 cm, U = 0.7 cm/s, Re = 350, Fr = 0.01;
(b) Tb = 5.0 s, N = 1.3 s−1, D = 5 cm, U = 0.76 cm/s, Re = 380, Fr = 0.013; (c) a homogeneous
fluid, N = 0, D = 5 cm, U = 0.70 cm/s, Re = 350.

As the sphere velocity increases, the horizontal planes of the wake boundary approach
each other, while the vertical ones diverge (Figure 10b). Here, the shape of the wake
cross-section is close to a squared one. Four extended edges are formed by contacting flat
upper horizontal and lateral envelopes of the wake. Their convex lines of intersection with
the surface of the sphere and the straightness of the extended edges allow us to consider
the shape of the density wake as a vertically compressed prism.

At the right boundary of the wake, the leading parts of the vertical “vortex columns”,
separated from the sidewalls of the density wake, are visible.

The electrolytic precipitation visualization of the spatial structure of the flow past a
uniformly moving sphere in a homogeneous fluid at close values of the Reynolds number
is shown for comparison in Figure 11c.

Here, the suspension carried by the flows from the transverse equatorial annular belt
is uniformly distributed over the surface of the sphere and forms an annular separation
line. In the vicinity of the separation line, the uniformity of the suspension is disturbed;
it is redistributed in the form of more densely colored line segments and empty intervals
between them. We have to study further whether the flow pattern indicates the formation of
a “grooved” shape of the separation line of the cylindrical density wake, or whether such an
impression is created by the play of light and shadows on the unevenly distributed density
of the suspension, and thus the cylindrical shell itself is smooth. The circular contraction
of the right edge of the suspension in the wake specifies the action of an axisymmetric
toroidal vortex behind the sphere, which was repeatedly observed in the visualization of
flows in experiments [12] and numerical simulations [44].

The prismatic wake in this flow regime is filled with pairs of “vertical vortex columns”
(Figure 12a). Vortices are cut from below and above by the ligaments, which are the
horizontal interfaces shown in the schlieren images (Figure 10). The flow in the wake has
a complex three-dimensional character: individual, brightly colored fibers and surfaces
with a complex shape and variable curvature, twisting into spirals, are distinguished in a
distribution pattern in the visualized suspension. The vortex columns with flattened inner
walls are separated by a faster narrow jet in the central part of the wake (see Figure 12b).

Successive frames of the flow pattern show that the entire vortex structure is stretched
in a longitudinal direction and slowly oscillates in a transverse direction (Figure 13). We
observe the proper structuralization of the suspension, which is initially uniformly dis-
tributed along the surface of the sphere. Here, dense threads are pronounced on weakly
colored curvilinear surfaces.
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Figure 12. Pattern of electrolytic precipitation suspension in “vertical vortex columns” in the wake
past a sphere (Tb = 4.5 s; N = 1.4 s−1; D = 5 cm) : (a) side view U = 0.7 cm/s, Re = 350; Fr = 0.01;
(b) top view U = 0.62 cm/s; Re = 310; Fr = 0.008.

Symmetry 2022, 14, x FOR PEER REVIEW 14 of 25 
 

 

   
(a) (b) (c) 

Figure 11. Electrolytic precipitation of a stratified flow past a uniformly moving sphere at small 

Froude numbers: (a)
-14.5 s, 1.4 s , 5cm, 0.7 cm/ s, Re 350, Fr 0.01;bT N D U= = = = = =  (b) 

-15.0 s, 1.3 s , 5 cm, 0.76 cm/ s, Re 380, Fr 0.013;bT N D U= = = = = =  (c) a homogeneous fluid, 

0, 5cm, 0.70 cm/ s, Re 350N D U= = = = . 

The prismatic wake in this flow regime is filled with pairs of “vertical vortex col-

umns” (Figure 12a). Vortices are cut from below and above by the ligaments, which are 

the horizontal interfaces shown in the schlieren images (Figure 10). The flow in the wake 

has a complex three-dimensional character: individual, brightly colored fibers and sur-

faces with a complex shape and variable curvature, twisting into spirals, are distinguished 

in a distribution pattern in the visualized suspension. The vortex columns with flattened 

inner walls are separated by a faster narrow jet in the central part of the wake (see Figure 

12b). 

  
(a) (b) 

Figure 12. Pattern of electrolytic precipitation suspension in “vertical vortex columns” in the wake 

past a sphere 
-1( 4.5 s; 1.4 s ; 5cm) :bT N D= = =  (a) side view 0.7 cm/ s,U =  Re 350;=

Fr 0.01;=  (b) top view 0.62cm/ s;U =  Re 310;=  Fr 0.008.=  

Successive frames of the flow pattern show that the entire vortex structure is 

stretched in a longitudinal direction and slowly oscillates in a transverse direction (Figure 

13). We observe the proper structuralization of the suspension, which is initially uni-

formly distributed along the surface of the sphere. Here, dense threads are pronounced 

on weakly colored curvilinear surfaces.  

 

Figure 13. Evolution of an electrolytic precipitation suspension pattern in the wake past a sphere in 

CSF (top view): 8.0 s,=bT -10.785 s ,=N  5 cm,=D  0.65 cm/ s,=U  Re 325;=  Fr 0.027;=

time interval between frames 1t = s. 

Figure 13. Evolution of an electrolytic precipitation suspension pattern in the wake past a sphere in
CSF (top view): Tb = 8.0 s, N = 0.785 s−1, D = 5 cm, U = 0.65 cm/s, Re = 325; Fr = 0.027; time
interval between frames ∆t = 1 s.

The flow pattern loses regularity with a further increase in the flow velocity. The
vertical separation line of the suspension from the surface of the sphere begins to elongate
and approaches the separation point of the edges from above, forming the characteristic
intersection of the dyed lines (Figure 14).
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Figure 14. The shape of the separation lines of the suspension from the sphere and the edges of the
wake in the “expanding rectangle” stage in transient regime: (a,b) Tb = 4.5; 9.0 s, N = 1.4; 0.7 s−1,
D = 5 cm, U =1.08; 1.96 cm/s, Re = 540; 980 Fr = 0.02; 0.32.

The structure of the vortices in the wake is reconstructed with an increase in the sphere
velocity and a decrease in the flow separation region height. In this case, a thin layer at the
upper and lower envelopes of the wake expansion areas is firstly twisted into a spiral, the
position of which is synchronized with the phase of the attached internal wave (crest in the
upper hemi-space and trough in the lower one in Figures 10b and 15a).
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Figure 15. Formation of a “vortex bubble” frozen in the field of attached internal waves by a
pair of vortices with a horizontal axis: (a) conventional schlieren image with Foucault knife:
Tb = 3.0 s; N = 2.09 s−1; D = 4 cm; U = 1.37 cm/s, Re = 750, Fr = U2/N2D2 = 0.03;
(b) electrolytic precipitation Tb = 9 s, N = 0.7 s−1; D = 5 cm; U = 1.38 cm/s, Re = 690, Fr = 0.15.

As the sphere velocity and Froude number increase, the vortex with a horizontal axis
thickens and captures an increasing part of the “vortex bubble” (Figure 15a). Pronounced
edges and individual lines emphasize the flatness of the wake boundaries. With distance,
the flow degenerates with the formation of elongated horizontal interfaces and fibers
throughout the volume of the wake. The inner structure and outer contour of the wake are
visualized by the suspension of electrical precipitation in Figure 15b.

The black-and-white replica of the color schlieren image (Figure 16) shows that after
the collapse of the “vortex bubble”, the surface of the wake remains wavy [72]. The flow
degenerates with the formation of elongated horizontal interfaces and filaments throughout
the volume of the wake.
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ifestation of fine structures. The resulting ligaments, which correspond to the fibers and 
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Figure 16. Black and white replica of the color schlieren image of the flow in the wake of the sphere:
Tb = 3.0 s, N = 2.09 s−1, D = 4 cm, U = 1.45 cm/s, Re = 780, Fr = 0.03.

The shapes of waves and vortices in the colored schlieren images differ significantly
from the traditional schlieren patterns with the Foucault knife (Figure 15). It allows
estimating the position of the high-gradient interfaces and the general deformation of the
density profile.

8. Cylindrical Shape of the Wake Past a Sphere at High Froude Number

A further increase in the flow velocity is accompanied by a qualitative change in the
flow structure. The inertial and nonlinear effects gradually become more pronounced and
dominate over the effects of stratification, and they even enhance with the formation of
high-gradient interfaces. The large length of the internal wave, which exceeds the diameter
of the sphere in Figure 17 at almost an order of magnitude, indicates a violation of the
spatial synchronism condition, which is necessary for the effective generation of waves.
The attached wave amplitude decreases rapidly with a further-increasing Froude number.
The weakening of the attached wave does not ensure the fulfillment of the condition of
their spatial synchronization with the wake boundary geometry, which is defined by the
positons of the vortices.
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Figure 17. Schlieren images of periodically separating axisymmetric vortices from the flow at the
rear part of the sphere in a weakly CSF: Tb = 12 s, N = 0.52 s−1, D = 4 cm, U = 2.1 cm/s, Re = 840,
Fr = 1.02; (a,b) t = 0; 4.5 s.

The length of the region of increased vorticity in the rear part of the sphere increases.
Having reached a critical size, the bottom vortex splits up and its outer part is thrown
into the wake in the form of a toroidal ring with a conical front part (Figure 17). Here, the
position of the inner vortex structures is determined predominantly by dynamic conditions.
Moving separated vortices covered by sharp envelopes emit internal waves similar to the
waves of a solid body. Bands, visualized in black-and-white images, of the internal waves
around the wake are tilted in the direction of the body motion (the geometry and dynamics
of a free laminar vortex ring motion in a CSF were studied in detail in [73]).

As the density gradient increases, so does the frequency of vortex shedding, the
intensity of short internal waves generated by the separate vortices, and the degree of
manifestation of fine structures. The resulting ligaments, which correspond to the fibers
and interfaces in the schlieren image (Figure 18), extend in the direction of body motion.
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Figure 18. Coalescence of separated vortices into density wake with irregular envelope:
Tb = 3.5 s, N = 1.8 s−1, D = 3 cm, U = 6.8 cm/s, Re = 2040, Fr = 1.6.

The difference between the attached internal waves generated by the body itself [68],
with the length proportional to its velocity λ = UTb, and the short non-stationary waves
emitted by vortices in the wake, are clearly expressed in the flow pattern in Figures 17 and 18.

With a further increase in velocity, the structure of the wake boundary changes and the
vortices are merged into a single wake with a continuous envelope (Figure 19). However,
the existence and the periodicity of the location of radiating vortices in the wake indicate
the regularity of the pattern of short internal waves.
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Figure 19. Irregular axisymmetric vortex wake past a sphere: Tb = 3 s, N = 2.09 s−1, D = 4 cm,
U = 8.7 cm/s, Re = 3488, Fr = 1.1, ∆t = 1.5 s.
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An oscillating wake is observed behind a uniformly moving sphere along with an
axisymmetric pulsating wake. In this regime, vortices periodically separate from a flow
directly past a sphere and propagate along a sloping trajectory at the separation region
(Figure 19). Perfect axial symmetry of the wake is lost. When the excess lateral momentum
is carried away by the radiated internal waves, the detached vortex rings return to the
center of the flow. In this case, as well as in previously considered flow patterns, the
ligaments, which are high-gradient envelopes, form a boundary separating the vortices
from the radiated waves. Here, the mechanical action of the ligaments is equivalent to the
surface of a solid body impact.

Consideration of the data presented in Figures 7–20 shows that two types of symme-
tries are distinguished in the wake flow past a uniformly moving sphere. A rectangular
wake with a discrete symmetry is observed at small Froude numbers (Fr << 1). A round
wake is formed at large Froude numbers (Fr > 1).
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Figure 20. Oscillating vortex wake behind a sphere of a small diameter in CSF: Tb = 3.5 s,
N = 1.8 s−1, D = 1 cm, U = 7.4 cm/s, Re = 742, Fr = 17.

The scheme of the flow past a sphere at intermediate Froude and Reynolds numbers is
close to a rectangular form. A transverse cross-sectional view of the density wake is shown
in Figure 21. The position of the long side depends on the value of the Froude number (or
velocity for a constant body diameter).
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Figure 21. Scheme of the vortex flow past a sphere, (a) rectangular density wake, (b) wake with
submerged vertical vortex columns, (c) wake with horizontal rotors.

At the smallest values of the sphere velocity, when buoyancy effects dominate, the
rectangle is elongated vertically. If the generation of vorticity in a shear flow at the vertical
boundaries of the wake is supplemented by the action of the baroclinic mechanism due to
the multidirectional pressure and density gradient vectors [13], it leads to the formation of
vortex pairs.

In this flow, the particles move mainly along isopycnal trajectories. The axes of the
downstream symmetric “vortex columns” are oriented vertically.

Flat inner boundaries of the vortices in Figures 12b and 13 visualize the central back jet
in the wake. With increasing velocity, inertial effects pull the upper and lower separation
lines to the center and push the side faces apart (a wake scheme with a square section is
shown in Figure 2a). Gradually, slides of the vertical envelopes are separated and twisted
in vertical vortex columns, as shown in Figure 2b.

Increased stratification on the horizontal wake “lids” hinders the formation of large
eddies with a horizontal axis that moves fluid to the horizons of neutral buoyancy. Devia-
tions in the position of the boundary from the horizontal axis practically stop the removal
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of the vorticity from the wake. The vorticity turns out to be “frozen” in the wake, as in case
of the particles of the suspension being transferred.

A gradual increase in velocity and Froude number leads to further contraction of the
separation region height and “twisting” into a thin vortex curl of high-gradient interfaces
at the horizontal boundaries of the wake. Vorticity in horizontal rotors is higher than in the
“vertical vortex columns”. Large vertical vortices are destroyed and replaced by intensive
horizontal rotors (Figure 21c). A more intense vortex motion leads to the destruction of
corners and edges of the wake and the formation of a toroidal bottom vortex behind the
sphere, as in a homogeneous liquid.

The dependence of the angular position of the horizontal separation lines on the
surface of a sphere with a diameter of 4 cm in a weakly CSF with a buoyancy period
of = 12 s on the Froude number is shown in Figure 22 (the angle is measured from the
horizontal position). Measurements of the separation angles of the wake envelopes in
the central vertical plane were made according to three types of schlieren visualization:
traditional (vertical slot—Foucault knife), slot-thread set at an angle of 45o, and color
schlieren method. On the decreasing and increasing parts of the curve, the data of the
independent measurements agree with each other.
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Figure 22. Separation angle of the density wake envelope on a sphere in a weakly CSF versus Froude
number (Tb = 12 s D = 4 cm): visualization: 1—slit-Foucault knife; 2—slit-thread; 3—“natural
rainbow” color schlieren method.

Particularly, the separation angle variations in the density wake on spheres of different
diameters in the side schlieren view are shown in Figures 23 and 24. At the lowest values
of the Froude number, the separation angle of the wake envelope from the sphere in the
vertical plane is close to the normal quantity, θ ∼90◦, and in the horizontal plane it does
not exceed ϕ < 15◦, which corresponds to the vertical rectangle for the cross-section of the
wake. As the body velocity increases, the separation angle in the vertical plane decreases,
and in the horizontal plane it increases, and exceeds the vertical one, θ ∼45◦, and ϕ = 67◦

at Fr = 0.03. The shape of the wake cross-section is a rectangle, elongated horizontally.
The experimental data in these figures are approximated by power-law functions of

the form θ = AR(Re)r and θ = AF(Fr)m. Exponents and coefficients in these formulas
depend on other parameters of the problem.

In the interval of the Froude number, when the height of the separation region de-
creases with the velocity increases, their values are distinguished and equal: r = −1.25,
m = −0.66 (Tb = 12c, D = 4 cm); r = −1.7, m = −077 (Tb = 3 c, D = 2 cm); r = −0.48,
m = −0.35 (Tb = 3 c, D = 4 cm).
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Figure 23. Separation angle of the density wake envelope on a sphere versus Reynolds number:
curves (1–3)—Tb = 3 s, D = 2, 3, 4 cm; (4)—Tb = 12 s, D = 4 cm.
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Figure 24. Separation angle of the density wake envelope on a sphere versus Froude number: curves
1 Tb = 3.5 s, D = 4 cm; 2—Tb = 4.5 s, D = 4 cm; 3—Tb = 12.0 s, D = 4 cm; 4—Tb = 3.0 s, D = 2 cm;
5—Tb = 4.1 s, D = 2 cm.

If the Froude number exceeds the critical value of the minimum wake height, the
exponents is m = 0.5 in the approximation of the separation angle on the Reynolds and
Froude numbers in all experiments performed at various values of the buoyancy period
and sphere diameter.

At the lowest values of the Froude number, the separation angle of the wake envelope
from the sphere in the vertical plane is close to normal, θ ∼90◦, and in the horizontal plane,
it does not exceed ϕ < 15◦, which corresponds to the vertical rectangle for the cross-section
of the wake. As the body velocity increases, the separation angle in the vertical plane
decreases; in the horizontal plane it increases, and exceeds the value in vertical plane
θ ∼45◦ and ϕ = 67◦ at Fr = 0.03. The shape of the wake cross-section is a rectangle, which
is elongated horizontally.

The given values of the separation angle of the wake from a sphere for different values
of the Froude and Reynolds numbers are consistent with the results [40] obtained for a
sphere with a diameter D = 6.36 cm/s.

The clarity of the shape is ensured by an increased concentration of the suspension on
the edges of the wake and the small thickness of its boundaries (horizontally and vertically
oriented high-gradient interfaces). The dependences of the boundary parameters and fine
geometry of the flow on the properties of the medium and the conditions of motion of the
body require a more detailed study.

At high body velocities, when the Froude number becomes greater than one, a cylin-
drical wake, filled with small-scale disturbances, is formed. The wake is separated from
the annular toroidal vortex in the rear part of the sphere (Figure 19).
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Having reached critical values, the vortex, contoured by high-gradient envelopes,
breaks off and drifts in the wake. It remains connected to the flow past a sphere by a
conical set of ligaments. Moving vortices radiate transient internal waves. Their rays,
which represent phase surfaces, are oriented to the body motion. The vortices are gradually
slowed down, deformed, and pulled out by the unsteady flow in the wake. The spiral
interfaces of the vortex are elongated; they form line structures that connect the remains of
the vortex rings into a single system.

9. Results and Discussion

The results of the first regular studies of the stratified fluid flows around 2D and
3D obstacles focused on visualizing the spatial structure of dispersive internal waves.
They have been summarized in monographs [30,74], which maintained their cognitive
value. An extensive series of experimental studies of the flow around a sphere uniformly
moving in a pool filled with a stratified fluid were independently carried out in several
countries: the USSR [34,68–72], the USA [75–78], France [79–82], and Great Britain [33,38].
In the experiments, flow patterns were visualized using high-resolution classical [3,4] and
modified schlieren methods [25], including the density gradient registration instruments,
modified for background continuous density distribution [34]; direct shadowgraph obser-
vations [75]; dyeing by common and fluorescent impurities; particle tracing (particle streak
photograph) [76–78]; and electrolytic precipitation [69,70].

The experiments have shown that at low values of the Froude number, when the
buoyancy effects dominate, the density wake has a prismatic shape. It is elongated vertically
at first, then its cross-section becomes square [69], and, finally, it becomes flattened under
the action of inertial effects at a range of Froude numbers, 0.03 < Fr < 0.09. The observed
discrete symmetry of the wake is consistently reproduced in independent experiments.

The flat boundaries of such a density wake are formed by ligaments, i.e., high-gradient
interfaces that arise in the flow in the vicinity of the sphere surface. The interfaces are
located inside a thicker shear layer of velocity. The height of the shear layer in a liquid
with a large Schmidt number (Sc = 700 for an aqueous solution of sodium chloride, which
is used in most experiments) is at least an order of magnitude greater than the ligaments
thickness. Similar ratios of heights were observed in an unsteady DiF on the impermeable
obstacle. The effects of amplification of the gradients at the wake boundaries have been
registered in [34].

Classical schlieren methods have the highest sensitivity and spatial resolution among
those listed above. These methods enable us to record disturbance patterns in the entire
range of flow parameters (from the slowest ones induced by diffusion on topography to
fast vortex flows) and to resolve all structural components in the studied flows. The low
sensitivity of the direct shadow and moiré methods does not let us visualize weak internal
waves and fine high-gradient interfaces, which was noted in [75]. The discrete nature of
a number of flow visualization methods, in particular, using tracing particles for velocity
measurement and the flow visualization (particle streak photograph) [78–80], does not
allow us to register thin interfaces and assess their effect on the flow structure.

As the Froude number increases, the sidewalls of a rectangular wake begin to split,
and form two and more vertical vortex columns [72] (lee-side eddies in the terminology
of [75]) in the downstream wake.

The joint action of the velocity shear and pressure perturbations in the field of intense
attached internal waves leads to the formation of “vortex bubbles” with a horizontal axis of
symmetry. The sets of complete solutions of the system of fundamental Equation (1) contain
functions that describe both periodic components—waves and vortices—as well as a large
number of ligaments that characterize the thin high-gradient interfaces and fibers [8,27].

As vorticity accumulates in the rear part of the flow past the body, the wake faces
become rounded and take a cylindrical shape. All the structural components, including
ligaments, take part in nonlinear interactions with each other, with waves and mean flow.
It provides a variety of available scenarios for the evolution of stratified flows.
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The classification of the sequence of the vortex structures in the transitional flow
regime was first presented in [75]. The pattern of the vortex structure near and far from
the obstacle has been described in great detail in subsequent experiments [81,82]. The
evolution of the fine structure of the density profiles downstream in the wake, revealed
by a high-resolution electrical conductivity sensor, enabled studies of the dynamics of
submerged vortices [83]. In a number of experiments, the pattern of internal waves [84]
and the global structure of the vortex and turbulent wake were elucidated [85,86].

Analytical [87], numerical [88–91], and experimental studies [41,42] of the internal
wave field and the generally round turbulent wake behind a rapidly moving sphere in a
CSF are being actively pursued using various approaches.

10. Conclusions

Fluid stratification, even if it is weak, significantly affects the structure, symmetry, and
dynamics of the flow past a uniformly towed sphere. At low values of the Froude number,
ligaments that are high-gradient interfaces enhance the effect of stratification. Horizontal
and vertical envelopes bound a narrow prismatic density wake past a slowly moving body.

With an increase in sphere velocity, the shape of the transverse cross-section of the
wake transforms from a vertically elongated rectangle into a square and then into a narrow
horizontally elongated rectangle. In a high wake, paired vertical vortex columns are
formed. They are enclosed between the horizontal interfaces and form envelopes of the
density wake.

Vortices with a horizontal axis, which are immersed in a horizontally stretched wake,
lead to a periodic increase in its vertical size. The position of the wake expansion and
compression regions is consistent with the phase pattern of the attached internal waves.

At large values of the Froude number, the accumulation of vorticity, accompanied by
the formation of a toroidal vortex in the rear part of the sphere, causes a rearrangement
of the discrete symmetry of the density wake into a continuous axisymmetric one. In
the phase of flow restructuring, various forms of vortex components, contoured by thin
high-gradient envelopes, are observed in the wake.
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