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Abstract: Free-space continuous-variable quantum key distribution based on atmospheric laser
communications is expected to play an important role in the global continuous-variable quantum key
distribution network. The practical homodyne detector model is applied in free-space continuous-
variable quantum key distribution which models the imperfect characteristics including the detection
efficiency and the electronic noise. In the conventional model, we must calibrate them simultaneously.
In the modified model, only one of the imperfections needs to be calibrated to simplify the calibration
process of the practical experiments, also known as one-time calibration. The feasibility of the
modified detector model against the fast-fading channel is proved. The results of the symmetry
operations are considered when presenting detailed security analysis. Some remarkable features of
the uniform fast-fading channel were found from the simulation results. The performances of the
conventional model and the modified model are similar but the modified model has the advantage of
achieving one-time calibration.

Keywords: continuous-variable quantum key distribution; fast-fading channel; practical homo-
dyne detector

1. Introduction

Quantum key distribution (QKD) [1] provides an effective way to withstand the threat
of quantum computing on today’s cryptosystems [2,3]. Based on the quantum mechanics
principles, QKD allows both legal users, normally called Alice and Bob, to generate a
secure key through an untrusted quantum channel. Due to development over the last
three decades, QKD can be divided into discrete-variable QKD based on single photon
detection, and continuous-variable QKD (CV-QKD) based on coherent detection [4–7].
Due to the simpler detection method, CV-QKD has higher compatibility with the existing
optical communication systems [8], and the transmission distance achieved recently can
support the requirement in metropolitan distances [9,10], which facilitates the large-scale
application of QKD [11–19].

Beyond the metropolitan distance, the question of how to connect two remote parties
with few repeaters is one of the key factors restricting the CV-QKD. The transmissivity
will decay exponentially with the distance in a ground-based fiber link, which limits the
secret key rate. However, if two remote parties on the ground are connected by a satellite,
the loss introduced by the channel may be far less than the ground-based fiber connection.
In addition, as satellites rapidly move around the Earth, the secret keys physically travel
between two locations, making it a reality to distribute quantum keys over long distances
and even across oceans [20–22]. Therefore, the study of free space CV-QKD is of great
practical significance [23].

Channel parameter estimation is an important part of CV-QKD protocol because it
enables both communication parties to evaluate the upper limit of leaked information [6,7].
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In free-space, the channel fading [24–26], whose transmissivity changes because of air
turbulence, makes the problem more complex [27–31]. The analysis of the channel fading is
a core problem of any free-space CV-QKD protocol that does not depend on fiber facilities,
especially the long-distance QKD implementations via a satellite [32–35]. In previous
studies, the analysis of the channel fading is carried out under the condition of the ideal
detector [24,26,36]. However, it is impossible to use the ideal detector in practical experi-
ments, and the imperfect characteristics [37] of the practical detector need to be considered
in the security analysis.

In this paper, we introduce two trusted detector models and the modified one is
applied to achieve one-time calibration. Next is the theory of the fast-fading channel. To
simplify this problem, we assume the fast-fading channel is uniform and with transmissivity
that follows the uniform probability distribution. Previous studies [38] have analyzed that
both the user and the eavesdropper suffer the channel fading simultaneously and their
channel parameters are given by averaging all the possibilities of the fading channel.
However, we will consider the worst-case scenario in which the transmissivity over the
uniform fast-fading channel will be completely controlled by the eavesdropper. Based
on this, we investigate practical CV-QKD with an imperfect detector over a uniform fast-
fading channel. Then, we present detailed security analysis and make some simulations to
compare the performance of the two trusted models over a uniform fast-fading channel in
free-space.

The paper is structured as follows: Section 2 describes the practical detector modeling
in free-space CV-QKD; Section 3 presents detailed security analysis through giving the
deduction for the secret key rate; Section 4 makes some simulations and discusses the
results, and in Section 5 we provide our conclusions.

2. Practical CV-QKD with Imperfect Detector against Uniform Fast-Fading Channels

This section will introduce the imperfections of the homodyne detector, so a trusted
model is needed to describe the practical detector. The conventional detector model
is presented in brief, while a modified detector model is proposed to achieve one-time
calibration. After analyzing the changing rate of the channel parameters between the two
parties in free-space, we investigate the practical CV-QKD with an imperfect detector over
a uniform fast-fading channel using two different models, separately.

2.1. Imperfections and Trusted Model of the Practical Homodyne Detector

From Figure 1, the imperfections of the homodyne detector mainly include detection
efficiency and electronic noise. The certain shortage of detection efficiency mainly comes
from three aspects. Firstly, the splitting ratio of the 3 dB coupler is not as accurate as
50:50. Furthermore, it is necessary to use a pair of PDs with symmetrical performance in
practical detectors, but it is very difficult to select electronic components with symmetrical
performance. Besides, the detection efficiency of each PD is not ideal, resulting in loss. The
noise leads to another imperfect characteristic of the practical detector, electronic noise. The
output contains a certain proportion of noise at the presence of four parts: current noise of
the amplifier, voltage noise of the amplifier, thermal noise of resistance and dark current
noise of PDs. Next, we will rely on these imperfect characteristics to model the practical
homodyne detector.

We have to establish the trusted models for the practical detector because the ideal
detector without imperfections in Figure 2a is impossible in practical experiments. Figure 2b
presents the conventional modeling of the detection efficiency and the electronic noise [39].
The extra deficiency can be represented using a BS in front of the ideal homodyne detector,
where its transmissivity η indicates the detection efficiency. The presence of the electronic
noise can be described as coupling a thermal noise vel into the ideal detector from another
input of the BS. Specifically, it is modeled as an EPR state with variance VN , in which one
mode is coupled into the system. Here VN = 1 + vel/(1− η).
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Figure 1. The basic structure of a homodyne detector. In a homodyne detector, the signal light and
local oscillator light are coupled by a coupler, then two outputs respectively go through a pair of
photodiodes (PDs) so that the information contained in quantum states is transferred to differential
current. The differential current then enters the electronic amplifier for further processing.

Figure 2. (a) represents the ideal detector without imperfections. (b) represents the conventional
model where the transmissivity of the beam splitter (BS) η describes the detection efficiency and an
EPR state with variance VN describes the electronic noise, in which one mode is coupled into the
system. (c) represents two modified detector models. One of them is modeled that the transmissivity
of the first BS ηd describes the detection efficiency while the transmissivity of the second BS ηe

describes the electronic noise. Another model represents a variation of the last one where the
transmissivity within the first BS ηe describes the electronic noise and the transmissivity within the
second BS ηd describes the detection efficiency.

As a premise, the security of CV-QKD protocols depends on the equivalence of the
prepare-and-measure (PM) model and the entanglement-based (EB) model. In practical
experiments, the PM model will use the shot-noise unit (SNU) to normalize the output. In
order to realize the equivalence between the two models, the normalized output of the PM
model has to be the same as the output of the EB model.

Considering the output of the corresponding PM model,

Xout = AXLO(
√

ηd x̂B +
√

1− ηd x̂v1) + Xele, (1)

where A represents the amplification within a practical homodyne detector, XLO describes
the variable of the local oscillator (LO), Xele describes a Gaussian variable and its variance
is Vele. x̂v1 has a variance of 1. The SNU is defined as uS = A2X2

LO. Therefore, the output
normalized by the SNU is given by

xout =
Xout√

uS
= (
√

ηd x̂B +
√

1− ηd x̂v1) +
Xele

AXLO
. (2)
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From the EB scheme in Figure 2b, the output of the conventional EB model is the
same as Equation (2). However, the trusted conventional practical detector model needs all
imperfections to be calibrated. For example, if only the detection efficiency is calibrated
without the electronic noise having been calibrated, the model will be invalid. This means
both sides of the communication still have to regard the practical detector as completely
untrustworthy even though the detection efficiency has been calibrated.

A modified detector model has been proposed to settle the issue. The purpose of
the modified detector model is to acheive one-time calibration and flexibly model the
practical detector according to its own situation (calibrating the electronic noise individually
or calibrating the detection efficiency individually). As shown in the first EB model in
Figure 2c, ηd describes the detection efficiency while ηe describes the electronic noise. The
output of the EB model can be obtained directly,

x̂hom =
√

ηe(
√

ηd x̂B +
√

1− ηd x̂v1) +
√

1− ηe x̂v2 , (3)

where both x̂v1 and x̂v2 have a variance of 1. In the modified detector model, a new SNU
which is not the same as the conventional detector model is defined as umodi f ied

S = A2X2
LO +

Vele [37,40–42], where Vele represents the variance of Xele, so the output normalized by the
new SNU is given by

xmodi f ied
out =

Xout√
umodi f ied

S

=
AXLO√

A2X2
LO + Vele

(
√

ηd x̂B +
√

1− ηd x̂v1) +
Xele√

A2X2
LO + Vele

. (4)

Here, Xele will be substituted using
√

Vele x̂v2 , and x̂v2 has a variance of 1. Then,

xmodi f ied
out =

AXLO√
A2X2

LO + Vele

(
√

ηd x̂B +
√

1− ηd x̂v1) +

√
Vele√

A2X2
LO + Vele

x̂v2 . (5)

Compare Equations (3) and (5), if we assume

ηe =
A2X2

LO
A2X2

LO + Vele
, (6)

the output of the PM model normalized by the new SNU can be the same as the output of
the modified EB model. That means if only the detection efficiency is calibrated without
the electronic noise having been calibrated, the modified detector model is still valid.

Furthermore, we would then also want to obtain the relationship of the conventional
model and the modified model. vel , which describes the electronic noise within the conven-
tional model, results after the normalization of Vele by us. Therefore, by dividing us on both
the numerator and the denominator in Equation (6),

ηe =
1

1 + vel
. (7)

This is the relationship between two parameters vel and ηe, both of which are used
to describe electronic noise in different models. Another case presented in Figure 2c is a
variation to describe the practical detector. The difference from the last one is the positions
of two beam splitters.

When the PM model only calibrates the detection efficiency, the modified model is
still valid. That means it can model the practical detector only by calibrating one of the
imperfect characteristics, also known as one-time calibration, instead of calibrating all the
imperfect characteristics at the same time as the conventional detector model. Therefore,
the modified model can greatly improve the flexibility of detector modeling. In practical
experiments, the second model in Figure 2c is more widely used because the detection
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efficiency is relatively stable while the noise is easily affected by temperature, time and so
on. In this paper, we will also adopt this model.

2.2. Practical CV-QKD against Fast-Fading Channels

In this work, we will study a fast-fading communication scheme to implement the
practical CV-QKD between two remote parties. There exists a direct communication
channel eavesdropped by eavesdroppers between communication users. In fixed-type
channels (e.g., fiber-optical links), the channel parameter transmissivity can be perfectly
aligned between Alice and Bob at each time instant. In free-space, however, such alignment
is not maintained and we need to consider a process of instantaneous transmissivity
wandering which comes from the atmospheric turbulence. Thus, changes caused by
atmospheric turbulence and other factors in the communication line of the two remote
parties can be modeled as a fading channel with a nature that is radically different from
the fixed-attenuation channel. An important criterion for evaluating channel simulations
is accuracy, which is usually evaluated by the statistical characteristics of the channel
parameters, given the randomness of the channel output. The fading channel parameters
will be affected under conditions of air turbulence. For example, the atmospheric visibility
and the size distribution of the scatting particles will influence the transmissivity while
the phase fluctuation will influence the excess noise. Then, the transmissivity T within
the channel between the communication sides is variable and follows the probability
distribution [24,43]. To simplify this problem, we will assume the most random scenario
where transmissivity follows a uniform probability distribution PT which has extreme
value Tmax and Tmin = Tmax − ∆T and the excess noise is a fixed value.

In free-space, fading channels can be divided into fast-fading channels and slow-fading
channels according to the changing rate of the channel transmissivity. For the slow-fading
channel, the eavesdroppers’s attack is slow, which means transmissivity can be almost
considered as a fixed value over a considerable distance. This permits the two parties to
perform the estimation of transmissivity to be used in the extraction of part of the key [36].
When atmospheric turbulence has a large influence, the transmissivity will change rapidly
and the honest users cannot estimate its instantaneous value. This kind of channel is the
so-called “fast-fading channel”. In atmospheric channels, fluctuations of the transmissivity
T can be the result of several effects. In the paper, we will choose the worst-case scenario
in which channel fading is absolutely determined by the eavesdropper. This means the
transmissivity T is determined by the eavesdropper individually.

Figure 3 presents the EB scheme of a practical CV-QKD against a fast-fading channel.
Alice first prepared two-mode squeezed vacuum (EPR) states with variance V, and sym-
metrizes her states. That means Alice preserves one of her modes and sends another mode
A through a fast-fading channel with the transmissivity T to Bob. Bob’s homodyne detects
the received mode which is measured randomly x or p quadrature, with outcome xB or
pB. Finally, communication users perform post-processing, data coordination, and private
key amplification. In a fast-fading channel, the excess noise ε can be described through Eve
distributing an EPR state with a thermal noise with a variance of VE ≥ 1, where one mode
E1 inputs the system via a BS whose transmissivity is T. The relationship between ε and VE
is VE = 1 + T ∗ ε/(1− T). Eve then receives and stores the mode E′1.
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Figure 3. Complete EB scheme of the practical homodyne detector model over a fast-fading channel.
Alice generates an EPR state and then heterodyne detects one of its modes, contributing to projecting
the other mode into a coherent state. Alice sends the coherent state to Bob. The fast-fading channel is
modeled as an EPR state with a variance of VE ≥ 1, where one mode E1 is coupled into the system
via a beam splitter with the transmissivity T. (a) represents the conventional detector model over a
fast-fading channel. (b) represents the modified detector model over a fast-fading channel.

3. Detailed Security Analysis

In general, the security analysis of the system includes giving the secret key rate
formula. The detailed deduction for the conventional model and the modified model over
a fast-fading channel will be presented here, respectively.

3.1. The Secret Key Rate of Conventional Detector Model against Fast-Fading Channels

The mutual information IAB between communication users is represented using Shan-
non entropy, and the mutual information SBE between Eve and Bob can be described using
von Neumann entropy whose upper limit can be determined by the Holevo bound χBE.
The key rate is given by

K = βIAB − SBE, (8)

where β is the reconciliation efficiency [44–46]. In the slow-fading channel, it is averaged
during the transmissivity’s distribution. In the fast-fading channel, however, the parties
consider the worst-case value. In particular, for a uniform distribution, this means to pick
the minimum value Tmin in the interval and the range of it is (0,1). Therefore, the second
part of Equation (8) can be still average S̃BE while the first part needs to choose lower
transmissivity Tmin, that is ITmin

AB . Then, Equation (8) can be rewritten as

K f ast = βITmin
AB − S̃BE. (9)

Here, S̃BE is determined by average Holevo bound χBE,

S̃BE =
∫

PTχBEdT. (10)

For the conventional detector model, χBE and IAB can be derived from the covariance
matrix γA1 A2B1B2 which describes the mode Alice sent through the fast-fading channel, and
the mode Bob received after the measurements. Here, IAB is given by the variance of Bob
VB2 = ηT(V + χtot) and the conditional variance VB2|A1

= ηT(1 + χtot),
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IAB = 0.5log2(VA1 /VA1|B2
) = 0.5log2((V + χtot)/(1 + χtot)) (11)

where χtot can described as χtot = 1/T − 1 + ε + ((1− η + VE)/η)/T. Here, χBE can be
shown as

χBE = S(ρA1B1)− S(ρ
xB2
A1F′1F2

) =
2

∑
i=1

G(
λi − 1

2
)−

5

∑
j=3

G(
λj − 1

2
), (12)

S(ρ) is the von Neumann entropy and λ1∼2 and λ3∼5 represent the symplectic eigenvalues
of γA1B1 , and γ

xB2
A1F′1F2

.
Then, the calculation of the above two matrices is presented. First, γA1 A2 is given by

γA1 A2 =

(
V · I2

√
V2 − 1 · σz√

V2 − 1 · σz V · I2

)
, (13)

here I2 =

(
1 0
0 1

)
, σz =

(
1 0
0 −1

)
, V represents the variance of Alice’s EPR states. The

free-space fast-fading channel is modeled as an EPR state with a thermal noise variance
VE where one mode inputs the system via a BS whose transmissivity is T. The covariance
matrix γE1E2 which describes thermal noise is given by

γE1E2 =

 VE · I2

√
V2

E − 1 · σz√
V2

E − 1 · σz VE · I2

. (14)

The matrix YBS
T which describes the operation of BS can be derived as: YBS

T =
I2
⊗

YT
⊗

I2. YT which represents the transformation of the BS is given by

YT =

( √
T · I2

√
1− T · I2

−
√

1− T · I2
√

T · I2

)
. (15)

Then, after A2 goes through the fast-fading channal with transmissivity T, the covari-
ance matrix γA1B1 which describes the states A1 and B1 can be obtained from γA1B1E′1E2

γA1B1 = γA1B1E′1E2
(1 : 4, 1 : 4). (16)

Additionally, γA1B1E′1E2
is given by

γA1B1E′1E2
= YBS

T ∗ (γA1 A2

⊗
γE1E2) ∗ (Y

BS
T )T . (17)

Then, after B1 goes through the detector, covariance matrix γA1B2F′1F2
can be derived as

γA1B2F′1F2
= YBS

η ∗ (γA1B1

⊗
γF1F2) ∗ (Y

BS
η )T , (18)

where

γF1F2 =

 VN · I2

√
V2

N − 1 · σz√
V2

N − 1 · σz VN · I2

 (19)
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and YBS
η = I2

⊗
Yη
⊗

I2,

Yη =

( √
η · I2

√
1− η · I2

−
√

1− η · I2
√

η · I2

)
. (20)

Then

γA1B2 = γA1B2F′1F2
(1 : 4, 1 : 4). (21)

We can use this to calculate IAB and the first part of χBE is calculated using
Equation (16). The second part of χBE represents the remaining von Neumann entropy
when B2 has been homodyne detected with outcome xB2 . It can be derived from γ

xB2
A1F′1F2

,

γ
xB2
A1F′1F2

= γA1F′1F2
− σA1F′1F2B2

(XγB2 X)MP(σA1F′1F2B2
)T , (22)

where X =

(
1 0
0 0

)
, MP represents the inverse. γA1F′1F2

, σA1F′1F2B2
and γB2 can be derived

from γA1F′1F2B2
,

γA1F′1F2B2
=

(
γA1F′1F2

σA1F′1F2B2

(σA1F′1F2B2
)T γB2

)
. (23)

Besides, γA1F′1F2B2
can be obtained by rearranging the elements in γA1B2F′1F2

shown in
Equation (18). Therefore, the key rate over a fast-fading channel can be determined using
Equation (9).

3.2. The Secret Key Rate of Modified Detector Model against Fast-Fading Channels

As shown in Figure 3, the Alice side and quantum channel in (b) are the same as (a), so
that γA1B1 can be obtained from previous equations. The Equation (24) will be rewritten as

IAB = 0.5log2(VA1 /VA1|B′3) = 0.5log2((V + χ′tot)/(1 + χ′tot)) (24)

where χ′tot can then be described as χ′tot = 1/T− 1 + ε + ((1− ηd + VE)/ηd)/T. In terms
of the second part of Equation (9), The electronic noise will not be calibrated within the PM
model so that the mode D is unknown to us [40]. Equation (12) will be rewritten as

χBE = S(ρA1CB′3
)− S(ρ

xB′3
A1C) =

3

∑
i=1

G(
λi − 1

2
)−

5

∑
j=4

G(
λj − 1

2
), (25)

with S(ρ) being the von Neumann entropy and λ1∼3 and λ4∼5 being the symplectic eigen-

values of γA1CB′3
, and γ

xB′3
A1C. The deduction will be presented as follows.

After B1 gets past the first BS, the covariance matrix γA1B′2
is given by

γA1B′2
= γA1B′2D(1 : 4, 1 : 4), (26)

γA1B′2D = YBS
ηe ∗ (γA1B1

⊗
I2) ∗ (YBS

ηe )T , (27)

where YBS
ηe = I2

⊗
Yηe ,
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Yηe =

( √
ηe · I2

√
1− ηe · I2

−
√

1− ηe · I2
√

ηe · I2

)
. (28)

After mode B′2 passes through the second BS, the covariance matrix γA1B′3C is given by

γA1B′3C = YBS
ηd
∗ (γA1B′2

⊗
I2) ∗ (YBS

ηd
)T , (29)

where YBS
ηd

= I2
⊗

Yηd ,

Yηd =

( √
ηd · I2

√
1− ηd · I2

−
√

1− ηd · I2
√

ηd · I2

)
. (30)

γA1CB′3
can be obtained by rearranging the elements in γA1B′3C. Then we can use it to

calculate IAB and the first part of χBE. The second part of χBE represents the remaining
von Neumann entropy when B′3 has been homodyne detected with outcome xB′3

. It can be

derived from γ
xB′3
A1C,

γ
xB′3
A1C = γA1C − σA1CB′3

(XγB′3
X)MP(σA1CB′3

)T , (31)

where γA1C, σA1CB′3
and γB′3

can be derived from γA1CB′3
,

γA1CB′3
=

(
γA1C σA1CB′3

(σA1CB′3
)T γB′3

)
. (32)

Then we will calculate the key rate accordingly.

4. Simulation Results and Discussion

In this part, the performances of the conventional detector and the modified detector
against the uniform fast-fading channel with different channel parameters will be presented,
respectively. Then, the simulations of the maximal tolerable excess noise of the two models
are presented to make a more complete analysis. Besides this, we try to find the best
modulation variance(VA = V − 1) of Alice over the uniform fast-fading channel. It is
worth mentioning that the transmissivity will become smaller and smaller in the practical
system with the increase in distance, so that Tmax is considered as x coordinate variable in
the simulation.

As shown in Figure 4, we compare the performance of the two detector models over
the fading channels. The ideal situation in Figure 4a indicates that the key rate over the
fast-fading attack is slightly lower than the slow-fading attack in a small scale of attenuation.
Even the detector with the ideal efficiency over a fast-fading channel demonstrates a better
secret key rate than the practical detector with imperfect efficiency over a slow-fading
channel. However, the high secret key rate within the modeled detector is achieved with
losses of about 4 dB against a fast-fading attack, where the rate starts to rapidly decrease and
will fall to a very low value when suffering the attenuation of 5 dB. In the practical situation
in Figure 4b, the attenuation point that the secret key rate begins to decrease sharply will
move left to 3 dB for the modeled detector. In both the ideal case and the practical case, the
secret key rate decreases smoothly, not sharply, against a slow-fading channel, hinting at the
different effects on both sides of the communication between the fast-fading channel and
the slow-fading channel. Besides, within the simulations, the performance of the modified
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model is almost similar to that of the conventional model. In other words, the conventional
one is slightly better than the modified one in the small attenuation.

Figure 4. The comparison of the secret key rate versus Tmax over a fast-fading channel (solid line)
and a slow-fading channel (dashed line). Simulation parameters are shown as: the channel excess
noise ε = 0.005, ∆T = 0.2. We set η = 0.6 and vel =

1
9 for the conventional detector model (blue

line) while ηd = 0.6 and ηe = 0.9 for the modified detector model (red line). We also present the
performance of the detector with the ideal detection efficiency ηd = 1 (solid black line). (a) presents
the ideal situation where the initial EPR state with a variance V = 2 and the reconciliation efficiency
β = 1. (b) presents the practical situation where the initial EPR state with a variance V = 4 and the
reconciliation efficiency β = 0.96.

Figure 5 presents the influence of the fast-fading channel parameter ∆T and the secret
key rate is simulated in two different situations where ∆T = 0.3 and ∆T = 0.4, respectively.
With the increase in ∆T, the secret key rate is smaller and the rate in the fast-fading channel
will start decreasing rapidly earlier. This is because the system will suffer more losses with
the increase in ∆T for Tmin = Tmax − ∆T which means the effect of the fast-fading is more
strong. Therefore, we can conclude that the main difference in performance over the two
kinds of fading channels is that the fast-fading channel will contribute to a sharper and
earlier decrease, with the increase in ∆T (when Tmax is fixed).

Figure 5. The comparison of the secret key rate over the fast-fading channel (solid line) and the
slow-fading channel (dashed line) for different ∆T. Simulation parameters are shown as: the channel
excess noise ε = 0.005, the initial EPR state with a variance V = 4, the reconciliation efficiency
β = 0.96, η = 0.6 and vel =

1
9 for the conventional detector model (blue line) while ηd = 0.6 and

ηe = 0.9 for the modified detector model (red line). We also present the performance of the detector
with the ideal detection efficiency ηd = 1 (solid black line). (a) presents the case under ∆T = 0.3.
(b) presents the case under ∆T = 0.4.
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Figure 6 presents the maximal tolerable excess noise in a fast-fading channel. As
can be seen, when the transmission attention is less than 2 dB, the detector with the ideal
efficiency tolerates less excess noises than the practical detector while as the transmission
attention increases, the detector with the ideal efficiency can resist more excess noises
than others. Besides, the modified detector model can tolerate similar excess noises to the
conventional one.

Figure 6. The maximal tolerable excess noise (SNU) versus Tmax for a fast-fading channel. Simulation
parameters are: the initial EPR state with a variance V = 4, ∆T = 0.2 and reconciliation efficiency
β = 0.96. η = 0.6 and vel = 1

9 for the conventional detector model (solid blue line), ηd = 0.6 and ηe = 0.9
for the modified detector model (solid red line), detector with the ideal detection efficiency ηd = 1
(solid black line).

Figure 7 concerns the influence of the modulation variance over a fast-fading channel.
The secret key rate will first increase and then decrease with the increase in modulation
variance. The results also suggest the best modulation variance for Tmax = 0.35 is lowest
while the best modulation variance for Tmax = 0.45 is highest (the best modulation variance
is the value which maximizes the key rate). This means the best modulation variance will
increase with the increase in Tmax.

Figure 7. The secret key rate versus the modulation variance (VA = V − 1) are presented for different
∆T. Simulation parameters are shown as: the channel excess noise ε = 0.005, ∆T = 0.1 and the
reconciliation efficiency β = 0.96. η = 0.6 and vel =

1
9 for the conventional detector model (blue line),

ηd = 0.6 and ηe = 0.9 for the modified detector model (red line).We first provide simulation results
with three different transmissivities, Tmax = 0.45 (solid line), Tmax = 0.4 (dotted line), Tmax = 0.35
(dashed line) over a fast−fading channel.
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Figure 8 presents the secret key rate at the best modulation variance versus transmis-
sion attenuation Tmax in the ideal situation (β = 1). The best modulation variances for
each transmission attenuation are different. We can compare it with Figure 4a and then
conclude that the secret key rate is slightly better after using the best modulation variance.
Furthermore, the attenuation point where the secret key rate begins to decrease sharply
will move right to 5 dB for the modeled detector.

Figure 8. The secret key rate at the best modulation variance for each transmission attenuation. Sim-
ulation parameters are shown as: the channel excess noise ε = 0.005, ∆T = 0.2 and the reconciliation
efficiency β = 1. η = 0.6 and vel =

1
9 for the conventional detector model (blue line), ηd = 0.6 and

ηe = 0.9 for the modified detector model (red line), ηd = 1 and ηe = 0.9 for the detector with the ideal
efficiency (black line).

5. Conclusions

This paper mainly investigates a practical CV-QKD with an imperfect detector over
a uniform fast-fading channel in free-space. The research focuses on considering the
imperfect characteristics of the detector in free-space CV-QKD, which leads to the need for
trusted detector modeling: the conventional model and the modified model. Within the
conventional detector model, a BS with transmissivity η describes the detection efficiency
and an EPR state with variance VN describes electronic noise. Within the modified detector
model, two BS with transmissivities ηe and ηd describe the electronic noise and the detection
efficiency, respectively. This model can achieve one-time calibration which means we can
model the practical detector according its own situation. Then, the actions of the fast-fading
channel on quantum states are analyzed briefly where Bob does not obtain the transient
value of the channel parameter T, but can know its probability distribution. The secret
key rate of the conventional model and the modified model over a fast-fading channel is
derived for security analysis, and some simulations and results are presented.

From the comparison, the secret key rate of the practical detector will drop sharply
in advance against a uniform fast-fading channel. The key rate and the point where it
starts to decrease rapidly might be affected by some channel parameters and detector
parameters such as ∆T, the detection efficiency and so on. Besides, we have found that the
performances of two trusted models of the practical detector over the fast-fading channel
are similar. More precisely, the conventional detector model is slightly better than the
modified detector model in a short distance. This means that the modified model can
model the practical detector according to its own situation (only calibrating detection
efficiency or only calibrating electronic noise) without much reduction in performance.
Such a model is helpful in simplifying the calibration of practical experiments.

As we have discussed in this paper, a CV-QKD with an imperfect detector over a
uniform fast-fading channel performs differently from a slow-fading channel because of the
air turbulence in free-space. The imperfections will greatly affect the results of the CV-QKD
against uniform fast-fading channels and these imperfections can also be considered to
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verified in practical free-space experiments. Besides, the analysis of the practical detector
against uniform fast-fading channels can be applied to other QKD schemes in the future.
Better performances might be obtained using other QKD schemes. Considering the practical
CV-QKD with the imperfect detector over a fast-fading channel with other probability
distributions could also be of interest in future works.
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