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Abstract

:

Each traceable graph must be a block-chain; however, a block-chain is not necessarily traceable in general. Whether a given graph is a block-chain or not can be easily verified by a polynomial algorithm. It occurs to us that forbidden subgraph conditions for a block-chain are traceable. In this article, we characterize all pairs of disconnected forbidden subgraphs for the traceability of block-chains, so as to completely solve pairs of forbidden subgraphs for the traceability of block-chains (including disconnected and connected).
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1. Introduction


The Hamiltonicity of graphs is a very important and far-reaching research topic in structural graph theory. The origin and development of this problem is closely related to the famous Four-Color Conjecture. Therefore, it has attracted the attention of many experts and scholars at home and abroad. The traceability of graphs is also closely related to the research of Hamiltonicity in structural graph theory. In terms of algorithmic complexity, it is NP-complete to determine whether a graph is traceable.



In the paper, we only discuss the finite simple graphs. The undefined terminology and notations can be found in Bondy and Murty [1].



Let   G = ( V ( G ) , E ( G ) )   be a connected graph. We denote the size, order, connectivity, independence number, and component number of G by   e ( G ) , n ( G ) , κ ( G ) , α ( G )  , and   ω ( G )  , respectively. Let u be a vertex of G. The set of vertices that are the neighbors of u in the graph G can be denoted by    N G   ( u )   . Let S be a subset of   V ( G )  (or   E ( G )  ). We denote the induced subgraph of G by   G [ S ]  . Moreover, we use   G − S   to denote the subgraph   G [ V ( G ) \ S ]  , respectively. For a positive integer l, we define    V l   ( G )  =  { v ∈ V  ( G )  |  d G   ( v )  = l }   .



If a graph includes a Hamilton cycle, then it is said to be to be Hamiltonian, and if it includes a Hamilton path, then it is said to be traceable. Sufficient conditions for the traceability of graphs mainly include the following two categories: one is described from the perspective of parameters, among which the independence number, degree sum, minimum degree, and neighborhood union are commonly used; the other is forbidden certain subgraphs from the perspective of structural graph theory.



Let H be a given graph. If G does not include induced copies of H, then a graph of G is called H-free, and H is said to be a forbidden subgraph of G. For a class of graphs  H , if G is H-free for each   H ∈ H  , then the graph G is  H -free. It should be mentioned that each   H 1  -free graph is also   H 2  -free if   H 1   is an induced subgraph of   H 2  .



As always,   K n   is used to denote the complete graph of order n, and   K  m , n    is used to denote the complete bipartite graph such that partition sets are of size m and n. As a result, a vertex is denoted by   K 1  , a triangle is denoted by   K 3  , and a star is denoted by   K  1 , r    (moreover, the   K  1 , 3    is said to be a claw). Let    K  2 , t    ( u ,  u ′  )    be a   K  2 , t    satisfying   u ,  u ′   , being the nonadjacent vertices of degree t. Let    K  2 , t  ′   ( u ,  u ′  ,  u  ″   )    be the graph acquired from a    K  2 , t    ( u ,  u ′  )    by adding a new vertex   u  ″    that is adjacent to   u ′   only. Let   S ( m , l )   be the graph acquired from a    K  2 , m    ( u ,  u ′  )    and a    K  2 , l  ′   ( w ,  w ′  ,  w  ″   )    by identifying u with w and   w  ″    with   u ′   (see Figure 1).



Here are some graphs that will be used later (see Figure 2):




	
  P i  , the path having i vertices (it should be noted that    P 1  =  K 1    and    P 2  =  K 2   );



	
  Z i  , a graph acquired by identifying an end-vertex of a   P  i + 1    with a vertex of a   K 3  ;



	
  B  i , j   , a graph acquired by identifying an end-vertex of a   P  i + 1    and   P  j + 1    with the two vertices of a   K 3  , respectively;



	
  N  i , j , k   , a graph acquired by identifying an end-vertex of a    P  i + 1   ,  P  j + 1    , and   P  k + 1    with the three vertices of a   K 3  , respectively;



	
   T  i , j , k    ( v )   , a graph acquired by identifying an end-vertex of three paths    P  i + 1   ,  P  j + 1    , and   P  k + 1    with one vertex v, respectively; moreover, when there is no scope for confusion, we use the notation   T  i , j , k    to denote    T  i , j , k    ( v )   ;



	
  L i  , a graph acquired by identifying an end-vertex of a   P 2   with a vertex of a   K i  .








A graph is an empty graph (no edge in the graph), if it is   P 2  -free. A graph is a clique if it is   2  K 1   -free. It is not too difficult to check that the graph is traceable. For fear of this trivial case, we just consider that our forbidden subgraphs have at least three vertices throughout the whole article.



Bedrossian [2] characterized all pairs   { R , S }   of connected forbidden subgraphs for Hamiltonicity. Chen et al. [3] considered pairs of forbidden subgraphs that force Hamiltonicity in a graph of high connectivity. Xiong et al. [4] considered pairs of forbidden subgraphs for the edge-connectivity of a connected graph. The most representative result of a traceable graph obtained by adding the forbidden subgraph condition is the conclusion about pairs of forbidden subgraphs [5].



Faudree and Gould [5] extended Bedrossian’s result and characterized all the pairs   { R , S }   of connected subgraphs for traceability.



Theorem 1

([5]). Let R and S be connected graphs such that   R , S ≠  P 3   , and let G be a connected graph. Then, G with   { R , S }  -free indicates G is traceable if and only if (up to symmetry)   R =  K  1 , 3     and S is an induced subgraph of   N  1 , 1 , 1   .





With more and more in-depth research on forbidden subgraphs, most studies focus on connected forbidden subgraphs, while the research on disconnected forbidden subgraphs is very few and just started. The first people who studied disconnected forbidden subgraphs were Li and Vrána [6]. They come up with the disconnected forbidden subgraphs and characterized all pairs of disconnected forbidden subgraphs for Hamiltonicity.



Theorem 2

([6]). Let S be a graph with   | V ( S ) | ≥ 3  . Then, every two-connected S-free graph is Hamiltonian if and only if S is   P 3   or   3  K 1   .





Theorem 3

([6]). Let R and S be graphs of order at least three other than   P 3   and   3  K 1   . Then, there exists an integer   n 0   satisfying every two-connected   { R , S }  -free graph of order at least   n 0   that is Hamiltonian, if and only if one of the following is true (up to symmetry):




	
  R =  K  1 , 3     and S is an induced subgraph of    P 6  ,  Z 3  ,  N  0 , 1 , 2   ,  N  1 , 1 , 1   ,  K 1  ⋃  Z 2  ,  K 2  ∪  Z 1   , or    K 3  ∪  P 4   ;



	
  R =  K  1 , k     with   k ≥ 4   and S is an induced subgraph of   2  K 1  ∪  K 2   ;



	
  R = k  K 1    with   k ≥ 4   and S is an induced subgraph of   L l   with   l ≥ 3  , or   2  K 1  ∪  K  l ′     with    l ′  ≥ 2  .










So far, more and more scholars have begun to study pairs of disconnected forbidden subgraphs and many results have been obtained. Xiong et al. [7] considered the pairs of disconnected forbidden subgraphs for a two-factor connected graph. In [8], Du, Li and Xiong extended the result made by Faudree and Gould [5] and characterized all pairs of disconnected forbidden subgraphs for traceability.



Theorem 4

([8]). Let S be a graph with   | V ( S ) | ≥ 3  . Then, every connected S-free graph is traceable if and only if S is   P 3   or   3  K 1   .





Theorem 5

([8]). Let R and S be graphs of order at least three other than   P 3   and   3  K 1   . Then, there exists an integer   n 0   satisfying every connected   { R , S }  -free graph of order at least   n 0   where is traceable, if and only if one of the following is true (up to symmetry):




	
  R =  K  1 , 3     and S is an induced subgraph of    N  1 , 1 , 1   ,  K 1  ∪  Z 1   , or   2  K 1  ∪  K 3   ;



	
  R =  K  1 , k     with   k ≥ 4   and S is an induced subgraph of   2  K 1  ∪  K 2   ;



	
  R = k  K 1    with   k ≥ 4   and S is an induced subgraph of   L l   with   l ≥ 3  , or   2  K 1  ∪  K  l ′     with    l ′  ≥ 2  .










Let G be a graph. If it does not have separating vertices and is connected, then G is called nonseparable. We define a maximal nonseparable subgraph (  P 1  , or   P 2  , or two-connected) of G as a block of G. We use end-block to denote the block that includes exactly one cut vertex of G. If a graph has connectivity 1 and has exactly two end-blocks or is nonseparable, then it is called a block-chain. We should pay attention that each traceable graph must be a block-chain; however, a block-chain is not necessarily traceable in general. Whether a given graph is a block-chain or not can be easily verified by a polynomial algorithm. Many graphs employed in the “only if” part of the proof of Theorem 1 are not block-chains (and are therefore trivially non-traceable). It occurs to us that forbidden subgraph conditions for a block-chain are traceable. In [9], Li, Broersma, and Zhang characterized all pairs of connected graphs R and S other than   P 3  , ensuring that every   { R , S }  -free block-chain is traceable.



Theorem 6

([9]). The only connected graph S satisfying a block-chain with S-free indicates it is traceable   P 3  .





Theorem 7

([9]). Let R and S be connected graphs such that R,   S ≠  P 3   . Then, a block-chain with   { R , S }  -free indicates it is traceable if and only if (up to symmetry)   R =  K  1 , 3     and S is an induced subgraph of   N  1 , 1 , 3   , or   R =  K  1 , 4     and   S =  P 4   .





It is natural that we consider pairs of disconnected forbidden subgraphs for the traceability of block-chains.



We define the Ramsey number   r ( k , l )   as the smallest integer satisfying that each graph of order   r ( k , l )   includes either a clique of k vertices or an independent set of l vertices [10].



In [11], Lei et al. characterized all pairs of disconnected forbidden subgraphs excepting a claw for the traceability of block-chains.



Theorem 8

([11]). Let S be a graph with   | V ( S ) | ≥ 3  . Then, every S-free block-chain of order at least   r ( 10 , 4 )   is traceable if and only if S is   P 3   or   4  K 1   .





Theorem 9

([11]). Let R and S be graphs of order at least three other than   P 3  ,   4  K 1   , and   K  1 , 3   . Then, there exists an integer    n 0  = m a x  { r  ( 10 , 4 )  , r  ( 3 k + 5 , k + 2 )  , r  ( 2 l − 3 , k )  + k − 2 , r  ( 2 k +  l ′  − 2 , k )  }    satisfying every   { R , S }  -free block-chain of order at least   n 0   being traceable, if and only if one of the following is true (up to symmetry):




	
  R =  K  1 , 4     and S is an induced subgraph of    P 4  ,  P 3  ∪  K 1   , or   3  K 1  ∪  K 2   ;



	
  R =  K  1 , k     with   k ≥ 5   and S is an induced subgraph of   3  K 1  ∪  K 2   ;



	
  R = k  K 1    with   k ≥ 5   and S is an induced subgraph of   L l   with   l ≥ 3  , or   3  K 1  ∪  K  l ′     with    l ′  ≥ 2  .










Clearly, Lei et al. [11] did not characterize all pairs of disconnected forbidden subgraphs for the traceability of block-chains. The authors did not consider the case where one of the forbidden subgraphs in pairs of forbidden subgraphs is a claw. Li et al. [9] characterized all pairs of connected forbidden subgraphs for the traceability of block-chains. They did not consider disconnected forbidden subgraphs for the traceability of block-chains. In this paper, we will characterize all pairs of disconnected forbidden subgraphs for the traceability of block-chains, so as to completely solve pairs of forbidden subgraphs for the traceability of block-chains (including disconnected and connected).



In the following sections, Section 1 is devoted to the main results and discussions in this paper, Section 2 is devoted to the conclusions, and gives possible avenues for future work, Appendix A.1 is devoted to the preliminaries for the proof of Theorems 10–12, Appendix A.2 is devoted to the proofs of Theorem 10, and Appendix A.3 is devoted to the proofs of Theorem 11.




2. Results and Discussions


In this paper, we will characterize all pairs of disconnected forbidden subgraphs for the traceability of block-chains.



We construct families of block-chains   G 0   that are not traceable.   G 0   is a family of graphs H obtained from six complete graphs   B i   for   i ∈ { 1 , … , 6 }   with   V  (  B 1  )  ∩ V  (  B 2  )  =  {  v 1  }   ,   V  (  B 2  )  ∩ V  (  B 3  )  =  {  v 2  }   ,   V  (  B 2  )  ∩ V  (  B 4  )  =  {  v 3  }   ,   V  (  B 3  )  ∩ V  (  B 5  )  =  {  v 4  }   ,   V  (  B 4  )  ∩ V  (  B 5  )  =  {  v 5  }   ,   V  (  B 5  )  ∩ V  (  B 6  )  =  {  v 6  }   , and   | V (  B j  ) | ≥ 2   for   j ∈ { 1 , 6 }  ,   | V (  B k  ) | ≥ 3   for   k ∈ { 2 , 3 , 4 }  ,   | V (  B 5  ) | = 3  . We also construct families of graph   F 0   such that   L  (  F 0  )  =  G 0   ; see Figure 3 (where the edge that is possibly zero is shown as a dotted line).



We will characterize all pairs of disconnected   { R , S }   of graphs such that there is an integer   n 0   satisfying every disconnected   { R , S }  -free block-chain of order at least   n 0   being traceable by the following theorems.



Theorem 10.

Let G be a   K  1 , 3   -free block-chain. Then:




	(1) 

	
If G is also    P 6  ∪  K 1   -free, then G is traceable;




	(2) 

	
If G is also    Z 2  ∪ 2  K 1   -free and   n ( G ) ≥ 183  , then G is traceable;




	(3) 

	
If G is also    Z 3  ∪  K 1   -free and   n ( G ) ≥ 32  , then G is traceable;




	(4) 

	
If G is also    K 3  ∪  P 4  ∪  K 1   -free and   n ( G ) ≥ 3482  , then G is traceable;




	(5) 

	
If G is also    N  1 , 1 , 1   ∪  K 2   -free, then G is traceable;




	(6) 

	
If G is also    N  1 , 1 , 2   ∪  K 1   -free, then either G is traceable or G is isomorphic to a member of   G 0  .











See Appendix A.2 for the proof of Theorem 10.



Corollary 1.

If G is a   {  K  1 , 3   ,  B  1 , 2   ∪  K 1  }  -free block-chain, then G is traceable.





Proof of Corollary 1.

By contradiction, suppose that G is a   {  K  1 , 3   ,  B  1 , 2   ∪  K 1  }  -free non-traceable block-chain. Note that G is    B  1 , 2   ∪  K 1   -free, then G must be    N  1 , 1 , 2   ∪  K 1   -free. By Theorem 10 (6), the closure   c l ( G )   of G is isomorphic to a member of   G 0  . Note that   B i   is a clique in   c l ( G )  ; possibly,   G [ V  (  B i  )  ]   is not a clique. However,   G [ V  (  B i  )  ]   must be connected. Moreover, if   | V (  B i  ) | ≥ 3  , then   G [ V  (  B i  )  ]   must be two-connected.



Then, for    {  v 2  ,  v 4  }  ∈ V  (  B 3  )    (see Figure 3), there exists a shortest path joining   v 2   and   v 4   in   G [ V  (  B 3  )  ]  . The length of a shortest such path is called the distance of   G [ V  (  B 3  )  ]   between   v 2   and   v 4   and denoted    d  G [ V  (  B 3  )  ]    (  v 2  ,  v 4  )   . We shall distinguish the following cases to prove Corollary 1.



Case 1   d  G [ V  (  B 3  )  ]    (  v 2  ,  v 4  )  = 1  .



Note that   | V (  B 3  ) | ≥ 3  . Then, there is at least one vertex    x 1  ∈ V  (  B 3  )    with    N  G [ V  (  B 3  )  ]    (  x 1  )  ∩  {  v 2  ,  v 4  }  ≠ ∅  . Since G is   K  1 , 3   -free,   G [  {  v 2  ,  v 4  ,  x 1  }  ]   is a clique. By the definition of   F 0  , there exist two vertices    {  x 2  ,  x 3  }  ⊆ V  (  B 1  ∪  B 2  )    such that    v 2   x 2   x 3    is a path of G. Then,   G  [  {  x 1  ,  v 2  ,  v 4  ,  v 6  ,  x 2  ,  x 3  }  ]  ≅  B  1 , 2    . There exists a vertex    x 4  ∈ V  (  B 4  )    with    N G   (  x 4  )  ∩ V  ( G  [  {  x 1  ,  v 2  ,  v 4  ,  v 6  ,  x 2  ,  x 3  }  ]  )  = ∅  . Then,   G  [  {  x 1  ,  v 2  ,  v 4  ,  v 6  ,  x 2  ,  x 3  ,  x 4  }  ]  ≅  B  1 , 2   ∪  K 1   , a contradiction.



Case 2   d  G [ V  (  B 3  )  ]    (  v 2  ,  v 4  )  > 1  .



There exists at least two vertices    {  y 1  ,  y 2  }  ⊆ V  (  B 3  )    such that    v 4   y 1   y 2    is a path of   G [ V  (  B 3  )  ]  .There exists a vertex    y 3  ∈ V  (  B 6  )    with    v 6   y 3  ∈ E  ( G )   . Then,   G  [  {  v 4  ,  v 5  ,  v 6  ,  y 1  ,  y 2  ,  y 3  }  ]  ≅  B  1 , 2    . There exists a vertex    y 4  ∈ V  (  B 1  )    with    N G   (  y 4  )  ∩ V  ( G  [  {  v 4  ,  v 5  ,  v 6  ,  y 1  ,  y 2  ,  y 3  }  ]  )  = ∅  . Then,   G  [  {  v 4  ,  v 5  ,  v 6  ,  y 1  ,  y 2  ,  y 3  ,  y 4  }  ]  ≅  B  1 , 2   ∪  K 1   , a contradiction.



These contradictions show that Corollary 1 holds. □





Theorem 11.

Let G be a   K  1 , 3   -free block-chain. Then, if G is also   S ∪  P 4   -free for   S ∈ {  Z 1  ,  P 4  }   and   n ( G ) ≥ 212  , then G is traceable.





See Appendix A.3 for the proof of Theorem 11.



Ultimately, we may propose our main result as below.



Theorem 12.

Let R and S be graphs of order at least three other than   P 3   and   4  K 1   . Then, there is an integer   n 0   such that every   { R , S }  -free block-chain of order at least   n 0   is traceable, if and only if one of the following is true (up to symmetry):




	
  R =  K  1 , 3     and S is an induced subgraph of    N  1 , 1 , 3   ,  P 6  ∪  K 1  ,  Z 2  ∪ 2  K 1  ,     Z 3  ∪  K 1  ,  K 3  ∪  P 4  ∪  K 1  ,  Z 1  ∪  P 4  ,  P 4  ∪  P 4  ,  N  1 , 1 , 1   ∪  K 2   , or    B  1 , 2   ∪  K 1   ;



	
  R =  K  1 , 4     and S is an induced subgraph of    P 4  ,  P 3  ∪  K 1    or   3  K 1  ∪  K 2   ;



	
  R =  K  1 , k     with   k ≥ 5   and S is an induced subgraph of   3  K 1  ∪  K 2   ;



	
  R = k  K 1    with   k ≥ 5   and S is an induced subgraph of   L l   with   l ≥ 3  , or   3  K 1  ∪  K  l ′     with    l ′  ≥ 2  .










Proof of Theorem 12.

By Theorem 1 and Theorems 9–11, the sufficiency is proven. Then, we only need to prove the necessity.



Firstly, some families of block-chains    G i  , i = 1 , … , 6  , which are not traceable (see Figure 4), are constructed.



Let R and S be graphs of order at least three other than   P 3   and   4  K 1   , such that there exists an integer   n 0   such that every connected   { R , S }  -free block-chain of order at least   n 0   is traceable. Then, all graphs in    G i  , i = 1 , … , 6  , of order large enough, contain either R or S as an induced subgraph. By Theorem 9, it suffices to consider that either R or S is   K  1 , 3   . We can assume without loss of generality that   R =  K  1 , 3    . Note that all graphs in    G 1  ,  G 2  ,  G 3  ,  G 4  ,  G 5  ,  G 6    are   K  1 , 3   -free. Thus, each of them contains S being an induced subgraph. Since all graphs in   G 1   are   5  K 1   -free, S is also   5  K 1   -free, i.e.,   α ( S ) ≤ 4  . This indicates that   ω ( S ) ≤ 4  . If   ω ( S ) = 1  , i.e., S is connected, then, by Theorem 7, S is an induced subgraph of   N  1 , 1 , 3   . Therefore, we assume that   ω ( S ) > 1  , i.e., S is disconnected. Note that S is an induced subgraph of all graphs in   G 2  , and S is also an induced subgraph of all graphs in   G 3  . Then, if there exists one component of S such that it contains a cycle, then the cycle is triangle. If every component of S does not contain a triangle, then S is a forest. Since G is   K  1 , 3   -free, every component of S is a path. Note that all graphs in   G 4   are    K 3  ∪  K 3   -free. Therefore, if there exists one component of S such that it contains a triangle, say   H i   for   1 ≤ i ≤ 4  , then every component of   S −  H i    is a path. Suppose that   ω ( S ) = 2  , say,    H 1  ,  H 2    are the two components of S. Suppose first that   H 1   and   H 2   are paths of G. Observe that all graphs in   G 5   are   P 7  -free. Then,   H 1   is an induced subgraph of   P 6  . If    H 1  =  K 1   , then noting that all graphs in   G 5   are    K 1  ∪  P 7   -free, we have that   H 2   is an induced subgraph of   P 6  ; if    H 1  =  K 2   , then observing that all graphs in   G 5   are    K 2  ∪  P 5   -free, we have that   H 2   is an induced subgraph of   P 4  ; if    H 1  =  P 3   , then observing that all graphs in   G 5   are    P 3  ∪  P 5   -free, we have that   H 2   is an induced subgraph of   P 4  ; if    H 1  =  P 4   ; then observing that all graphs in   G 5   are    P 4  ∪  P 5   -free, we have that   H 2   is an induced subgraph of   P 4  ; if    H 1  =  P 5   ; then observing that all graphs in   G 5   are    P 5  ∪  K 2   -free, we have that   H 2   is an induced subgraph of   K 1  ; if    H 1  =  P 6   , then observing that all graphs in   G 5   are    P 6  ∪  K 2   -free, we have that   H 2   is an induced subgraph of   K 1  . Furthermore, note that    P 5  ∪  K 1    is an induced subgraph of    P 6  ∪  K 1    and    P 4  ∪  P 3    is an induced subgraph of    P 4  ∪  P 4   . Thus, S is an induced subgraph of    P 6  ∪  K 1    or    P 4  ∪  P 4   . Suppose now that   H 1   contains a triangle and   H 2   is a path of G. Then,   H 1   is an induced subgraph of    K 3  ,  Z i  ,  B  i , j   ,  N  i , j , k    . If   H 1   is an induced subgraph of   N  i , j , k   , then, by   α ( S ) ≤ 4  ,   H 2   is   K 1   or   K 2  . Note that all graphs in   G 1   are   {  N  1 , 1 , 2   ∪  K 1  ,  N  1 , 1 , 1   ∪  P 3  }  -free. Thus, S is an induced subgraph of    N  1 , 1 , 1   ∪  K 2   . If   H 1   is an induced subgraph of   B  i , j   , then, by   α ( S ) ≤ 4  ,   H 2   is   K 1   or   K 2  . All graphs in   G 5   are   {  B  1 , 2   ∪  K 2  }  -free, and all graphs in   G 6   are   {  B  2 , 2   ∪  K 1  }  -free. Thus, S is an induced subgraph of    B  1 , 2   ∪  K 1   . If   H 1   is an induced subgraph of   Z i  , then noting that all graphs in   G 5   are   {  Z 3  ∪  K 2  ,  Z 2  ∪  K 2  ,  Z 1  ∪  P 5  }  -free, also note that    Z 2  ∪  K 1    is an induced subgraph of    Z 3  ∪  K 1   . Thus, S is an induced subgraph of    Z 3  ∪  K 1    or    Z 1  ∪  P 4   . If   H 1   is   K 3  , then note that all graphs in   G 5   are    K 3  ∪  P 5   -free. Thus,   H 2   is an induced subgraph of    K 3  ∪  P 4   . Suppose that   ω ( S ) = 3  , say    H 1  ,  H 2   , and   H 3   are three components of S. By   ω ( S ) ≤ 4  , up to symmetry,   H 1   and   H 2   are complete and   ω ( S ) ≤ 2  . This implies that   H 3   is either an induced subgraph of   Z 2   or an induced subgraph of   P 6  . Note that all graphs in   G 5   are   {  Z 2  ∪  K 1  ∪  K 2  ,  Z 1  ∪  K 2  ∪  K 2  ,  K 3  ∪  P 5  ∪  K 1  }  -free, and also observe that    K 3  ∪  P 4    is an induced subgraph of    K 3  ∪  P 4  ∪  K 1   . Thus, S is an induced subgraph of    Z 2  ∪ 2  K 1    or    K 3  ∪  P 4  ∪  K 1   . Suppose that   ω ( S ) = 4  . Then, every component of S is complete and of order at most three. Note that all graphs in   G 5   are    K 3  ∪ 2  K 2  ∪  K 1   -free; also note that    K 3  ∪  K 2  ∪ 2  K 1    is an induced subgraph of    K 3  ∪  P 4  ∪  K 1   . We conclude that S is an induced subgraph of    K 3  ∪  P 4  ∪  K 1   . This completes the proof of the necessity. □





Concluding remark: In this paper, we characterized all pairs   { R , S }   of graphs (not necessary connected) such that there exists an integer   n 0   such that every connected   { R , S }  -free graph of order at least   n 0   is traceable.




3. Conclusions


In 2013, Li, Broersma, and Zhang [9] characterized all the pairs of connected forbidden subgraphs for the traceability of block-chains. We characterized all pairs of disconnected forbidden subgraphs for the traceability of block-chains, so as to completely solve pairs of forbidden subgraphs for the traceability of block-chains (including disconnected and connected). This further reveals the profound connotation of graph traceability and the Hamiltonicity property.



In the future, we can consider the triples’ disconnected forbidden subgraphs for traceability and Hamiltonicity. Forbidden subgraphs are closely related to many path and cycle properties of graphs, which have attracted the attention of many graph theory experts. Many meaningful research results have been obtained, and many problems worth further study have been left. The study of disconnected forbidden subgraphs is just beginning, and the properties of many graphs are related to disconnected forbidden subgraphs. In terms of disconnected forbidden subgraphs and pancyclicity, the disconnected forbidden subgraphs and Hamiltonian-connected onescan be further studied. With the application of disconnected forbidden subgraphs, people can also study the color, matching, factor, and other problems of the graph. The research prospect of disconnected forbidden subgraphs is very broad, and there are still many problems to break through.
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Appendix A


Appendix A.1. Preliminaries


Some preliminary notations and theorems preparing for the proofs of Theorems 12 will be introduced in this section.



Let G be a given graph. To reduce the repetition rate, the definition of the line graph of G (denoted by   L ( G )  ), the closure of a claw-free graph G (denoted by cl  ( G )  ) and closed claw-free graph G can refer to [12]. The following theorem is significant when we deal with the traceability of claw-free graphs.



Theorem A1

(Ryjáček [12]). Let G be a claw-free graph. Then




	
cl  ( G )   is uniquely determined;



	
cl  ( G )   is claw-free;



	
cl  ( G )   is the line graph of a triangle-free graph.










Theorem A2

(Brandt, Favaron and Ryjáček [13]). G is traceable if and only if cl  ( G )   is traceable.





Following [14], if for each graph in a class  H , its closure is also in  H , then the class  H  of graphs is called stable.



Theorem A3.

(Brousek, Ryjáček and Favaron [14]) Let S be a connected claw-free closed graph of order at least 3. If   S ∈  {  K 3  }  ∪  {  Z i  : i > 0 }  ∪  {  N  i , j , k   : i , j , k > 0 }   , then the class of   {  K  1 , 3   , S }  -free graphs is stable.





Theorem A4

([6]). Let S be a disconnected claw-free closed graph. Then the class of   {  K  1 , 3   , S }  -free graphs is stable, if and only if for every component C of S, the class of   {  K  1 , 3   , C }  -free graphs is stable.





By Theorems A3 and A4, the class of   {  K  1 , 3   ,  P 6  ∪  K 1  }  ,   {  K  1 , 3   ,  Z 2  ∪ 2  K 1  } ,    {  K  1 , 3   ,  Z 3  ∪  K 1  }  ,   {  K  1 , 3   ,  K 3  ∪  P 4  ∪  K 1  }   and   {  K  1 , 3   ,  N  1 , 1 , 1   ∪  K 2  }  -free graphs are stable.



For a closed claw-free graph G, let    L  − 1    ( G )    be a   K 3  -free graph satisfying G is its line graph. Clearly G is S-free if and only if    L  − 1    ( G )    contains no (not necessary induced) copies of    L  − 1    ( S )   .



Theorem A5

([15]). Every   K 3  -free graph of order n has at most    n 2  / 4   edges.





Theorem A6

(Wang and Xiong [16]). Every 2-connected   {  K  1 , 3   ,  N  1 , 1 , 5   }  -free graph is traceable.





Theorem A7

(Wang and Xiong [17]). Let G be a 2-connected graph with circumference   c ( G )  . Then if   c ( G ) ≤ 5  , then G has a spanning trail that starts from any given vertex.





In 1972, Chvátal and Erdos [18] also gave the condition for Hamiltonicity and traceability by   α ( G )   and   κ ( G )  .



Theorem A8

([18]). Let G be a graph on at least three vertices with stability number   α ( G )   and connectivity   κ ( G )  .




	
If   α ( G ) ≤ κ ( G ) − 1  , then G is Hamilton-connected;



	
If   α ( G ) ≤ κ ( G )  , then G is Hamiltonian;



	
If   α ( G ) ≤ κ ( G ) + 1  , then G is traceable.










Lemma A1.

Let G be a block-chain. Each block of G has at most two cut vertex of G.





Proof. 

Suppose, otherwise, that there exists a block   B 0   of G such that it has at least three cut vertex of G. Let   B ( G )   be the block tree of G. Then the maximum degree of   B ( G )   at least 3. Note that every tree with maximum degree k has at least k leaves. Then   B ( G )   has at least 3 leaves. Therefore, G has at least three end-blocks, a contradiction. □





Lemma A2.

Let H be a graph. Then, if   L ( H )   is a block-chain, then the number of cut edges in H that is not pendent is at most two.





Proof. 

By contradiction, suppose that the number of cut edges in H that is not pendent is at least three. Let   H ′   be the maximal 2-edge-connected subgraph of H with   | V (  H ′  ) |   is as large as possible. Then the number of cut edges of H that is not pendent incident with   V (  H ′  )   is at least three. Then there exists at least one block of   L ( H )   has at least three cut vertex of   L ( H )  , contradicting Lemma A1. □






Appendix A.2. Proofs of Theorem 10


Proof of Theorem 10.

We assume that G is a   K  1 , 3   -free block-chain with non-traceable. By Theorems A1 and A2, we only need to consider the case that G is closed. By Theorem 7, G contains an induced copy of   N  1 , 1 , 3   . Let H be a   K 3  -free graph with   H =  L  − 1    ( G )   . By Theorem 7, H contains a (not necessary induced) copy of    T ′  =  T  2 , 2 , 4    ( u )  =  L  − 1    (  N  1 , 1 , 3   )   , that is a graph consisting of three paths    Q 1  = u  x 1   x 2   ,    Q 2  = u  y 1   y 2   ,    Q 3  = u  z 1  …  z 4   . Let F be a subgraph of H and   D ( F , H )   be the set of all components of   H − F   and    D F   ( v , H )  =  { D : D ∈ D  ( F , H )  ,  N G   ( v )  ∩ V  ( D )  ≠ ∅ }    for   v ∈ V ( F )  . Let Q be a subgraph of F and    D F   ( Q , H )  =  { D : D ∈ D  ( F , H )  , N  ( V  ( Q )  )  ∩ V  ( D )  ≠ ∅ }   , respectively. In the absence of confusion of definitions, we use   D ( F )  ,    D F   ( v )    and    D F   ( Q )    to denote the   D ( F , H )  ,    D F   ( v , H )    and    D F   ( Q , H )   .





Proof of (1):

Let G be   {  K  1 , 3   ,  P 6  ∪  K 1  }  -free block-chain. By Theorem 7, the subgraph   H  [  {  y 2   y 1  ,  y 1  u , u  z 1  ,  z 1   z 2  ,  z 2   z 3  ,  z 3   z 4  }  ]  ∪ H  {  x 1   x 2  }   ]    is a    L  − 1    (  P 6  )  ∪  L  − 1    (  K 1  )   , a contradiction. This implies that the statement (1) holds. □





Proof of (2):

Let G be   {  K  1 , 3   , 2  K 1  ∪  Z 2  }  -free block-chain.



Claim 1.  ∣  D  T ′    ( x )  ∣ ≤ 1   for any   x ∈ V (  T ′  )  .





Proof. 

By contradiction, suppose that there is one vertex, say    x 0  ∈ V  (  T ′  )   , with    |   D  T ′    (  x 0  )   | > 1   . Then there exist at least two vertices    {  x 0 ′  ,  x 0  ″   }  ⊆ N  (  x 0  )   ∩ ( V   ( H )  ∖ V  (  T ′  )   . If    x 0  = u  , then the subgraph   H  [  { u  u ′  , u  u  ″   , u  z 1  ,  z 1   z 2  ,  z 2   z 3  }  ]  ∪ H  [  {  x 1   x 2  }  ]  ∪ H  [  {  y 1   y 2  }  ]    is a    L  − 1    (  Z 2  )  ∪  L  − 1    (  K 1  )  ∪  L  − 1    (  K 1  )   , a contradiction. If    x 0  =  z 2   , then the subgraph   H  [  {  z 2   z 2 ′  ,  z 2   z 2  ″   ,  z 2   z 1  ,  z 1  u , u  x 1  }  ]  ∪ H  [  {  y 1   y 1  }  ]  ∪ H  [  {  z 3   z 4  }  ]    is a    L  − 1    (  Z 2  )  ∪  L  − 1    (  K 1  )  ∪  L  − 1    (  K 1  )   , a contradiction. If    x 0  ∈  {  x 1  ,  x 2  ,  y 1  ,  y 2  }   , then   H [ V  (  Q 1  ∪  Q 2  )  ∪  {  x  0  ′  ,  x  0   ″   }  ]   contains a subgraph    F 1  ≅  L  − 1    (  Z 2  )   . Then   H [  { E  (  F 1  )  ,  z 1   z 2  ,  z 3   z 4  }  ]   is a    L  − 1    ( 2  K 1  ∪  Z 2  )   , a contradiction. If    x 0  ∈  {  z 1  ,  z 3  ,  z 4  }   , then   H [ V  (  Q 3  ∪  {  x  0  ′  ,  x  0   ″   }  )  ]   contains a subgraph    F 2  ≅  L  − 1    (  Z 2  )   . Then   H [  { E  (  F 1  )  ,  x 1   x 2  ,  y 1   y 2  }  ]   is a    L  − 1    ( 2  K 1  ∪  Z 2  )   , a contradiction. □





Moreover,    D  T ′    ( x )    contain at most one element of   {  P 1  ,  P 2  }  , otherwise a    L  − 1    ( 2  K 1  ∪  Z 2  )    could be found. It implies that   n ( H ) ≤ 27  . By Theorem A5, since H is   K 3  -free,   e ( H ) ≤ 182   and   n ( G ) ≤ 182  . This deduces that every connected   {  K  1 , 3   , 2  K 1  ∪  Z 2  }  -free graph of order at least 183 is traceable. □



Proof of (3):

Let G be   {  K  1 , 3   ,  K 1  ∪  Z 3  }  -free block-chain.



Claim 2. Each element of    D  T ′    (  z 1  )    is isomorphic to   K 1  .





Proof. 

Suppose, by contradiction, that there exists a component   D 0   (say) in    D  T ′    (  z 1  )    such that it is not isomorphic to a connected subgraph of   K 1  . Then   D 0   contains a subgraph F that it is isomorphic to   P 2  . Then the subgraph   H  [  { u  x 1  , u  y 1  , u  z 1  ,  z 1   z 2  ,  z 2   z 3  ,  z 3   z 4  }  ]  ∪ H  [ E  (  P 2  )  ]    is a    L  − 1    (  Z 3  )  ∪  L  − 1    (  K 1  )   , a contradiction. □





Claim 3.   D  T ′    ( v )  = ∅   for any   v ∈ V  (  T ′  )  ∖  {  z 1  ,  z 4  }   .



Proof. 

By contradiction, suppose that there exists one vertex    v 0  ∈ V  (  T ′  )  ∖  {  z 1  ,  z 4  }    such that    D  T ′    (  v 0  )  ≠ ∅  . Let    v 0 ′  ∈ N  (  v 0  )  ∩  ( V  ( H )  ∖ V  (  T ′  )  )   . If    v 0  = u  , then   H [  { u  u ′  , u  x 1  , u  z 1  ,  z 1   z 2  ,  z 2   z 3  ,  z 3   z 4  ,  y 1   y 2  }  ]   is a    L  − 1    (  Z 3  ∪  K 1  )   , a contradiction. If    v 0  ∈  {  x 1  ,  y 1  }   , then, by symmetry, we only consider the case that    v 0  =  x 1   . Then   H [  {  x 1   x  1  ′  ,  x 1   x 2  ,  x 1  u , u  z 1  ,  z 1   z 2  ,  z 2   z 3  ,  y 1   y 2  }  ]   is a    L  − 1    (  Z 3  ∪  K 1  )   , If    v 0  ∈  {  x 2  ,  y 2  }   , then, by symmetry, we only consider the case that    v 0  =  x 2   . Then the subgraph   H [  { u  x 1  , u  y 1  , u  z 1  ,  z 1   z 2  ,  z 2   z 3  ,  z 3   z 4  ,  x 2 ′   x 2  }  ]   is a    L  − 1    (  Z 3  ∪  K 1  )   , a contradiction. If    v 0  ∈  {  z 2  ,  z 3  }   , then   H [ V  (  Q 1  ∪  Q 3  )  ∪  {  x ′  }    contains a subgraph   F ≅  L  − 1    (  Z 3  )   . Then   H [  { E  ( F )  ,  y 1   y 2  }  ]   is a    L  − 1    (  Z 3  ∪  K 1  )   , a contradiction. □





  ∣  D  T ′    (  z 4  )  ∣ ≤ 1   and    D  T ′    (  z 4  )    contain at most one element of   {  K 1  }  , otherwise we also can find a    L  − 1    (  K 1  ∪  Z 3  )   . And   ∣  D  T ′    (  z 1  )  ∣ > 1  . Otherwise, by Claims A.2, 3,   n ( H ) ≤ 11  . By Theorem A5, since H is   K 3  -free,   e ( H ) ≤ 31   and   n ( G ) ≤ 31  . This deduces that every   {  K  1 , 3   ,  K 1  ∪  Z 3  }  -free block-chain of order at least 32 is traceable, a contradiction. Therefore, there exist at least two vertices   z 1 ′   and   z 1  ″    such that    {  z 1 ′  ,  z 1  ″   }  ⊆ N  (  z 1  )  ∩  ( V  ( H )  ∖ V  (  T ′  )  )   .



Claim 4.  u  x 1    and   u  y 1    are cut edges of H.



Proof. 

By symmetry, we just need to prove that   u  x 1    is a cut edge of H. By contradiction, suppose that   u  x 1    is not a cut edge of H. Note that H is   K 3  -free. Then, by Claims A.2 and A.2, there exists at least one vertex   x  i 0    (say) such that   N  (  x  i 0   )  ∩ V  (  T ′  ∖  Q 1  )  ≠ ∅   for    i 0  ∈  { 1 , 2 }   . Let    x  i 0  ′  ∈ N  (  x  i 0   )  ∩ V  (  T ′  ∖  Q 1  )    for    i 0  ∈  { 1 , 2 }   . If    x  i 0  ′  ∈  {  y 1  ,  y 2  ,  z 1  ,  z 2  }   , then   H [ V  (  Q 1  ∪  Q 2  )  ∪  {  z 1  ,  z 1 ′  ,  z 1  ″   }  ]   contains a subgraph    F 1  ≅  L  − 1    (  Z 3  )   . Then   H [  { E  (  F 1  )  ,  z 3   z 4  }  ]   is a    L  − 1    (  K 1  ∪  Z 3  )   , a contradiction. If    x  i 0  ′  ∈  {  z 3  ,  z 4  }   , then   H [ V  (  Q 1  ∪  Q 3  )  ∪  {  z 1 ′  ,  z 1  ″   }  ]   contains a subgraph    F 2  ≅  L  − 1    (  Z 3  )   . Then   H [  { E  (  F 2  )  ,  y 1   y 2  }  ]   is a    L  − 1    (  K 1  ∪  Z 3  )   , a contradiction. These contradictions show that   u  x 1    is a cut edge of H. □





By Claim 4,   u  x 1    and   u  y 1    are cut edges of H. Then, by Lemma A2, the edge   u  z 1    is not cut edge of H. By Claims 3,4, u has a neighbor in   V  (  Q 3  )  ∖  { u ,  z 1  }   . Let    u ′  ∈  N H   ( u )   . Then    u ′  ∈  {  z 2  ,  z 3  ,  z 4  }   . Since H is   K 3  -free,    u ′  ≠  z 2   . This implies that    u ′  ∈  {  z 3  ,  z 4  }   . Then   H [ V  (  Q 2  ∪  Q 3  )  ∪  {  z 1 ′  ,  z 1  ″   }  ]   contains a subgraph   F ≅  L  − 1    (  Z 3  )   . Then   H [  { E  ( F )  ,  x 1   x 2  }  ]   is a    L  − 1    (  K 1  ∪  Z 3  )   , a contradiction. This contradiction implies that every connected   {  K  1 , 3   ,  Z 3  ∪  K 1  }  -free graph of order at least 32 is traceable. □



In order to prove the statements (4), (5) and (6), we choose a maximal    T   k 1  ,  k 2  ,  k 3     ( u )    in H consisting of three paths    Q 1  = u  x 1  …  x  k 1    ,    Q 2  = u  y 1  …  y  k 2    ,    Q 3  = u  z 1  …  z  k 3     and it satisfies



(I)    k 3  ≥  k 2  ≥  k 1  ≥ 2  ;



(II)   k 3   is maximized;



(III)   k 2   is maximized subject to   ( I )  ;



(IV)   k 1   is maximized subject to   ( I )  ,   ( I I )   and   ( I I I )  .



By Theorem 7,    T   k 1  ,  k 2  ,  k 3     ( u )    contains a (not necessary induced) copy of    T  2 , 2 , 4    ( u )  =  L  − 1    (  N  1 , 1 , 3   )   . Then    k 3  ≥ 4  . Let   T =  T   k 1  ,  k 2  ,  k 3     ( u )   . Then    T ′  ⊆ T  . Let    Q  i  ′  = H  [  ( V  (  Q i  )  ∖  { u }  )  ∪ V  (  D T   (  Q i  ∖  { u }  )  )  ]    for   i ∈ { 1 , 2 , 3 }  .



Proof of (4):

Let G be   {  K  1 , 3   ,  K 3  ∪  P 4  ∪  K 1  }  -free block-chain.



Claim 5. Each element of   D ( T )   is isomorphic to a connected subgraph of   C 4  , i.e.,   {  K 1  ,  K 2  ,  P 3  ,  P 4  ,  C 4  }  .



Proof. 

Suppose, by contradiction, that there exists a component   D 0   (say) in   D ( T )   such that it is not isomorphic to a connected subgraph of   C 4  . Then   D 0   contains a subgraph F that it is isomorphic to   P 5   or   K  1 , 3   . If   F ≅  P 5   , then the subgraph   H  [  { u  x 1  , u  y 1  , u  z 1  }  ]  ∪ H  [ E  (  P 5  )  ]  ∪ H  [  {  z 3   z 4  }  ]    is a    L  − 1    (  K 3  )  ∪  L  − 1    (  P 4  )  ∪  L  − 1    (  K 1  )   , a contradiction. If   F ≅  K  1 , 3    , then   H  [ E  ( F )  ]  ∪ H  [  { u  z 1  ,  z 1   z 2  ,  z 2   z 3  ,  z 3   z 4  }  ]  ∪ H  [  {  y 1   y 2  }  ]    is a    L  − 1    (  K 3  )  ∪  L  − 1    (  P 4  )  ∪  L  − 1    (  K 1  )   , a contradiction. □





Claim 6. For   i ∈ { 1 , 2 }  ,   H [ V  (  Q i  ∪ D  ( T )  )  ∖  { u }  ]   does not contain subgraph which is isomorphic to   K  1 , 3   .



Proof. 

Suppose, by contradiction, that there exists a integer    i 0  ∈  { 1 , 2 }    such that   H [ V  (  Q  i 0   ∪ D  ( T )  )  ∖  { u }  ]   contains subgraph which is isomorphic to   K  1 , 3   . Then   H [ V  (  Q 1  ∪  Q 2  ∪ D  ( T )  )  ∖  { u }  ]   contains a subgraph   F ≅  K  1 , 3   ∪  K 2   . Then   H [  { E  ( F )  , u  z 1  ,  z 1   z 2  ,  z 2   z 3  ,  z 3   z 4  }  ]   is a    L  − 1    (  K 3  ∪  P 4  ∪  K 1  )   , a contradiction. □





Claim 7.   |   D T    ( v )  | ≤ 1    for every   v ∈ V ( T ) ∖ { u }  .



Proof. 

Suppose, by contradiction, that there exists a vertex    v 0  ∈ V  ( T )  ∖  { u }    with    |   D T   (  v 0  )   | ≥ 2   . Then we assume that   D ,  D ′  ⊆  D T   (  v 0  )   . By Claim 6,    v 0  ∉ V  (  Q 1  ∪  Q 2  )  ∖  { u }   . This implies that    v 0  ∈ V  (  Q 3  )  ∖  { u }   . Then   H [ V  (  Q 3  ∪ D ∪  D ′  )  ∖  { u }  ]   contains a subgraph   F ≅  K  1 , 3   ∪  K 2   . However,   H [  { E  ( F )  ,  x 1   x 2  ,  x 2  u , u  y 2  ,  y 2   y 1  }  ]   is a    L  − 1    (  K 3  ∪  P 4  ∪  K 1  )   , a contradiction. □





Claim 8.   |   D T    ( u )  | ≥ 3   .



Proof. 

Suppose, by contradiction, that    |   D T    ( u )  | ≤ 2   . Then    k 3  ≤ 7  . Otherwise, then the subgraph   H [  { u  x 1  , u  y 1  , u  z 1  ,  z 4   z 5  ,  z 5   z 6  ,  z 6   z 7  ,  z 7   z 8  ,  z 2   z 3  }  ]   is a    L  − 1    (  K 3  ∪  P 4  ∪  K 1  )   , a contradiction.



Note that    k 1  ≤  k 2  ≤  k 3  ≤ 7  . Then, by Claims 5-7,   n ( H ) ≤ 118  . By Theorem A5, since H is   K 3  -free,   e ( H ) ≤ 3481   and   n ( G ) ≤ 3481  . This implies that every   {  K  1 , 3   ,  K 3  ∪  P 4  ∪  K 1  }  -free block-chain of order at least 3482 is traceable, a contradiction. □



Then    k 3  = 4  . Otherwise,    k 3  > 4  . By Claim 8,   H [ V ( D ( T ) ) ∪ { u } ]   contains a subgraph   F ≅  K  1 , 3    . Then the subgraph   H [  { E  ( F )  ,  z 1   z 2  ,  z 2   z 3  ,  z 3   z 4  ,  z 4   z 5  ,  x 1   x 2  }  ]   is a    L  − 1    (  K 3  ∪  P 4  ∪  K 1  )   , a contradiction. Therefore,   2 ≤  k 1  ≤  k 2  ≤  k 3  ≤ 4  . Let    u 1  ,  u 2  ,  u 3    be the vertex u’s neighbor in different element in   D ( T )  , respectively. □





Claim 9. For any   i ∈ { 1 , 2 , 3 }  ,   H [ V  (  Q i  ∪ D  ( T )  )  ∖  { u }  ]   does not contain subgraph which is isomorphic to   P 5  .



Proof. 

Suppose, by contradiction, that there exists a integer    i 0  ∈  { 1 , 2 , 3 }    with   H [ V  (  Q  i 0   ∪ D  ( T )  )  ∖  { u }  ]   contains subgraph   F 1   (say) which is isomorphic to   P 5  . Let    Q  i 0   = u  v 1  …  v  k  i 0     . Then    k  i 0   ∈  { 2 , 3 , 4 }   . By Claim 5,   V  (  F 1  )  ∩  ( V  (  Q  i 0   )  ∖  { u }  )  ≠ ∅  . If    | V   (  F 1  )  ∩  {  u 1  ,  u 2  ,  u 3  }   | ≤ 1   , then there exist at least two vertices   u 1  ,    u 2  ∈  {  u 1  ,  u 2  ,  u 3  }    such that    {  u 1  ,  u 2  }  ∩ V  (  F 1  )  = ∅  . Note that   H [ V  ( T ∖  Q  i 0   )  ∪  { u ,  u 1  ,  u 2  }  ]   contains a subgraph    F 2  ≅  K  1 , 3   ∪  K 2   . Then   H [  { E  (  F 1  )  , E  (  F 2  )  }  ]   is a    L  − 1    (  K 3  ∪  P 4  ∪  K 1  )   , a contradiction. This implies that    | V   (  F 1  )  ∩  {  u 1  ,  u 2  ,  u 3  }   | ≥ 2   . Suppose that    {  u 1  ,  u 2  ,  u 3  }  ⊆ V  (  F 1  )   . Note that    u 1  ,  u 2  ,  u 3    belong to different components of   D ( T )  , and so are not connected by a path in   D ( T )  . Then   F 1   is a path whose vertices are alternately in   V  (  Q  i 0   )  ∖  { u }    and   {  u 1  ,  u 2  ,  u 3  }  . By Claim 7,    | V   (  F 1  )  ∩  ( V  (  Q  i 0   )  ∖  { u }  )   | ≥ 3   . Then   | V (  F 1  ) | ≥ 6  , contradicting   | V (  F 1  ) | = 5  . This implies that    | V   (  F 1  )  ∩  {  u 1  ,  u 2  ,  u 3  }   | = 2   . Without loss of generality, suppose that    {  u 1  ,  u 2  }  ⊆ V  (  F 1  )   . By Claim 7,    | V   (  F 1  )  ∩  ( V  (  Q  i 0   )  ∖  { u }  )   | ≥ 2   . Since H is   K 3  -free,   N  (  v 1  )  ∩  {  u 1  ,  u 2  }  = ∅  . By choice of T,   N  (  v  k  i 0    )  ∩  {  u 1  ,  u 2  }  = ∅  . Therefore,    k  i 0   = 4   and    {  u 1  ,  u 2  ,  v 2  ,  v 3  }  ⊆ V  (  F 1  )   . Note that    u 1  ,  u 2  ,  u 3    belong to the different component of   D ( T )   and H is   K 3  -free. Then,    v 1  ∉ V  (  F 1  )   . Therefore,   H [ V  ( T ∖  Q  i 0   )  ∪  { u ,  u 3  ,  v 1  }  ]   contains a subgraph    F 2 ′  ≅  K  1 , 3   ∪  K 2   . Then   H [  { E  (  F 1  )  , E  (  F 2 ′  )  }  ]   is a    L  − 1    (  K 3  ∪  P 4  ∪  K 1  )   , a contradiction. □





Claim 10. For any component   D ∈ D ( T )  ,    N H   ( V  ( D )  )  ∩ V  ( T )  ⊆  {  x 1  ,  y 1  ,  z 2  ,  z 3  , u }   . Moreover, if    N H   ( V  ( D )  )  ∩ V  ( T )  ≠  { u }   , then   D ≅  K 1   .



Proof. 

By Claim 6,    N H   ( V  ( D )  )  ∩  ( V  (  Q 1  ∪  Q 2  )  ∖  { u ,  x 1  ,  x  k 1   ,  y 1  ,  y  k 2   }  )  = ∅  . By Claim 9,    N H   ( V  ( D )  )  ∩  ( V  (  Q 3  )  ∖  { u ,  z 2  ,  z 3  }  )  = ∅  . By the choice of T,    N H   ( V  ( D )  )  ∩  {  x  k 1   ,  y  k 2   ,  z  k 3   }  = ∅  . Therefore,    N H   ( V  ( D )  )  ∩ V  ( T )  ⊆  {  x 1  ,  y 1  ,  z 2  ,  z 3  , u }   .



Moreover, suppose, by contradiction, that there exists an element    D 0  ∈ D  ( T )    such that    N H   ( V  (  D 0  )  )  ∩ V  ( T )  ≠  { u }    and    D 0  ≇  K 1   . Note that    N H   ( V  (  D 0  )  )  ∩ V  ( T )  ≠ ∅   and    N H   ( V  (  D 0  )  )  ∩ V  ( T )  ⊆  {  x 1  ,  y 1  ,  z 2  ,  z 3  , u }   . Then there exist a vertex    v 0  ∈  {  x 1  ,  y 1  ,  z 2  ,  z 3  }    such that    v 0  ∈  N H   ( V  (  D 0  )  )  ∩ V  ( T )   . Then, by Claim 5,   H [ V  (  D 0  )  ∪  {  v 0  }  ]   contains a path    P  v 0   =  v 0   v 1   v 2    starting from   v 0   such that    {  v 1  ,  v 2  }  ⊆ V  (  D 0  )   . By Claim 9,    v 0  ∉  {  z 2  ,  z 3  }   . Then we only consider the case that    v 0  ∈  {  x 1  ,  y 1  }   . By Claim A.2 again,    k 1  < 3   or    k 2  < 3  , contradicting the choice of    T   k 1  ,  k 2  ,  k 3     ( u )   . □





Claim 11.   d  H − { u }    ( v )  = 1   for every vertex   v ∈  N  D ( T )    ( V  (  Q i  )  ∖  { u }  )    for   i ∈ { 1 , 2 , 3 }  .



Proof. 

Suppose, by contradiction, that there exists a vertex    v 0  ∈  N  D ( T )    ( V  (  Q i  )  ∖  { u }  )    for   i ∈ { 1 , 2 , 3 }   with    d  H − { u }    (  v 0  )  > 1  . By Claim10,   v 0   has no neighbor outside   V ( T )   and    N  H − { u }    (  v 0  )  ⊆  {  x 1  ,  y 1  ,  z 2  ,  z 3  }   . Since H is   K 3  -free,    |   N  H − { u }    (  v 0  )  ∩  {  z 2  ,  z 3  }   | ≤ 1   . It means that    |   N  H − { u }    (  v 0  )  ∩  {  x 1  ,  y 1  }   | ≥ 1   . Since H is   K 3  -free,    v 0  ∉  {  u 1  ,  u 2  ,  u 3  }   .



Suppose first that    |   N  H − { u }    (  v 0  )  ∩  {  z 2  ,  z 3  }   | = 0   . Then    N  H − { u }    (  v 0  )  ⊆  {  x 1  ,  y 1  }   . Then   H [  { u  u 1  , u  u 2  , u  u 3  ,  x 2   x 1  ,  x 1   v 0  ,  v 0   y 1  ,  y 1   y 2  ,  z 1   z 2  }  ]   is an    L  − 1    (  K 3  ∪  P 4  ∪  K 1  )   , a contradiction.



Suppose now that    |   N  H − { u }    (  v 0  )  ∩  {  z 2  ,  z 3  }   | = 1   . Then    N  H − { u }    (  v 0  )  ∩  {  x 1  ,  y 1  }  ≠ ∅  . Without loss of generality, we assume that    v 0   x 1  ∈ E  ( H )   . Then   H [ V  (  Q 1  ∪  Q 3  ∪  Q 2  )  ∖  { u }  ) ]   contains a subgraph   F ≅  P 5  ∪  K 2   . Then   H [  { u  u 1  , u  u 2  , u  u 3  , E  ( F )  }  ]   is a    L  − 1    (  K 3  ∪  P 4  ∪  K 1  )   , a contradiction. □





Claim 12. each element of   {  Q 1 ′  ,  Q 2 ′  ,  Q 3 ′  }   is the component of   H − { u }  .



Proof. 

By contradiction, suppose that there exists a pair of vertices    x 0  ∈ V  (  Q i ′  )    for   i ∈ { 1 , 2 , 3 }  ,    y 0  ∈ V  (  Q j ′  )    for   j ∈ { 1 , 2 , 3 } ∖ { i }   such that    x 0   y 0  ∈ E  ( H )   . Then, by Claim11,    x 0  ∈ V  (  Q i  )  ∖  { u }    for   i ∈ { 1 , 2 , 3 }   and    y 0  ∈ V  (  Q j  )  ∖  { u }    for   j ∈ { 1 , 2 , 3 } ∖ { i }  .



Suppose, first, that   i , j ∈ { 1 , 2 }  . Without loss of generality, we assume that   i = 1   and   j = 2  . First, we assume that    x 0  ∈  {  x  k 1   ,  x   k 1  − 1   }    and    y 0  ∈  {  y  k 2   ,  y   k 2  − 1   }   . If each component of    D T   ( u )    is trivial component, then, by Claim 10, a cycle C can be found in   H [ V  (  Q 1  ∪  Q 2  )  ∪  { u }  ]   passing through u that dominates   E ( H  [ V  (  Q 1 ′  ∪  Q 2 ′  )  ∪  { u }  ]  )  . By Claim 10 again,   H [ E  ( C ∪  Q 3  )  ]   is a dominating trail of H, a contradiction. This indicates that there exists at least one component D (say) in   D ( u )   with it is non-trivial component, then   H [ V ( D ) ∪ { u } ]   contains a path P of length at least two with starting from u. Note that    x 0   y 0  ∈ E  ( H )   . Then   H [ V  (  Q 1  ∪  Q 2  )  ]   contains a path    Q ^  2   starting from u that it longer than   Q 2  . We can construct a new    T   k 1  ,  k 2  ,  k 3   ′   ( u )  =  { P ,   Q ^  2  ,  Q 3  }    larger than T, which is opposite to the choice to T. Now, we assume that    x 0  ∉  {  x  k 1   ,  x   k 1  − 1   }    or    y 0  ∉  {  y  k 2   ,  y   k 2  − 1   }   . Then   H [ V  (  Q 1  ∪  Q 2  )  ∖  { u }  ]   contains a path   P 5  . Then   H [  { u  u 1  , u  u 2  , u  u 3  , E  (  P 5  )  ,  z 1   z 2  }  ]   is a    L  − 1    (  K 3  ∪  P 4  ∪  K 1  )   , a contradiction.



Suppose, now, that   i ∈ { 1 , 2 }   and   j = 3  . Then   H [ V  (  Q 1  ∪  Q 2  ∪  Q 3  )  ∖  { u }  ]   contains a subgraph   F ≅  P 5  ∪  K 2   . Then   H [  { u  u 1  , u  u 2  , u  u 3  , E  ( F )  }  ]   is a    L  − 1    (  K 3  ∪  P 4  ∪  K 1  )   , a contradiction. □





Let    D 1  , … ,  D t    be all the non-trivial components of   H − { u }  . By Claim 12,    {  Q 1 ′  ,  Q 2 ′  ,  Q 3 ′  }  ⊆  {  D 1  , … ,  D t  }    and   t ≥ 3  . Let    D 1  =  Q 3 ′   ,    D 2  =  Q 2 ′    and    D 3  =  Q 1 ′   . By Claims 6,9,   D i   is isomorphic to a connected subgraph of   C 4   for   i ∈ { 2 , 3 }  . Note that    D 4  , … ,  D t    also are components of   H − T  . Then, by Claim 5, each element of   {  D 4  , … ,  D t  }   is isomorphic to a connected subgraph of   C 4  . Therefore,   D i   is isomorphic to a connected subgraph of   C 4   for   i ∈ { 2 , … , t }  . Let    D i ′  = H  [ V  (  D i  )  ∪  { u }  ]    for   i ∈ { 1 , … , t }   and   D = {  D 1 ′  , … ,  D t ′  }  .



Claim 13. For   i ∈ { 1 , … , t }  , either   D i ′   contains a cut edge of H that is not pendent or there exists a cycle   C i   in   D i ′   passing through u that dominates   E (  D i ′  )  .



Proof. 

We assume on the contrary that   D i ′   does not contain a cut edge of H that is not pendent. We will show that there exists a cycle   C i   in   D i ′   passing through u that dominates   E (  D i ′  )  . Note that   D i   is a non-trivial components of   H − { u }  . Then


   N H   ( V  (  D i  )  )  ∩ V  ( H ∖  D i  )  =  { u }    f o r   i ∈  { 1 , … , t }     



(A1)







Suppose first that   i = 1  . Since H is   K 3  -free,   u  z 2  ∉ E  ( H )   . Note that the edge    z 2   z 3    is not a cut edge of H. Then, by (A1),    N H   ( u )  ∩  ( V  (  D T   (  z 3  )  )  ∪  {  z 3  ,  z 4  }  )  ≠ ∅  . Then, by Claim 11, a cycle   C 1   can be found in   D 1 ′   passing through u that dominates   E (  D 1 ′  )  .



Suppose now that   i ∈ { 2 , … , t }  . Note that H is   K 3  -free and   D i ′   does not contain a cut edge of H that is not pendent. Then, by (A1),    D i  ≇  K 2   . Since   D i   is isomorphic to a connected subgraph of   C 4   for   i ∈ { 2 , … , t }  ,    D i  ∈  {  P 3  ,  P 4  ,  C 4  }   . Note that H is   K 3  -free and   D i ′   does not contain a cut edge of H that is not pendent. Then, by (A1), a cycle   C i   can be found in   D i ′   passing through u that dominates   E (  D i ′  )  . □





Claim 14. For   i ∈ { 1 , … , t }  , if   D i ′   contains a cut edge of H that is not pendent, then   D i ′   has a dominating path   P i   with one end is u that dominates   E (  D i ′  )  .



Proof. 

Suppose first that   i = 1  . Then, by Claim 11,   D 1 ′   has a dominating path    P 1  =  z 4   z 3   z 2   z 1  u   terminating at u that dominates   E (  D 1 ′  )  .



Suppose now that   i ∈ { 2 , … , t }  . Note   D i   is isomorphic to a connected subgraph of   C 4   for   i ∈ { 2 , … , t }  . Then    D i  ∪  { u }    has a dominating path   P i   of   D i ′   which terminates at u for   i ∈ { 2 , … , t }  . □





By Lemma A2, there exists at most two element of  D  which contains cut edges in H that is not pendent. Firstly, we assume that no element of  D  contains cut edges in H that is not pendent. It means that all cut edges in H are pendent. Then, by Claim 13, we can find a dominating trail    T 1  = H  [  ⋃  i = 1  t  E  (  C i  )  ]    that dominates every edge in H, a contradiction.



Secondly, suppose that there exists exactly one element of  D  which contains cut edges in H that is not pendent, say   D k ′   for   k ∈ { 1 , … , t }  . Then, by Claim 13,   H ∖  D k    contains a closed trail    T 2  = H  [  ⋃  i = 1  t  E  (  C i  )  ∖ E  (  C k  )  ]    starting at u and terminating at u that dominates   E ( H ∖  D k  )  . By Claim 14, we can find a dominating trail   T = H [ E  (  T 2  ∪  P k  )  ]   that dominates every edge in H, a contradiction.



Finally, suppose that there are exactly exactly two elements of  D  which contains cut edges in H that is not pendent, say   D  k 1  ′   and   D  k 2  ′   for    {  k 1  ,  k 2  }  ⊆  { 1 , 2 , … , t }   . Then, by Claim 13,   H ∖ (  D  k 1   ∪  D  k 2   )   contains a closed trail    T 3  = H  [  ⋃  i = 1  t  E  (  C i  )  ∖ E  (  C  k 1   ∪  C  k 2   )  ]    starting at u and terminating at u that dominates   E ( H ∖  (  D  k 1   ∪  D  k 2   )  )  . By Claim 14, we can find a dominating trail   T = H [ E  (  P  k 1   ∪  P  k 2   ∪  T 3  )  ]   that dominates every edge in H, a contradiction.



These contradictions imply that every connected   {  K  1 , 3   ,  K 3  ∪  P 4  ∪  K 1  }  -free block-chain of order at least 3482 is traceable. □





Proof of (5):

Let G be   {  K  1 , 3   ,  N  1 , 1 , 1   ∪  K 2  }  -free block-chain.



Note that    k 3  ≥ 4  . Then    k 3  = 4  . Otherwise, the subgraph   H  [  { u  x 1  ,  x 1   x 2  , u  y 1  ,  y 1   y 2  , u  z 1  ,  z 1   z 2  }  ]  ∪ H  [  {  z 3   z 4  ,  z 4   z 5  }  ]    is a    L  − 1    (  N  1 , 1 , 1   )  ∪  L  − 1    (  K 2  )   , a contradiction. This implies that   2 ≤  k 1  ≤  k 2  ≤  k 3  = 4  



Claim 15. For any component   D ∈ D ( T )  , if    N H   ( V  ( D )  )  ∩ V  (  Q 1  ∪  Q 2  )  ≠ ∅  , then   D ≅  K 1   .



Proof. 

Suppose, by contradiction, that there exists an element    D 0  ∈ D  ( T )    with    D 0  ≇  K 1   . Then there exist a vertex    v 0  ∈ V  (  Q 1  ∪  Q 2  )    such that    v 0  ∈  N H   ( V  (  D 0  )  )  ∩ V  (  Q 1  ∪  Q 2  )   . Then,   H [ V  (  D 0  )  ∪  {  v 0  }  ]   contains a path    P  v 0   =  v 0   v 1   v 2    starting from   v 0   such that    {  v 1  ,  v 2  }  ⊆ V  (  D 0  )   . By the choice of    T   k 1  ,  k 2  ,  k 3     ( u )   ,    v 0  ∉  {  x  k 1   ,  x   k 1  − 1   ,  y  k 2   ,  y   k 2  − 1   }   . Then   H [ V  (  Q 1  ∪  Q 2  )  ∪  {  v 1  ,  v 2  }  ]   contains a subgraph   F ≅  T  2 , 2 , 2    . Then   H [  { E  ( F )  ∪  {  z 1   z 2  ,  z 2   z 3  }  }  ]   is a    L  − 1    (  N  1 , 1 , 1   ∪  K 2  )   , a contradiction. □





Claim 16. For any component   D ∈ D ( T )  , if    N H   ( V  ( D )  )  ∩  ( V  (  Q 3  )  ∖  { u }  )  ≠ ∅  , then    N H   ( V  ( D )  )  ∩  ( V  (  Q 3  )  ∖  { u }  )  =  {  z 2  }   . Moreover, D is isomorphic to   K 1  .



Proof. 

Suppose, by contradiction, that there exists a vertex    v 0  ≠  z 2    with    v 0  ∈  N H   ( V  ( D )  )  ∩  ( V  (  Q 3  )  ∖  { u }  )   . Note that    k 3  = 4  . Then    v 0  ≠  z 4   . Hence,    v 0  ∈  {  z 1  ,  z 3  }   . If    v 0  =  z 1   , then   H [ V  (  Q 1  ∪  Q 2  ∪ D )  ∪  {  z 1  }  ]   contains a subgraph    F 1  ≅  T  2 , 2 , 2    . Then   H [  { E  (  F 1  )  ∪  {  z 2   z 3  ,  z 3   z 4  }  }  ]   is a    L  − 1    (  N  1 , 1 , 1   ∪  K 2  )   , a contradiction. This implies that    v 0  =  z 3   . Then   H [ V  ( D )  ∪  {  z 3  ,  z 4  }  ]   contains a subgraph    F 2  ≅  P 3   . Then   H [  { u  x 1  ,  x 1   x 2  , u  y 1  ,  y 1   y 2  , u  z 1  ,  z 1   z 2  }  ∪ E  (  F 2  )  ]   is a    L  − 1    (  N  1 , 1 , 1   ∪  K 2  )   , a contradiction.



Moreover, suppose, by contradiction, that there exists a component    D 0  ∈ D  ( T )    with    N H   ( V  (  D 0  )  )  ∩  ( V  (  Q 3  )  ∖  { u }  )  ≠ ∅   and   D 0   is not isomorphic to   K 1  . Then there exist a vertex    v 0  ∈ V  (  Q 3  )  ∖  { u }    with    v 0  ∈  N H   ( V  (  D 0  )  )  ∩  ( V  (  Q 3  )  ∖  { u }  )   . Then,   H [ V  (  D 0  )  ∪  {  v 0  }  ]   contains a path    P  v 0   =  v 0   v 1   v 2    starting from   v 0   with    {  v 1  ,  v 2  }  ⊆ V  (  D 0  )   . By Claim 16,    v 0  =  z 2   . Then   H [ V  (  D 0  ∪  Q 3  )  ]   contains a subgraph    F 3  ≅  T  2 , 2 , 2    . It is now easily seen that


  H  [ V  ( H ∖  (  D 0  ∪  Q 3  )  )  ]   d o e s  n o t  c o n t a i n  a  s u b g r a p h   P 3  .  



(A2)







By (A2),    k 1  =  k 2  = 2   and    D T   ( v )  = ∅   for   v ∈ V  (  Q 1  ∪  Q 2  )  ∖  { u }   . Next, we will show that


  e a c h  e l e m e n t  o f   {  Q 1 ′  ,  Q 2 ′  ,  Q 3 ′  }   i s  t h e  c o m p o n e n t  o f  H −  { u }  .  



(A3)







Proof of (A3):

By contradiction, suppose that there exists a pair of vertices    x 0  ∈ V  (  Q i ′  )    for   i ∈ { 1 , 2 , 3 }  ,    y 0  ∈ V  (  Q j ′  )    for   j ∈ { 1 , 2 , 3 } ∖ { i }   such that    x 0   y 0  ∈ E  ( H )   . Note that    D T   ( v )  = ∅   for   v ∈ V  (  Q 1  ∪  Q 2  )  ∖  { u }   . Then,    x 0  ∈ V  (  Q i  )  ∖  { u }    for   i ∈ { 1 , 2 , 3 }   and    y 0  ∈ V  (  Q j  )  ∖  { u }    for   j ∈ { 1 , 2 , 3 } ∖ { i }  . By (A2), we just need to consider the case    x 0  ∈ V  (  Q 1  ∪  Q 2  )  ∖  { u }    and    y 0  ∈ V  (  Q 3  )  ∖  { u }   . Without loss of generality, we assume that    x 0  ∈ V  (  Q 1  )  ∖  { u }    and    y 0  ∈ V  (  Q 3  )  ∖  { u }   . If    y 0  ∈  {  z 1  ,  z 2  }   , then,   H [ V  (  D 0  ∪  Q 1  ∪  Q 3  )  ∖  { u }  ]   contains a subgraph    F 4  ≅  T  2 , 2 , 2    . Then   H [  { u  y 1  ,  y 1   y 2  }  ∪ E  (  F 4  )  ]   is a    L  − 1    (  N  1 , 1 , 1   ∪  K 2  )   , a contradiction. This implies that    y 0  ∈  {  z 3  ,  z 4  }   . Note that    k 1  =  k 2  = 2  . Then, by Claims 15,16 we can find a dominating trail T that dominates every edge in H, a contradiction. This implies that (A3) holds. □





Note that    k 1  =  k 2  = 2  . Then, by (A3), the edges   { u  x 1  }   and   { u  y 1  }   are the cut edges of H. Note that   H [ V  (  D 0  )  ∪  {  z 2  }  ]   contains a path    P  z 2   =  z 2   v 1   v 2    starting from   z 2   such that    {  v 1  ,  v 2  }  ⊆ V  (  D 0  )   . By Lemma A2, the edges   {  z 2   v 1  }   and   {  z 2   z 3  }   are not the cut edges of H. Then   N  ( u )  ∩  {  v 1  ,  v 2  }  ≠ ∅   and   N  ( u )  ∩  {  z 3  ,  z 4  }  ≠ ∅  . We assume that    u ′  ∈ N  ( u )  ∩  {  v 1  ,  v 2  }    and    u  ″   ∈ N  ( u )  ∩  {  z 3  ,  z 4  }   .


  F o r  a n y  c o m p o n e n t  D ∈ D  ( T )  ∖  {  D 0  }  ,  D ≅  K 1  .  



(A4)







Proof of (A4):

Otherwise, there exist a component    D 1  ∈ D  ( T )  ∖  {  D 0  }    such that   D 1   is not isomorphic to   K 1  . By Claim 15,    N H   ( V  (  D 1  )  )  ∩  ( V  (  Q 3  )  ∖  { u }  )  ≠ ∅  . By Claim 16,    N H   ( V  (  D 1  )  )  ∩  ( V  (  Q 3  )  ∖  { u }  )  =  {  z 2  }   . Then,   H [ V  (  D 0  ∪  D 1  ∪  Q 3  )  ∖  { u }  ]   contains a subgraph    F 5  ≅  T  2 , 2 , 2    . Then   H [  { u  y 1  ,  y 1   y 2  }  ∪ E  (  F 5  )  ]   is a    L  − 1    (  N  1 , 1 , 1   ∪  K 2  )   , a contradiction. This implies that (A4) holds. □





Then, by (A4) and Claim 16, we can find a cycle   C = u  u  ″    Q 3   z 2   P  v 0    u ′  u   in   Q 3 ′   passing through u that dominates   E (  Q 3 ′  )  . By Claim 15, we can find a dominating trail    T ′  = H  [ E  (  Q 1  ∪  Q 2  ∪ C )  ]    that dominates every edge in H, a contradiction. This contradiction shows that Claim 16 holds. □





Let   X =  {  x  k 1   ,  x   k 1  − 1   }  ∪ V  (  D T   (  x   k 1  − 1   )  )   ,   Y =  {  y  k 2   ,  y   k 2  − 1   }  ∪ V  (  D T   (  y   k 2  − 1   )  )    and   Z = {  z 3  ,  z 4  }  .



Claim 17.   N H   ( u )  ∩  ( X ∪ Y ∪ Z )  = ∅  .



Proof. 

By contradiction, suppose that    N H   ( u )  ∩  ( X ∪ Y ∪ Z )  ≠ ∅  . If    N H   ( u )  ∩ X ≠ ∅  , then, by Claim 15, a cycle   C 1   can be found in   Q 1 ′   passing through u that dominates   E (  D 1 ′  )  . By Claims 15,16, we can find a dominating trail   H [ E  (  C 1  ∪  Q 3  ∪  Q 2  )  ]   that dominates every edge in H, a contradiction. If    N H   ( u )  ∩ Z ≠ ∅  , then, by Claim 16, a cycle   C 2   can be found in   Q 3 ′   passing through u that dominates   E (  D 3 ′  )  . By Claims 15,16, we can find a dominating trail   H [ E  (  C 3  ∪  Q 1  ∪  Q 2  )  ]   that dominates every edge in H, a contradiction. If    N H   ( u )  ∩ Y ≠ ∅  , then, by Claims 15,16, we can find a dominating trail that dominates every edge in H, a contradiction. □





Claim 18. Each element of   {  Q 1 ′  ,  Q 2 ′  ,  Q 3 ′  }   is the component of   H − { u }  .



Proof. 

By contradiction, suppose that there exists a pair of vertices    x 0  ∈ V  (  Q i ′  )    for   i ∈ { 1 , 2 , 3 }  ,    y 0  ∈ V  (  Q j ′  )    for   j ∈ { 1 , 2 , 3 } ∖ { i }   such that    x 0   y 0  ∈ E  ( H )   . First, we will show that


  n o  e d g e  h a s  o n e  e n d  i n  V  (  Q 1 ′  )   a n d  o n e  e n d  i n  V  (  Q 2 ′  )  .  



(A5)







Proof of (A5):

Suppose, by contradiction, that    x 0  ∈ V  (  Q 1 ′  )    and    y 0  ∈ V  (  Q 2 ′  )   . If    x 0  ∈ X   and    y 0  ∈ Y  , then, by Claim 15, we can find a cycle   C 1   in   H [ V  (  Q 1 ′  ∪  Q 2 ′  )  ∪  { u }  ]   passing through u that dominates   E ( H  [ V  (  Q 1 ′  ∪  Q 2 ′  )  ∪  { u }  ]  )  . By Claims 15,16, we can find a dominating trail   H [ E  (  C 1  ∪  Q 3  )  ]   that dominates every edge in H, a contradiction. This implies that    x 0  ∉ X   or    y 0  ∉ Y  . Without loss of generality, we assume that    x 0  ∉ X  . Then    k 1  ∈  { 3 , 4 }   . Since H is   K 3  -free,   H [ V  (  Q 1 ′  ∪  Q 2 ′  )  ∪  { u ,  z 1  }  ]   contains a subgraph    F 1  ≅  T  2 , 2 , 2    . Then   H [ E  (  F 1  )  ∪  {  z 2   z 3  ,  z 3   z 4  }  ]   is a    L  − 1    (  N  1 , 1 , 1   ∪  K 2  )   , a contradiction. This implies that (A5) holds. □





Next, we will prove that


  n o  e d g e  h a s  o n e  e n d  i n  X ∪ Y  a n d  o n e  e n d  i n  V (  Q 3 ′  ) .  



(A6)







Proof of (A6):

Suppose, by contradiction, that    x 0  ∈ X ∪ Y   and    y 0  ∈ V  (  Q 3 ′  )   . Without loss of generality, we assume that    x 0  ∈ X  . If    y 0  ∈ Z  , then, by Claims 15,16, we can find a cycle   C 2   in   H [ V  (  Q 1 ′  ∪  Q 3 ′  )  ∪  { u }  ]   passing through u that dominates   E ( H  [ V  (  Q 1 ′  ∪  Q 3 ′  )  ∪  { u }  ]  )  . By Claims 15,16, we can find a dominating trail   H [ E  (  C 2  ∪  Q 2  )  ]   that dominates every edge in H, a contradiction. This implies that    y 0  ∉ Z  . By Claim 16,   z 1   has no neighbor outside    T   k 1  ,  k 2  ,  k 3     ( u )   . We can find a path P in   H [ V  (  Q 1 ′  ∪  Q 3 ′  )  ∪  { u }  ]   starting with u that dominates   E ( H  [ V  (  Q 1 ′  ∪  Q 3 ′  )  ∪  { u }  ]  )  . By Claim 15, we can find a dominating trail   H [ E  ( P ∪  Q 2  )  ]   that dominates every edge in H, a contradiction. This implies that (A6) holds. □





Then we will prove that


  n o  e d g e  h a s  o n e  e n d  i n  V (  Q 1 ′  ∪  Q 2 ′  )  a n d  o n e  e n d  i n  Z .  



(A7)







Proof of (A7):

Suppose, by contradiction, that    x 0  ∈ V  (  Q 1 ′  ∪  Q 2 ′  )    and    y 0  ∈ Z  . Without loss of generality, suppose that    x 0  ∈ V  (  Q 1 ′  )   . By (A6),    x 0  ∉ X  . Then    k 1  ∈  { 3 , 4 }   . If    x 0  ∈  {  x 1  }  ∪ V  (  D T   (  x 1  )  )   , then, by Claims 15,16, we can find a path   P ′   in   H [ V  (  Q 1 ′  ∪  Q 3 ′  )  ∪  { u }  ]   from u to   x  k 1    that dominates   E ( H  [ V  (  Q 1 ′  ∪  Q 3 ′  )  ∪  { u }  ]  )  . By Claim 15, we can find a dominating trail   H [ E  (  P ′  ∪  Q 2  )  ]   that dominates every edge in H, a contradiction. This implies that    k 1  = 4   and    x 0  ∈  {  x 2  }  ∪ V  (  D T   (  x 2  )  )   . Then the vertex   x 1   has no neighbor outside T. Otherwise, we can find a    L  − 1    (  N  1 , 1 , 1   ∪  K 2  )   , a contradiction. Combining this with Claims 15,16, we can find a path   P  ″    in   H [ V  (  Q 1 ′  ∪  Q 3 ′  )  ∪  { u }  ]   from u to   x  k 1    that dominates   E ( H  [ V  (  Q 1 ′  ∪  Q 3 ′  )  ∪  { u }  ]  )  . By Claim 15, we can find a dominating trail   H [ E  (  P  ″   ∪  Q 2  )  ]   that dominates every edge in H, a contradiction. This implies that (A7) holds. □





By (A5)–(A7),    x 0  ∈ V  (  Q 1 ′  ∪  Q 2 ′  )  ∖  ( X ∪ Y )    and    y 0  ∈ V  (  Q 3 ′  )  ∖ Z  . Without loss of generality, we assume that    x 0  ∈ V  (  Q 1 ′  )   . Then,    k 2  = 2  . Otherwise, Then,   H [ V  (  Q 1  ∪  Q 3  ]    contains a subgraph    F 2  ≅  T  2 , 2 , 2    . Then   H [ E  (  F 2  )  ∪  ( E  (  Q 2  )  ∖  { u  y 1  }  )  ]   is a    L  − 1    (  N  1 , 1 , 1   ∪  K 2  )   , a contradiction. Note that    x 0  ∉ X   and    y 0  ∉ Z  . Then there exists at least one path   P ^   of length at most two from   x i   to   z j   for   i ≤  k 1  − 2   and   j ∈ { 1 , 2 }   such that   V  (  P ^  )  ∩ V  ( T )  =  {  x i  ,  z j  }   . Note that    k 2  = 2  . Then, by (A5) and (A6), the edge   u  y 1    is a cut edge of H. By Lemma A2, the edge set   {  {  x   k 1  − 1    x   k 1  − 2   }  ,  {  z 2   z 3  }  }   has at least one element that is not the cut edge of H. Suppose, first, that    x   k 1  − 1    x   k 1  − 2     is not the cut edge in H. By Claim 17, (A5) and (A6),   N  ( X )  ∩ ( V  (  Q 2 ′  ∪  Q 3 ′  )  ∪  { u }  ) = ∅  . Since H is   K 3  -free,   N (  x   k 1  − 2   ) ∩ X = ∅  . Then    k 1  = 4   and   N (  x   k 1  − 3   ) ∩ X ≠ ∅  . By Claims 15,16, we can find a dominating trail that dominates every edge in H, a contradiction. Suppose, now, that    z 2   z 3    is not the cut edge in H. By Claim 17, (A7),   N  ( Z )  ∩ ( V  (  Q 1 ′  ∪  Q 2 ′  )  ∪  { u }  ) = ∅  . Since H is   K 3  -free, by Claim 16,    z 4   z 1  ∈ E  ( H )   . By Claims 15,16, we can find a dominating trail that dominates every edge in H, a contradiction. These contradictions show that Claim 18 holds. □





By Claim 18,    N H   ( V  (  Q i ′  )  )  ∩ V  ( H ∖  Q i ′  )  =  { u }    for   i ∈ { 1 , 2 , 3 }  . By Claim 17,    N H   ( u )  ∩  ( X ∪ Y ∪ Z )  = ∅  . Then, it is not difficult to find that every   D i ′   contains a cut edge of H that is not pendent, contradicting Lemma A2. This contradiction shows that   {  K  1 , 3   ,  N  1 , 1 , 1   ∪  K 2  }  -free block-chain is traceable. □





Proof of (6):

Let G be   {  K  1 , 3   ,  N  1 , 1 , 2   ∪  K 1  }  -free block-chain. Then we will show that G is isomorphic to a member of   G 0  .



Note that    k 3  ≥ 4  . Then    k 3  = 4  . Otherwise, the subgraph   H  [  { u  x 1  ,  x 1   x 2  , u  y 1  ,  y 1   y 2  , u  z 1  ,  z 1   z 2  ,  z 2   z 3  }  ]  ∪ H  [  {  z 4   z 5  }  ]    is a    L  − 1    (  N  1 , 1 , 2   )  ∪  L  − 1    (  K 1  )   , a contradiction. This implies that   2 ≤  k 1  ≤  k 2  ≤  k 3  = 4  . Moreover,    k 1  =  k 2  = 2  . Otherwise,   H [ V  (  Q 1  ∪  Q 2  )  ∪  {  z 1  ,  z 2  }  ]   contains a subgraph   F ≅  T  2 , 2 , 3    . Then   H [  { E  ( F )  ∪  {  z 3   z 4  }  }  ]   is a    L  − 1    (  N  1 , 1 , 2   ∪  K 1  )   , a contradiction. Then,   T =  T  2 , 2 , 4    ( u )   . Furthermore,


  N  (  z 2  )  ∩  ( V  ( H )  ∖ V  (  T  2 , 2 , 4    ( u )  )  )  = ∅ .  



(A8)







Proof of (A8):

By contradiction, suppose that   z 2   has a neighbor   z 2 ′   outside   V (  T  2 , 2 , 4    ( u )  )  , then the subgraph   H  [  { u  x 1  ,  x 1   x 2  , u  y 1  ,  y 1   y 2  , u  z 1  ,  z 1   z 2  ,  z 2   z 2 ′  }  ]  ∪ H  [  {  z 3   z 4  }  ]    is a    L  − 1    (  N  1 , 1 , 2   )  ∪  L  − 1    (  K 1  )   , a contradiction. This implies that (A8) holds. □





Claim 19. For any component   D ∈ D ( T )  ,   D ≅  K 1   .



Proof. 

Suppose, by contradiction, that there exists an element    D 0  ∈ D  ( T )    such that    D 0  ≇  K 1   . Then there exist a vertex   v 0   such that    v 0  ∈  N H   ( V  (  D 0  )  )  ∩ V  (  T  2 , 2 , 4    ( u )  )   . Then    v 0  ∉  {  x 2  ,  y 2  ,  z 4  }   . By (A8),    v 0  ≠  z 2   . If    v 0  = u  , then   H [ V  (  Q 1  ∪  Q 3  ∪  D 0  )  ]   contains a subgraph    F 1  ≅  T  2 , 2 , 3    . Then   H [ E  (  F 1  )  ∪  {  y 1   y 2  }  ]   is a    L  − 1    (  N  1 , 1 , 2   ∪  K 1  )   , a contradiction. If    v 0  =  z 3   , then   H [ V  (  D 0  )  ]   contains a subgraph    F 2  ≅  K 2   . Then   H [  { u  x 1  ,  x 1   x 2  , u  y 1  ,  y 1   y 2  , u  z 1  ,  z 1   z 2  ,  z 2   z 3  }  ∪ E  (  F 2  )  ]   is a    L  − 1    (  N  1 , 1 , 2   ∪  K 1  )   , a contradiction. If    v 0  ∈  {  x 1  ,  y 1  ,  z 1  }   , then   H [ V  (  Q 1  ∪  Q 2  ∪  D 0  )  ∪  {  z 1  ,  z 2  }  ]   contains a subgraph    F 3  ≅  T  2 , 2 , 3    . Then   H [ E  (  F 3  )  ∪  {  z 3   z 4  }  ]   is a    L  − 1    (  N  1 , 1 , 2   ∪  K 1  )   , a contradiction. □





Claim 20.  d ( v ) = 1   for any vertex   v ∈  N  D ( T )    ( V  (  Q i  )  )    for   i ∈ { 1 , 2 }  .



Proof. 

Suppose, by contradiction, that there exists a vertex    v 0  ∈  N  D ( T )    ( V  (  Q i  )  )    for   i ∈ { 1 , 2 }   with   d (  v 0  ) > 1  . Without loss of generality, suppose that    v 0  ∈  N  D ( T )    ( V  (  Q 1  )  )   . By Claim 19,   N  (  v 0  )  ∩  ( V  ( H )  ∖ V  (  T  2 , 2 , 4    ( u )  )  )  = ∅  . By (A8),   N  (  v 0  )  ⊆  {  x 1  ,  y 1  , u ,  z 1  ,  z 3  }   . Since H is   K 3  -free,    | N   (  v 0  )  ∩  {  x 1  , u }   | = 1   .



Suppose first that    | N   (  v 0  )  ∩  {  z 1  ,  z 3  }   | = 0   . Then    y 1  ∈ N  (  v 0  )   . Since H is   K 3  -free,    x 1  ∈ N  (  v 0  )   . By Claim 19, we can find a dominating trail    T 1  =  z 4   z 3   z 2   z 1  u  x 1   v 0   y 1   y 2    that dominates every edge in H, a contradiction.



Suppose now that    | N   (  v 0  )  ∩  {  z 1  ,  z 3  }   | ≠ 0   . If    z 1  ∈ N  (  v 0  )   , then    x 1  ∈ N  (  v 0  )   . By Claim 19, we can find a dominating trail    T 2  =  z 4   z 3   z 2   z 1   v 0   x 1  u  y 1   y 2    that dominates every edge in H, a contradiction. This implies that    z 3  ∈ N  (  v 0  )   . If   u ∈ N (  v 0  )  , then, by Claim 19, we can find a dominating trail    T 3  =  x 2   x 1  u  v 0   z 3   z 2   z 1  u  y 1   y 2    that dominates every edge in H, a contradiction. This implies that    x 1  ∈ N  (  v 0  )   . By Claim 19, we can find a dominating trail    T 4  =  x 2   x 1   v 0   z 3   z 2   z 1  u  y 1   y 2    that dominates every edge in H, a contradiction. □





Claim 21.  E  ( H  [ V  ( T )  ]  )  ∖ E  ( T )  =  {  x 1   z 2  }    or   {  y 1   z 2  }  .



Proof. 

First, we will show that


  N  ( V  (  Q i  )  )  ∩  {  z 3  ,  z 4  }  = ∅   for  i ∈  { 1 , 2 }  .  



(A9)







Proof of (A9):

Suppose, by contradiction, that there exists a   Q  i 0    with   N  ( V  (  Q  i 0   )  )  ∩  {  z 3  ,  z 4  }  ≠ ∅   for    i 0  ∈  { 1 , 2 }   . Without loss of generality, we suppose that   N  ( V  (  Q 1  )  )  ∩  {  z 3  ,  z 4  }  ≠ ∅  . If   N  ( V  (  Q 1  )  ∖  { u }  )  ∩  {  z 3  ,  z 4  }  ≠ ∅  , then, by Claim 19, a cycle   C 1   can be found in    Q 1  ∪  Q 3    passing through u that dominates   E (  Q 1  ∪  Q 3  ∪  D T   (  Q 1  ∪  Q 3  )  )  . By Claim 19 again, we can find a dominating trail   H [ E  (  Q 2  ∪  C 1  )  ]   that dominates every edge in H, a contradiction. This implies that   N  ( u )  ∩  {  z 3  ,  z 4  }  ≠ ∅  , then, by Claim 19, a cycle   C 2   can be found in   Q 3   passing through u that dominates   E (  Q 3  ∪  D T   (  Q 3  )  )  . By Claim 19 again, we can find a dominating trail   H [ E  (  Q 1  ∪  Q 2  ∪  C 2  )  ]   that dominates every edge in H, a contradiction. This implies that (A9) holds. □





Next, we will prove that


  N  ( v )  ∩  {  z 1  ,  z 2  }  = ∅   for  any  vertex  v ∈  {  x 2  ,  y 2  }  .  



(A10)







Proof of (A10):

Suppose, by contradiction, that there exists a vertex    v 0  ∈  {  x 2  ,  y 2  }    with   N  (  v 0  )  ∩  {  z 1  ,  z 2  }  ≠ ∅  . Without loss of generality, we assume that   N  (  x 2  )  ∩  {  z 1  ,  z 2  }  ≠ ∅  . If    x 2   z 1  ∈ E  ( H )   , then, by Claim 19, we can find a dominating trail    T 1  =  z 4   z 3   z 2   z 1   x 2   x 1  u  y 1   y 2    that dominates every edge in H, a contradiction. This implies that    x 2   z 2  ∈ E  ( H )   . Then   N  (  z 1  )  ∩  ( V  ( H )  ∖ V  (  T  2 , 2 , 4    ( u )  )  )  = ∅  . Otherwise, we can find an    L  − 1    (  N  1 , 1 , 2   ∪  K 1  )   . Therefore, we can find a dominating trail    T 2  =  z 4   z 3   z 2   x 2   x 1  u  y 1   y 2    that dominates every edge in H, a contradiction. This implies that (A10) holds. □





Now,


  N  ( u )  ∩ V  (  T  2 , 2 , 4    ( u )  )  =  {  x 1  ,  y 1  ,  z 1  }  .  



(A11)







Proof of (A11):

Suppose, by contradiction, that   N  ( u )  ∩ V  (  T  2 , 2 , 4    ( u )  )  ≠  {  x 1  ,  y 1  ,  z 1  }   . Note that    {  x 1  ,  y 1  ,  z 1  }  ⊆ N  ( u )  ∩ V  (  T  2 , 2 , 4    ( u )  )   . Then there exists a vertex    v 0  ∈ V  (  T  2 , 2 , 4    ( u )  )  ∖  {  x 1  ,  y 1  ,  z 1  }    with    v 0  ∈ N  ( u )  ∩ V  (  T  2 , 2 , 4    ( u )  )   . Since H is   K 3  -free,    v 0  ∉  {  x 2  ,  y 2  ,  z 2  }   . This implies that    v 0  ∈  {  z 3  ,  z 4  }   . By Claim 19, a cycle C can be found in   Q 3   passing through u that dominates   E (  Q 3  ∪  D T   (  Q 3  )  )  . By Claim 19 again, we can find a dominating trail   H [ E  (  Q 1  ∪  Q 2  ∪ C )  ]   that dominates every edge in H, a contradiction. This implies that (A11) holds. □





If    | N   (  z 2  )  ∩  {  x 1  ,  y 1  }   | ≠ 1   , then    | N   (  z 2  )  ∩  {  x 1  ,  y 1  }   | ≥ 1   . Otherwise, by Claim 20 and (A9)–(A11), the edges   u  x 1   ,   u  y 1    and   u  z 1    are cut edges of H that are not pendent, contradicting Lemma A2. This implies that    {  z 2   x 1  ,  z 2   y 1  }  ⊆ E  ( H )   . Then, by Claim 19, we can find a dominating trail   T =  z 4   z 3   z 2   x 1  u  z 1   z 2   y 1   y 2    that dominates every edge in H, a contradiction. This implies that Claim 21 holds. □





Claim 22.  d ( v ) = 1   for each vertex   v ∈  N  D ( T )    (  {  z 1  ,  z 2  ,  z 3  }  )   .



Proof. 

Suppose, by contradiction, that there exists a vertex    v 0  ∈  N  D ( T )    (  {  z 1  ,  z 2  ,  z 3  }  )    with   d (  v 0  ) > 1  . By Claim 19,   v 0   has no neighbor outside   V (  T   k 1  ,  k 2  ,  k 3     ( u )  )  . By Claim 20,   N  (  v 0  )  ∩ V  (  Q 1  ∪  Q 2  )  = ∅  . By (A8),   N  (  v 0  )  =  {  z 1  ,  z 3  }   . By Claim 21,    | N   (  z 2  )  ∩  {  x 1  ,  y 1  }   | = 1   . Without loss of generality, we assume that    z 2   x 1  ∈ E  ( H )   . Then, by Claim 19, there is a dominating trail   T =  z 4   z 3   v 0   z 1   z 2   x 1  u  y 1   y 2    that dominates every edge in H, a contradiction. □





   D T   (  z 1  )  ≠ ∅  . Otherwise, by Claim 19, we can find a dominating trail that dominates every edge in H, a contradiction. Therefore, by (A8) and Claims 19-22, H is isomorphic to a member of   F 0  . That means G is isomorphic to a member of   G 0  .






Appendix A.3. Proofs of Theorem 11


Proof of Theorem 11.

By contradiction, suppose that G is   {  K  1 , 3   , S ∪  P 4  }  -free non-traceable block-chain with   | V ( G ) |   is as small as possible for   S ∈ {  P 4  ,  Z 1  }   such that   | V ( G ) | ≥ 212  . We use   C u t ( G )   to denote the set of vertices which is cut vertex of G. Let F be a subgraph of G and   D ( F , G )   be the set of all components of   G − F   and    D F   ( v , G )  =  { D : D ∈ D  ( F , G )  ,  N G   ( v )  ∩ V  ( D )  ≠ ∅ }    for   v ∈ V ( F )  .



Suppose that G is 2-connected. Note that G is   S ∪  P 4   -free, then G must be   N  1 , 1 , 5   -free. By Theorem A6, G is traceable. Thus   C u t ( G ) ≠ ∅   and let   x ∈ C u t ( G )  .



Claim 23. At least one element of   D ( x , G )   consists of an isolated vertex if   x ∈ C u t ( G )  .



Proof. 

Clearly,   | D ( x , G ) | = 2  ; otherwise   x ∪ ( N ( x ) ∩ V ( D ( x , G ) ) )   will induce a claw. Let    {  H 1  ,  H 2  }  = D  ( x , G )   . Suppose that   | V (  H 1  ) | ≥ 2   and   | V (  H 2  ) | ≥ 2  . For   i = 1 , 2  , let    y i  ∈  N  H i    ( x )   , and let   G i   be the subgraph of G induced by    H i  ∪  { x ,  y  3 − i   }   . It is not hard to see that   G i   is a block-chain, and that    {  y  3 − i   }  =  N  G i    ( x )   . By selecting G,   G i   contains a Hamilton path   Q i   (starting from   y  3 − i   ). Then    H i  ∪  { x }    contains a Hamilton path    Q i ′  =  Q i  −  y  3 − i     which starts from x. Thus G contains a Hamilton path    Q 1 ′  x  Q 2 ′   , a contradiction. □





Let   x ∈ C u t ( G )  , and let   y ∈ D ( x , G )  . It is not hard to see that   { x , y }   induce the subgraph which is an end-block of G. If   | C u t ( G ) | ≥ 3  , then there will be at least three end-blocks of G, a contradiction. Thus   | C u t ( G ) | ≤ 2  .



By Theorem A1, let H be a triangle-free graph with   G = L ( H )  . Recall that G is traceable if and only if H contains a dominating trail. Then by the choice of G, H does not contain a dominating trail. Let    c v   ( G )    be the length of the longest cycle of G passing through v. Let    G ′  = G − y   and   H ′   be the subgraph of H corresponding to   G ′   and let   e ,  e 0    be the edges of H corresponding to the vertices   y , x   of G, respectively. Denote   e =  v  ″    v ′    and    e 0  =  v ′   v 0   . Let    C  v 0   =  v 0   v 1   v 2  …  v  | V (  C  v 0   ) | − 1    v 0    be a longest cycle of H passing through   v 0  .



Fact 1.   c  v 0    ( H )  ≤ 5  .



Proof. 

By contradiction, suppose that    c  v 0    ( H )  > 5  . First, we will prove that


  | V (  C  v 0   ) | < 8 .  



(A12)









Proof of (A12):

By contradiction, suppose that   | V (  C  v 0   ) | ≥ 8  . Next, we will prove that H includes   S ∪  P 4    as a subgraph, thus arriving a contradiction in all cases. If   S =  P 4   , then   H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   v 1  ,  v 1   v 2  }  ]  ∪ H  [  {  v 3   v 4  ,  v 4   v 5  ,  v 5   v 6  ,  v 6   v 7  }  ]    is a    L  − 1    (  P 4  )  ∪  L  − 1    (  P 4  )   . If   S =  Z 1   , then there are two paths in   C  v 0    starting   v 0   of length 1. Let    v 0   v 1    and    v 0   v  | V (  C  v 0   ) | − 1     be such two paths. Note that   | V (  C  v 0   ) | ≥ 8  . Then   H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   v 1  ,  v 0   v  | V (  C  v 0   ) | − 1   }  ]  ∪ H  [  {  v 2   v 3  ,  v 3   v 4  ,  v 4   v 5  ,  v 5   v 6  }  ]    is a    L  − 1    (  Z 1  )  ∪  L  − 1    (  P 4  )   . This implies that (A12) holds. □





By (A12),   6 ≤  c  v 0    ( H )  ≤ 7  . Let   X = V  (  C  v 0   )  ∪  {  v ′  ,  v  ″   }   .



Suppose, first, that   S =  P 4   .



Claim 24.  N ( u ) ∩ ( V ( H ) ∖ X ) = ∅   for any   u ∈ N  (  v i  )  ∩  ( V  ( H )  ∖ X )   , for   i ∈ { 0 , 1 , 3 }  .



Proof. 

By contradiction, suppose that there is a vertex    u 0  ∈ N  (  v i  )  ∩  ( V  ( H )  ∖ X )    with   N  (  u 0  )  ∩  ( V  ( H )  ∖ X )  ≠ ∅   for   i ∈ { 0 , 1 , 3 }  . We assume that    u 1  ∈ N  (  u 0  )  ∩  ( V  ( H )  ∖ X )   . Then


         H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   u 0  ,  u 0   u 1  )  }   ] ∪ H   [  {  v 1   v 2  ,  v 2   v 3  ,  v 3   v 4  ,  v 4   v 5  }  ]  ,     if   u 0  =  v 0  ,       H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   v  | V (  C  v 0   ) | − 1   ,  v  | V (  C  v 0   ) | − 1    v  | V (  C  v 0   ) | − 2   }  ]  ∪ H  [  {  u 1   u 0  ,  u 0   v 1  ,  v 1   v 2  ,  v 2   v 3  }  ]  ,     if   u 0  =  v 1  ,       H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   v  | V (  C  v 0   ) | − 1   ,  v  | V (  C  v 0   ) | − 1    v  | V (  C  v 0   ) | − 2   }  ]  ∪ H  [  {  u 1   u 0  ,  u 0   v 3  ,  v 3   v 2  ,  v 2   v 1  }  ]  ,     if   u 0  =  v 3  ,         








is a    L  − 1    (  P 4  )  ∪  L  − 1    (  P 4  )   , a contradiction. □





Claim 25.  | V (  C  v 0   ) | = 6  .



Proof. 

By contradiction, suppose that   | V (  C  v 0   ) | ≥ 7  . By (A12),   | V (  C  v 0   ) | = 7  .   N ( u ) ∩ ( V ( H ) ∖ X ) = ∅   for any   u ∈ N  (  v 2  )  ∩  ( V  ( H )  ∖ X )   . Otherwise, suppose that there exist at least one vertex    u 0  ∈ N  (  v 2  )  ∩  ( V  ( H )  ∖ X )    with   N  (  u 0  )  ∩  ( V  ( H )  ∖ X )  ≠ ∅  . Then we assume that    u 1  ∈ N  (  u 0  )  ∩  ( V  ( H )  ∖ X )   . Then   H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   v 6  ,  v 6   v 5  }  ]  ∪ H  [  {  u 1   u 0  ,  u 0   v 2  ,  v 2   v 3  ,  v 3   v 4  }  ]    is a    L  − 1    (  P 4  )  ∪  L  − 1    (  P 4  )   . Therefore, by symmetry and Claim 24, H contains a dominating trail   T =  v  ″    v ′   C  v 0    , a contradiction. □





Claim 26. For every component   D ∈  D  H [ X ]    (  v 2  , H )   , D has no   P 3   as a subgraph such that one of end of   P 3   is adjacent to   v 2  . Moreover,   H [ V  (  D  H [ X ]    (  v 2  , H )  )  ∪  {  v 2  }  ]   does not contain subgraph which is isomorphic to   P 5  .



Proof. 

Suppose, by contradiction, that there exists a path    P 3  ∈  D  H [ X ]    (  v 2  , H )    such that one of end of   P 3   is adjacent to   v 2  . Let    P 3  =  y 1   y 2   y 3    and    y 1   v 2  ∈ E  ( H )   . Then the   H  [  {  y 3   y 2  ,  y 2   y 1  ,  y 1   v 2  ,  v 2   v 1  }  ]  ∪ H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   v 5  ,  v 5   v 4  }  ]    is a    L  − 1    (  P 4  )  ∪  L  − 1    (  P 4  )   .



Suppose, by contradiction, that   H [ V  (  D  H [ X ]    (  v 2  , H )  )  ∪  {  v 2  }  ]   contains subgraph   F 1   (say) which is isomorphic to   P 5  . Then   H  [ E  (  F 1  )  ]  ∪ H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   v 5  ,  v 5   v 4  }  )   ]    is a    L  − 1    (  P 4  )  ∪  L  − 1    (  P 4  )   . □





If either each of element of    D  H [ X ]    (  v 2  , H )  ∪  D  H [ X ]    (  v 4  , H )    is isomorphic to a subgraph of   P 1  , then by Claim 24, H contains a dominating trail   T =  v  ″    v ′   C  v 0    , a contradiction. Then, by Claim 26, there exists one element   D ∈  D  H [ X ]    (  v 2  , H )  ∪  D  H [ X ]    (  v 4  , H )    such that D has a   P 2   as a subgraph such that one of end of   P 2   is adjacent to   v 2   or   v 4  . Without loss of generality, we assume that one of end of   P 2   is adjacent to   v 2  . Let    P 2  =  v 2 ′   v 2  ″     and    v 2 ′   v 2  ∈ E  ( H )   . We can know that


  N  (  {  v 1  ,  v 3  }  )  ∩  ( V  ( H )  ∖  ( X ∪ V  (  P 2  )  )  )  = ∅  



(A13)







Otherwise, we can find an    L  − 1    (  P 4  )  ∪  L  − 1    (  P 4  )   . Then,   v 4   has a neighbor   v 4 ′   outside   X ∪ V (  P 2  )   and   v 4 ′   has a neighbor   v 4  ″    outside   X ∪ V (  P 2  )  . Otherwise, by Claims 24, 26 and (A13), H contains a dominating trail   T =  v  ″    v ′   v 0   v 5   v 4   v 3   v 2   v 2 ′   v 2  ″    , a contradiction.



By Lemma A2, the number of cut edges in H that is not pendent is at most two and   H ′   is the subgraph of H corresponding to   G ′  . Then, the number of cut edges in   H ′   that is not pendent is at most one. Then, by symmetry and Claim 26, (A13), there is either a vertex v in   {  v 2 ′  ,  v 4 ′  }   with    d  H ′    ( v )  > 2   or a vertex u in   {  v 2  ″   ,  v 4  ″   }   with    d  H ′    ( u )  > 1  .




	(1)

	
There is a vertex v in   {  v 2 ′  ,  v 4 ′  }   with    d  H ′    ( v )  > 2  . Without loss of generality, we assume that    d  H ′    (  v 2 ′  )  > 2  . By Claim 24,    {  v 0  ,  v 5  }  ∩ N  (  v 2 ′  )  = ∅  . Since   g ( G ) ≥ 4  ,   N  (  v 2 ′  )  ∩  {  v 1  ,  v 3  }  = ∅  . By Claim 26,    {  v 4  ,  v 4 ′  ,  v 4  ″   }  ∩ N  (  v 2 ′  )  = ∅  . Then,    d  H ′    (  v 2 ′  )  = 2  , contradicting    d  H ′    (  v 2 ′  )  > 2  .




	(2)

	
There is a vertex u in   {  v 2  ″   ,  v 4  ″   }   with    d  H ′    ( u )  > 1  . Without loss of generality, we assume that    d  H ′    (  v 2  ″   )  > 1  . By Claim 24,    {  v 0  ,  v 1  ,  v 3  ,  v 5  }  ∩ N  (  v 2  ″   )  ≠ ∅  . By Claim 26,    {  v 4  ,  v 4 ′  ,  v 4  ″   }  ∩ N  (  v 2  ″   )  ≠ ∅  . Then,    d  H ′    (  v 2  ″   )  = 1  , contradicting    d  H ′    (  v 2  ″   )  > 1  .









These contradictions show that    c  v 0    ( H )  ≤ 5  .



Suppose, now, that   S =  Z 1   .



Claim 27.  | V (  D  H [ X ]    (  v i  , H )  ) | ≤ 4   for   i ∈ { 0 , 1 , 3 }  .



Proof. 

By contradiction, suppose that   | V (  D  H [ X ]    (  v i  , H )  ) | ≥ 5   for   i ∈ { 0 , 1 , 3 }  .



First, we will show that    |   D  H [ X ]    (  v i  , H )   | ≤ 1   . Otherwise,    |   D  H [ X ]    (  v i  , H )   | > 1   . Then there exist at least two vertices    {  v i ′  ,  v i  ″   }  ⊆ N  (  v i  )  ∩  ( V  ( H )  ∖ X )   , the


         H  [  {  v 0   v ′  ,  v ′   v  ″   ,  v 0   v 0 ′  ,  v 0   v 0  ″   }  ]  ∪ H  [  {  v 1   v 2  ,  v 2   v 3  ,  v 3   v 4  ,  v 4   v 5  }  ]  ,     if  i = 0 ,       H  [  {  v 1   v 2  ,  v 2   v 3  ,  v 1   v 1 ′  ,  v 1   v 1  ″   }  ]  ∪ H  [  {  v  | V (  C  v 0   ) | − 2    v  | V (  C  v 0   ) | − 1   ,  v  | V (  C  v 0   ) | − 1    v 0  ,  v 0   v ′  ,  v ′   v  ″   }  ]  ,     if  i = 1 ,       H [  {  v 3   v 4  ,  v 4   v 5  ,  v 3   v 3 ′  ,  v 3   v 3  ″   }  ∪ H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   v 1  ,  v 1   v 2  }  )  ] ,     if  i = 3 ,         








is a    L  − 1    (  Z 1  )  ∪  L  − 1    (  P 4  )   , a contradiction. This contradiction implies that    |   D  H [ X ]    (  v i  , H )   | ≤ 1   .



Let    {  D i  }  =  D  H [ X ]    (  v i  , H )   . Then


   d D   (  u i  )  ≤ 2  f o r  a n y  v e r t e x   u i  ∈ V  (  D i  )  .  



(A14)







Proof of (A14):

Otherwise, there exists a vertex    u  i 0   ∈ V  (  D  i 0   )    with    d  D  i 0     (  u  i 0   )  ≥ 3  . Then


         H [ V  (  D 0  )  ∪  {  v 0  ,  v ′  }  ] ,     if  i = 0 ,       H [ V  (  D 1  )  ∪  {  v 1  ,  v 2  }  ] ,     if  i = 1 ,       H [ V  (  D 3  )  ∪  {  v 3  ,  v 2  }  ] ,     if  i = 3 ,         








contains a subgraph   F ≅  T  1 , 1 , 2    . Then


         H  [ E  ( F )  ]  ∪ H  [  {  v 1   v 2  ,  v 2   v 3  ,  v 3   v 4  ,  v 4   v 5  }  ]  ,     if  i = 0 ,       H  [ E  ( F )  ]  ∪ H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   v  | V (  C  v 0   ) | − 1   ,  v  | V (  C  v 0   ) | − 1    v  | V (  C  v 0   ) | − 2   }  ]  ,     if  i ∈ { 1 , 3 } ,         








is a    L  − 1    (  Z 1  )  ∪  L  − 1    (  P 4  )   , a contradiction. This implies that (A14) holds. □





  D i   does not contain a subgraph   P 5  . Otherwise,   H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   v 1  ,  v 0   v  | V (  C  v 0   ) | − 1   }  ]  ∪ H  [ E  (  P 5  )  ]    is a    L  − 1    (  Z 1  )  ∪  L  − 1    (  P 4  )   , a contradiction. Combining this with (A14),   | V (  D  H [ X ]    (  v i  , H )  ) | ≤ 4  . □





Claim 28.  | V (  C  v 0   ) | = 6  .



Proof. 

By contradiction, suppose that   | V (  C  v 0   ) | = 7  . First, we will show that


  N  (  v i  )  ∩  ( V  ( H )  ∖ X )  = ∅  f o r  i ∈  { 2 , 5 }  .  



(A15)







Proof of (A15):

By symmetry, it just need to deal with   N  (  v 2  )  ∩  ( V  ( H )  ∖ X )  = ∅  . By contradiction, suppose that there exists at least one vertex    v 2 ′  ∈ N  (  v 2  )  ∩  ( V  ( H )  ∖ X )   . Then   H  [  {  v 0   v ′  ,  v ′   v  ″   ,  v 0   v 1  ,  v 0   v 6  }  ]  ∪ H  [  {  v 2 ′   v 2  ,  v 2   v 3  ,  v 3   v 4  ,  v 4   v 5  }  ]    is a    L  − 1    (  Z 1  )  ∪  L  − 1    (  P 4  )   , a contradiction. This contradiction implies that (A15) holds. □





By Claim 27 and (A15),   n ( H ) ≤ 29  . By Theorem A5, since H is   K 3  -free,   e ( H ) ≤ 211   and   n ( G ) ≤ 211  , contradicting   n ( G ) ≥ 212  .





By Claim 28,   | V (  C  v 0   ) | = 6  . Then   N ( u ) ∩ ( V ( H ) ∖ X ) = ∅   for any vertex   u ∈ N  (  v 2  )  ∩  ( V  ( H )  ∖ X )   . Otherwise, there exists at least one vertex    v 2 ′  ∈ N  (  v 2  )  ∩  ( V  ( H )  ∖ X )    with   N  (  v 2 ′  )  ∩  ( V  ( H )  ∖ X )  ≠ ∅  . We assume that    v 2  ″   ∈ N  (  v 2 ′  )  ∩  ( V  ( H )  ∖ X )   , then   H  [  {  v 2   v 2 ′  ,  v 2 ′   v 2  ″   ,  v 2   v 3  ,  v 2   v 1  }  ]  ∪ H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   v 5  ,  v 5   v 4  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   .



Suppose first that   ∣ N  (  v 2  )  ∩  ( V  ( H )  ∖ X )  ∣ ≤ 1   and   ∣ N  (  v 4  )  ∩  ( V  ( H )  ∖ X )  ∣ ≤ 1  . By Claims 27,   n ( H ) ≤ 26  . By Theorem A5, since H is   K 3  -free,   e ( H ) ≤ 169   and   n ( G ) ≤ 169  , contradicting   n ( G ) ≥ 212  .



Suppose now that   ∣ N  (  v 2  )  ∩  ( V  ( H )  ∖ X )  ∣ > 1   or   ∣ N  (  v 4  )  ∩  ( V  ( H )  ∖ X )  ∣ > 1  . By symmetry, it suffices to consider that   ∣ N  (  v 2  )  ∩  ( V  ( H )  ∖ X )  ∣ > 1  . Then   N  (  v i  )  ∩  ( V  ( H )  ∖ X )  = ∅   for   i ∈ { 0 , 1 , 3 , 5 }  . Otherwise, we also can find an    L  − 1    (  Z 1  ∪  P 4  )   . Then H contains a dominating trail   T =  v  ″    v ′   C  v 0    , a contradiction.



These contradictions show that    c  v 0    ( H )  ≤ 5  . Therefore, Fact 1 holds. □





Claim 29.  c ( H ) ≤ 5  .



Proof. 

By contradiction, suppose that   c ( H ) > 5  . Let   C =  x 1   x 2  …  x  c ( H ) − 1    x 1    be a longest cycle of H. Note that there are at most two cut vertices in G. Then, by Claim 23, H contains at least a maximal 2-connected subgraph   H 1   such that    v 0  ∈ V  (  H 1  )   . It is easy to see that   C ⊆  H 1   . Otherwise we can find a   S ⋃  P 5    in H for   S ∈ {  P 5  ,  T  1 , 1 , 2   }  . By Fact 1,    v 0  ∉ V  ( C )   . By Fan Lemma, there exists a   (  v 0  , V  ( C )  )  -fan   {  L 1  ,  L 2  }   of width 2 in   H 1  . Then   | V (  C  v 0   ) | = 5  . Otherwise, by Fact 1,   | V (  C  v 0   ) | = 4  . Then it will produce a cycle of length at least 5 passing through   v 0  , a contradiction.



Note that   | V (  C  v 0   ) | = 5   and   c ( H ) > 5  . Then   c ( H ) = 6   and   L i   is an edge between the vertex   v 0   and C for   i ∈ { 1 , 2 }  . Otherwise, it will produce a cycle of length at least 6 passing through   v 0  , a contradiction. Without loss of generality, we assume that    L 1  =  v 0   x 1    and    L 2  =  v 0   x 4   . Let   Z = V  ( C )  ∪  {  v  ″   ,  v ′  ,  v 0  }   .



Suppose, first, that   S =  P 4   . We will prove that


  N ( V ( C ) ) ∩ ( V ( H ) ∖ Z ) = ∅ .  



(A16)







Proof of (A16):

Otherwise, there exists a vertex   x ∈ N ( V ( C ) ) ∩ ( V ( H ) ∖ Z )  . By symmetry, we just need to consider the case x is the neighbor of   x 1   or   x 2  . If x is the neighbor of   x 1  , then   H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   x 1  ,  x 1  x )  }   ] ∪ H   [  {  x 2   x 3  ,  x 3   x 4  ,  x 4   x 5  ,  x 5   x 6  }  ]    is a    L  − 1    (  P 4  ∪  P 4  )   , a contradiction. If x is the neighbor of   x 2  , then   H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   x 1  ,  x 1   x 6  }  ]  ∪ H  [  { x  x 2  ,  x 2   x 3  ,  x 3   x 4  ,  x 4   x 5  }  ]    is a    L  − 1    (  P 4  ∪  P 4  )   , a contradiction. These imply that (A16) holds. □





  N ( u ) ∩ ( V ( H ) ∖ Z ) = ∅   for any vertex   u ∈ N  (  v 0  )  ∩  ( V  ( H )  ∖ Z )   . Otherwise, there exists at least one vertex    u 0  ∈ N  (  v 0  )  ∩  ( V  ( H )  ∖ Z )    such that   N  (  u 0  )  ∩  ( V  ( H )  ∖ Z )  ≠ ∅  . Let    u 1  ∈ N  (  u 0  )  ∩  ( V  ( H )  ∖ Z )   . Then   H  [  {  u 1   u 0  ,  u 0   v 0  ,  v 0   v ′  ,  v ′   v  ″   }  ]  ∪ H  [  {  x 1   x 2  ,  x 2   x 3  ,  x 3   x 4  ,  x 4   x 5  }  ]    is a    L  − 1    (  P 4  ∪  P 4  )   . Then, by (A16), H contains a dominating trail   T =  v  ″    v ′   v 0  C  , a contradiction. This implies that   c ( H ) ≤ 5  .



Suppose, now, that   S =  Z 1   .   N  (  v 0  )  ∩  ( V  ( H )  ∖ Z )  = ∅  . Otherwise, there exists at least one vertex    v 0 ′  ∈ N  (  v 0  )  ∩  ( V  ( H )  ∖ Z )   , then   H  [  {  v 0   v ′  ,  v ′   v  ″   ,  v 0   v 0 ′  ,  v 0   x 1  }  ]  ∪ H  [  {  x 2   x 3  ,  x 3   x 4  ,  x 4   x 5  ,  x 5   x 6  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   , a contradiction. Furthermore,   N  (  x 1  )  ∩  ( V  ( H )  ∖ Z )  = ∅  . Otherwise, there exists at least one vertex    x 1 ′  ∈ N  (  x 1  )  ∩  ( V  ( H )  ∖ Z )   , then   H  [  {  x 1   x 1 ′  ,  x 1   x 2  ,  x 1   x 6  ,  x 6   x 5  }  ]  ∪ H  [  {  x 3   x 4  ,  x 4   v 0  ,  v 0   v ′  ,  v ′   v  ″   }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   , a contradiction. Next,    |   D  H [ Z ]    (  x 2  , H )   | ≤ 1    and    D  H [ Z ]    (  x 2  , H )    contains at most one element of   {  P 1  ,  P 2  }  . Otherwise, we also can find a    L  − 1    (  Z 1  ∪  P 4  )   . It means that   n ( H ) ≤ 17  . By Theorem A5, since H is   K 3  -free,   e ( H ) ≤ 74   and   n ( G ) ≤ 74  , contradicting   n ( G ) ≥ 212  . This implies that   c ( H ) ≤ 5  . □





Note that   | C u t ( G ) | ≤ 2  . Then we should distinguish the following cases to prove Theorem 11.



Case 1.  | C u t ( G ) | = 1  , say   { x } = C u t ( G )  .



If   | V (  G ′  ) | = 2  , then the result is trivially true. Thus we suppose that   | V (  G ′  ) | ≥ 3  . If   C u t (  G ′  ) ≠ ∅  , say   y ∈ C u t (  G ′  )   (note that   x ∉ C u t (  G ′  )  ), then   y ∈ C u t ( G )  , a contradiction. So we assume that   G ′   is 2-connected. Then   H ′   is an essentially 2-edge-connected graph such that   g ( H ) ≥ 4  . Let   H 0   be the core of   H ′  .



If   H 0   is 2-connected, then, by Fact 1,    c  v 0    ( H )  ≤ 5  . By Claim 29 and Theorem A7,   H 0   has a spanning trail that starts from   v 0  . Then H has a dominating trail, a contradiction. Therefore,   H 0   has cut vertex of H.



We define   Λ (  H ′  )   to be the set of the vertices in   H ′   which are also vertices in   H 0   and adjacent to a vertex of degree 1 in   H ′  . Let    B 1  ,  B 2  ,    … ,  B  t ′     be all the blocks of   H 0   and   H  (  B i  )  =  B i   ∪ { e : e    is a pendent edge of   H ′   and e has one end in   V  (  B i  )  ∩ Λ  (  H ′  )   }   .   H (  B i  )   is called a super-block of   H ′  . Note that   H 0   is 2-edge-connected graph with   g ( H ) ≥ 4  . Then   B i   is not isomorphic to   K 2   for   i ∈ { 1 , … ,  t ′  }  . Let   B (  v 0  )   be the set of block of   H 0   which contain the vertex   v 0   and   C u t (  H 0  )   be the set of cut vertices of   H 0  . By Fact 1,   4 ≤  c  v 0    (  B i  )  ≤ 5   for   i ∈ { 1 , … ,  t ′  }  .



Claim 30. If   | V (  C  v 0   ) | = 4  , then   c (  B i  ) = 4   for any block    B i  ∈ B  (  v 0  )   . Moreover,    B i  ≅  K  2 , t     for   t ≥ 2  .



Proof. 

By contradiction, suppose that there exists at least one block    B  i 0   ∈ B  (  v 0  )    such that   c (  B  i 0   ) ≥ 5  . Let   C  i 0    be a longest cycle of   B  i 0   . Then    v 0  ∉ V  (  C  i 0   )   . By Fan Lemma, there exists a   (  v 0  , V  (  C  i 0   )  )  -fan   {  L 1  ,  L 2  }   of width 2. Note that   | V (  C  v 0   ) | = 4   and   c (  B  i 0   ) ≥ 5  . Then it will produce a cycle of length at least 5 passing through   v 0  , a contradiction.



Moreover, if   c (  B i  ) = 4  , then it easy to check that    B i  ≅  K  2 , t     for   t ≥ 2  . Otherwise it will produce a cycle of length at least 5 in   B i  , contradicting   c (  B i  ) = 4  . □





Let    B 1   (  v 0  )  =  { B ∈ B  (  v 0  )  :  c  v 0    ( B )  = 4 }    and    B 2   (  v 0  )  =  { B ∈ B  (  v 0  )  :  c  v 0    ( B )  = 5 }   . Then, by Claim 29,   B  (  v 0  )  =  B 1   (  v 0  )  ∪  B 2   (  v 0  )   . Then We should tell the following two cases apart.



Case 1.1  S =  P 4   .



Suppose first that   | B (  v 0  ) | = 1  , say   B  (  v 0  )  =  B 1   . Note that   H 0   has cut vertex. Then there exists at least one block say   B 2   such that    B 2  ≠  B 1    and    v 0  ∉ V  (  B 1  ∩  B 2  )   . Then    c  v 0    (  B 1  )  = 4  . Otherwise, by Fact 1,    c  v 0    (  B 1  )  = 5  . Note that   g (  B 2  ) ≥ 4  . Then we can find a    P 5  ⋃  P 5   , a contradiction. By Claim 30,    B 1  ≅  K  2 , t     for   t ≥ 2  . It is easy to verify that   c (  B 2  ) ≤ 5   and    H 0  =  B 1  ∪  B 2   . Otherwise, we can find a    P 5  ⋃  P 5   . Let   v ∈ V  (  B 1  )  ∪ V  (  B 2  )   . Then   v ≠  v 0   . Let   C =  v 0   v 1   v 2   v 3   v 0    be a longest cycle of   B 1   passing through   v 0   and v.


  I f  v ∈  {  v 1  ,  v 2  }  ,  t h e n   v 3  ∈  V 2   ( H  (  B 1  )  )  .  



(A17)







Proof of (A17):

By contradiction, suppose that there is at least one vertex    v 3 ′  ∈ V  ( H  (  B 1  )  )  ∖  {  v 0  ,  v 2  }    and    v 3   v 3 ′  ∈ E  ( H  (  B 1  )  )   . Note that   g (  B 2  ) ≥ 4  . Then   H [ V  (  B 2  )  ∪  {  v 1  ,  v 2  }  ]   contains a subgraph   F ≅  P 5   . Then the subgraph formed by    v  ″    v ′   v 0   v 3   v 3 ′    and   P 5   is an    L  − 1    (  P 4  ∪  P 4  )   , a contradiction. This implies that (A17) holds. □





We assume that   v ∈ {  v 1  ,  v 3  }  . Without loss of generality, we assume that   v =  v 1   . Note that    B 1  ≅  K  2 , t     for   t ≥ 2  . Then, by (A17), there exists a dominating trail    T 1  =  v 0   v 3   v 2   v 1    of   H (  B 1  )   from   v 0   to   v 1  . Note that   c (  B 2  ) ≤ 5  . Then by Theorem A7, there exists a dominating trail   T 2   of   H (  B 2  )   that starts from   v 1  . Since    H 0  =  B 1  ∪  B 2   , we can find a dominating trail    v  ″    v ′   T 1  ∪  T 2    of H, a contradiction. This implies that   v =  v 2   . Then, by (A17), there exists a dominating trail    T 1  =  v 0   v 3   v 2    of   H (  B 1  )   from   v 0   to   v 2  . Note that   c (  B 2  ) ≤ 5   and    H 0  =  B 1  ∪  B 2   . Then, by Theorem A7, we can find a dominating trail of H, a contradiction.



Suppose now that   | B (  v 0  ) | ≠ 1  . Then there exist at least two block   B i  ,   B j   such that    {  B i  ,  B j  }  ⊆ B  (  v 0  )   . It is easy to verify that   C u t  (  G 0  )  =  {  v 0  }   . Otherwise, we can find a    P 5  ⋃  P 5    in H.



Claim 31. For any block   B i  ,   B i   has a dominating cycle of   H (  B i  )   passing through   v 0  .



Proof. 

Note that   C u t  (  G 0  )  =  {  v 0  }   . Then    B i  ∈ B  (  v 0  )   . By Fact 1,    c  v 0    (  B i  )  ≤ 5  .



Suppose first that    B i  ∈  B 1   (  v 0  )   . By Claim 30,    B i  ≅  K  2 , t    . Then   ∣  (  V 2   (  B i  )  ∖  {  v 0  }  )  ∩ Λ  (  H ′  )  ∣ ≤ 1  . Otherwise,   H [ V  ( H  (  B i  )  )  ∖  {  v 0  }  ]   contains a subgraph    F 1  ≅  P 5   , and   H [ V  ( H  (  B j  )  )  ∪  {  v  ″   ,  v ′  }  ]   contains a subgraph    F 2  ≅  P 5   . Then we can find    P 5  ⋃  P 5    in H. Therefore,   B i   has a dominating cycle of   H (  B i  )   passing through   v 0  .



Suppose now that    B i  ∈  B 2   (  v 0  )   . Let   C =  v 0   v 1   v 2   v 3   v 4   v 0    be a longest cycle of   B i   passing through   v 0  . By Claim 29,   c (  B i  ) = 5  .


   {  v 1  ,  v 4  }  ⊆  V 2   ( H )  .  



(A18)







Proof of (A18):

By contradiction, suppose that   d (  v 1  ) > 2   or   d (  v 4  ) > 2  . Without loss of generality, we assume that   d (  v 1  ) > 2  . Note that   c (  B i  ) = 5   and there exist at least one block   B j   such that   V  (  B j  )  ∩ V  (  B j  )  =  {  v 0  }   . Then there exist one vertex    v 1 ′  ∈ V  ( H )  ∖  ( V  (  B i  ∪  B j  )  ∪  {  v  ″   ,  v ′  }  )    such that    v 1   v 1 ′  ∈ E  ( H )   . Then   H [ V  (  B j  )  ∪  {  v  ″   ,  v ′  }  ]   contains a subgraph   F ≅  P 5   . Therefore,   H  [  {  v 1 ′   v 1  ,  v 1   v 2  ,  v 2   v 3  ,  v 3   v 4  }  ]  ∪ H  [ E  ( F )  ]    is a    L  − 1    (  P 4  ∪  P 4  )   , a contradiction. This indicate that (A18) holds. □





By Claim 29 and (A18),   B ≅  S  m , l    . By symmetry and (A18) again,    ( V  (  B i  )  ∖  {  v 0  ,  v 2  ,  v 3  }  )  ⊆  V 2   ( H )   . Then   B i   has a dominating cycle C of   H (  B i  )   passing through   v 0  .





Note that    H 0  = ⋃  B i    for   i ∈ [ 1 ,  t ′  ]  . By Claim 31, H contains a dominating trail T, a contradiction.



Case 1.2  S =  Z 1   .



Claim 32.  C u t  (  H 0  )  ≠  {  v 0  }   .



Proof. 

By contradiction, suppose that   C u t  (  H 0  )  =  {  v 0  }   . For any block   B i   (  i ∈ [ 1 ,  t ′  ]  ),    B i  ∈ B  (  v 0  )   . By Fact 1,    c  v 0    (  B i  )  ≤ 5  . We will prove that


  e a c h    B i    h a s   a   d o m i n a t i n g   c y c l e   o f   H  (  B i  )    p a s s i n g   t h r o u g h    v 0  .  



(A19)







Proof of (A19):

Suppose first that    B i  ∈  B 1   (  v   0   )   . By Claim 30,    B i  ≅  K  2 , t    . Note that   | B (  v 0  ) | ≠ 1  . Then there exist at least one block   B j   such that   V  (  B i  )  ∩ V  (  B j  )  =  {  v 0  }   . Therefore,   H [ V  (  B j  )  ∪  {  v  ″   ,  v ′  }  ]   contains a subgraph    F 1  ≅  T  1 , 1 , 2    . Then   ∣  (  V 2   (  B i  )  ∖  {  v 0  }  )  ∩ Λ  (  H ′  )  ∣ ≤ 1  , otherwise,   ∣  (  V 2   (  B i  )  ∖  {  v 0  }  )  ∩ Λ  (  H ′  )  ∣ ≥ 2  , say    { u , w }  ⊆  (  V 2   (  B i  )  ∖  {  v 0  }  )  ∩ Λ  (  H ′  )   . Then there exist at least two vertices    {  u ′  ,  w ′  }  ⊆ V  ( H )  ∖  ( V  (  B i  ∪  B j  )  ∪  {  v ′  ,  v  ″   }  )    such that    { u  u ′  , w  w ′  }  ⊆ E  ( H )   . Therefore,   H [  ( V  (  B i  )  ∪  {  u ′  ,  w ′  }  )  ∖  {  v 0  }  ]   contains a subgraph    F 2  ≅  P 5   . Then   H  [ E  (  F 1  )  ]  ∪ H  [ E  (  F 2  )  ]    is an    L  − 1    (  Z 1  ∪  P 4  )   , a contradiction. Therefore,   B i   has a dominating cycle of   H (  B i  )   passing through   v 0  . □





Suppose now that    B i  ∈  B 2   (  v   0   )   . Let   C =  v 0   v 1   v 2   v 3   v 4   v 0    be a longest cycle of B passing through   v 0  . By Claim 29,   c (  B i  ) = 5  .


   {  v 1  ,  v 4  }  ⊆  V 2   ( H )  .  



(A20)







Proof of (A20):

By contradiction, suppose that   d (  v 1  ) > 2   or   d (  v 4  ) > 2  . Without loss of generality, we assume that   d (  v 1  ) > 2  . Note that   c (  B i  ) = 5   and there exist at least one block   B j   such that   V  (  B i  )  ∩ V  (  B j  )  =  {  v 0  }   . Then there exist one vertex    v 1 ′  ∈ V  ( H )  ∖  ( V  (  B i  ∪  B j  )  ∪  {  v  ″   ,  v ′  }  )    such that    v 1   v 1 ′  ∈ E  ( H )   . Then   H [ V  (  B j  )  ∪  {  v  ″   ,  v ′  }  ]   contains a subgraph   F ≅  T  1 , 1 , 2    . Therefore,   H  [  {  v 1 ′   v 1  ,  v 1   v 2  ,  v 2   v 3  ,  v 3   v 4  }  ]  ∪ H  [ E  ( F )  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   , a contradiction. This implies that (A20) holds. □





By Claim 29 and (A20),    B i  ≅  S  m , l    . By symmetry and (A20) again,   B i   has a dominating cycle C of   H (  B i  )   passing through   v 0  .



These imply that (A19) holds.



Note that   T  (  H 0  )  =  {  v 0  }    and   B  (  v 0  )  =  B 1   (  v 0  )  ∪  B 2   (  v 0  )   . Then, by (A19), H contains a dominating trail, a contradiction. □





Next, we will show that


   c  v 0    (  B i  )  = 4  f o r  a n y   B i  ∈ B  (  v 0  )  .  



(A21)







Proof of (A21):

Otherwise, there exists at least one block    B  i 0   ∈ B  (  v 0  )    such that    c  v 0    (  B  i 0   )  = 5  . By Claim 32,   C u t  (  H 0  )  ≠  {  v 0  }   . Note that   H 0   has cut vertex. Then we can find a    T  1 , 1 , 2   ⋃  P 5    in H, a contradiction. This implies that (A21) holds. □





Note that   H 0   has cut vertex. Then there exists at least two blocks    {  B 1  ,  B 2  }  ⊆  H 0    such that    B 1  ∈ B  (  v 0  )   ,    B 2  ∉ B  (  v 0  )    and    B 1  ∩  B 2  =  { v }   . By (A21),    c  v 0    (  B 1  )  = 4  . By Claim A.3,    B 1  ≅  K  2 , t    . Let    C 1  =  v 0   v 1   v 2   v 3   v 0    be a longest cycle of   B 1   passing through   v 0   and v. Then   v ∈ {  v 1  ,  v 2  ,  v 3  }  . And    H 0  =  B 1  ∪  B 2    and   c (  B 2  ) ≤ 5  , otherwise, we can find a    T  1 , 1 , 2   ⋃  P 5    in H. Then   t > 2  , otherwise, note that   c (  B 2  ) ≤ 5  . Then, by Theorem A7, there exists a spanning trail   T ′  (say) of   B 2   starts from any given vertex. Therefore, H contains a dominating trail, a contradiction.



Suppose first that   v ∈ {  v 1  ,  v 3  }  . By symmetry, it suffices to consider that   v =  v 1   . Then


   v 3  ∈  V 2   ( H )  .  



(A22)







Proof of (A22):

Otherwise, there exist at least one vertex    v 3 ′  ∈ V  ( H )  ∖  ( V  (  C 1  ∪  B 2  )  ∪  {  v ′  ,  v  ″   }  )    such that    v 3   v 3 ′  ⊆ E  ( H )   . Note that   g (  B 2  ) ≥ 4  . Then   H [ V  (  B 2  )  ∪  {  v 2  }  ]   contains a subgraph    F 1  ≅  T  1 , 1 , 2    . Therefore,   H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   v 3  ,  v 3   v 3 ′  }  ]  ∪ H  [ E  (  F 1  )  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   , a contradiction. This implies that (A22) holds. □





Note that    B 1  ≅  K  2 , t    . Then by (A22),    {  v 1  ,  v 3  }  ⊆  V 2   (  B 1  )   . Note that    H 0  =  B 1  ∪  B 2   . Then, by symmetry and (A22),    V 2   (  B 1  )  ∖  {  v 1  }  ⊆  V 2   ( H )   . Then    v 0   v 3   v 2   v 1    is a dominating tail of   H (  B 1  )   from   v 0   to   v 1  . Note that   c (  B 2  ) ≤ 5  . Then, by Theorem A7, there exists a spanning trail   T ′  (say) of   B 2   starts from the vertex   v 1  . Therefore, H contains a dominating trail, a contradiction.



Suppose now that   v =  v 2   . Then


   v 1  ∈  V 2   ( H )   



(A23)







Proof of (A23):

Otherwise, there exist at least one vertex    v 1 ′  ∈ V  ( H )  ∖  ( V  (  C 1  ∪  B 2  )  ∪  {  v ′  ,  v  ″   }  )    such that    v 1   v 1 ′  ⊆ E  ( H )   . Note that   g (  B 2  ) ≥ 4  . Then   H [ V  (  B 2  )  ∪  {  v 3  }  ]   contains a subgraph    F 1 ′  ≅  T  1 , 1 , 2    . Therefore,   H  [  {  v  ″    v ′  ,  v ′   v 0  ,  v 0   v 1  ,  v 1   v 1 ′  }  ]  ∪ H  [ E  (  F 1 ′  )  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   , a contradiction. This implies that (A23) holds. □





By (A23),    {  v 1  ,  v 3  }  ⊆  V 2   (  B 1  )   . Note that    H 0  =  B 1  ∪  B 2   . Then, by symmetry and (A23),    V 2   (  B 1  )  ⊆  V 2   ( H )   . Then    v 0   v 3   v 2    is a dominating tail of   H 1 ′   from   v 0   to   v 2  . Note that   c (  B 2  ) ≤ 5  . Then, by Theorem A7, there exists a spanning trail   T ′  (say) of   B 2   starts from the vertex   v 2  . Therefore, H contains a dominating trail, a contradiction.



Case 2.  | C u t ( G ) | = 2  .



Let   { r , s } = C u t ( G )  , and let    r 0  ∈ D  ( r , G )    and    s 0  ∈ D  ( s , G )   , respectively. Let   B = G − {  r 0  ,  s 0  }  . If   V ( B ) = { r , s }  , then obviously G is traceable. Therefore, we suppose that   | V ( B ) | ≥ 3  . It can be observed that if   C u t ( B ) ≠ ∅  , say   b ∈ C u t ( B )  , then   b ∈ C u t ( G )  (clearly   { r , s } ∩ C u t ( B ) = ∅  ), a contradiction. Then, we suppose that B is 2-connected.



Let   B ′   be the subgraph of H corresponding to B and let   e , f ,  e 0  ,  f 0    be the edges of H which correspond to the vertices   r , s ,  r 0  ,  s 0    of G, respectively. Denote    e 0  =  v 1   v 1 ′   ,   e =  v 1 ′   v 1  ″    ,    f 0  =  v 2   v 2 ′    and   f =  v  2  ′   v 2  ″    .



Note that G is traceable if and only if there is dominating trail of H, and it is obvious that every dominating trail in H is certain to have    v 1  /  v 1 ′    and    v 2  /  v 2 ′    as end vertices. Let T be a trail in H from   v 1   to   v 2   satisfying it dominates a maximum number of edges. By the hypothesis, T is not a dominating trail. Let D be a non-trivial component of   H − V ( T )  .



Claim 33.  ∣  N T   ( D )  ∣ ≥ 2  .



Proof. 

By contradiction, suppose that    N T   ( D )  =  { u }   . If    |   N D    ( u )  | = 1   , say    N D   ( u )  =  { x }   , then   u x   is a cut edge of H and the vertex of G which corresponds to   u x   that belongs to   C u t ( G ) ∖ { r , s }  , a contradiction. Thus    |   N D    ( u )  | ≥ 2   , say    { x , y }  ⊆  N D   ( u )   . Let P be a path of D from x and y. Then    T ′  = T ∪ u x P y u   is a trail dominating more edges than T, which is opposite to the choice to T. □





By Claim 33, let    {  u 1  ,  u 2  }  ⊆  N T   ( D )   . Let P be a path from   u 1   to   u 2   with   | V ( P ) | ≥ 3   and    { V  ( P )  ∖  {  u 1  ,  u 2  }  }  ⊆ V  ( D )   . If    u 1   u 2  ∈ E  ( T )   , then    T ′  = T −  u 1   u 2  ∪ P   is a trail dominating more edges than T, a contradiction. Hence we come to a conclusion that    u 1   u 2  ∉ E  ( T )   . Let Q be a path from   u 1   to   u 2   with all edges in T. Note that    u 1   u 2  ∉ E  ( T )   . Then   ∣ E ( Q ) ∣ ≥ 2  . We choose Q as long as possible. Clearly   C = P ∪ Q   is a cycle of H.



Let   Q 1   be a path from   v 1   to C, and   Q 2   be a path from   v 2   to   C ∪  Q 1   . Let   w 1   and   w 2   be the end vertices of   Q 1   and   Q 2   other than   v 1   and   v 2  , respectively. Let   Y = V (  Q 1  ∪  Q 2  ∪ C )  .



Since G is   S ∪  P 4   -free, H does not contain copy of    L  − 1    ( S ∪  P 4  )    as a (not necessarily induced) subgraph. In the below, we prove that H contains    L  − 1    ( S ∪  P 4  )    as a subgraph, thus deducing a contradiction in all cases.



Case 2.1  S =  P 4   .



Case 2.1.1.   w 2  ∈ V  (  Q 1  )   .



In this case,   Q 1   is divided by   w 2   into two subgraphs. Let   P 1 ′   be the subgraph of   Q 1   from   v 1   to   w 2  , and   P 1  ″    from   w 2   to   w 1   (  P 1  ″    consists of only one   w 1   if    w 1  =  w 2   ). Since    N H   (  v 1 ′  )  =  {  v 1  ,  v 1  ″   }   , we have   | V (  P 1 ′  ) | ≥ 3  , and similarly   | V (  Q 2  ) | ≥ 3  . Let    {  x 1  }  =  N  P 1 ′    (  w 2  )   ,    {  x 1 ′  }  =  N  P 1 ′    (  x 1  )  ∖  {  w 2  }   , and let    {  x 2  }  =  N  Q 2    (  w 2  )   ,    {  x 2 ′  }  =  N  Q 2    (  x 2  )  ∖  {  w 2  }   .



If    | V   (  P 1  ″   ∪ C )  ∖  {  w 2  }   | ≥ 5   , then there is a path in    P 1  ″   ∪ C   staring from   w 2   of length at least 5. Let    w 2  y  y 1   y 2   y 3    be such a path. Then   H [  {  x 1 ′   x 1  ,  x 1   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ∪ H  {  w 2  y , y  y 1  ,  y 1   y 2  ,  y 2   y 3  }  ]   is a    L  − 1    (  P 4  ∪  P 4  )   .



If    | V   (  P 1  ″   ∪ C )  ∖  {  w 2  }   | = 4   , then    w 1  =  w 2    or    w 1   w 2  ∈ E  ( T )   . Suppose first that    w 1   w 2  ∈ E  ( T )   . Note that    u 1   u 2  ∉ E  ( C )   . Let   C =  u 1  y  u 2  z  u 1   , where y is a vertex of D, and let    y ′  ∈  N D   ( y )   . Then   H [  {  y ′  y , y  u 2  ,  u 2  z , z  u 1  }  ∪ H  {  x 1 ′   x 1  ,  x 1   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]   is an    L  − 1    (  P 4  ∪  P 4  )   . Suppose now that    w 1  =  w 2   . Note that    u 1   u 2  ∉ E  ( C )   . Let   C =  w 2   y 1  z x  y 2   w 2   . Then


  N  (  y i  )  ∩  ( V  ( H )  ∖ Y )  = ∅ ,  for  i ∈  { 1 , 2 }  .  



(A24)







Proof of (A24):

By contradiction, without loss of generality, suppose that   N  (  y 1  )  ∩  ( V  ( H )  ∖ Y )  ≠ ∅  . Then there exists a vertex    y 1 ′  ∈ N  (  y 1  )  ∩  ( V  ( H )  ∖ Y )   . Then the   H [  {  y 1 ′   y 1  ,  y 1  z , z x , x  y 2  }  ∪ H  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   x 2  ,  x 2   x 2 ′  }  ]   is a    L  − 1    (  P 4  ∪  P 4  )   . This implies that (A24) holds. □





If    {  y 1  ,  y 2  }  ∩ V  ( D )  = ∅  , then    u 1  =  y 1    or    u 2  =  y 2   . Without loss of generality, we assume that    u 1  =  y 1   . Let    u 1 ′  ∈  N T   (  u 1  )    and    u 1 ′  ≠  w 2    Since H is triangle-free,    u 1 ′  ∉  {  x 1  ,  x 2  , x ,  y 2  }   . By (A24),    u 1 ′  ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 2  ,  x 1  ,  x 2  }   . Then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. Then    y 1  ∈ V  ( D )    or    y 2  ∈ V  ( D )   . Now we assume that    y 1  ∈ V  ( D )   . By (A24),   z ∈ V ( D )  . Note    u 1   u 2  ∉ E  ( C )   . Then    u 1  =  w 2    and    u 2  = x  . Let    u 2 ′  ∈  N T   (  u 2  )    and    u 2 ′  ≠  y 2    (  u 2 ′   exists due to    d T   (  u 2  )    is even). Since H is   K 3  -free,    u 2 ′  ∉  {  w 2  ,  y 1  }   . If    u 2 ′  ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 2  ,  x 1  ,  x 2  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. If    u 2 ′  =  x 1   , then    x 1  ≠  v 1 ′    and    x 1 ′  ≠  v 1   . Let    x 1  ″   ∈  N  Q 1    (  x 1 ′  )    and    x 1  ″   ≠  x 1   . Then   H  [  {  x 1  ″    x 1 ′  ,  x 1 ′   x 1  ,  x 1  x , x  y 2  }  ]  ∪ H  [  {  x 2 ′   x 2  ,  x 2   w 2  ,  w 2   y 1  ,  y 1  z }  ]    is a    L  − 1    (  P 4  ∪  P 4  )   . If    u 2 ′  =  x 2   , then    x 2  ≠  v 2 ′    and    x 2 ′  ≠  v 2   . Let    x 2  ″   ∈  N  Q 2    (  x 2 ′  )    and    x 2  ″   ≠  x 2   . Then   H  [  {  x 1 ′   x 1  ,  x 1   w 2  ,  w 2   y 1  ,  y 1  z }  ]  ∪ H  [  {  x 2  ″    x 2 ′  ,  x 2 ′   x 2  ,  x 2  x , x  y 2  }  ]    is an    L  − 1    (  P 4  ∪  P 4  )   . Thus,    u 2 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   . Let    u 2  ″   ∈  N T   (  u 2 ′  )    and    u 2  ″   ≠  u 2    (  u 2  ″    exists due to the    d T   (  u 2  )    is even). Since H is   K 3  -free,    u 2  ″   ∉  { z ,  y 2  }   . If    u 2  ″   ∈ V  (  Q 1  ∪  Q 2  ∪ C )  ∖  {  w 2  , z ,  y 2  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. If    u 2  ″   ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  {  u 2  ″    u 2 ′  ,  u 2 ′  x , x z , z  y 1  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]    is a    L  − 1    (  P 4  ∪  P 4  )   . Now we assume that    u 2  ″   =  w 2   . Note that   u 2 ′   has no neighbor outside   V (  Q 1  ∪  Q 2  ∪ C )  . Then    T ′  = T −  {  w 2   u 2 ′  ,  u 2 ′  x }  +  {  w 2   y 1  ,  y 1  z , z x }    is a trail dominating more edges than T, which is opposite to the choice to T.



Now we assume that    | V   (  P 1  ″   ∪ C )  ∖  {  w 2  }   | = 3   , which implies that    w 1  =  w 2    and the length of C is 4. Note    u 1   u 2  ∉ E  ( G )   . Let   C =  u 1  y  u 2  z  u 1   , where   y ∈ V ( D )  , and let    y ′  ∈  N D   ( y )   . Now we assume that    w 1  =  u 1   . Let    u 2 ′  ∈  N T   (  u 2  )    and    u 2 ′  ≠ z   (  u 2 ′   exists due to    d T   (  u 2  )    is even). Since H is   K 3  -free,    u 2 ′  ∉  {  u 1  ,  y ′  }   . If    u 2 ′  ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 2  ,  x 1  ,  x 2  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. If    u 2 ′  =  x 2   , then    x 2  ≠  v 2 ′    and    x 2 ′  ≠  v 2   . Let    x 2  ″   ∈  N  Q 2    (  x 2 ′  )    and    x 2  ″   ≠  x 2   . Then   H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1  y , y  y ′  }  ]  ∪ H  [  {  x 2  ″    x 2 ′  ,  x 2 ′   x 2  ,  x 2   u 2  ,  u 2  z }  ]    is an    L  − 1    (  P 4  ∪  P 4  )   . If    u 2 ′  =  x 1   , then    x 1  ≠  v 1 ′    and    x 1 ′  ≠  v 1   . Let    x 1  ″   ∈  N  Q 1    (  x 1 ′  )    and    x 1  ″   ≠  x 1   . Then   H  [  {  x 1  ″    x 1 ′  ,  x 1 ′   x 1  ,  x 1   u 2  ,  u 2  z }  ]  ∪ H  [  {  y ′  y , y  w 1  ,  w 1   x 2  ,  x 2   x 2 ′  }  ]    is a    L  − 1    (  P 4  ∪  P 4  )   . Hence,    u 2 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   . Let    u 2  ″   ∈  N T   (  u 2 ′  )    and    u 2  ″   ≠  u 2    (  u 2  ″    exists due to    d T   (  u 2 ′  )    is even). Since H is   K 3  -free,    u 2  ″   ∉  { z , y }   . If    u 2  ″   ∈ V  (  Q 1  ∪  Q 2  ∪ C )  ∖  {  w 1  , z , y }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. If    u 2  ″   ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  {  u 2  ″    u 2 ′  ,  u 2 ′   u 2  ,  u 2  y , y  y ′  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   x 2  ,  x 2   x 2 ′  }  ]    is an    L  − 1    (  P 4  ∪  P 4  )   . Now we assume that    u 2  ″   =  w 1   . Note that   u 2 ′   has no neighbor outside   V (  Q 1  ∪  Q 2  ∪ C )  . Then    T ′  = T −  {  w 1   u 2 ′  ,  u 2 ′   u 2  }  +  {  w 1  y , y  u 2  }    is a trail dominating more edges than T, which is opposite to the choice to T.



Next we assume that    w 1  ≠  u 1   , and similarly,    w 1  ≠  u 2   , which implies that    w 1  = z  . Let    u 2 ′  ∈  N T   (  u 2  )    and    u 2 ′  ≠  w 1    (  u 2 ′   exists due to    d T   (  u 2  )    is even). Since H is   K 3  -free,    u 2 ′  ∉  {  u 1  ,  y ′  }   . If    u 2 ′  ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 1  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. Therefore,    u 2 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   . Let    u 2  ″   ∈  N T   (  u 2 ′  )    and    u 2  ″   ≠  u 2    (  u 2  ″    exists due to    d T   (  u 2 ′  )    is even). Since H is   K 3  -free,    u 2  ″   ∉  {  w 1  , y }   . If    u 2  ″   ∈ V  (  Q 1  ∪  Q 2  ∪ C )  ∖  {  w 1  , y ,  u 1  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. If    u 2  ″   ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  {  u 2  ″    u 2 ′  ,  u 2 ′   u 2  ,  u 2  y , y  y ′  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   x 2  ,  x 2   x 2 ′  }  ]    is an    L  − 1    (  P 4  ∪  P 4  )   . Now we assume that    u 2  ″   =  u 1   . Note that   N  (  u 2 ′  )  ∩  ( V  ( H )  ∖ Y )  = ∅  . Then    T ′  = T −  {  u 1   u 2 ′  ,  u 2 ′   u 2  }  +  {  u 1  y , y  u 2  }    is a trail dominating more edges than T, which is opposite to the choice to T.



Case 2.1.2   w 2  ∉ V  (  Q 1  )   .



In this case,    {  w 1  ,  w 2  }  ∈ V  ( Q )    and    w 1  ≠  w 2   . Without loss of generality, suppose that    u 1  ,  w 1  ,  w 2  ,  u 2    appear along Q in this order (with possibly    w 1  =  u 1    or    w 2  =  u 2    or both). As in Case 2.1.1, let    x 1  ∈  N  Q 1    (  w 1  )   , and    x 1 ′  ∈  N  Q 1    (  x 1  )    and    x 1 ′  ≠  w 1   , and let    x 2  ∈  N  Q 2    (  w 2  )   , and    x 2 ′  ∈  N  Q 2    (  x 2  )    and    x 2 ′  ≠  w 2   .



Case 2.1.2.1   w 1   w 2  ∈ E  ( Q )   .



By Claim 29,   c ( H ) ≤ 5  . Then the length of C at most is 5.



We first assume that the length of C is 5. Let   C =  y 1   w 1   w 2   y 2  z  . If   z ∈ V ( Q )  , then   ∣  {  y 1  ,  y 2  }  ∩ V  ( D )  ∣ = 1  . Without loss of generality, suppose that    y 1  ∈ V  ( D )   , and let    y 1 ′  ∈  N D   (  y 1  )   . Then   H  [  { z  y 2  ,  y 2   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   y 1  ,  y 1   y  1  ′  }  ]    is an    L  − 1    (  P 4  ∪  P 4  )   . Now, suppose that   z ∈ V ( D )  . We assert that either    u 1  =  y 1    or    u 2  =  y 2   ; otherwise    u 1  =  w 1   ,    u 2  =  w 2    and    u 1   u 2  ∈ E  ( T )   . Without loss of generality, suppose that    u 1  =  y 1   . Let    u 1 ′  ∈  N T   (  u 1  )    and    u 1 ′  ≠  w 1    (  u 1 ′   exists due to    d T   (  u 1  )    is even). If    u 1 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  { z  y 2  ,  y 2   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   u 1  ,  u 1   u 1 ′  }  ]    is a    L  − 1    (  P 4  ∪  P 4  )   . Then    u 1 ′  ∈ V  (  Q 1  ∪  Q 2  ∪ C )   . Since H is triangle-free,    u 1 ′  ∉  {  y 2  ,  x 1  ,  w 2  }   . If    u 1 ′  ∉ V  (  Q 1  ∪  Q 2  )  ∖  {  w 1  ,  w 2  ,  x 2  ,  x 1  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. If    u 1 ′  =  x 2   , then    x 2  ≠  v 2 ′    and    x 2 ′  ≠  v 2   . Let    x 2  ″   ∈  N  Q 2    (  x 2 ′  )    and    x 2  ″   ≠  x 2   . Then   H  [  { z  u 1  ,  u 1   x 2  ,  x 2   x 2 ′  ,  x 2 ′   x 2  ″   }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   w 2  ,  w 2   y 2  }  ]    is an    L  − 1    (  P 4  ∪  P 4  )   .



As far as the last subcase is concerned, suppose that   | V ( C ) | = 4  . This indicates that   | V ( P ) | = | V ( Q ) | = 3  . Let   C =  y 1   w 1   w 2   y 2   y 1   . Since    w 1  ,  w 2  ∉ V  ( D )   , without loss of generality, say    y 2  ∈ V  ( D )   , which indicates that    u 1  =  y 1    and    u 2  =  w 2   . Let    y 2 ′  ∈  N D   (  y 2  )   . Let    u 1 ′  ∈  N T   (  u 1  )    and    u 1 ′  ≠  w 1   . Since H is triangle-free,    u 1 ′  ∉  {  w 2  ,  x 1  }   . If    u 1 ′  ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 1  ,  w 2  ,  x 2  ,  x 1  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction.


   u 1 ′  ≠  x 2  .  



(A25)







Proof of (A25):

By contradiction, suppose that    u 1 ′  =  x 2   . Then    x 2  ≠  v 2 ′    and    x 2 ′  ≠  v 2   . Let    x 2  ″   ∈  N  Q 2    (  x 2 ′  )    and    x 2  ″   ≠  x 2   . Let    x ^  2   be a neighbor of   x 2   on T other than   w 2  ,   x 2 ′  ,   u 1   (   x ^  2   exists due to    d T   (  x 2  )    is even). Since H is triangle-free,     x ^  2  ∉  {  y 2  ,  x 2  ″   ,  w 1  }   . Then   N  (  x 2  ″   )  ∩  ( V  ( H )  ∖ Y )  = ∅  , otherwise, there exists a vertex    x 2  ‴   ∈ N  (  x 2  ″   )  ∩  ( V  ( H )  ∖ Y )   , then   H [  {  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   y 1  ,  y 1   y 2  }  ]  ∪ H  [  {  x 2  ‴    x 2  ″   ,  x 2  ″    x 2 ′  ,  x 2 ′   x 2  ,  x 2   w 2  }  ]    is an    L  − 1    (  P 4  ∪  P 4  )   , a contradiction. Therefore,     x ^  2  ∉ V  (  Q 2  )   . If     x ^  2  ∈ V  (  Q 1  )  ∖  {  w 1  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. Then     x ^  2  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   . Let     x ^  2 ′  ∈  N T   (   x ^  2  )    and     x ^  2 ′  ≠  x 2    (   x ^  2 ′   exists due to    d T   (   x ^  2  )    is even). Since H is triangle-free,     x ^  2 ′  ≠  w 2   . Note that   N  (  x 2  ″   )  ∩  ( V  ( H )  ∖ Y )  = ∅  . Then     x ^  2 ′  ∉ V  (  Q 2  )   . If     x ^  2 ′  ∈ V  (  Q 1  ∪ C )  ∖  {  w 1  ,  y 2  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. If     x ^  2 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   y 1  ,  y 1   y 2  }  ]  ∪ H  [  {  x 2  ″    x 2 ′  ,  x 2 ′   x 2  ,  x 2    x ^  2  ,   x ^  2    x ^  2 ′  }  ]    is a    L  − 1    (  P 4  ∪  P 4  )   , a contradiction. This implies that (A25) holds. □





By (A25),    u 1 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  {  y 2 ′   y 2  ,  y 2   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   u 1  ,  u 1   u 1 ′  }  ]    is a    L  − 1    (  P 4  ∪  P 4  )   .



Case 2.1.2.2   w 1   w 2  ∉ E  ( Q )   .



In this case, C is divided into two subpath (from   w 1   to   w 2  ), say   R 1   and   R 2  , by   w 1   and   w 2  . Clearly the lengths of   R 1   and   R 2   are both at least 2. For   i = 1 , 2  , let   l (  R i  )   be the length of   R i  . Without loss of generality, suppose that   l  (  R 1  )  ≥ l  (  R 2  )   . By Claim 29, the length of C is at most 5. Then   l (  R 2  ) = 2  . Let    R 2  =  w 1  z  w 2   .



Firstly, suppose that   | V ( C ) | = 5  . Let   C =  w 1   y 1   y 2   w 2  z  w 1   . Then


  N  (  {  x 1 ′  , z ,  x 2 ′  }  )  ∩  ( V  ( H )  ∖ Y )  = ∅  



(A26)







Proof of (A26):

By contradiction, suppose that there exists a vertex   u ∈ N  (  {  x 1 ′  , z ,  x 2 ′  }  )  ∩  ( V  ( H )  ∖ Y )   . By symmetry, we just need to consider the case   u ∈ N  (  {  x 1 ′  , z }  )  ∩  ( V  ( H )  ∖ Y )   . Then


         H  [  { u  x 1 ′  ,  x 1 ′   x 1  ,  x 1   w 1  ,  w 1  z }  ]  ∪ H  [  {  x 2 ′   x 2  ,  x 2   w 2  ,  w 2   y 2  ,  y 2   y 1  }  ]  ,     if  u ∈ N  (  x 1 ′  )  ∩  ( V  ( H )  ∖ X )  ,       H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1  z , z u }  ]  ∪ H  [  {  x 2 ′   x 2  ,  x 2   w 2  ,  w 2   y 2  ,  y 2   y 1  }  ]  ,     if  u ∈ N ( z ) ∩ ( V ( H ) ∖ X ) ,         








is a    L  − 1    (  P 4  ∪  P 4  )   , a contradiction. This implies that (A26) holds. □





Then    {  y 1  ,  y 2  }  ∩ V  ( D )  ≠ ∅  . If    {  y 1  ,  y 2  }  ⊆ V  ( D )   , then, by (A26),    T ′  = T −  {  w 1  z , z  w 2  }  +  {  w 1   y 1  ,  y 1   y 2  ,  y 2   w 2  }    is a trail dominating more edges than T, which is opposite to the choice to T. Since    w 1  ,  w 2  ∉ V  ( D )   , without loss of generality, suppose that    y 1  ∈ V  ( D )   , which implies that    u 1  =  w 1    and    u 2  =  y 2   . Let    y 1 ′  ∈  N D   (  y 1  )   . Let    u 2 ′  ∈  N T   (  u 2  )    and    u 2 ′  ≠  w 2   . Since H is triangle-free,    u 2 ′  ≠ z  . If    u 2 ′  ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 1  ,  w 2  ,  x 1  ,  x 1 ′  , z }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. If    u 2 ′  =  x 1    or   x 1 ′  , then    x 1  ≠  v 1 ′    and    x 1 ′  ≠  v 1   . It means that the vertex   x 1 ′   has a neighbor outside   V (  Q 1  ∪  Q 2  ∪ C )  , a contradiction. Then    u 2 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  {  u 2 ′   u 2  ,  u 2   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   y 1  ,  y 1   y 1 ′  }  ]    is a    L  − 1    (  P 4  ∪  P 4  )   .



Suppose that   | V ( C ) | = 4  . Let   C =  w 1  y  w 2  z  w 1   . Since    w 1  ,  w 2  ∉ V  ( D )   , without loss of generality, say   y ∈ V ( D )  , which means that    u 1  =  w 1    and    u 2  =  w 2   . Let    y ′  ∈  N D   ( y )   . Then


  N ( z ) ∩ ( V ( H ) ∖ Y ) = ∅  



(A27)







Proof of (A27):

By contradiction, suppose that there exists a vertex   u ∈ N ( z ) ∩ ( V ( H ) ∖ Y )  . Note that D is a non-trivial component of   H − V ( T )  . Then   u ≠  y ′   . Therefore, the   H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1  z , z u }  ]  ∪ H  [  {  x 2 ′   x 2  ,  x 2   w 2  ,  w 2  y , y  y ′  }  ]    is a    L  − 1    (  P 4  ∪  P 4  )   , a contradiction. This implies that (A27) holds. □





Then, by (A27),    T ′  = T −  {  w 1  z , z  w 2  }  +  {  w 1  y , y  w 2  }    is a trail dominating more edges than T, which is opposite to the choice to T.



Case 2.2  S =  Z 1   .



Case 2.2.1   w 2  ∈ V  (  Q 1  )   .



In this case,   Q 1   is divided by   w 2   into two subgraphs. Let   P 1 ′   be the subgraph of   Q 1   from   v 1   to   w 2  , and   P 1  ″    from   w 2   to   w 1   (  P 1  ″    consists of only one   w 1   if    w 1  =  w 2   ). Since the only neighbors of   v 1 ′   in H are   v 1   and   v 1  ″   , we have   | V (  P 1 ′  ) | ≥ 3  , and similarly of   | V (  Q 2  ) | ≥ 3  . Let    {  x 1  }  =  N  P 1 ′    (  w 2  )   ,    {  x 1 ′  }  =  N  P 1 ′    (  x 1  )  ∖  {  w 2  }   , and let    {  x 2  }  =  N  Q 2    (  w 2  )   ,    {  x 2 ′  }  =  N  Q 2    (  x 2  )  ∖  {  w 2  }   .



If    | V   (  P 1  ″   ∪ C )  ∖  {  w 2  }   | ≥ 6   , then there exists a path in    P 1  ″   ∪ C   staring from   w 2   of length at least 5. Let   y  y 1   y 2   y 3   y 4   y 5    be such a path. Then   H  [  {  x 1 ′   x 1  ,  x 1   w 2  ,  w 2   x 2  ,  w 2  y }  ]  ∪ H  [  {  y 1   y 2  ,  y 2   y 3  ,  y 3   y 4  ,  y 4   y 5  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   .



If    | V   (  P 1  ″   ∪ C )  ∖  {  w 2  }   | = 5   , then the length of   P 1  ″    is 0 or 1 or 2. Suppose that the length of   P 1  ″    is 2. Let    P 1  ″   =  w 2  z  w 1   . Then   | V ( C ) | = 4  . Let   C =  w 1  y  y 1   y 2   w 1   . Then   H  [  {  w 1  z ,  w 1   y 2  ,  w 1  y , y  y 1  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . Therefore, the length of   P  ″    is 1 or 0. By Claim 29, the length of   P 1  ″    is 1. Otherwise, it will produce a cycle of length at least 6 in H, a contradiction. Then    w 1   w 2  ∈ E  ( T )   . Note that    | V   (  P 1  ″   ∪ C )  ∖  {  w 2  }   | = 5   . Then   H [ V  (  P 1  ″   ∪ C )  ∖  {  w 2  }  ]   contains a subgraph   F ≅  P 5    and   H [ V  (  P 1  ″   ∪ C )  ]   contains a subgraph    F ′  ≅  T  1 , 1 , 2    .



Claim 34.  | V (  D  H [ Y ]    ( u , H )  ) | ≤ 2   for   u ∈ {  x 1 ′  ,  x 1  ,  w 2  ,  x 2  ,  x 2 ′  }  .



Proof. 

By symmetry, we just need to consider the case   | V (  D  H [ Y ]    ( u , H )  ) | ≤ 2   for   u ∈ {  x 1 ′  ,  x 1  ,  w 2  }  . Let   P =  x 1 ′   x 1   w 2   x 2   x 2 ′   .



First, we will show that    |   D  H [ Y ]    ( u , H )   ) |  ≤ 1  . Otherwise,    |   D  H [ Y ]     ( u , H )  | > 1   . Then   H [ V ( P ) ∪ { u } ]   contains a subgraph    F 1  ≅  T  1 , 1 , 2    . Then   H  [ E  (  F 1  )  ]  ∪ H  [ E  ( F )  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . This implies that    |   D  H [ Y ]     ( u , H )  | ≤ 1   .



Suppose that    |   D  H [ Y ]     ( u , H )  | = 1   . Let    {  D u  }  =  D  H [ Y ]    ( u , H )   . Then


   d  D u    ( v )  ≤ 2  f o r  a n y  v e r t e x  v ∈ V  (  D u  )  .  



(A28)







Proof of (A28):

Otherwise,   H [ V  (  D u  )  ∪ V  ( P )  ]   contains a subgraph    F 2  ≅  T  1 , 1 , 2    . Then the subgraph formed by F and   F 2   is an    L  − 1    (  Z 1  )  ∪  L  − 1    (  P 4  )   , a contradiction. This implies that (A28) holds. □





  D u   does not contain a subgraph   P 3  . Otherwise,   D u   contains a subgraph   P 3  . Suppose first that   u =  x 1 ′   . By (A28) and    |   D  H [ Y ]    (  x 1 ′  , H )   ) |  ≤ 1  ,   H [ V  (  D  x 1 ′   )  ∪  {  x 1 ′  ,  x 1  }  ]   contains a subgraph    F 3  ≅  P 5   . Then   H  [ E  (  F ′  )  ]  ∪ H  [ E  (  F 3  )  ]    is a    L  − 1    (  Z 1  )  ∪  L  − 1    (  P 4  )   , a contradiction. Suppose now that   u ∈ {  x 1  ,  w 2  }  .   H [ V  (  D u  )  ∪  { u }  ]   contains a subgraph    F 4  ≅  T  1 , 1 , 2    . Then   H  [ E  ( F )  ]  ∪ H  [ E  (  F 4  )  ]    is a    L  − 1    (  Z 1  )  ∪  L  − 1    (  P 4  )   , a contradiction. □





Note that the length of   P 1  ″    is 1. Then   | V ( C ) | = 5  . Let   C =  y 0   y 1   y 2   y 3   y 4   y 0   . If   y  i ( m o d 5 )    has a neighbor    y i ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H [  {  y i   y i ′  ,  y i   y  i + 1   ,  y  i + 1    y  i + 2   ,  y i   y  i + 4   }  ] ∪    H [  {  x 1 ′   x 1  ,  x 1   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]   is a    L  − 1    (  Z 1  ∪  P 4  )   ,   i = 0 , 1 , 2 , 3 , 4  . Therefore, by Claim 34,   n ( H ) ≤ 20  . By Theorem A5, since H is   K 3  -free,   e ( H ) ≤ 100   and   n ( G ) ≤ 100  , contradicting   n ( G ) ≥ 212  .



If    | V   (  P 1  ″   ∪ C )  ∖  {  w 2  }   | = 4   , then    w 1  =  w 2    or    w 1   w 2  ∈ E  ( T )   . Suppose first that    w 1   w 2  ∈ E  ( T )   . Note that    u 1   u 2  ∉ E  ( C )   . Let   C =  u 1  y  u 2  z  u 1   , where   y ∈ V ( D )  , and let    y ′  ∈  N D   ( y )   . Then   H  [  {  y ′  y , y  u 2  ,  u 2  z , y  u 1  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   x 2  ,  x 2   x 2 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . Suppose now that    w 1  =  w 2   . Note that    u 1   u 2  ∉ E  ( C )   . Let   C =  w 2   y 1  z x  y 2   w 2   .



If    {  y 1  ,  y 2  }  ∩ V  ( D )  = ∅  , then    u 1  =  y 1    or    u 2  =  y 2   . Without loss of generality, we suppose that    u 2  =  y 2   . Let    u 2 ′  ∈  N T   (  u 2  )    and    u 2 ′  ≠  w 2   . Since H is triangle-free,    u 2 ′  ∉  {  x 1  ,  x 2  , z ,  y 1  }   . If    u 2 ′  ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 2  ,  x 1  ,  x 2  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. Therefore,    u 2 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   . Let    u 2  ″   ∈  N T   (  u 2 ′  )    and    u 2  ″   ≠  u 2    (  u 2  ″    exists due to    d T   (  u 2 ′  )    is even). Since H is   K 3  -free,    u 2  ″   ∉  { x ,  w 2  }   . If    u 2  ″   ∈ V  (  Q 1  ∪  Q 2  ∪ C )  ∖  {  w 2  , z , x ,  y 1  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. If    u 2  ″   ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  {  w 2   y 1  ,  w 2   x 1  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]  ∪ H  [  { z x , x  u 2  ,  u 2   u 2 ′  ,  u 2 ′   u 2  ″   }  ]    is an    L  − 1    (  Z 1  ∪  P 4  )   . If    u 2  ″   = z  , then   H  [  { z  u 2  ″   , z x , x  u 2  , z  u 1  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . These imply that    u 2  ″   =  u 1   . Note that   N  (  u 2 ′  )  ∩  ( V  ( H )  ∖ Y )  = ∅  . Then    T ′  = T −  {  u 2   u 2 ′  ,  u 2 ′   u 1  }  +  {  y 2  x , z x , z  u 1  }    is a trail dominating more edges than T, which is opposite to the choice to T.



Then    {  y 1  ,  y 2  }  ∩ V  ( D )  ≠ ∅  . Now we assume that    y 1  ∈ V  ( D )   . Note that z has no neighbors outside   V (  Q 1  ∪  Q 2  ∪ C )  . Then   z ∈ V ( D )  . Note    u 1   u 2  ∉ E  ( C )   . Then    u 1  =  w 2    and    u 2  = x  . Let    u 2 ′  ∈  N T   (  u 2  )    and    u 2 ′  ≠  y 2    (  u 2 ′   exists due to    d T   (  u 2  )    is even). Since H is   K 3  -free,    u 2 ′  ∉  {  w 2  ,  y 1  }   . If    u 2 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  {  u 2   u 2 ′  ,  u 2  z , z  y 1  ,  u 2   y 2  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . If    u 2 ′  ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 2  ,  x 1  ,  x 2  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. If    u 2 ′  =  x 1   , then    x 1  ≠  v 1 ′    and    x 1 ′  ≠  v 1   . Let    x 1  ″   ∈  N  Q 1    (  x 1 ′  )    and    x 1  ″   ≠  x 1   . Then   H  [  {  w 2   x 2  ,  x 2   x 2 ′  ,  w 2   y 2  ,  w 2   y 1  , }  ]  ∪ H  [  {  x 1  ″    x 1 ′  ,  x 1 ′   x 1  ,  x 1   w 2  ,  w 2   u 2  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . If    u 2 ′  =  x 2   , then    x 2  ≠  v 2 ′    and    x 2 ′  ≠  v 2   . Let    x 2  ″   ∈  N  Q 2    (  x 2 ′  )    and    x 2  ″   ≠  x 2   . Then   H  [  {  x 1 ′   x 1  ,  x 1   w 2  ,  w 2   y 1  ,  w 2   y 2  }  ]  ∪ H  [  {  x 2  ″    x 2 ′  ,  x 2 ′   x 2  ,  x 2   u 2  ,  u 2  z }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   .



Now we assume that    | V   (  P 1  ″   ∪ C )  ∖  {  w 2  }   | = 3   , which implies that    w 1  =  w 2    and   | V ( C ) | = 4  . Note    u 1   u 2  ∉ E  ( G )   . Let   C =  u 1  y  u 2  z  u 1   , where   y ∈ V ( D )  , and let    y ′  ∈  N D   ( y )   . Now we assume that    w 1  =  u 1   . Let    u 2 ′  ∈  N T   (  u 2  )    and    u 2 ′  ≠ z   (  u 2 ′   exists due to    d T   (  u 2  )    is even). Since H is   K 3  -free,    u 2 ′  ∉  {  u 1  ,  y ′  }   . If    u 2 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  {  u 2   u 2 ′  ,  u 2  z ,  u 2  y , y  y ′  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   x 2  ,  x 2   x 2 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . If    u 2 ′  ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 2  ,  x 1  ,  x 2  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. Then    u 2 ′  ∈  {  x 1  ,  x 2  }   . Without loss of generality, we assume that    u 2 ′  =  x 2   . Then    x 2  ≠  v 2 ′    and    x 2 ′  ≠  v 2   . Then let    x 2  ″   ∈  N  Q 2    (  x 2 ′  )    and    x 2  ″   =  x 2   .


  N  (  x 2  ″   )  ∩  ( V  ( H )  ∖ Y )  = ∅ .  



(A29)







Proof of (A29):

By contradiction, suppose that there exists a vertex   u ∈ N  (  x 2  ″   )  ∩  ( V  ( H )  ∖ Y )   . Then   H  [  {  w 2   x 1  ,  x 1   x 1 ′  ,  w 2  z ,  w 2  y }  ]  ∪ H  [  { u  x 2  ″   ,  x x  ″    x 2 ′  ,  x 2 ′   x 2  ,  x 2   u 2  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   , a contradiction. This indicates that (A29) holds. □





Let   x 2 1   be a neighbor of   x 2   on T other than   u 2  ,  x 2 ′  ,  w 2   (  x 2 1   exists due to    d T   (  x 2  )    is even). Note that D is a non-trivial component of   H − V ( T )  . Then    x 2 1  ≠  y ′   . If    x 2 1  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  {  x 2   x 2 ′  ,  x 2 ′   x 2  ″   ,  x 2  u ,  x 2   u 2  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 2  ,  w 2  y , y  y ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . Since H is   K 3  -free, by (A29),    x 2 1  ∈ V  (  Q 1  )  ∖  {  w 2  }   . Then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction.



Next we assume that    w 1  ≠  u 1   , and similarly,    w 1  ≠  u 2   , which implies that    w 1  = z  . Let    u 2 ′  ∈  N T   (  u 2  )    and    u 2 ′  ≠  w 1    (  u 2 ′   exists due to    d T   (  u 2  )    is even). Since H is   K 3  -free,    u 2 ′  ∉  {  u 1  ,  y ′  }   . If    u 2 ′  ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 1  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. Therefore,    u 2 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   . Note that D is a non-trivial component of   H − V ( T )  . Then    u 2 ′  ≠  y ′   . Therefore, the   H  [  { y  y ′  , y  u 2  ,  u 2   u 2 ′  , y  u 1  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   .



Case 2.2.2   w 2  ∉ V  (  Q 1  )   .



In this case,    {  w 1  ,  w 2  }  ⊆ V  ( Q )    and    w 1  ≠  w 2   . Without loss of generality, we suppose that    u 1  ,  w 1  ,  w 2  ,  u 2    appear along Q in this order (with possibly    w 1  =  u 1    or    w 2  =  u 2    or both). As in Case 2.2.1, let    x 1  ∈  N  Q 1    (  w 1  )   , and    x 1 ′  ∈  N  Q 1    (  x 1  )    and    x 1 ′  ≠  w 1   , and let    x 2  ∈  N  Q 2    (  w 2  )   , and    x 2 ′  ∈  N  Q 2    (  x 2  )    and    x 2 ′  ≠  w 2   .



Case 2.2.2.1   w 1   w 2  ∈ E  ( Q )   .



By Claim 29, the length of C is at most 5.



We first assume that the length of C is 5. Let   C =  y 1   w 1   w 2   y 2  z  y 1   .



If   z ∈ V ( Q )  , then   ∣  {  y 1  ,  y 2  }  ∩  ( V  ( C )  ∩ V  ( D )  )  ∣ = 1  . Without loss of generality, we assume that    y 1  ∈ V  ( D )   , and let    y 1 ′  ∈  N D   ( y )   . Then    u 1  =  w 1    and    u 2  = z  . Let    u 2 ′  ∈  N T   (  u 2  )    and    u 2 ′  ≠  y 2    (  u 2 ′   exists due to    d T   (  u 2  )    is even). Since H is   K 3  -free,    u 2 ′  ∉  {  w 2  ,  w 1  }   . If    u 2 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  {  u 2   y 1  ,  y 1   y 1 ′  ,  u 2   u 2 ′  ,  u 2   y 2  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . If    u 2 ′  ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 2  ,  w 1  ,  x 2  ,  x 1  ,  x 1 ′  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. If    u 2 ′  =  x 2   , then    x 2  ≠  v 2 ′    and    x 2 ′  ≠  v 2   . Let    x 2  ″   ∈  N  Q 2    (  x 2 ′  )    and    x 2  ″   =  x 2   . Then   H  [  {  x 2   x 2 ′  ,  x 2 ′   x 2  ″   ,  x 2   u 2  ,  x 2   w 2  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   y 1  ,  y 1   y 1 ′  }  ]    is an    L  − 1    (  Z 1  ∪  P 4  )   . If    u 2 ′  =  x 1   , then   H  [  {  w 2   x 2  ,  x 2   x 2 ′  ,  w 2   y 2  ,  w 2   w 1  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   u 2  ,  u 2   y 1  ,  y 1   y 1 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . If    u 2 ′  =  x 1 ′   , then   H  [  {  w 2   x 2  ,  x 2   x 2 ′  ,  w 2   y 2  ,  w 2   w 1  }  ]  ∪ H  [  {  x 1   x 1 ′  ,  x 1 ′   u 2  ,  u 2   y 1  ,  y 1   y 1 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   .



Now suppose that   z ∈ V ( D )  . We assert that either    u 1  =  y 1    or    u 2  =  y 2   ; otherwise    u 1  =  w 1   ,    u 2  =  w 2    and    u 1   u 2  ∈ E  ( T )   . Without loss of generality, we suppose that    u 1  =  y 1   . Let    u 1 ′  ∈  N T   (  u 1  )    and    u 1 ′  ≠  w 1    (  u 1 ′   exists due to    d T   (  u 1  )    is even). Since H is triangle-free,    u 1 ′  ∉  {  y 2  ,  x 1  ,  w 2  }   . If    u 1 ′  ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 1  ,  w 2  ,  x 2  ,  x 1  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction.


   u 1 ′  ≠  x 2  .  



(A30)







Proof of (A30):

By contradiction, suppose that    u 1 ′  =  x 2   . Then    x 2  ≠  v 2 ′    and    x 2 ′  ≠  v 2   . Let    x 2  ″   ∈  N  Q 2    (  x 2 ′  )    and    x 2  ″   ≠  x 2   . Let    x ^  2   be a neighbor of   x 2   on T other than   w 2  ,   x 2 ′  ,   u 1   (   x ^  2   exists due to    d T   (  x 2  )    is even). Since H is triangle-free,     x ^  2  ∉  {  y 2  , z ,  w 1  }   . If     x ^  2  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  {  x 2   x 2 ′  ,  x 2 ′   x 2  ″   ,  x 2   w 2  ,  x 2    x ^  2  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   y 1  ,  y 1  z }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . If     x ^  2  ∈ V  (  Q 2  )   , then   H  [  {  x 2   w 2  ,  w 2   y 2  ,  x 2   x 2 ′  ,  x 2    x ^  2  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   y 1  ,  y 1  z }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . Therefore,     x ^  2  ∈ V  (  Q 1  )  ∖  {  w 1  }   . Then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. This implies that (A30) holds. □





By (A30),    u 1 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   . Then    y 2  ∈ V  ( D )   . Otherwise, note    u 1   u 2  ∉ E  ( G )    and   z ∈ V ( D )  . Let    z ′  ∈  N D   ( z )   . Then   H  [  { z  z ′  , z  u 1  ,  u 1   u 1 ′  , z  y 2  }  ]  ∪ H  [  {  x 2 ′   x 2  ,  x 2   w 2  ,  w 2   x 1  ,  x 1   x 1 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . Therefore,    u 2  =  w 2   . Let    u 1  ″   ∈  N T   (  u 1 ′  )    and    u 1  ″   ≠  u 1    (  u 1  ″    exists due to    d T   (  u 1 ′  )    is even). If    u 1  ″   ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 1  ,  w 2  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. Since H is triangle-free,    u 1  ″   ≠  w 1   . If    u 1  ″   =  w 2   , then   H  [  {  w 2   x 2  ,  x 2   x 2 ′  ,  w 2   y 2  ,  w 2   u 1  ″   }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   u 1  ,  u 1  z }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . Let    u 1  ‴   ∈  N T   (  u 1  ″   )    and    u 1  ‴   ≠  u 1 ′    (  u 1  ‴    exists due to    d T   (  u 1  ″   )    is even). If    u 1  ‴   ∈ V  (  Q 1  ∪  Q 2  )   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. Since H is triangle-free,    u 1  ‴   ≠  u 1   . Then    u 1  ‴   ∉ V  (  Q 1  ∪  Q 2  )  ∪  {  u 1  }   . Then   H  [  {  w 2   x 2  ,  x 2   x 2 ′  ,  w 2   y 2  ,  w 2   w 1  }  ]  ∪ H  [  {  u 1  ‴    u 1  ″   ,  u 1  ″    u 1 ′  ,  u 1 ′   u 1  ,  u 1  z }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   .



As far as the last subcase is concerned, suppose that   | V ( C ) | = 4  . This indicates that   | V ( P ) | = | V ( Q ) | = 3  . Let   C =  y 1   w 1   w 2   y 2   y 1   . Since    w 1  ,  w 2  ∉ V  ( D )   , without loss of generality, we assume that    y 2  ∈ V  ( D )   , which indicates that    u 1  =  y 1    and    u 2  =  w 2   . Let    y 2 ′  ∈  N D   (  y 2  )   . Let   Z = Y ∪ {  y 2 ′  }  .



Claim 35.  ∣ N  (  x i ′  )  ∩  ( V  ( H )  ∖ Z )  ∣ ≤ 1  ; If   N  (  x i ′  )  ∩  ( V  ( H )  ∖ Z )  =  {  x i  ″   }   , then   ∣ N  (  x i  ″   )  ∩  ( V  ( H )  ∖ Z )  ∣ ≤ 1  ; If   N  (  x i  ″   )  ∩  ( V  ( H )  ∖ Z )  =  {  x i  ‴   }   , then   N  (  x i  ‴   )  ∩  ( V  ( H )  ∪  {  x i  ″   }  ∖ Z )  = ∅   for   i ∈ { 1 , 2 }  .



Proof. 

By symmetry, we just need to consider the case   i = 1  . By contradiction, suppose that   ∣ N  (  x 1 ′  )  ∩  ( V  ( H )  ∖ Z )  ∣ > 1  . Then there exists at least two vertices    {  x 1  ′ 1   ,  x 1  ′ 2   }  ⊆ N  (  x 1 ′  )  ∩  ( V  ( H )  ∖ Z )   . Then   H  [  {  x 1 ′   x 1  ′ 1   ,  x 1 ′   x 1  ′ 2   ,  x 1 ′   x 1  ,  x 1   w 1  }  ]  ∪ H  [  {  x 2 ′   x 2  ,  x 2   w 2  ,  w 2   y 2  ,  y 2   y 2 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . This means   ∣ N  (  x 1 ′  )  ∩  ( V  ( H )  ∖ Z )  ∣ ≤ 1  .



If   N  (  x 1 ′  )  ∩  ( V  ( H )  ∖ Z )  =  {  x 1  ″   }   , then   ∣ N  (  x 1  ″   )  ∩  ( V  ( H )  ∖ Z )  ∣ ≤ 1  , otherwise, there exists at least two vertices    {  x 1  ″ 1   ,  x 1  ″ 2   }  ⊆ N  (  x 1  ″   )  ∩  ( V  ( H )  ∖ Z )   , then   H  [  {  x 1  ″    x 1  ″ 1   ,  x 1  ″    x 1  ″ 2   ,  x 1  ″    x 1 ′  ,  x 1 ′   x 1  }  ]  ∪ H  [  {  x 2 ′   x 2  ,  x 2   w 2  ,  w 2   y 2  ,  y 2   y 2 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . This implies that   ∣ N  (  x 1  ″   )  ∩  ( V  ( H )  ∖ Z )  ∣ ≤ 1  .



If   N  (  x 1  ″   )  ∩  ( V  ( H )  ∖ Z )  =  {  x 1  ‴   }   , then   N  (  x 1  ‴   )  ∩  ( V  ( H )  ∪  {  x 1  ″   }  ∖ Z )  = ∅  . Otherwise, there exists at least one vertex    x 1  ‴ 1   ∈ N  (  x 1  ‴   )  ∩  ( V  ( H )  ∪  {  x 1  ″   }  ∖ Y )   , then   H  [  {  w 2   x 2  ,  x 2   x 2 ′  ,  w 2   y 2  ,  w 2   w 1  , }  ]  ∪ H  [  {  x 1   x 1 ′  ,  x 1 ′   x 1  ″   ,  x 1  ″    x 1  ‴   ,  x 1  ‴    x 1  ‴ 1   }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . □





Let    u 1 ′  ∈  N T   (  u 1  )    and    u 1 ′  ≠  w 1    (  u 1 ′   exists due to    d T   (  u 1  )    is even). Since H is triangle-free,    u 1 ′  ∉  {  w 2  ,  x 1  }   . If    u 1 ′  ∈ V  (  Q 1  ∪  Q 2  )  ∖  {  w 2  ,  x 2  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction.


   u 1 ′  ≠  x 2  .  



(A31)







Proof of (A31):

By contradiction, suppose that    u 1 ′  =  x 2   . Then    x 2  ≠  v 2 ′    and    x 2 ′  ≠  v 2   . Let    x 2  ″   ∈  N  Q 2    (  x 2 ′  )    and    x 2  ″   ≠  x 2   . Let    x ^  2   be a neighbor of   x 2   on T other than   w 2  ,   x 2 ′  ,   u 1   (   x ^  2   exists due to    d T   (  x 2  )    is even). Since H is triangle-free,     x ^  2  ∉  {  y 2  ,  x 2  ″   ,  w 1  }   . If     x ^  2  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   , then   H  [  {  x 2   x 2 ′  ,  x 2 ′   x 2  ″   ,  x 2   w 2  ,  x 2    x ^  2  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   y 1  ,  y 1   y 2  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . If     x ^  2  ∈ V  (  Q 2  )   , then   H  [  {  x 2   x 2 ′  ,  x 2 ′   x 2  ″   ,  x 2   w 2  ,  x 2    x ^  2  }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   y 1  ,  y 1   y 2  }  ]    is an    L  − 1    (  Z 1  ∪  P 4  )   . Then     x ^  2  ∈ V  (  Q 1  )  ∖  {  w 1  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. This implies that (A31) holds. □





By (A31),    u 1 ′  ∉ V  (  Q 1  ∪  Q 2  ∪ C )   . Let    u 1  ″   ∈  N T   (  u 1 ′  )    and    u 1  ″   ≠  u 1    (  u 1  ″    exists due to    d T   (  u 1 ′  )    is even). Since H is   K 3  -free,    u 1  ″   ∉  {  y 2  ,  w 1  }   . If    u 1  ″   ∈ V  (  Q 1  ∪  Q 2  ∪ C )  ∖  {  w 1  ,  w 2  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction.



Claim 36.    u 1  ″   ≠  w 2  .   



Proof. 

By contradiction, suppose that    u 1  ″   =  w 2   . If   N  (  u 1 ′  )  ∩  ( V  ( H )  ∖ Y )  = ∅  , then    T ′  = T −  {  u 1   u 1 ′  ,  u 1 ′   w 2  }  +  {  u 1   y 2  ,  y 2   w 2  }    is a trail dominating more edges than T, which is opposite to the choice to T. This implies that   N  (  u 1 ′  )  ∩ V  ( H )  ∖ Y ≠ ∅  . Let     u ^  1  ∈ N  (  u 1 ′  )  ∩ V  ( H )  ∖ Y   and    Y ′  = Y ∪  {  u 1 ′  ,   u ^  1  ,  y 2 ′  }   . Then


    u ^  1  ≠  y 2 ′  .  



(A32)









Proof of (A32):

By contradiction, suppose that     u ^  1  =  y 2 ′   . Note that D is a non-trivial component of   H − V ( T )  . Then     u ^  1  ∉ V  ( T )   . Therefore,    T ′  = T −  {  u 1 ′   w 2  }  +  {  u 1 ′   y 2 ′  ,  y 2 ′   y 2  ,  y 2   w 2  }    is a trail dominating more edges than T, a which is opposite to the choice to T. This implies that (A32) holds. □






   N  ( u )  ∩  ( V  ( H )  ∖  Y ′  )  = ∅  f o r  a n y  v e r t e x  u ∈  {  x 1  ,  w 1  ,  w 2  ,  x 2  ,  u 1  ,  u 1 ′  ,  y 2  }    



(A33)





Proof of (A33):

By contradiction, suppose that    u 1  ∈ N  ( u )  ∩  ( V  ( H )  ∖  Y ′  )   . Then, by (A32),


         H  [  {  x 1   w 1  ,  w 1   y 1  ,  x 1   x 1 1  ,  x 1   x 1 ′  }  ]  ∪ H  [  {  x 2 ′   x 2  ,  x 2   w 2  ,  w 2   y 2  ,  y 2   y 2 ′  }  ]  ,     if  u =  x 1  ,       H [  {  x 2   w 2  ,  w 2   y 2  ,  x 2   x 2 1  ,  x 2   x 2 ′  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   u 1 ′  ,  u 1 ′    u ^  1  }  ]  ,     if  u =  x 2  ,       H [  {  w 1   x 1  ,  x 1   x 1 ′  ,  w 1   y 1  ,  w 1   w 1 1  ]  ∪ H  [  {  x 2 ′   x 2  ,  x 2   w 2  ,  w 2   y 2  ,  y 2   y 2 ′  }  ]  ,     if  u =  w 1  ,       H [  {  w 2   x 2  ,  x 2   x 2 ′  ,  w 2   y 2  ,  w 2   w 2 1  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   y 1  ,  y 1   u 1 ′  }  ]  ,     if  u =  w 2  ,       H [  {  y 1   w 1  ,  w 1   x 1  ,  y 1   y 2  ,  y 1   y 1 1  ]  ∪ H  [  {  x 2 ′   x 2  ,  x 2   w 2  ,  w 2   u 1 ′  ,  u 1 ′    u ^  1  }  ]  ,     if  u =  y 1  ,       H [  {  y 2   y 1  ,  y 1   w 1  ,  y 2   y 2 ′  ,  y 2   y 2 1  ]  ∪ H  [  {  x 2 ′   x 2  ,  x 2   w 2  ,  w 2   u 1 ′  ,  u 1 ′    u ^  1  }  ]  ,     if  u =  y 2  ,       H [  {  u 1 ′   u 1  ,  u 1   w 1  ,  u 1 ′    u ^  1  ,  u 1   u 1 1  ]  ∪ H  [  {  x 2 ′   x 2  ,  x 2   w 2  ,  w 2   y 2  ,  y 2   y 2 ′  }  ]  ,     if  u =  u 1 ′  ,         








is a    L  − 1    (  Z 1  ∪  P 4  )   , a contradiction. This indicates that (A33) holds. □






   | V (  D  H [  Y ′  ]    (  y 2 ′  , H )  ) | ≤ 1 .   



(A34)





Proof of (A34):

First, we will show that    |   D  H [  Y ′  ]    (  y 2 ′  , H )   ) |  ≤ 1  . Otherwise,    |   D  H [  Y ′  ]    (  y 2 ′  , H )   | > 1   . Then there exist two vertices    {  y 2  ′ 1   ,  y 2  ′ 2   }  ⊆ N  (  y 2 ′  )  ∩  ( V  ( H )  ∖ Z )   . Then   H [  {  y 2 ′   y 2  ,  y 2   y 1  ,  y 2 ′   y 2  ′ 1   ,  y 2 ′   y 2  ′ 2   ]  ∪ H  [  {  x 1   w 1  ,  w 1   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . This indicates that    |   D  H [  Y ′  ]    (  y 2 ′  )  , H  ) |  ≤ 1  . □





Suppose that    |   D  H [  Y ′  ]    (  y 2 ′  , H )   | = 1   . Let    {  y 2  ″   }  ∈  D  H [  Y ′  ]    (  y 2 ′  , H )    and    y 2  ″    y 2 ′  ∈ E  ( H )   . Then   N  (  y 2  ″   )  ∩  ( V  ( H )  ∖  Y ′  )  = ∅  . Otherwise, there exists at least one vertex    y 2  ‴   ∈ N  (  y 2  ″   )  ∩  ( V  ( H )  ∖ Z )   , then   H [  {  w 2   x 2  ,  x 2   x 2 ′  ,  w 2   u 1 ′  ,  w 2   w 1  ]  ∪ H  [  {  y 1   y 2  ,  y 2   y 2 ′  ,  y 2 ′   y 2  ″   ,  y 2  ″    y 2  ‴   }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . This indicates that (A34) holds. is a    L  − 1    (  Z 1  ∪  P 4  )   , a contradiction. This implies that (A34) holds.


  | V (  D  H [  Y ′  ]    (   u ^  1  , H )  ) | ≤ 1 .  



(A35)







Proof of (A35):

First, we will show that    |   D  H [  Y ′  ]    (   u ^  1  , H )   ) |  ≤ 1  . Otherwise, there exist two vertices    {  u 1 1  ,  u 1 2  }  ⊆ N  (   u ^  1  )  ∩  ( V  ( H )  ∖  Y ′  )   . Then   H [  {   u ^  1   u 1 ′  ,  u 1 ′   u 1  ,   u ^  1   u 1 1  ,   u ^  1   u 2 1  ]  ∪ H  [  {  x 1   w 1  ,  w 1   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . This indicates that   | V (  D  H [  Y ′  ]    (   u ^  1  , H )  ) | ≤ 1  . □





Suppose that   | V (  D  H [  Y ′  ]    (   u ^  1  , H )  ) | = 1  . Let    {   u ^  1 ′  }  ∈  D  H [  Y ′  ]    (   u ^  1  , H )    and     u ^  1    u ^  1 ′  ∈ E  ( H )   . Then   N  (   u ^  1 ′  )  ∩  ( V  ( H )  ∖  Y ′  )  = ∅  . Otherwise, there exists at least one vertex     u ^  1  ″   ∈ N  (   u ^  1 ′  )  ∩  ( V  ( H )  ∖  Y ′  )   , then   H [  {  w 2   x 2  ,  x 2   x 2 ′  ,  w 2   y 2  ,  w 2   w 1  ]  ∪ H  [  {  u 1   u 1 ′  ,  u 1 ′    u ^  1  ,   u ^  1    u ^  1 ′  ,   u ^  1 ′    u ^  1  ″   }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . This indicates that (A35) holds.



By (A33)–(A35) and Claim 35,   n ( H ) ≤ 19  . By Theorem A5, since H is   K 3  -free,   e ( H ) ≤ 91   and   n ( G ) ≤ 91  , contradicting   n ( G ) ≥ 212  .



By Claim 36,    u 1  ″   ∉ V  (  Q 1  ∪  Q 2  ∪ C )   . Let    u 1  ‴   ∈  N T   (  u 1  ″   )    and    u 1  ‴   ≠  u 1 ′    (  u 1  ‴    exists due to    d T   (  u 1  ″   )    is even). If    u 1  ‴   ∈ V  (  Q 1  ∪  Q 2  ∪ C )   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. Then    u 1  ‴   ∉ V  (  Q 1  ∪  Q 2  ∪ C )   . Let    u 1  ″ ″   ∈  N T   (  u 1  ‴   )    and    u 1  ″ ″   ≠  u 1  ″     (  u 1  ″ ″    exists due to    d T   (  u 1  ‴   )    is even). If    u 1  ″ ″   ∈ V  (  Q 1  ∪  Q 2  ∪ C )  ∖  {  u 1  }   , then there exists a path from   u 1   to   u 2   in T longer than Q, a contradiction. If    u 1  ″ ″   =  u 1   , then   H [  {  u 1   u 1 ′  ,  u 1 ′   u 1  ″   ,  u 1   u 1  ‴   ,  u 1   y 2  ]  ∪ H  [  {  x 1   w 1  ,  w 1   w 2  ,  w 2   x 2  ,  x 2   x 2 ′  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   . Therefore,    u 1  ″ ″   ∉ V  (  Q 1  ∪  Q 2  ∪ C )   . Then   H [  {  w 2   x 2  ,  x 2   x 2 ′  ,  w 2   y 2  ,  w 2   w 1  ]  ∪ H  [  {  u 1   u 1 ′  ,  u 1 ′   u 1  ″   ,  u 1  ″    u 1  ‴   ,  u 1  ‴    u 1  ″ ″   }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   .



Case 2.2.2.2   w 1   w 2  ∉ E  ( Q )   .



In this case,   w 1   and   w 2   divide C into two subpath (from   w 1   to   w 2  ), say   R 1   and   R 2  . Clearly the lengths of   R 1   and   R 2   are both at least 2. For   i = 1 , 2  , let   l (  R i  )   be the length of   R i  . Without loss of generality, we suppose that   l  (  R 1  )  ≥ l  (  R 2  )   . By Claim 29, the length of C is at most 5. Then   l (  R 2  ) = 2  . Let    R 2  =  w 1  z  w 2   .



When we refer to the case that the length of C is 4, we assume that   C =  w 1  y  w 2  z  w 1    and   y ∈ V ( D )  .


  T h e r e  i s  a  p a t h  P  i n  C ∪ D ∪  Q 2   f r o m   x 2 ′   o f  l e n g t h  i s  4  n o t  p a s s i n g  t h r o u g h   w 1   a n d  z .  



(A36)







Proof of (A36):

Suppose first that the length of C is 5. We assume that   C =  w 1   y 1   y 2   w 2  z  w 1   . Then   P =  x 2 ′   x 2   w 2   y 1   y 2    is such path. Suppose now that the length of C is 4. Note that   y ∈ V ( D )  . Then    u 1  =  w 1    and    u 2  =  w 2   . Let    y ′  ∈  N D   ( y )   . Then   P =  x 2 ′   x 2   w 2  y  y ′    is such path. (A36) holds. □





Let   Z = Y ∪ V ( P )  



Claim 37.  N ( u ) ∩ ( V ( H ) ∖ Z ) = ∅   for any vertex   u ∈ {  x 1  ,  w 1  ,  w 2  ,  x 2  }  .



Proof. 

By symmetry, we just need to consider the case   N ( u ) ∩ ( V ( H ) ∖ Z ) = ∅   for any vertex   u ∈ {  x 1  ,  w 1  }  . By contradiction, suppose that    u 1  ∈ N  ( u )  ∩  ( V  ( H )  ∖ Z )   . Then


         H  [  {  x 1   w 1  ,  w 1  z ,  x 1   x 1 1  ,  x 1   x 1 ′  }  ]  ∪ H  [ E  ( P )  ]  ,     if  u =  x 1  ,       H  [  w 1   x 1  ,  x 1   x 1 ′  ,  w 1  z ,  w 1   w 1 1  }   ] ∪ H   [ E  ( P )  ]  ,     if  u =  w 1  ,         








is a    L  − 1    (  Z 1  ∪  P 4  )   , a contradiction. □





Claim 38.  ∣ V (  D  H [ Z ]    (  x i ′  , H )  ) ∣ ≤ 1   for   i ∈ { 1 , 2 }  .



Proof. 

By symmetry, we just need to consider the case   ∣ V (  D  H [ Z ]    (  x 1 ′  , H )  ) ∣ ≤ 1  . By contradiction, suppose that   | V (  D  H [ Z ]    (  x 1 ′  , H )  ) | > 1  .



First, we will show that    |   D  H [ Z ]    (  x 1 ′  , H )   | ≤ 1   . Otherwise,    |   D  H [ Z ]    (  x 1 ′  , H )   | > 1   . Then there exist at least two vertices    {  x 1  ′ 1   ,  x 1  ′ 2   }  ⊆ N  (  x 1 ′  )  ∩  ( V  ( H )  ∖ Z )   , then   H  [  {  x 1 ′   x 1  ′ 1   ,  x 1 ′   x 1  ′ 2   ,  x 1 ′   x 1  ,  x 1   w 1  }  ]  ∪ H  [ E  ( P )  ]    is a    L  − 1    (  Z 1  )  ∪  L  − 1    (  P 4  )   . This implies that    |   D  H [ Z ]    (  x 1 ′  , H )   | ≤ 1   .



Suppose that    |   D  H [ Z ]    (  x 1 ′  , H )   | = 1   . Let    {  D 1  }  =  D  H [ Z ]    (  x 1 ′  , H )   . Then   D 1   does not contain a subgraph   P 2  . Otherwise,   H [ V  (  D 1  )  ∪  {  x 1 ′  ,  x 1  ,  w 1  }  ]   contains a subgraph    F 1  ≅  P 5    and   H [ V  ( Z )  ∖ V  (  Q 1  )  ]   contains a subgraph    F 2  ≅  T  1 , 1 , 2    . Then   H  [ E  (  F 1  )  ]  ∪ H  [ E  (  F 2  )  ]    is a    L  − 1    (  Z 1  )  ∪  L  − 1    (  P 4  )   , a contradiction. □





Claim 39.  ∣ N ( z ) ∩ ( V ( H ) ∖ Z ) ∣ ≤ 1   and   ∣ V (  D  H [ Z ]    ( z , H )  ) ∣ ≤ 4  .



Proof. 

By contradiction, suppose that   | V (  D  H [ Z ]    ( z , H )  ) | ≥ 5  . First, we will show that   ∣ N ( z ) ∩ ( V ( H ) ∖ Z ) ∣ ≤ 1  . Otherwise,   ∣ N ( z ) ∩ ( V ( H ) ∖ Z ) ∣ > 1  . Then there exist at least two vertices    {  z ′  ,  z  ″   }  ⊆ N  ( z )  ∩  ( V  ( H )  ∖ Z )   , the   H  [  { z  w 1  ,  w 1   x 1  , z  z ′  , z  z  ″   }  ]  ∪ H  ( E  ( P )  ]    is a    L  − 1    (  Z 1  )  ∪  L  − 1    (  P 4  )   , a contradiction. This contradiction shows that    |   D  H [ Z ]     ( z , H )  | ≤ 1   .



Suppose that    |   D  H [ Z ]     ( z , H )  | = 1   . Let    {  D z  }  =  D  H [ Z ]    ( z , H )   . Then


   d D   ( u )  ≤ 2  f o r  a n y  v e r t e x  u ∈ V  (  D z  )  .  



(A37)







Proof of (A37):

Otherwise, there exists a vertex    u 0  ∈ V  (  D z  )    such that    d  D z    (  u 0  )  ≥ 3  . Then   H [ V  (  D z  )  ∪  {  w 1  }  ]   contains a subgraph    F 1  ≅  T  1 , 1 , 2    . Then   H [ E  (  F 1  )  ∪ E  ( P )  ]   is a    L  − 1    (  Z 1  )  ∪  L  − 1    (  P 4  )   , a contradiction. This implies that (A37) holds. □





  D z   does not contain a subgraph   P 5  . Otherwise,   H [ V  (  Q 2  ∪ C ∪ P )  ]   contains a subgraph    F 2  ≅  T  1 , 1 , 2    . Then   H [ E  (  F 2  )  ∪ E  (  P 5  )  ]   is a    L  − 1    (  Z 1  )  ∪  L  − 1    (  P 4  )   , a contradiction. Combining this with (A37),   | V (  D  H [ Z ]    ( z , H )  ) | ≤ 4  .





Firstly, suppose that   | V ( C ) | = 5  . Let   C =  w 1   y 1   y 2   w 2  z  w 1   . Then


  N  ( u )  ∩ V  ( H )  ∖ Z = ∅  f o r  a n y  v e r t e x  u ∈  {  y 1  ,  y 2  }   



(A38)







Proof of (A38):

By symmetry, we just need to consider the case   N  (  y 1  )  ∩ V  ( H )  ∖ Z = ∅  . By contradiction, suppose that    y 1 1  ∈ N  ( u )  ∩ V  ( H )  ∖ Z  . Then   H  [  {  w 2   x 2  ,  x 2   x 2 ′  ,  w 2   y 2  ,  w 2  z }  ]  ∪ H  [  {  x 1 ′   x 1  ,  x 1   w 1  ,  w 1   y 1  ,  y 1   y 1 1  }  ]    is a    L  − 1    (  Z 1  ∪  P 4  )   , a contradiction. This implies that (A38) holds. □





By Claims 37–39 and (A38),   n ( H ) ≤ 15  . By Theorem A5, since H is   K 3  -free,   e ( H ) ≤ 57   and   n ( G ) ≤ 57  , contradicting   n ( G ) ≥ 212  .



As far as the last subcase is concerned, we assume that   | V ( C ) | = 4  . Let   C =  w 1  y  w 2  z  w 1   . Since    w 1  ,  w 2  ∉ V  ( D )   , without loss of generality, we suppose that   y ∈ V ( D )  , which implies that    u 1  =  w 1    and    u 2  =  w 2   . Let    y ′  ∈  N D   ( y )   .



If   N ( z ) ∩ ( V ( H ) ∖ Y ) = ∅  , then    T ′  = T −  {  w 1  z , z  w 2  }  +  {  w 1  y , y  w 2  }    is a trail dominating more edges than T, which is opposite to the choice to T. Therefore,   N ( z ) ∩ ( V ( H ) ∖ Y ) ≠ ∅  . Note that D is a non-trivial component of   H − V ( T )  . Then    y ′  ∉ N  ( z )  ∩  ( V  ( H )  ∖ Y )   . Combining this with Claim 39,   ∣ N ( z ) ∩ ( V ( H ) ∖ Y ) ∣ = 1  . Let    {  z ′  }  = N  ( z )  ∩  ( V  ( H )  ∖ Y )   . By symmetry,    {  y ′  }  = N  ( y )  ∩  ( V  ( H )  ∖ Y )   . Let    {  D z  }  =  D  H [ Y ]    ( z , H )    and    {  D y  }  =  D  H [ Y ]    ( y , H )   . Then


  ∣ V (  D  H [ Y ]    ( u , H )  ) ∣ ≤ 4  f o r  a n y  v e r t e x  u ∈  { z , y }  .  



(A39)







Proof of (A39):

By symmetry, we only need to deal with the case   ∣ V (  D  H [ Y ]    ( z , H )  ) ∣ ≤ 4   First, we will prove that    D z  ∩  D y  = ∅  . Otherwise, by Claim 29,    z ′   y ′  ∈ E  ( H )   . Then    T ′  = T −  {  w 1  z }  +  {  w 1  y , y  y ′  ,  y ′  z }    is a trail dominating more edges than T, which is opposite to the choice to T. This implies that   ∣ V  (  D  H [ Y ]    ( z , H )  )  ∣ = ∣ V  (  D  H [ Z ]    ( z , H )  )  ∣  . By Claim 39,   ∣ V (  D  H [ Y ]    ( z , H )  ) ∣ ≤ 4  . (A39) holds. □





By (A39) and Claims 37 and 38,   n ( H ) ≤ 18  . By Theorem A5, since H is   K 3  -free,   e ( H ) ≤ 81   and   n ( G ) ≤ 81  , contradicting   n ( G ) ≥ 212  .






References


	



Bondy, A.; Murty, U.S.R. Graph Theory with Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]

	



Bedrossian, P. Forbidden Subgraph and Minimum Degree Conditions for Hamiltonicity. Ph.D. Thesis, Memphis State University, Memphis, TN, USA, 1991. [Google Scholar]

	



Chen, G.; Egawa, Y.; Gould, R.J.; Saito, A. Forbidden pairs for k-connected Hamiltonian graph. Discret. Math. 2012, 312, 938–942. [Google Scholar] [CrossRef]

	



Du, J.; Huang, Z.; Xiong, L. Characterizing forbidden pairs for the edge-connectivity of a connected graph to be its minimum degree. Axioms 2022, 11, 219. [Google Scholar] [CrossRef]

	



Faudree, R.J.; Gould, R.J. Characterizing forbidden pairs for Hamiltonian properties. Discret. Math. 1997, 173, 45–60. [Google Scholar] [CrossRef]

	



Li, B.; Vrána, P. Forbidden Pairs of Disconnected Graphs Implying Hamiltonicity. J. Graph Theory 2016, 84, 249–261. [Google Scholar] [CrossRef]

	



Holub, P.; Ryjáček, Z.; Vrána, P.; Wang, S.; Liming, X. Forbidden pairs of disconnected graphs for 2-factor of connected graphs. J. Graph Theory 2022, 100, 209–231. [Google Scholar] [CrossRef]

	



Du, J.; Li, B.; Xiong, L. Forbidden Pairs of Disconnected Graphs for Traceability in Connected Graphs. Discret. Math. 2017, 340, 2194–2199. [Google Scholar] [CrossRef]

	



Li, B.; Broersma, H.; Zhang, S. Forbidden Subgraph Pairs for Traceability of Block-Chains. Electron. J. Craph Theory Appl. 2013, 1, 1–10. [Google Scholar]

	



Ramsey, F.P. On a problem of formal logic. Proc. Lond. Math. Soc. 1930, 30, 264–286. [Google Scholar] [CrossRef]

	



Lei, W.; Xiong, L.; Du, J.; Wang, S. Forbidden Pairs of Disconnected Graphs Excepting Claw for Traceability of Block-Chains. Ars Comb. 2019, 145, 353–366. [Google Scholar]

	



Ryjáček, Z. On a Closure Concept in Claw-Free Graphs. J. Combin. Theory Ser. B 1997, 70, 217–224. [Google Scholar] [CrossRef]

	



Brandt, S.; Favaron, O.; Ryjáček, Z. Closure and stable Hamiltonian properties in claw-free graphs. J. Graph Theory 2000, 32, 30–41. [Google Scholar] [CrossRef]

	



Brousek, J.; Ryjáček, Z.; Favaron, O. Forbidden subgraphs, Hamiltonicity and closure in claw-free graphs. Discrte. Math. 1999, 196, 29–50. [Google Scholar] [CrossRef]

	



Mantel, W. Opgaven28. Wiskd. Opgaven Met Oplossingen 1907, 10, 60–61. [Google Scholar]

	



Wang, S.; Xiong, L. Traceability of a 2-connected graph. preprint.

	



Wang, S.; Xiong, L. Spanning trails in a 2-connected graph. Electron. J. Comb. 2019, 26, 3–56. [Google Scholar] [CrossRef]

	



Chvátal, V.; Erdös, P. A note on Hamiltonian circuits. Discret. Math 1972, 2, 111–113. [Google Scholar] [CrossRef]








[image: Symmetry 14 01221 g001 550] 





Figure 1. Some graphs with small parameters. 
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Figure 2. Some classes of graphs. 
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Figure 3. (Left)   F 0  ; (right)   G 0  . 
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Figure 4. Some classes of graphs that are connected and non-traceable. 
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