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Abstract: Magnetic materials are used in many devices in everyday life. To control their properties,
we must first understand how they are ordered. This can be accomplished through neutron diffraction
measurements. However, in many cases, there are too many parameters to determine the structure
uniquely. Fortunately, symmetry can greatly constrain the number of parameters. Symmetry can
also allow us to determine which physical properties are possible. In this review, I discuss the role of
symmetry in magnetic structure determination using neutron diffraction. In this review, I will discuss
both representational analysis as well as the magnetic superspace formalism. I will also discuss where
the magnetic structure has been critical to understanding the fundamental science of the problem.
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1. Introduction

Humans have found magnets useful since the days of lodestones in Greece and
compasses in China. In more modern times, magnetism is at the heart of the storage of
information and other devices which undergird the modern world. The magnetic properties
of materials are critical to classes of materials such as multiferroics and magnetic topological
materials. The probe most suited to determining magnetic order at the atomic level is
neutron diffraction.

Magnetic neutron diffraction is a classic inverse problem, where, if we know the
magnetic order, we can calculate how neutrons will scatter from the material. However,
as in crystallography, the inverse problem of determining the magnetic order from the
scattering pattern is not one that is directly invertible due to the phase problem. Thus,
we must fit the data to a model. If we consider a system such as ZnCr2O4, the ordered
magnetic cell contains 64 atoms. If all spins were independent, its magnetic structure would
be impossible to solve given the number of reflections observed in powder diffraction.
Fortunately, we can use symmetry to simplify the problem so that we can try different
classes of models to see if they can fit the data, with each class often having a manageable
number of parameters.

Historically, the problem has been approached in a number of ways. In the earliest
days, a model was constructed (‘guessed at’) and tested against the data in a rather ad hoc
fashion. For simple systems, this was sufficient. As the materials studied became more
complicated, two approaches emerged—that of magnetic superspace groups and that of
representational analysis [1–4].

2. Materials and Methods

Calculations in this paper were performed using the FULLPROF Suite [5] and the
Bilbao Crystallographic Server [6,7]. Visualizations of crystal structures were made using
VESTA [8], JMol (Jsmol) [9], and the Bilbao crystallographic server.
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3. Results and Discussion

There are a number of excellent reviews and texts on the theories of representational
analysis as well as the use of magnetic superspace groups [2–4,10–12]. Instead of focusing
on theory, in this paper, I will look at applications to some instructive examples.

3.1. MnO

MnO is the earliest example of an antiferromagnet studied by neutron scattering [13].
It crystallizes in the space group Fm3̄m with a lattice parameter of a = 4.446 Å. They
observed a new set of reflections appearing at 120 K. This can be seen in Figure 1. Today,
we would start by determining the wave-vector. In this case, we see that new reflections
appear with a wave-vector of ( 1

2
1
2

1
2 ) indexed to the original cell (the reflections in the

figure are indexed to the magnetic unit cell which is doubled along a,b, and c). For a more
complicated indexing, in a modern setting, we would turn to programs such as TREOR [14],
DICVOL [15], or SARAh [16], to index the ordering wave-vector to the paramagnetic cell,
which can be nontrivial.

Shull et al. observed five new reflections (see Figure 1) at low temperatures. They also
measured the order parameter to determine the transition temperature. Along with the
magnetic ordering, they also observed a rhombohedral distortion.

They considered three possible magnetic orders. In one case, they imagined that the
moments could be along a [1 0 0] like direction. Another case they considered was that the
moment was along the [1 1 1] body diagonal. Another possibility they considered was that
the moment was somewhere within the [1 1 1] plane. Amongst these three models, they
found that the model with the moment along a cubic axis was most consistent with the
observed data. See Figure 2.

Figure 1. This is the diffraction pattern of MnO taken above and below the transition, reproduced
from [13].

A later group measured 11 reflections [17]. They considered two models. In one
model, the spins were along the [11̄0] direction in the [1 1 1] plane. In the other model,
spins were along the [1 0 0] direction. The first model fits better. They also mention a slight
rhombohedral distortion associated with the magnetic ordering (we note that a structural
distortion has also been detected by observations of the phonons [18,19]). There have been
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a number of other papers on magnetostriction and order parameter measurements in this
system without any definite resolution [20–22].

Figure 2. This is a cartoon of the magnetic structure of MnO, reproduced from [13].

Today, we would look at the Bilbao crystallographic server [6,7]. Using the MAX-
MAGN program, we find that there is only one magnetic space group with a nonzero
magnetic moment, RI3c (#167.108). Here, we see that the moment is along the [1 1 1]
direction. This is a rather beautiful result in which the moment direction is set and there is a
rhombohedral distortion as observed. However, given the strength of the (1 1 1) reflection,
it is not possible that the moment is along this direction (if it were along this direction, there
would be no intensity observed).

Let us briefly turn to representational analysis. Using SaraH, we find that the moment
can lie within the [1 1 1] plane, but this it is not constrained to lie along a particular axis.
Given the various discussions in the articles discussed, as well as others, it would seem
that distinguishing the in-plane moment direction is challenging (see Table 1). This is not
surprising. Given powder averaging, for a rhombohedral crystal, we should only be able
to expect to determine the moment direction relative to the [1 1 1] direction as well as
its magnitude.

However, we seem to find ourselves in a contradiction. From the representational
analysis, we see that there are two possibilities based on ordering within a single represen-
tation. One possibility is consistent with that from space groups—that the moment is along
the [1 1 1] direction. This disagrees with the data. The other is that the moment is within
the scattering plane–which does not seem to be a possibility for the magnetic space group.
The resolution is that the representation that is consistent with the observed magnetic
order is two-dimensional. However, we have only examined the maximal magnetic space
group. It is not necessary that it be a maximal space group given that the representation is
two-dimensional. While in many cases the maximal magnetic superspace group determines
the ground state, this is not necessarily the case, and if there is a discrepancy with the data,
lower symmetry cases must be examined.

Recently, Goodwin et al. [23] performed a total scattering measurement and discovered
a very slight modulation of the structure. They place the symmetry as a slightly monoclinic
space group and place the moments along the [1 1 2̄] axes. They note that the preference
for this particular direction as compared to others in the plane is slight. This results in a
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magnetic space group of C2. They also find a small out of plane spin component modulated
along [ 1

6
1
6

1
6 ] accompanied by a lattice modulation with the same periodicity. Hopefully,

future theoretical calculations can determine why this moment direction is preferred.

Table 1. Basis vectors for the space group F m -3 m with k9 = (0.5, 0.5, 0.5). The decomposition of
the magnetic representation for the Mn site (0, 0, 0) is ΓMag = 0Γ1

1 + 0Γ1
2 + 1Γ1

3 + 0Γ1
4 + 1Γ2

5 + 0Γ2
6.

The atom of the primitive basis is defined according to 1: (0, 0, 0).

IR BV Atom
BV Components

m‖a m‖b m‖c im‖a im‖b im‖c

Γ3 ψ1 1 12 12 12 0 0 0
Γ5 ψ2 1 6 −6 0 0 0 0

ψ3 1 3.464 3.464 −6.928 0 0 0

3.2. YMn2O5

Another instructive example to consider is the multiferroic material YMn2O5. At high
temperatures, the material crystallizes in the Pbam space group (Figure 3). As the tempera-
ture lowers, it orders magnetically at 45 K [24,25]. This is accompanied by a ferroelectric
phase transition [24,25]. At 19 K, a second dielectric and magnetic transition occurs,
showing that the structure and magnetism are intimately linked in this material. Early
neutron investigations revealed that the high temperature transition was associated with
a commensurate ordering with a wave vector of k1 = (0.5 0 0.25). The lower transi-
tion ordering wave vector was observed to be incommensurate with a wave-vector of
k2 = (0.5− δx 0 0.25 + δz) [25]. While this early neutron diffraction study was performed
on a single crystal, it primarily associated the ordering wave-vector with different ferro-
electric states. Note that the true behavior is slightly more complex than described here in
terms of the number and type of commensurate to incommensurate phase transitions [26].

Following these initial studies, subsequent authors moved to solve the magnetic
structure and to relate this magnetic structure to the ferroelectric order [27]. This study
was performed on powders on a time of flight instrument at ISIS. Magnetic refinement
results in a rather complex magnetic order shown in Figure 4 in the commensurate phase.
This commensurate phase was found to be amplitude modulated. It seems that the phase
was set to be π

4 to achieve constant moments—this was not a constraint from symmetry.
For the low temperature phase, a free fit of the parameters was performed using simulated
annealing and can be mapped to the combination of two irreducible representations. These
complex magnetic structures can be seen in Figure 4. Extracting crystallographic and
magnetic parameters, a good agreement can be found with the measured polarization data
as shown in Figure 5.

While this initial work was impressive, there are definitely constraints on what can
be learned from powder. For example, powder diffraction is rather insensitive to phase
information. It is often difficult to impossible to distinguish between spiral, cycloidal,
and amplitude modulated structures. In addition, the parameter space to search is ex-
tremely large. To address this, researchers moved towards studies of single crystals.
Vecchini et al. [28] find that the Mn3+ and Mn4+moments are primarily along the a-axis,
with components along b and c. For Mn3+, they form zig-zag antiferromagnetic chains
as seen in Figure 6. The Mn4+ moments have a slight cycloidal pattern that is displayed
in Figures 7 and 8. The interested reader is directed to the paper for a rich discussion of
domains. This structure shares a fair amount of overlap with that of [29].
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Figure 3. Crystal structure of RMn2O5 projected in the ab plane (top panel) and ac plane (bottom
panel). The green (small and light gray), red (gray), and blue (black) spheres correspond to Mn4+,
Mn3+, and R3+ ions, respectively. Mn-O polyhedra are shown with the same color scheme. The thin
black line represents the crystallographic unit cell, reproduced from Figure 1 [28].
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Figure 4. (a) Magnetic structure at 24.7 (top) and 1.9 K (bottom) projected in the ab plane. Ten unit
cells are displayed along a. For clarity, a single Mn4+ Mn3+ layer is shown. The arrows represent
the magnetic moment on Mn4+ (blue), at positions marked by black dots, and Mn3 (red). For the
ICM structure, region I is locally very similar to the CM phase (both chains having sizable moments)
and does not contain inversion centers. Region II could potentially contain an inversion center and
is described in more detail in (b) and in the text; (b) a schematic representation of the magnetic
structures of both CM and ICM phases (see text). The fragment on the left side represents a portion
of the Mn4+-Mn4+ chains along the c-axis. The SDW phases are as shown in the labels of the
Mn3+ sites and are obtained for the Mn4+ sites by adding the values of the a- and c-axis projections.
The arrows indicate the direction of the underlying centrosymmetric vector field that is coupled to
the magnetism and coincides with the axes of the Mn3+O5 pyramids. Magnetic exchange pathways
are also indicated, reproduced from Figure 2 of [27].
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Figure 5. (a) Refined values of the magnetic wave amplitudes on Mn3+ (open symbols) and Mn4+

(solid symbols) as a function of temperature. The average moment on each site is 1√
2

of the wave am-
plitude; (b) symbols: Electrical polarization of YMn2O5, as calculated from Equation (1) of [27]. Solid
line: Experimental values of the electrical polarization, extracted from Kagomiya et al. [24]. The cal-
culated polarization has been scaled by a single constant to account for the unknown magnetoelastic
coupling parameter, reproduced from Figure 3 of [27].

Figure 6. Magnetic structure of YMn2O5 projected in the ab plane. The structure is shown in two
unit cells, marked by thin black lines, along the a and b axes. The green (small and light gray) and red
(gray) arrows represent magnetic moments on Mn4+ and Mn3+ sites, respectively. Corresponding Mn-
O polyhedra are shown with the same colors. The blue spheres (black) represent Y ions, reproduced
from Figure 3 of [28].
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Figure 7. Magnetic structure of YMn2O5 projected in the ac plane shown within four unit cells along
c and two unit cells along a. The projection is separately shown for magnetic sites belonging to the
first AFM chain (top) and the second chain (bottom). The green (small and light gray) and red (gray)
arrows represent magnetic moments on Mn4+ and Mn3+ sites, respectively. Corresponding Mn-O
polyhedra are shown with the same colors. The blue (black) spheres represent Y ions, reproduced
from Figure 4 of [28].

Figure 8. Magnetic structure of YMn2O5 projected in the bc plane and showing only the Mn4+ mo-
ments. The figure shows the small helicoidal modulation generated by the out-of-phase c component.
To highlight this weak modulation, the moments have been scaled by a factor of 5 with respect to
what represented in the other figures, reproduced from Figure 5 of [28].

While this and the paper of Kimura [26] might have seemed to have resolved the
magnetic structure, there was still a question of mechanism that was under debate. Namely,
did the multiferroicity in these compounds derive from exchange–striction as championed
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by Chapon, Radaelli, and coworkers, the spin current model of Katsura and Mostovoy,
or something different. Another group weighed in through using a rather sophisticated
approach [30]. They approached the problem by co-refining single crystal and spherical
polarimetry data. In a spherical polarimetry experiment, one can measure the full polar-
ization tensor, which provides significant constraints on the magnetic structure. Thus,
even though they had no constraints implied by symmetry, the data offered additional
constraints on the single crystal data, and they found a model of the magnetic structure
that was different from that of Kimura. Later, the group of Radaelli and Chapon thought
more about symmetry and delved into the idea of co-representations [31,32]. The basic
idea behind co-representations is that, when dealing with spin 1

2 , one should consider anti-
unitary operators. From this, they were able to find symmetry constraints and a simpler
solution that resulted in a better fit to the data than that achieved by Kim et al. Finally, in an
excellent review, Perez-Mato [11] showed how superspace groups were sufficient without
the need for co-representations. We note that one alternative approach that we have not
considered was developed by Harris et al. [33,34] and involves considering the full free
energy of the system. This can reveal symmetries that are not captured by representational
analysis but is rather difficult to apply for experimentalists.

Thus, to recap, we have seen how our understanding of this material grew from
initial investigations with powder and representational analysis to the language of co-
representations and superspace methods.

4. Tools

From the previous examples, we have seen some of the simple and complex examples
of magnetic structure determination. Today, there are a variety of tools to use in the
determination of magnetic structure. There are also a number of schools and workshops
to train people in their use. There has also been an expanding series of articles on the use
of magnetic space group symmetry and these tool. This section provides a very broad
overview of these tools. The interested reader should refer to individual references for a
more detailed discussion.

As was mentioned earlier, one of the first steps in a neutron diffraction experiment is
to determine the wave-vector~k (or multiple wave-vectors!) which defines the periodicity of
the magnetic structure. In a single crystal experiment, this can be determined directly by the
appearance of new reflections when the periodicity of the magnetic order differs from that
of crystallographic cell. When the magnetic and crystallographic cell are the same (often
called a~k = 0 magnetic structure), magnetic reflections will appear at the same positions as
structural reflections. In this case, either polarized neutrons may be used to separate the
magnetic order, or subtraction of the intensities from above the magnetic transition can
reveal the magnetic component of the observed intensities. In some cases, even for non
~k = 0 structures, it may be ambiguous as to whether the new reflections are magnetic or
structural in nature. For example, there can be reflections associated with charge ordering
or a lowering of space-group symmetry. This can be distinguished through the use of
polarized neutron scattering. It should be noted that, while white beam instruments can
reveal the full diffraction pattern, for instruments with a single detector (or small position
sensitive detector), it is difficult to search reciprocal space. When examining a new material
where there is no information on the k-vector, it is often best when possible to start with a
powder even if it requires the crushing of single crystals. Exceptions can be in thin films or
when the signal is exquisitely weak (as in low moment systems). Other challenges to be
aware of when working with single crystals are twinning and absorption. These can be
corrected for in many cases (e.g., isotopic substitution), but powders provide for a much
easier starting point.

For powders, we would turn to programs such as TREOR [14], DICVOL [15], or
SARAh [16], to index the ordering wave-vector to the paramagnetic cell, which can be
nontrivial. The difficulty is that often there can be relatively few magnetic reflections,
which leaves the index of the new reflection(s) ambiguous. Another difficulty is that there
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can be overlap between reflections. The aforementioned programs can search along high
symmetry directions along with general directions to attempt to determine the ordering
wave-vector. One can also employ custom global fits to determine the wave-vector in a
Lebail-like manner [35]. One common difficulty that is useful to remember for those new
to magnetic structure refinement is that, for centered cells, the propagation vector is often
(0, 0, 1.5) rather than (0, 0, 0.5).

Once the ordering wave-vector has been determined, there are two common paths
forward [36]. One path is that of representational analysis. Programs such as SARah [16]
or Fullprof [5] (specifically, the BASIREPS program) allow the user to enter information
about the space group, positions of magnetic atoms in the crystallographic primitive cell,
and the wave-vector. Based on this information, these programs (and others) will perform
the calculations associated with representational analysis and will provide the user with
the basis functions associated with the different representations. The coefficients of these
basis functions can then be fit against the observed data (for both powder and single crystal
data), thus determining the magnetic structure. SARah also allows for providing an easy
interface for fitting these coefficients through Fullprof, while allowing for mixing between
different representations (as can occur for first order transitions, or when there are terms
in the free energy which allow for mixing). As discussed earlier, there are complexities
involved in the fitting and at times judgement calls which must be made in the cases of
multiple ordering wave-vectors. Additionally, with nonsymmorphic space-groups such
as discussed above for the REMn2O5, one has to be wary of wave-vectors on the edge
of the Brillouin zone such as ~k = (0.5, 0, 0). In this case, most of the programs using
representational analysis will not adequately constrain the magnetic structure. In this case,
one can either use co-representations as discussed, or use magnetic superspace groups.
Magnetic superspace groups are handled in existing software packages, so would likely be
more approachable than the more specialized use of double-groups, co-representations,
or solutions of the free energy.

The other approach is to use magnetic superspace groups. Here, one can take advan-
tage of the Bilbao crystallographic server [11]. Isodisplace [37] is also an excellent resource.
For the Bilbao crystallographic server, one can start with the program MAXMAGN. Here,
the user inputs the structural information by providing the wave-vector, space-group, and a
cif file with the crystallographic structural information. From this, the program determines
the maximal symmetry superspace groups. From the web interface, one can visualize the
possible magnetic structures associated with each of these magnetic superspace groups
and obtain an mCIF file which can be used for refinement. Programs such as Jana [38]
and GSAS II [39] directly interact with the Bilbao crystallographic server to use magnetic
superspace groups for the refinement.

For unpolarized neutrons, there can still be ambiguities. For example, in measure-
ments on skyrmions [40,41], a uniaxial polarized beam may be required to fully analyze
the magnetic structure. It can also be useful in determining if a single magnetic chirality
domain is present [42]. Other uses can be in determining basic features of the magnetic
structure in thin films [43]. In some cases, even uniaxial polarization analysis is insuf-
ficient. For example, there can be chirality domains. Spherical polarimetry can resolve
these ambiguities by measuring the full polarization tensor. This is a tool best used after
unpolarized techniques have been exhausted. This is because the counting times are long
and the analysis can be complex. The Mag2Pol [44] package is friendly to use for analyzing
data. It was critical in the studies of some multiferroic thin films [45].

For programs such as Fullprof, it is easy to output a mCIF file that uniquely describes
the magnetic structure. It is good practice to add this file to the supplemental materials
when submitting a paper for publication.
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5. Conclusions

Magnetic superspace groups and representational analysis are both useful tools for
determining how materials order magnetically and the implication for their physical
properties. As we study materials with complex magnetic structures, we should take
advantage of both tools not just to reduce the number of parameters, but to increase our
understanding of the physics of the system. There has been a renaissance in the use of
magnetic superspace groups to describe materials with incommensurate magnetic order.
New tools such as ISODISTORT and the Bilbao crystallographic server provide accessible
access to these methods. They have also been incorporated into major refinement programs
such as Fullprof and Jana. They also make consistent reporting in publications possible.
By taking advantage of these new methods, we can take advantage of the full symmetry of
materials as we seek to understand their magnetic order.
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