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Abstract: Twin extreme learning machine (TELM) is a phenomenon of symmetry that improves the
performance of the traditional extreme learning machine classification algorithm (ELM). Although
TELM has been widely researched and applied in the field of machine learning, the need to solve
two quadratic programming problems (QPPs) for TELM has greatly limited its development. In this
paper, we propose a novel TELM framework called Lagrangian regularized twin extreme learning
machine (LRTELM). One significant advantage of our LRTELM over TELM is that the structural
risk minimization principle is implemented by introducing the regularization term. Meanwhile, we
consider the square of the l2-norm of the vector of slack variables instead of the usual l1-norm in order
to make the objective functions strongly convex. Furthermore, a simple and fast iterative algorithm is
designed for solving LRTELM, which only needs to iteratively solve a pair of linear equations in order
to avoid solving two QPPs. Last, we extend LRTELM to semi-supervised learning by introducing
manifold regularization to improve the performance of LRTELM when insufficient labeled samples
are available, as well as to obtain a Lagrangian semi-supervised regularized twin extreme learning
machine (Lap-LRTELM). Experimental results on most datasets show that the proposed LRTELM
and Lap-LRTELM are competitive in terms of accuracy and efficiency compared to the state-of-the-art
algorithms.

Keywords: twin extreme learning machine; semi-supervised learning; manifold regularization;
structural risk minimization; Lagrangian function

1. Introduction

Extreme Learning Machine (ELM) was first proposed as a novel single hidden layer
feed-forward network (SLFN) training algorithm by Huang et al. [1,2]. Because ELM
randomly generates the input weight and deviation of the hidden layer, ELM has the
advantages of simple structure, low computational cost and good universality compared
with traditional neural network algorithms [3]. ELM has been used in many fields in
recent years thanks to its fast learning and good generalization and general approxima-
tion capabilities [4–10], such as bioinformatics [4,5], computer vision [6], data mining [7],
robotics [8], and engineering applications [10].

Recently, ELM has been intensively studied by many researchers, and many variants
have been proposed. For example, optimization extreme learning machine (OELM) was
presented by Huang et al. [11]. In [12], Yang and Zhang proposed smooth extreme learning
machine (SMELM) by applying smoothing techniques. Simultaneously, in [13], Yang and
Zhang suggested a new sparse extreme learning machine (SPELM). In addition, a uni-
fied learning framework for different applications was introduced by Huang et al. [14].
Although the above improved versions of ELM have achieved good results, they are all
supervised learning algorithms. In order to overcome the shortcomings of ELM, a novel
semi-supervised extreme learning machine(SSELM) was suggested in [15]. Subsequently,
a robust SS-ELM (RSS-ELM) was proposed by Pei et al. 42 to overcome the effect of outliers
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on the SS-ELM, while a Lagrangian semi-supervised extreme learning machine (LELM) for
pattern recognition was proposed by Ma et al. [16].

In recent years, Jayadeva et al. [17] have proposed an excellent machine learning tool
called the twin support vector machine (TSVM) for classification tasks. Due to the superior
performance of TSVM, many variants of TSVM have been proposed in recent years [18–22].
It is well known that a significant advantage of Support Vector Machines (SVMs) is the
implementation of the Structural Risk Minimisation principle (SRM). However, only the
empirical risk minimisation (ERM) principle is considered in the standard TSVM learning
framework. To improve the performance of TSVM, Shao et al. proposed a twin bounded
support vector machine (TBSVM). In the TBSVM, the SRM principle is implemented by
introducing regularization terms. Inspired by TSVM, Wan et al. proposed Twin Extreme
Learning Machine (TELM). Similar to TSVM, TELM only considers the ERM principle.

Although the above SVM-based algorithms achieve good results, they can carry a
heavy computational burden during training because they need to solve the quadratic
programming problem (QPP). To overcome this challenge, Mangasarian et al. [23] proposed
a computationally powerful machine learning algorithm called a Lagrangian Support
Vector Machine (LSVM). It minimises an unconstrained differentiable convex function
in a space where the dimension is equal to the number of classification points. Recently,
researchers have developed the idea of extending LSSVM to TSVM and its variants, achiev-
ing excellent results [15,23–30]. Several representative works can be briefly reviewed
as follows, such as the Lagrangian twin support vector machine (LTSVM) proposed by
Balasundaram et al. [24]. Shao et al. [25] have proposed an efficient weighted Lagrangian
dual support vector machine (WLTSVM) for imbalanced classification. It is well known
that the performance of supervised learning algorithms tends to deteriorate when there
is insufficient supervised information. An effective approach to deal with this problem is
semi-supervised learning (SSL), which makes use of geometric information embedded in
unlabelled samples [31–37]. Over the past decades, researchers have presented various
SSL methods from different perspectives and have achieved promising results such as
Laplacian support vector machine (Lap-SVM) [31], Laplacian twin support vector machine
(Lap-TSVM) [20], semi-supervised extreme learning machine(SS-ELM) [36], and more.

Inspired by the above excellent works, this paper proposes a new TELM learning
framework, namely, a Lagrangian regularized twin extreme learning machine (LRTELM).
LRTELM is based on optimization theory and structural risk minimization. In addition, we
extend LRTELM to semi-supervised learning by introducing manifold regularization in
order to improve the performance of LRTELM when the labeled samples are insufficient, as
well as to obtain a Lagrangian semi-supervised regularized twin extreme learning machine
(Lap-LRTELM).

LRTELM is based on optimization theory and structural risk minimization. Then,
LRTELM is extended to semi-supervised learning by introducing manifold regularization
to improve the performance of LRTELM when insufficient labeled samples are available, as
well as to obtain a Lagrangian semi-supervised regularized twin extreme learning machine
(Lap-LRTELM). Lap-LRTELM can effectively exploit the geometric information embedded
in the distribution of unlabelled samples of margins in order to improve the generalisation
performance of LRTELM. Experimental results on various datasets show that the proposed
algorithms, LRTELM and Lap-LRTELM, are competitive in terms of accuracy and efficiency
when compared with state-of-the-art learning algorithms.

In particular, the major contributions of this paper are as follows:

(1) Two effective and reliable learning frameworks based on TELM are proposed, namely,
Lagrangian regularized twin extreme learning machine (LRTELM) and Laplacian
Lagrangian regularized twin extreme learning machine (Lap-LRTELM).

(2) LRTELM and Lap-LRTELM implement the principle of structural risk minimization
by introducing regularization terms in the objective function. We consider the square
of the l2-norm of the vector of slack variables instead of the usual l1-norm, as in TELM,
to make the objective functions strongly convex.
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(3) Two fast, simple, and efficient algorithms are designed to solve the LRTELM and Lap-
LRTELM, respectively. These two algorithms only need to solve two linear equations
separately, avoiding the need to solve a pair of QPPs, as in TELM. The resulting
iterative algorithms globally converge and have a lower computational burden.

(4) Experimental results on variety of datasets show that our algorithms, LRTELM and
Lap-LRTELM, are competitive with other algorithms in terms of accuracy and efficiency.

The remainder of this paper is organised as follows. We briefly review ELM, TELM,
and the framework of manifold regularization in Section 2. In Section 3 we describe
LRTELM in detail, while Section 4 describes the details Lap-LRTELM. Experimental results
are presented in Section 5; finally, concluding remarks are provided in Section 6.

2. Related Work

In this section, we provide a brief overview of ELM, TELM, and the manifold regular-
ization (MR) framework.

2.1. ELM

It is well known that the original ELM was proposed by Huang et al. [1]. ELM’s
structure consists of an input layer, a hidden layer, and an output layer. The central idea of
ELM is to randomly intialise the parameters of the hidden layer and correct them without
iterative adjustment. The input data are then transformed from the input space to the
high-dimensional hidden layer space by ELM feature mapping.

Let Tl = {(x1, y1), . . . , (xl , yl)} ∈ (Rn,Ym)l be a dataset of binary classification prob-
lems. Based on the theory of ELM, we have:

H =

h(x1)
...

h(xl)

 =

g(wT
1 x1 + b1) · · · g(wT

L x1 + bL)
...

...
...

g(wT
1 xl + b1) · · · g(wT

l xL + bL)


l×L

where g(·) is the activation function, w = (w1, w2, . . . , wL) is the input weight, and b =
(b1, b2, . . . , bL) are hidden layer biases. The hidden layer parameters (w, b) can be obtained
randomly according to any continuous probability distribution.

It is well known that the standard ELM attempts to approximate these l samples with
zero error, and can therefore be expressed as

min
β
‖Hβ− Y‖2

2 (1)

where β = [β1, β2, . . . , βL]
T ∈ RL×m is the output weight matrix and Y = [y1, y2, . . . , yl ]

T is
the following label matrix:

Y =

yT
1
...

yT
l

 =

y11 · · · y1n
...

...
...

yl1 · · · ylm


l×m

.

Obviously, the above optimization problem (1) can obtain the optimal solution by
solving Hβ = Y . Thus, we have

β∗ = H†Y (2)

where H† represents the Moore–Penrose generalized inverse matrix of H.
In contrast to traditional learning algorithms, ELM requires a criterion for both mini-

mizing training error and for minimizing output weights:

min
β

C
2
‖Hβ− T‖2 + ‖β‖2 (3)



Symmetry 2022, 14, 1186 4 of 24

where C is regularization parameter. Intuitively, by setting the gradient of (3) relative to β
to zero we have

β∗ =


(HT H +

I
C
)−1HTY , i f l > L,

HT(HHT +
I
C
)−1Y , i f l ≤ L.

Thus, the output function of ELM is

f(x) =
L

∑
i=1

g(wi, bi, x)fi = h(x) · fi (4)

2.2. TELM

Let training data Tl = {(x1, y1), . . . , (xl , yl)} ∈ (Rn,Y)l , where xi ∈ Rn and yi ∈ Y =
{1,−1}, i = 1, . . . , l; Tl contains m1 positive class and m2 negative class, where l = m1 + m2.
In particular, we use matrixes H1 and H2 to represent positive class and negative class
samples, respectively. Thus, we have

H1 =

 h1(x1) · · · hL(x1)
...

...
...

h1(xm1) · · · hL(xm1)

, H2 =

 h1(x1) · · · hL(x1)
...

...
...

h1(xm2) · · · hL(xm2)


where hi(x) = G(wi, bi, x) = wi · x + bi, i = 1, . . . , L.

Inspired by TSVM, a novel twin extreme learning machine (TELM) was proposed by
Wang et al. [38]. Specifically, TELM first utilizes the random feature mapping mechanism
to construct the feature space, then a pair of nonparallel separating hyperplanes are learned
for the final classification. As with TSVM, for each hyperplane TELM jointly minimizes its
distance from one class and requires it to move away from the other. Therefore, we have:

f1(x) = β1 · h(x) = 0, (5)

and
f2(x) = β2 · h(x) = 0. (6)

We can determine f1(x) and f2(x) by solving the following two quadratic program-
ming problems (QPPs):

min
β1,ξ

1
2 ‖ H1β1 ‖2 +C1eT

2 ξ

s.t. −H2β1 + ξ ≥ e2
ξ ≥ 0

(7)

and

min
β1,ξ

1
2 ‖ H2β2 ‖2 +C2eT

1 η

s.t. H1β2 + η ≥ e1
η ≥ 0

(8)

where ξ and η are slack vectors, C1, C2 > 0 are regularization parameters, and e1 ∈ Rm1

and e2 ∈ Rm2 are vectors of ones.
The difference between ELM, TELM, and LRTELM are shown Table 1.
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Table 1. The difference between ELM, TELM, and LRTELM.

ELM TELM LRTELM

Classification hyperplane
A classification A pair of nonparallel A pair of nonparallel

hyperplane classification hyperplanes classification hyperplanes

Optimization task One large linear equation Two smaller QPPs A pair of linear equations

2.3. Manifold Regularization Framework

Let semi-supervised learning training set T = Tl ∪ Tu = {xi, yi}l
i=1 ∪ {xi+u}u

i=l+u,
i = 1, . . . , l, where xi ∈ Rn, yi ∈ {−1,+1}, Tl denotes a set of l labeled samples, and Tu
denotes a set of u unlabeled samples. In the supervised learning case, u = 0.

Belkin et al. [31] proposed the manifold regularization framework

f ∗ = arg min
f∈Hk

1
l ∑

i∈I
Lloss(xi, yi, f (xi)) + γK‖ f ‖2

H + γI‖ f ‖2
I (9)

where Lloss(·) is the loss function, ‖ f ‖2
H is the complexity regularization, γK and γI are the

nonnegative regularization parameters, and ‖ f ‖2
I is the manifold regularizer, which takes

the following empirical form:

‖ f ‖2
I =

1
(l + u)2 ( f T L f ) (10)

where L = D −W is the graph Laplacian, D is a diagonal matrix of W provided by
Dii = ∑l+u

j=1 Wij, Dij = 0 for i 6= j, and the normalizing coefficient 1
(l+u)2 is the natural scale

factor for the empirical estimate of the Laplace operator.

3. Lagrangian Regularized Twin Extreme Learning Machine

In this section, we introduce the formulation of our method and then propose a
program to solve its objective function.

3.1. LRTELM

Inspired by TSVM and LELM, we construct the following optimization problem:

min
β1,ξ

1
2 ‖ H1β1 ‖2 +C1

2 ‖β1‖2 + C2
2 ξTξ

s.t. −H2β1 + ξ ≥ e2

(11)

and

min
β2,η

1
2 ‖ H2β2 ‖2 +C1

2 ‖β2‖2 + C2
2 ηTη

s.t. H1β2 + η ≥ e1

(12)

where ξ and η are slack vectors, C1 and C2 are regularization parameters, and e1 ∈ Rm1 and
e2 ∈ Rm2 are vectors of ones.

In the new objective function of (11) the first term is the same as [38], and optimizing
the term causes the positive training point to be as close as possible to the hyperplane f1.
The second term, C1

2 ‖β1‖2, is a regularization term that defines the structural risk to ensure
generalization and avoid overfitting. Minimizing the third term makes the negative class
samples as far as possible from the positive class hyperplane f1. We have a slightly similar
interpretation of the problem (12).
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The Lagrange function of the optimization problem (11) is

L(β1, ξ, α) =
1
2
‖ H1β1 ‖2 +

C1

2
‖β1‖2 +

C2

2
ξTξ

− αT(−H2β1 + ξ − e2) (13)

where α is the Lagrange multipliers vector.
Thus, we have:

∂L
∂β1

= HT
1 H1β1 + C1β1 + HT

2 α = 0, (14a)

∂L
∂ξ

= C2ξ − α = 0, (14b)

α ≥ 0, (14c)

αT(−H2β1 + ξ − e2) = 0. (14d)

Substituting (14a) and (14d) into (13), we can obtain the dual form of (11):

min
α≥0

1
2 αTQ1α− eT

2 α (15)

where Q1 = H2(HT
1 H1 + C1 I)−1HT

2 .
In the same way, we can obtain

min
θ≥0

1
2 θTQ2θ − eT

1 θ (16)

where Q2 = H1(HT
2 H2 + C1 I)−1HT

1 .
By deforming the KKT necessary and sufficient optimality conditions for the dual

problem, we solve the following classical nonlinear complementarity problem:

0 ≤ α⊥(Q1α− e2) ≥ 0 (17)

and
0 ≤ θ⊥(Q2θ − e1) ≥ 0 (18)

Further, per [23] we have:

0 ≤ x⊥y ≥ 0⇔ x = (x− ay)+, f or a > 0. (19)

where x and y are real vectors.
Thus, (17) and (18) can be rewritten as follows:

Q1α− e2 = ((Q1α− e2)− ηα)+ (20)

and
Q2θ − e1 = ((Q2θ − e1)− λθ)+ (21)

where η > 0 and λ > 0.
For obtaining the solution of the above problems (20) and (21), we have:

αi+1 = Q−1
1 (e2 + ((Q1αi − e2)− ηαi), i = 0, 1, 2 . . . (22)

and
θ j+1 = Q−1

2 (e1 + ((Q2θi − e1)− λθ j), j = 0, 1, 2 . . . (23)

where 0 < α < 2
C1

and 0 < θ < 2
C1

.
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Thus, we can obtain the following decision function:

f (x) = sign(
β1 · h(x)
‖β1‖

+
β2 · h(x)
‖β2‖

). (24)

Based on the above discussion, the LRTELM is summarized as Algorithm 1.

Algorithm 1 Training LRTELM

Input: Training set Tl = {xi, yi}l
i=1, i = 1, . . . , l, where xi ∈ Rn, xj ∈ Rn, yi ∈ {−1,+1};

activation function G(x), and the number of hidden node number L, regularization
parameters C1, C2, fix η = λ = 1.9/C1.

Output: The decision function of LRETLM f (x).

Initiate: Start with any α0, θ0 and set the iterator i = 0.

Process:

1. Randomly assign input weights w biases b;

2. Calculate the hidden layer output matrix H1 and H2;

3. Compute
Q1 = H2(HT

1 H1 + C1 I)−1HT
2

,
Q2 = H1(HT

2 H2 + C1 I)−1HT
1

;
4. Via (22) and (23) calculate α and θ, respectively;

5. Compute β1 and β2 by

β1 = −(HT
1 H1 + C1 I)−1HT

2 α (25)

and
β2 = −(HT

2 H2 + C1 I)−1HT
1 θ (26)

Return: The decision function f (x) = sign( β1·h(x)
‖β1‖

+ β2·h(x)
‖β2‖

) of LRTELM.

3.2. Convergence Analysis

Theorem 1. (Global Convergence of LRTELM) Let Q1 and Q2 be two symmetric positive definite
matrices and assume that

0 < η <
2

C1
(27)

and
0 < λ <

2
C1

(28)

hold. Then, starting with arbitrary α0 and θ0, the iterative schemes (22) and (23) converge to the
unique solution ᾱ and θ̄, respectively. Therefore, we have

‖ Q1αi+1 −Q1ᾱ ‖≤‖ I − ηQ−1
1 ‖ · ‖ Q1αi −Q1ᾱ ‖ (29)

and
‖ Q2θi+1 −Q2θ̄ ‖≤‖ I − λQ−1

2 ‖ · ‖ Q2λi −Q2λ̄ ‖ . (30)
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Proof of Theorem 2. Here, we use (15) as an example to prove Theorem 1. Suppose ᾱ is
the solution to (15); then, it must satisfy optimality condition (17) for any η > 0. Thus,
we have

Q1αi+1 − e2 = ((Q1αi − e2)− ηα)+ (31)

and
Q1ᾱ− e2 = ((Q1ᾱ− e1)− ηᾱ)+, (32)

From (31) and (32) we can obtain:

‖ Q1αi+1 −Q1ᾱ ‖=‖ (Q1αi − ηαi)+ − (Q1ᾱ− e2 − ηᾱ)+ ‖ . (33)

Per [39], the distance between any two points in Rn is not less than the distance
between their projections on any convex set in Rn. Thus, we have the following inequality:

‖ Q1αi+1 −Q1ᾱ ‖ ≤ ‖ (Q1 − θ I)(αi − ᾱ) ‖
≤ ‖ I − ηQ−1

1 ‖ · ‖ Q1(α
i − ᾱ) ‖ . (34)

If η is selected such that
‖ I − ηQ−1

1 ‖< 1 (35)

then Equation (34) is obtained and the algorithm converges.
Now, we only need to prove ‖ I − ηQ−1

1 ‖< 1. Using the eigenvalue decomposition,
Q1 is represented as MTλM where λ = diag(λ1, . . . , λm) and M is a unitary matrix. Then,

‖ I − ηQ−1
1 ‖ = ‖ I − η(MTλM)−1 ‖

= ‖ MT M− ηMTλ−1M ‖ (36)

= ‖M‖‖I − ηλ−1‖‖M‖
= ‖I − ηλ−1‖

while ‖I − ηλ−1‖ is less than 1, (35) can be established as equivalent to the following
inequalities:

− 1 < 1− η

λmin(Q1)
< 1 (37)

where the inequalities in (37) can be written as

0 <
η

λmin(Q1)
< 2 (38)

From (38), we can obtain the following condition:

0 < η < 2λmin(Q1). (39)

Due to Q1 = H2(HT
1 H1 + C1 I)−1HT

2 being a positive semi-definite matrix, we have:

1
c1
≤ λmin(H2(HT

1 H1 + C1 I)−1HT
2 ) (40)

which forms (40); if η is selected by

0 < η <
2

C1
(41)

then (34) is satisfied and the iterative method converges.
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3.3. Compare with Other Relevant Methods

LRTELM vs. TELM
It is easy to see that both LRTELM and TELM [40] aim to find two non-parallel

hyperplanes, (5) and (6). Comparing LRTELM and TELM, there are three main differences:

(1) In the primal problem of TELM, only the empirical risk minimization (ERM) is
considered. However, our proposed LRTELM implements the SRM principle.

(2) TELM determines the decision hyperplane by solving a pair of QPPs. However,
LRTELM determines the decision hyperplane by solving a pair of linear equations.

(3) We have made a slight change compared to TELM by introducing a hinge loss function;
we replace the l1-norm with the l2-norm of the slack variables ξ and η by weighting
C1
2 , which guarantees the strict convexity of the object function. This leads to the

problem of optimising LRTELM with a unique solution.

LRTELM vs. LELM
Clearly, both LRTELM and LELM are supervised learning methods. However, the main

difference between LRTELM and TELM is that LRTELM aims to generate two non-parallel
separable hyperplanes, whereas LELM seeks to find only one separable hyperplane.

LRTELM vs. LSVM and LTSVM

(1) Obviously, the objectives are different. No bias b is required in LRTELM because the
separating hyperplane bmbetaTh(x) = 0 passes through the origin in the LRTELM
feature space, whereas LSVM [23] and LTSVM [24] require a bias b to determine
the hyperplane.

(2) In contrast to LSVM and LTSVM, LRTELM has an explicit kernel function in the form
of network parameters that are generated randomly and do not need to be adjusted.

4. Laplacian Lagrangian Regularized Twin Extreme Learning Machine

It is well known that insufficient volume of labeled samples is a major challenge
in supervised learning. To improve the performance of LRTELM, this paper proposes a
new semi-supervised learning framework, namely, Laplacian Lagrangian regularized twin
extreme learning machine (Lap-LRTELM).

4.1. Lap-LRTELM

For Lap-LRTELM, the regularization terms ‖ f1‖2
H and ‖ f2‖2

H can be expressed by

‖ f1‖2
H =

1
2
‖β1‖2

2, (42)

‖ f2‖2
H =

1
2
‖β2‖2

2. (43)

Correspondingly, the manifold regularization terms ‖ f1‖2
M and ‖ f2‖2

M can be written as

‖ f1‖2
M =

1
(l + u)2

l+u

∑
i,j=1

Wi,j( f1(xi)− f1(xj))
2 = f T

1 L f1, (44)

‖ f2‖2
M =

1
(l + u)2

l+u

∑
i,j=1

Wi,j( f2(xi)− f2(xj))
2 = f T

2 L f2, (45)

where L = D −W is the graph Laplacian, D is a diagonal matrix with its i-th diagonal
Dii = ∑l+u

j=1 Wij, f1 = [ f1(x1), . . . , f1(xl+u)]
T = Hβ1, f2 = [ f2(x1), . . . , f2(xl+u)]

T =

Hβ2, H ∈ R(l+u)×n includes all labeled and unlabeled samples, and e is an appropriate
ones vector.
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Therefore, the primal Lap-LRTELM can be expressed as

min
β1,ξ

1
2
‖H1β1‖2

2 +
C1

2
‖β1‖2

2 +
C2

2
ξTξ +

C3

2
βT

1 HT LHβ1

s.t. − H2β1 + ξ ≥ e2

(46)

and

min
β2,η

1
2
‖H2β2‖2

2 +
C1

2
‖β2‖2

2 +
C2

2
ηTη +

C3

2
βT

2 HT LHβ2

s.t. H1β2 + η ≥ e1

(47)

Thus, we can obtain the dual problems of (46) and (47),

min
γ≥0

1
2 γTΘ1γ− eT

2 γ (48)

and

min
ϑ≥0

1
2 ϑTΘ2ϑ− eT

1 ϑ (49)

respectively, where Θ1 = H2(HT
1 H1 + C1 I + C3HT LH)−1HT

2 , Θ2 = H1(HT
2 H2 + C1 I +

C3HT LH)−1HT
1 , and α and θ are Lagrangian multiplier vectors.

Based on KKT necessary and sufficient optimality conditions, we can obtain the
nonlinear complementarity problems

0 ≤ γ⊥(Θ1γ− e2) ≥ 0 (50)

and
0 ≤ ϑ⊥(Θ2ϑ− e1) ≥ 0 (51)

Similar to LRTELM, we have

Θ1γ− e2 = ((Θ1ϑ− e2)− δγ)+ (52)

and
Θ2ϑ− e1 = ((Θ2ϑ− e1)− µϑ)+ (53)

In order to obtain the solutions of the above problems (52) and (53), we apply the
following two simple iterative schemes:

γi+1 = Θ−1
1 (e2 + ((Θ1γi − e2)− δγi), i = 0, 1, 2 . . . (54)

and
ϑj+1 = Θ−1

2 (e1 + ((Θ2ϑi − e1)− µϑj), j = 0, 1, 2 . . . (55)

where 0 < δ < 2
C1

and 0 < µ < 2
C1

.
Based on the above discussion, the Lap-LRTELM is summarized as Algorithm 2.
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Algorithm 2 Training Lap-LRTELM

Input: Training set T = Tl ∪ Tu = {xi, yi}l
i=1 ∪ {xi+u}u

i=l+u, i = 1, . . . , l, where xi ∈ Rn,
yi ∈ {−1,+1}, Tl denotes a set of l labeled samples, Tu denotes a set of u unlabeled sam-
ples; activation function G(x), and the number of hidden node number L, regularization
parameters C1, C2, C3, number of learning times it = 0, the maximum number of cycles
itmax; fix δ = µ = 1.9

C1
.

Output: The decision function of Lap-LRTELM f (x).

Initiate: Start with any α0, θ0 and set the iterator i = 0.

Process:

1. Randomly assign input weights w biases b;

2. Calculate the hidden layer output matrix H1 and H2;

3. Compute graph Laplacian L;

4. Compute
Θ1 = H2(HT

1 H1 + C1 I + C3HT LH)−1HT
2

,
Θ2 = H1(HT

2 H2 + C1 I + C3HT LH)−1HT
1

;
5. Calculate α and θ via (54) and (55), respectively;

6. Compute β1 and β2 by

β1 = −(HT
1 H1 + C1 I + C3HT LH)−1HT

2 α (56)

and
β2 = −(HT

2 H2 + C1 I + C3HT LH)−1HT
1 θ (57)

Return: The decision function f (x) = sign( β1·h(x)
‖β1‖

+ β2·h(x)
‖β2‖

) of Lap-LRTELM.

4.2. Comparison with Other Related Algorithms

In this subsection, we compare our proposed Lap-LRTELM with other related algorithms.
Lap-LRTELM vs. LRTELM

The main difference is that LRTELM is a supervised learning algorithm, while Lap-
LRTELM is a semi-supervised learning algorithm. When choosing the appropriate parame-
ters, our proposed Lap-LRTELM will degenerate into LRTELM.
Lap-LRTELM vs. Lap-LELM

Obviously, both Lap-LRTELM and Lap-LELM [16] are semi-supervised learning al-
gorithms. However, the main difference between Lap-LRTELM and Lap-LELM is that
Lap-LRTELM aims to generate two non-parallel separating hyperplanes, while Lap-LELM
seeks only one separable hyperplane.
Lap-LRTELM vs. Lap-TELM

It is obvious that both Lap-LRTELM and Lap-TELM [37] aim to find two non-parallel
hyperplanes in order to indirectly determine the decision hyperplane. Comparing Lap-
LRTELM and Lap-TELM, there are two main differences:

(1) Lap-TELM determines the decision hyperplane by solving a pair of smaller QPPs;
however, in Lap-LRTELM, the decision hyperplane is indirectly determined by itera-
tively solving a pair of linear equations;
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(2) Compared with Lap-TELM, we changed the Lap-TELM slightly by adding a hinge
loss function; we replaced the l1-norm with the l2-norm of the slack variables ξ and η
by weighting c1

2 , which guarantees the strict convexity of the object function.

5. Experiment

In order to evaluate the performance of our proposed LRTELM and Lap-LRTELM,
we compare our methods with related algorithms, including TELM [40], LSVM [23],
LTSVM [24], LELM [16], Lap-LELM [16], SS-ELM [35], and Lap-TELM [37]. The ex-
perimental settings are provided in Section 5.1. In Section 5.2, we provide supervised
learning results and analysis. In Section 5.3, we provide semi-supervised learning results
and analysis.

5.1. Experimental Setup

Here, the accuracy of all experiments is calculated using the standard ten-fold cross-
validation method and all parameters are selected using the grid search method. For conve-
nience, we set the regularization parameters as C1 = C2 = C3 = C. All parameter selection
ranges are described as follows:

(1) Regularization parameters C and λ and the RBF kernel parameter σ are all selected
from the set {2i|i = −6, . . . , 6};

(2) For the K-nearest neighbors parameter, N is selected from {3, 5, 7, 9, 11};
(3) The hidden layer node L is selected from {100, 200, 300, 500, 1000, 2000, 3000, 5000}.

The activation function 1/(1 + exp(−(w · x + b))) (in which w, b are randomly gen-
erated) was used for LRTELM, Lap-LRTELM, LELM, Lap-LELM, TELM, Lap-TELM, and
SS-ELM. Classification accuracy (ACC) is used as an evaluation indicator to evaluate the
performance of the algorithms involved. The ACC value is defined as

ACC =
TP + TN

TP + FN + TN + FP
(58)

where TP denotes true positives, TN denotes true negatives, FN denotes false negatives,
and FP denotes false positives. In order to better compare the computation times of all
the algorithms employed, we recorded their running times, mainly including training and
testing on all the datasets involved.

To validate the effectiveness of the proposed LRTELM and Lap-LRTELM, numerical
simulations were carried out on various datasets, including nine benchmark datasets from
the UCI repository, four image datasets, two artificial datasets, and five sets of infrared
spectral datasets. We performed ten-fold cross-validation on all but four of the image
datasets considered. (Due to the relatively small sample size of image datasets, which are
generally high-dimensional and low-sample data, 0-fold cross validation was not used
on image datasets.) Intuitively, the dataset was randomly partitioned into ten subsets,
one of which was retained as the test set. This process was repeated ten times and the
average of the ten test results was used as a performance measure. To obtain objective
experimental results, we normalised all the data sets involved in the experiment to stay
within the interval [0, 1]. For a fair comparison, we used Matlab’s Quadratic Programming
(QP) toolbox to solve all QP problems in the algorithms of interest. All methods were
implemented in MATLAB 2014a running on a PC with an Intel(R) Core(TM) i7-7200u
processor (3.40 GHz) and 8 GB of RAM in system configuration.

5.2. Supervised Learning Results
5.2.1. Experiment on Near-Infrared Spectral Datasets

Today, information plays an increasingly important role in agricultural production as
a new factor of production. For agricultural information, because of its strong locality and
timeliness, determining the hidden information behind the data, improving the quality of
information, and providing timely and practical information with prediction, seasonality,
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and guidance is an urgent problem to be studied and solved. Data mining techniques are
now being used in various areas of agriculture [41,42]. It is well known that maize yield,
a major grain crop in China, is significantly correlated with seed purity. The ’Nongda 108’
maize hybrid seed and the ’parent 178’ seed used in our experiment were obtained from
the 2008 harvest in Beijing, China. A total of 240 seed samples were used in our experiment,
120 from the hybrid seeds and 120 from the parent seeds. We obtained near-infrared (NIR)
spectral datasets of maize seeds using an MPA spectrometer, where the corresponding
sample regions are denoted as A, B, C, D, and E regions. The information in these datasets
is summarized in Table 2.

Table 2. Description of near-infrared spectral datasets.

Regions Spectral Range Number of Number of
(cm−1) Samples Variables

Region A 4000–6000 240 518
Region B 8000–9000 240 260
Region C 8000–10,000 240 518
Region D 9000–10,000 240 260
Region E 4000–10,000 240 1555

To demonstrate the generalisation performance of the proposed LRTELM method in
practical applications, the following numerical experiments were carried out on five near-
infrared spectral datasets. Based on the optimal parameters, all experimental results are listed
in Table 3 and Figure 1. Our analysis of the experimental results reveals the following:

(1) It is clear from Table 3 that LRTELM achieves the best average ACC, the highest
average score, and the best overall performance compared to other related algorithms.

(2) The experimental results + on the five datasets with LRTELM are better than with
TELM or LELM.

(3) As the table shows, LRTELM outperforms the other four algorithms in terms of
learning time.

Region A Region B Region C Region D Region E
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Datasets

T
im

es
 (

s)

 

 

TELM LSTVM LELM LSVM LRTELM

Figure 1. The learning times of the LSVM, LTSVM, TELM, LELM, and LRTELM on near-infrared
spectral datasets.

Through the above analysis of the near-infrared spectral dataset, we can draw a safe
conclusion that the proposed LRTELM is effective and reliable.
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Table 3. Results of LSVM, LTSVM, TELM, LELM, and LRTELM on near-infrared spectral datasets.

Datasets
LSVM LTSVM TELM LELM LRTELM
ACC± S (%) ACC± S (%) ACC± S (%) ACC± S (%) ACC± S (%)
(C∗, σ∗) (C∗, σ∗) (C∗, L∗) (C∗, L∗) (C∗, L∗)

Region A 71.36 ± 2.27 66.67 ± 2.31 71.46 ± 2.22 72.50 ± 2.19 73.19± 2.08
(22, 2−2) (22, 2−2) (22, 300) (23, 300) (23, 300)

Region B 73.11 ± 3.78 72.08 ± 4.02 73.58 ± 3.85 75.83 ± 3.66 76.45± 3.56
(23, 2−1) (22, 20) (23, 300) (21, 500) (22, 300)

Region C 62.29 ± 4.16 61.32 ± 4.38 62.34 ± 4.47 63.17 ± 4.43 63.55± 4.18
(23, 23) (2−2, 20) (23, 500) (22, 500) (23, 500)

Region D 72.13 ± 1.44 72.08 ± 1.29 72.87 ± 1.13 72.75 ± 1.56 72.89± 1.19
(23, 20) (24, 2−1) (22, 300) (2−1, 300) (2−1, 300)

Region E 73.21 ± 2.56 72.69 ± 2.33 73.45 ± 2.67 73.88 ± 2.32 74.01± 2.28
(22, 23) (23, 22) (22, 500) (10−1, 1000) (2−1, 1000)

Avg.ACC 70.42 68.968 70.74 71.626 72.018
Avg.rank 4 5 2.8 2.2 1

5.2.2. Experimental Results on UCI Datasets

To further test the classification performance of the proposed LRTELM and other
related algorithms, we conducted numerical experiments on several publicly available
UCI datasets (http://archive.ics.uci.edu/ml/datasets.html (accessed on 22 March 2021)).
All experimental results are presented in Table 4. The analysis of all experimental results
is as follows.

From Table 4, it can be seen that in terms of classification performance, the proposed
method outperforms other learning algorithms in most cases. Furthermore, in terms of
learning efficiency, the proposed method outperforms other algorithms on most datasets.
The main reason fpr this is that our LRTELM combines the advantages of TELM and
LSVM while solving the problem of two smaller linear equations through an efficient
iterative algorithm.

Table 4. Results of LSVM, LSTVM, TELM, LELM, and LRTELM on UCI datasets.

LSVM LTSVM TELM LELM LRTELM

Datasets
ACC± S (%) ACC± S (%) ACC± S (%) ACC± S (%) ACC± S (%)
(C∗, σ∗) (C∗, σ∗) (C∗, L∗) (C∗, L∗) (C∗, L∗)
Times (s) Times (s) Times (s) Times (s) Times (s)

Australian 89.71 ± 2.35 92.38± 2.34 90.55 ± 2.51 90.12 ± 2.37 91.26 ± 2.06
(690× 14) (22, 2−2) (23, 2−2) (20, 500) (23, 500) (23, 500)

1.265 1.272 1.245 1.335 1.221
German 79.99 ± 5.376 83.87 ± 6.241 83.78 ± 3.45 84.78 ± 4.61 85.74± 3.45
(1000× 24) (24, 20) (22, 2−2) (23, 1000) (21, 1000) (22, 1000)

3.489 3.476 3.542 3.337 3.262
Breast Cancer 91.56 ± 2.76 93.88 ± 0.78 96.26 ± 1.32 95.77 ± 1.05 96.79± 0.89
(699× 9) (23, 2−3) (21, 2−3) (23, 300) (23, 300) (22, 500)

2.275 1.343 1.564 1.351 1.289
WDBC 94.77 ± 1.85 94.89 ± 1.83 95.78 ± 1.84 96.55± 2.56 96.36 ± 1.67
(569× 30) (22, 2−3) (23, 21) (23, 500) (23, 500) (23, 500)

0.740 0.732 1.479 0.253 0.335
Spam 87.58 ± 1.56 86.86 ± 1.86 87.58 ± 1.38 86.89 ± 1.21 89.87± 1.62
(4601× 57) (23, 2−2) (22, 2−2) (23, 5000) (22, 5000) (23, 5000)

8.586 6.287 8.455 7.585 5.898

http://archive.ics.uci.edu/ml/datasets.html
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Table 4. Cont.

LSVM LTSVM TELM LELM LRTELM

Datasets
ACC± S (%) ACC± S (%) ACC± S (%) ACC± S (%) ACC± S (%)
(C∗, σ∗) (C∗, σ∗) (C∗, L∗) (C∗, L∗) (C∗, L∗)
Times (s) Times (s) Times (s) Times (s) Times (s)

Pima 74.56 ± 4.74 74.86 ± 2.43 76.27 ± 3.45 76.94 ± 1.52 77.75± 1.46
(768× 8) (22, 2−3) (23, 21) (23, 300) (24, 500) (23, 500)

2.233 1.503 5.475 1.816 1.145
QSAR 84.86 ± 1.65 84.76 ± 1.67 86.87 ± 2.47 86.73 ± 1.63 88.28± 1.78
(1055× 41) (21, 21) (23, 21) (22, 500) (23, 1000) (21, 1000)

3.158 3.671 5.873 3.778 3.233
Banknote 88.59 ± 2.01 86.79 ± 1.83 87.09 ± 1.33 86.85 ± 1.45 89.75± 0.94
(1372× 4) (22, 2−2) (23, 2−3, 10) (21, 1000) (23, 1000) (24, 1000)

4.614 3.338 9.756 3.019 2.817
Diabetes 60.22 ± 1.45 60.84± 2.27 59.45± 3.39 60.05± 1.32 61.17± 2.13
(1151× 19) (23, 10) (21, 10) (23, 1000) (23, 1000) (20, 1000)

3.153 2.384 2.653 3.237 2.186
Avg.ACC 83.54 84.35 84.85 84.96 86.33
Avg.rank 4.06 3.67 3.05 3 1.22

In order to statistically validate the performance of the proposed LRTELM, eight UCI
datasets were selected and a series of experiments were conducted. The results of all exper-
iments based on the optimal parameters are presented as box plots in Figure 2. Figure 2
shows the ACC box plots for LSVM, LTSVM, LELM, TELM, and LRTELM on the eight UCI
datasets. The x-axis shows the different classifiers, including LSVM, LTSVM, LELM, TELM,
and LRTELM, while the y-axis shows the ACC for all UCI datasets. From Figure 2, it can be
seen that LRTELM has better classification accuracy than the other algorithms on most of
the datasets.
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Figure 2. ACC performance comparison of LSTVM, TELM, LELM, and LRTELM on eight
UCI datasets.



Symmetry 2022, 14, 1186 16 of 24

5.2.3. Statistical Analysis

In this section, in order to analyse the significant differences between the seven algo-
rithms on the ten UCI datasets, we employed the well-known Friedman test [43]. This test
is known to be a simple, safe, and robust non-parametric test where the null hypothesis of
the test is that all algorithms have the same performance. If the null hypothesis is rejected,
a post hoc Nemeny test can be performed [43]. The average ranks of the five algorithms on
all used datasets are shown in Tables 3 and 4, respectively.

To begin with, we can calculate the Friedman statistic variable using the following
formulation:

χ2
F =

12N
k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4
] = 39.84

where k is number of algorithms, N is number of UCI datasets, and Rj is the average rank
of the jth algorithm on the employed datasets; note that k = 7 and N = 10 in this paper.
Furthermore, according to the χ2

F-distribution with (k− 1) degrees of freedom, we have:

FF =
(N − 1)χ2

F
N(k− 1)− χ2

F
= 19.36

where FF((k − 1), (k − 1)(N − 1)) obeys F-distribution with (k − 1) and (k − 1)(N − 1)
degrees of freedom. In addition, for α = 0.05 we can obtain Fα = (4, 16) = 3.01. Obviously,
the value of FF > Fα; thus, the null hypothesis can be rejected.

Next, we further compare the seven algorithms in pairs using the Nemenyi post
hoc test. The difference in performance between the two algorithms is significant when
the average rank difference between the two algorithms is larger than the critical value,
otherwise the difference is not significant. By dividing the Studentized range statistic by√

2, we obtain qα=0.05 = 2.728. Therefore, we can calculate the critical difference (CD) using
the following formulation:

CD = qα=0.05

√
k(k + 1)

6N
= 2.728×

√
5(5 + 1)

6× 5
= 2.728

Thus, if the average rank of the two algorithms differs by at least CD, their performance
is significantly different. From Table 3, we can conclude that the proposed LRTELM differs
from the other four algorithms as follows:

D(LSVM− LRTELM) = 4− 1 = 3 > 2.728

D(LTSVM− LRTELM) = 5− 1 = 4 > 2.728

D(TELM− LRTELM) = 2.8− 1 = 1.8 < 2.728

D(LELM− LRTELM) = 2.2− 1 = 1.2 < 2.728

where D(A− B) denotes the difference between two algorithms, A and B. We can then
conclude that the proposed LRTELM performs significantly better than LSVM and LTSVM
on the NIR spectral dataset, while there is no significant difference between LRTELM,
TELM, and LELM. Similarly, on the UCI dataset, it can be seen that the proposed LRTELM
performs significantly better than LSVM, while there is no significant difference between
LRTELM, LTSVM, TELM, and LELM according to the mean rank and correlation values
reported in Table 4.

5.3. Semi-Supervised Learning Results
5.3.1. Experimental Results on Artificial Datasets

To verify the effect of manifold regularization on model performance, in this section
we use the two artificial datasets [44,45] shown in Figure 3 to investigate the performance
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of our proposed Lap-LRTELM. Each dataset contains 200 samples with two randomly
selected labeled samples and 98 unlabeled samples for every class.

(a) (b)

Figure 3. Distribution of the two lines and two moon datasets: (a) two lines dataset and (b) two
moon dataset.

Here, we analyze the effects of the C3 parameters on the performance of our proposed
Lap-LRTELM; C3 is used to control the weight of ‖ f ‖2

M. For the parameter C3, the optimal
parameters are C1 = 23, C2 = 22, and L = 200, N = 7, and we select different C3 from the
set {2−3, 2−2, 2−1, 20, 21, 22, 23} in order to observe the impact of C3 on the performance
of the proposed Lap-LRTELM. It is easy to see from Figure 4 that the shape of the curve
grows in the beginning and then falls when n > 2. This means that ‖ f ‖2

M can improve the
performance of Lap-LRTELM with C3.
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Figure 4. Learning results of Lap-LRTELM on the two lines and two moon datasets with different
values of parameter C3 (C3 = 2n).

Table 5 shows the classification accuracy of TELM, LRTELM, Lap-TELM, and Lap-
LRTELM on the artificial datasets. According to the results shown in Table 5, it is obvious
that when the tagged data are relatively small, the learning efficiency of Lap-LRTELM is
better than the other three algorithms.

Table 5. Performance comparison of the SS-ELM, Lap-TELM, LRTELM, and Lap-LRTELM on the
two lines and two moon datasets.

LRTELM SS-ELM Lap-TELM Lap-LRTELM

ACC (%) ACC (%) ACC (%) ACC (%)Datasets
Times (s) Times (s) Times (s) Times (s)

Two lines 87.12 92.25 94.51 95.39
2.232 3.154 2.105 1.396

Two moons 92.35 95.54 97.33 98.26
3.437 5.205 3.285 3.116
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From the above experimental analysis of two artificial datasets, we can conclude that
the performance of the proposed Lap-TELM is indeed improved by incorporating manifold
regularisation. Intuitively, manifold regularisation can help the algorithm to seek a more
reasonable classifier.

5.3.2. Experimental Results on UCI Datasets

In this section, to evaluate the effectiveness of Lap-LRTELM, we conduct experiments
with different fractions of labeled samples, i.e., 10% and 30%. In our experiments, the SS-
ELM, Lap-LELM, Lap-TELM, and Lap-LRTELM were used to construct data adjacency
graphs using K-nearest neighbors. All of experimental results are presented in Table 6.

From Table 6, it can be seen that the performance of all the algorithms improves
as the number of labelled samples increases. Furthermore, we find that the proposed
Lap-LRTELM outperforms the other algorithms in most cases, regardless of the size of
the labelled samples. Furthermore, the generalisation performance of the proposed Lap-
LRTELM outperforms the other relevant ELM-based algorithms on all datasets.

The analysis of the above experimental results shows that the proposed Lap-LRTELM
improves the classification performance of the LRTELM by using flow regularisation.
Intuitively, a reasonable classifier can be built using manifold regularisation.

Table 6. Performance comparison of Lap-LELM, LRTELM, SS-ELM, Lap-TELM, and Lap-LRTELM
on UCI datasets.

Datasets
Percentage Lap-LELM LRTELM SS-ELM Lap-TELM Lap-LRTELM
of Labeled ACC (%) ACC (%) ACC (%) ACC (%) ACC (%)
Samples (C∗, L∗, N∗) (C∗, L∗) (λ∗, L∗, N∗) (C∗, L∗, N∗) (C∗, L∗, N∗)

Diabetic 10% 58.78 59.65 59.74 59.53 59.93
(1151× 19) (22, 1000, 7) (23, 1000) (22, 1000, 7) (21, 500, 7) (23, 1000, 7)

30% 59.86 60.14 60.25 60.21 61.08
(22, 1000, 5) (103, 1000) (21, 1000, 7) (23, 1000, 7) (23, 1000, 5)

Australian 10% 85.45 86.89 84.82 84.55 86.37
(690× 14) (20, 500, 3) (21, 500) (2−2, 500, 3) (23, 500, 3) (22, 1000, 3)

30% 86.27 87.36 85.64 85.53 86.73
(22, 500, 3) (21, 500) (22, 500, 3) (23, 500, 3) (23, 1000, 3)

Banknote 10% 83.34 83.56 84.53 84.67 84.97
(1372× 4) (21, 1000, 5) (23, 500) (21, 500, 5) (23, 1000, 5) (22, 1000, 5)

30% 87.28 86.75 88.79 88.58 89.38
(22, 1000, 5) (22, 500) (23, 1000, 5) (22, 1000, 5) (22, 1000, 5)

Breast Cancer 10% 96.63 95.13 94.23 95.65 97.24
(699× 9) (22, 500, 3) (20, 500) (21, 500, 3) (20, 500, 3) (23, 1000, 3)

30% 97.38 96.45 96.74 96.86 98.29
(20, 500, 3) (22, 500) (21, 500, 3) (21, 500, 3) (23, 1000, 3)

WDBC 10% 93.83 92.33 93.43 93.57 93.66
(569× 30) (23, 500, 3) (22, 500) (23, 500, 3) (21, 500, 3) (23, 500, 3)

30% 94.41 93.13 94.11 94.14 94.27
(23, 500, 3) (22, 500) (23, 500, 3) (23, 500, 3) (22, 500, 3)

German 10% 72.96 71.13 76.39 76.89 77.66
(1000× 24) (24, 1000, 7) (20, 500) (22, 500, 7) (20, 500, 3) (22, 500, 5)

30% 76.11 78.93 78.81 78.91 79.11
(24, 1000, 7) (20, 500) (2−1, 500, 7) (21, 500, 3) (21, 500, 5)

Pima 10% 86.81 81.79 81.18 81.65 89.64
(768× 8) (22, 500, 3) (20, 500) (22, 500, 3) (23, 500, 3) (23, 1000, 3)

30% 88.64 83.55 83.38 83.75 93.03
(21, 500, 5) (20, 500) (2−1, 500, 3) (21, 500, 5) (22, 1000, 5)
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Table 6. Cont.

Datasets
Percentage Lap-LELM LRTELM SS-ELM Lap-TELM Lap-LRTELM
of Labeled ACC (%) ACC (%) ACC (%) ACC (%) ACC (%)
Samples (C∗, L∗, N∗) (C∗, L∗) (λ∗, L∗, N∗) (C∗, L∗, N∗) (C∗, L∗, N∗)

QSAR 10% 85.75 85.14 86.54 86.24 87.54
(1055× 41) (23, 1000, 9) (22, 1000) (23, 1000, 9) (21, 1000, 5) (22, 1000, 3)

30% 89.58 86.25 89.66 89.46 91.21
(22, 1000, 9) (22, 1000) (20, 1000, 9) (22, 1000, 5) (22, 1000, 3)

Spam 10% 90.27 89.63 89.47 89.83 90.89
(4601× 57) (22, 3000, 9) (21, 3000) (23, 3000, 9) (2−1, 3000, 9) (20, 3000, 9)

30% 92.76 90.85 90.31 90.78 92.37
(21, 5000, 9) (23, 5000) (22, 5000, 9) (2−1, 5000, 9) (22, 5000, 9)

Avg.ACC 10% 83.65 82.81 83.37 83.62 85.32
Avg.ACC 30% 85.81 84.82 85.30 85.36 87.28

Avg.rank 10% 3.11 3.78 3.56 3.33 1.22
Avg.rank 30% 3 3.78 3.56 3.44 1.22

5.3.3. Experimental Results on Image Datasets

To further verify the performance of Lap-LRTELM, we performed experiments on
the G50C (http://people.cs.uchicago.edu/vikass/manifoldregularization.html) (accessed
on 22 March 2021), COIL20(B) (http://www.cs.columbia.edu/CAVE/software/softlib/
coil-20.php) (accessed on 22 March 2021), USPST(B) (http://www.cad.zju.edu.cn/home/
dengcai/Data/MLData.html) (accessed on 22 March 2021), and MNIST(B) (http://yann.
lecun.com/exdb/mnist/) (accessed on 22 March 2021) datasets.

To rationally demonstrate the semi-supervised approach involved, we utilised the
equivalent experimental setup reported by Melacci and Belkin [24]. Concretely, we em-
ployed a four-fold cross-validation approach for each image dataset, with one fold as the
test set (denoted by T ) and the remaining folds as the training set. The training set was
divided into labelled data (L), unlabelled data (U ), and validation data (V). Here, this
random folding was repeated three times, producing a total of twelve divisions. Detailed
information on the datasets is summarized in Table 7.

Table 7. Description of the datasets.

Datasets |L| |U| |V| |T |

G50C 50 313 50 137
COIL20(B) 40 1000 50 360
USPST(B) 50 1409 50 498
MNIST(B) 200 1100 200 500

The performance of these algorithms on the USPST(B), COIL20(B), G50C, and MNIST(B)
datasets was evaluated in our experiments using ACC± S (classification accuracy ± standard
deviation); the experimental results are shown in Table 8.

As can be seen from Table 8, Lap-LRTELM outperforms the other five algorithms in
terms of classification accuracy on all the datasets involved. Compared with LRTELM,
the proposed Lap-LRTELM can effectively utilise unlabelled samples to produce better
performance. The experimental results show that by taking streamwise regularisation
into account, the proposed Lap-LRTELM can achieve better performance compared to
considering only one part.

To analyse the influences of labelled and unlabelled samples on the performance of
the relevant semi-supervised methods, we conducted a further series of experiments on
COIL20(B), USPST(B), and G50C. The results of all experiments are shown in Figures 5 and 6.

http://people.cs.uchicago.edu/vikass/manifoldregularization.html
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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Figure 5 shows the classification accuracy of SS-ELM, Lap-TELM, Lap-LELM, and
Lap-RTELM for different labelled samples on COIL20(B), USPST(B), G50C, and MNIST(B).
As can be seen from the following Figure 5, in most cases Lap-RTELM achieves the best
results relative to the other three algorithms. The classification accuracy of all algorithms
improves substantially as the number of labelled samples increases. Figure 6 shows the
performance of the four semi-supervised algorithms for different numbers of unlabelled
samples. Using the same experimental scheme as in [29], we add unlabelled samples to the
unlabelled set (U ) in 10% increments, while the labelled set (L), test set (T ), and validation
set (V) remain unchanged. From Figure 6, it is easy to observe that classification accuracy
improves when unlabelled samples are added to the unlabelled set (U ). Even without any
labelled ones, Lap-LRTELM performs better than SS-ELM, Lap-TELM and Lap-LELM. This
phenomenon is consistent with Belkin et al. [24] in that stream regularization is effective
for purely supervised learning.

Table 8. Performance comparison of LRTELM, SS-ELM, Lap-LELM, Lap-TELM, and Lap-LRTELM.

Datasets Subset LRTELM SS-ELM Lap-LELM Lap-TELM Lap-LRTELM

ACC± S (%) ACC± S (%) ACC± S (%) ACC± S (%) ACC± S (%)

COIL20(B)
U 86.47 ± 1.78 86.38 ± 2.12 86.79 ± 2.31 89.08 ± 2.64 90.25± 1.54
V 89.28 ± 2.32 88.60 ± 1.96 88.81 ± 2.64 91.13 ± 3.42 91.29± 2.88
T 86.37 ± 1.22 86.47 ± 2.68 86.61 ± 2.63 89.44 ± 4.00 91.58± 1.54

USPST(B)
U 89.67 ± 3.74 90.78 ± 3.49 91.56 ± 2.72 91.83 ± 0.40 92.66± 1.38
V 91.25 ± 2.56 91.58 ± 2.34 91.75 ± 4.38 91.34 ± 0.94 93.42± 1.52
T 89.53 ± 2.59 90.12 ± 2.66 90.47 ± 2.76 90.74 ± 0.62 92.895± 1.53

G50C
U 91.18 ± 3.26 93.85 ± 1.57 88.67 ± 5.39 91.77 ± 2.53 93.87± 2.26
V 92.33 ± 3.06 92.35 ± 1.53 85.83 ± 4.78 95.17 ± 3.24 94.45± 3.34
T 91.27 ± 3.76 93.49 ± 1.45 82.54 ± 2.65 92.27 ± 3.06 94.59± 2.56

MNIST(B)
U 85.47 ± 2.76 89.33 ± 1.29 89.78 ± 1.77 90.36 ± 1.13 91.58± 1.63
V 87.66 ± 3.62 90.42 ± 2.22 91.56 ± 1.86 92.04 ± 1.80 92.69± 1.78
T 85.49 ± 1.39 87.05 ± 1.49 89.64 ± 1.58 89.88 ± 1.34 91.32± 1.46
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Figure 5. Comparing the classification accuracy of SS-ELM, Lap-LELM, Lap-TELM, and Lap-LRTELM
on COIL20(B), USPST(B), G50C, and MNIST(B) datasets with different numbers of labeled samples.
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Figure 6. Comparing the classification accuracy of SS-ELM, Lap-LELM, Lap-TELM, and Lap-LRTELM
on COIL20(B), USPST(B), G50C, and MNIST(B) datasets with different numbers of unlabeled samples.

5.3.4. Statistical Analysis

In this section, we use the famous Friedman test with the corresponding post hoc
test [43] to analyze and compare algorithms’ performance on UCI datasets. The average
ranking of the five algorithms on all datasets used is shown in Table 6. First, we compare
the performance of the five algorithms on the UCI dataset, in which 10% of the sample
was labelled.

To begin with, we can calculate the Friedman statistic variable using the following
formulation:

χ2
F =

12N
k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4
] = 10.95

where k is number of algorithms, N is the number of UCI datasets, and Rj is the average
rank of the jth algorithm on the employed datasets; note that k = 7 and N = 10 in this
paper. Furthermore, according to the χ2

F-distribution with (k − 1) degrees of freedom,
we have:

FF =
(N − 1)χ2

F
N(k− 1)− χ2

F
= 3.497

where FF((k − 1), (k − 1)(N − 1)) obeys F-distribution with (k − 1) and (k − 1)(N − 1)
degrees of freedom. In addition, for α = 0.05 we can obtain Fα = (4, 32) = 2.69. Obviously,
the value of FF > Fα; thus, the null hypothesis can be rejected.

Furthermore, we compared the seven algorithms in pairs using the Nemenyi post
hoc test. The difference in performance between the two algorithms is significant when
the average rank difference between the two algorithms is larger than the critical value;
otherwise, the difference is not significant. By dividing the Studentized range statistic by√

2, we obtain qα=0.05 = 2.728. Therefore, we can calculate the critical difference (CD) using
the following formulation:

CD = qα=0.05

√
k(k + 1)

6N
= 2.728×

√
5(5 + 1)

6× 9
= 2.03
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Thus, if the average ranks of two algorithms differ by at least CD, their performance
is significantly different. From Table 6, we can derive the differences between the proposed
Lap-LRTELM and other four algorithms as follows:

D(Lap− LELM− Lap− LRTELM) = 1.89 < 2.03

D(LRTELM− Lap− LRTELM) = 2.56 > 2.03

D(SS− ELM− Lap− LRTELM) = 2.34 > 2.03

D(Lap− TELM− Lap− LRTELM) = 2.11 > 2.03

In summary, the proposed Lap-LRTELM performs significantly better than LRTELM,
SS-ELM, and Lap-TELM, and there is no significant difference between Lap-LRTELM and
Lap-LELM on UCI datasets with 10% labeled samples. Similarly, on UCI datasets with
30% labeled samples, we can obtain the same conclusions based on the average ranks and
relevant values reported in Table 6.

6. Conclusions

In this paper, we first propose the Lagrangian Regularized Twin Extreme Learning
Machine algorithm (LRTELM). We then extend LRTELM to semi-supervised learning by
introducing manifold regularisation to obtain a new semi-supervised learning framework,
the Lagrangian Regularised Twin Extreme Learning Machine (Lap-LRTELM). Lap-LRTELM
can effectively use geometric information embedded in the marginal distribution of un-
labelled samples to construct a more reasonable classifier. A significant advantage of the
proposed LRTELM and Lap-LRTELM is the implementation of the principle of SRM by
adding regularization terms to the objective function. Another advantage of the proposed
LRTELM and Lap-LRTELM is that only two simple linear equations need to be solved
to avoid solving a pair of QPPs like TELM. Compared to existing supervised and semi-
supervised ELM algorithms, the proposed LRTELM and Lap-LRTELM maintain almost all
of the advantages of ELM, such as significant training efficiency for binary classification
problems. These two ELM extensions for supervised and semi-supervised learning are
expected to significantly extend the applicability of ELM and provide new insights into
extreme learning paradigms. Experimental results on multiple datasets show that our
LRTELM and Lap-LRTELM are highly effective compared to other methods.

We anticipate that ways of incorporating our methods into the multi-class classification,
regression, and robust problems will be topics addressed in our future work.
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