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Abstract: Recent developments have made software-defined networking (SDN) a popular technology
for solving the inherent problems of conventional distributed networks. The key benefit of SDN is the
decoupling between the control plane and the data plane, which makes the network more flexible and
easier to manage. SDN is a new generation network architecture; however, its configuration settings
are centralized, making it vulnerable to hackers. Our study investigated the feasibility of applying
artificial intelligence technology to detect abnormal attacks in an SDN environment based on the
current unit network architecture; therefore, the concept of symmetry includes the sustainability of
SDN applications and robust performance of machine learning (ML) models in the case of various
malicious attacks. In this study, we focus on the early detection of abnormal attacks in an SDN
environment. On detection of malicious traffic in SDN topology, the AI module in the topology is
applied to detect and act against the attack source through machine learning algorithms, making
the network architecture more flexible. Under multiple abnormal attacks, we propose a hierarchical
multi-class (HMC) architecture to effectively address the imbalanced dataset problem and improve
the performance of minority classes. The experimental results show that the decision tree, random
forest, bagging, AdaBoost, and deep learning models exhibit the best performance for distributed
denial-of-service (DDoS) attacks. In addition, for the imbalanced dataset problem of multiclass
classification, our proposed HMC architecture performs better than previous single classifiers. We
also simulated the SDN topology and scenario verification. In summary, we concatenated the AI
module to enhance the security and effectiveness of SDN networks in a practical manner.

Keywords: machine learning; multiclass classification; SDN; abnormal detection; imbalance dataset

1. Introduction

With the rapid development of network semiconductors and software technology,
a new generation of network technology has focused on developing software-defined
networking (SDN) and network function virtualization (NFV) technology. The relevant
market output value in 2020 was estimated to be approximately USD 13.7 billion and is
expected to reach more than USD 32.7 billion by 2025, of which, the one critical technology
is network orchestration [1] (https://www.marketsandmarkets.com/Market-Reports/
software-defined-networking-sdn-market-655.html, accessed on 28 October 2021).

Under the new SDN paradigm, the entire system controller can be controlled using
a centralized remote device. Advantages of SDN ave motivated many industrial and
commercial companies to deploy it in their networking environments [2], including (1) sep-
arating the control plane from the data plane and facilitating network system management;
(2) enabling IT administrators to easily deploy network equipment or upgrade network
infrastructure without restrictions imposed by vendors; (3) providing a global view of
the entire network with SDN controllers; (4) deploying various layers of SDN systems to
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implement network service virtual environments [3]; (5) no programming language for the
underlying infrastructure equipment. Consequently, the operating costs are significantly
lower than those of traditional networks.

Most existing administrative units still use traditional distributed network control and
network management structures, which cannot cope with emergencies or new network
crises. Because SDN involves centralized network management by the controller, it aims
to separate network control and data forwarding functions; however, because of this, the
network traffic data of the controller are the primary attack target of network hackers
and are also an important indicator for an intrusion detection system (IDS) [4] to identify
malicious traffic. Traditional network control centers are slow in device setup and threat
prediction, making it challenging to satisfy the security requirements of new types of
networks; therefore, our goal is to effectively solve the problems existing in current IDS’
and propose an SDN architecture that can deeply analyze network threats.

The concept of symmetry in this study includes the sustainability of SDN applications
and the robust performance of machine learning (ML) models in managing various mali-
cious attacks. The SDN architecture enables centralized management and communication
between controllers and OpenFlow switches for the former. This reduces the overhead of
controller–switch communication for a dynamic and programmatically efficient network
configuration. For the latter, owing to ever-changing attacks and potential threats, the ML
model must be able to identify abnormal traffic and maintain its robustness; therefore, a
specific detection performance must be achieved under different attacks and models.

Recent studies indicated that ML, deep learning (DL), and other algorithms [5–12] were
used in SDN environments to predict anomalies and improve decision-making capabilities.
As deployment challenges in SDN environments arise from vulnerabilities and threats, IDS
monitoring of malicious activity has become a critical measure in network architectures. In
addition, the centralized view of SDN offers new practical possibilities. Among the datasets
used in recent years, the detection of DDoS attacks is the most common example to verify
the performance of AI methods; however, prediction performance depends on the quality
of the training dataset. In the past, researchers accessed public datasets such as KDD’99 [13]
and NSL-KDD [14]; however, these datasets may be incompatible and outdated. Thus, we
use two types of SDN datasets generated based on the SDN simulated environment [2,15]
to predict network traffic and analyze the best features and model parameters to train the
model resembling actual environment. The prediction results and feasible solutions are fed
back as SDN parameters that effectively improve the security of the SDN architecture.

We used two SDN public datasets to generate trained models, extract important
features, and predict packets on the SDN controller. These are generally divided into two
categories: normal and suspicious. Normal packets are sent directly to the destination;
suspicious packets are further identified and classified depending on the attack. For
the public InSDN dataset [2], there were seven abnormal attacks and normal packets;
however, owing to the imbalanced number of classes, which is a challenge for traditional
multiclass classifiers, we propose a hierarchical multi-class (HMC) architecture to improve
the performance of imbalanced datasets.

The experimental results show the model prediction performance under binary and
multiclass classification compared with eight machine learning and five DL models. We
found that decision trees (DT), random forests (RF), bagging, and AdaBoost performed
the best among the machine learning models, although DL models were also good. In
terms of multiclass classification, the performance of the above single multiclass classifier
is extremely poor owing to the small amount of training data for the minority classes, such
as brute-force attack (BFA), botnet, user-to-root (U2R), and web-attack. We observed a
significant improvement in the HMC architecture for multiclass classification.

Finally, we simulated the DDoS attack scenario to verify the network traffic control
mechanism under the prediction of the above models. Under the SDN architecture, when
the AI module detects abnormal traffic, it alleviates network traffic and provides early
detection to maintain SDN environment security.
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The contributions of this paper can be summarized in three points.

• We proposed a preplanned cloud service based on the network characteristics of the
unit and built an SDN topology architecture based on AI-assisted security prediction.

• We adopted public SDN datasets for training 13 ML and DL models to detect abnormal
attacks in an SDN environment.

• We designed the HMC architecture to further identify the attack classes and improve
multiclass classification in stratification. The architecture is based on a divide-and-
conquer strategy to improve the poor performance of minority classes in imbalanced
datasets.

• We evaluated a simulation scenario for security verification when the SDN architecture
encountered DDoS attacks, and the mechanism involved early detection and traffic
mitigation.

The remainder of this paper is organized as follows. Section 2 describes the related
technologies. Section 3 introduces the preplanned SDN architecture and ML models.
Section 4 presents the experimental results and evaluations. Finally, Section 5 summarizes
the tasks and discusses future research directions.

2. Related Work
2.1. Challenges and Security Concerns of SDN

According to the Cisco Global Networking Trends report in 2020, five technologies
will lead the next generation of networking: automation, artificial intelligence, multi-cloud
networking, wireless, and cybersecurity. Multi-cloud networking is based on SDN and NFV
architectures (https://www.cisco.com/c/dam/m/zh_tw/solutions/enterprise-networks/
networking-report/files/Cisco_BlockBuster_2020-Global-Networking-Trends-Report_ZHTW.
pdf?ccid=cc001244&oid=rpten018612, accessed on 28 October 2021). The SDN architecture
uses software to implement a virtualized function and separates hardware from the man-
agement layer emphasizing centralization and programmability for network management.
In addition, the SDN controller controls all switching equipment and network architectures
performing complex network configuration work [16]. The advantage and core of SDN
is its programmable controller with characteristics of automatic and adaptive network
management. Among the most critical tasks of the SDN controller is link discovery be-
cause it provides the controller with the network topology necessary to direct or create
rule-forwarding and routing mechanisms.

For example, Bedhief et al. [17] proposed a topology discovery mechanism in dis-
tributed controllers; however, distributed controllers have problems of data consistency
and synchronization between controllers. Hence, Ochoa-Aday et al. [18] proposed an
innovative protocol that enables Layer 2 discovery through switches, deriving the shortest
path to each switch while preventing link failures in server environments and building
redundant links; however, the Layer 2 discovery mechanism has delay and loop problems
with limited reliability in network fault detection.

In addition, defining an appropriate threshold is a trade-off. Gyllstrom et al. [19]
proposed a fault detection method based on an output packet counter mechanism. First,
the flow rules installed on the link were marked and monitored. Packets were then counted
at the target position. The error rate is calculated from the difference between the sent and
received packets and is compared with the threshold value. If the error rate exceeds the
threshold, the link is considered faulty; however, if the number of packets only detects
errors, the reliability of network failure detection will be poor. To quickly detect a failed link
and adapt the traffic to a normal link to improve the efficiency of recovery from link failure,
a failed link must be detected before the recovery process; therefore, the SDN architecture
must be scalable and adaptable to dynamic conditions to effectively improve network
reliability with minimal manual configuration and management.

Although the SDN architecture, which is divided into application, control, and data
layers, each layer can become a target of attack owing to its independent characteristics.
Security challenges in SDN include targeting the controller through programming vul-

https://www.cisco.com/c/dam/m/zh_tw/solutions/enterprise-networks/networking-report/files/Cisco_BlockBuster_2020-Global-Networking-Trends-Report_ZHTW.pdf?ccid=cc001244&oid=rpten018612
https://www.cisco.com/c/dam/m/zh_tw/solutions/enterprise-networks/networking-report/files/Cisco_BlockBuster_2020-Global-Networking-Trends-Report_ZHTW.pdf?ccid=cc001244&oid=rpten018612
https://www.cisco.com/c/dam/m/zh_tw/solutions/enterprise-networks/networking-report/files/Cisco_BlockBuster_2020-Global-Networking-Trends-Report_ZHTW.pdf?ccid=cc001244&oid=rpten018612
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nerabilities, error configurations, and DDoS attacks on the secure channel. For example,
most applications in the application layer employ third-party applications. Because of
poor-quality programming, hackers can invade, control, and tamper with the program
content, affecting the overall network operation. The controller in the control layer singly
manages all flows in the topology. If the number of new flows exceeds the threshold, the
controller can quickly become the bottleneck of the network, and the controller will be
the target of the hacker. DoS and DDoS attacks are common network threats in SDN and
traditional network architectures [20].

DDoS attackers send SYN packets to exhaust victim resources such as SYN, UDP,
ICMP, and LAND attacks [21]; therefore, some researchers have suggested multi-controller
architecture to defend against DoS and DDoS attacks in an SDN environment; however, this
architecture can cause cascading failures in all the controllers [22]. The network equipment
in the data layer is responsible only for packet forwarding; therefore, identifying true or
false flow rules in the data layer is critical. Unfortunately, the space for storing the flow
table is limited and is prone to saturation attacks. Furthermore, whenever the controller
is threatened, the data layer devices will be damaged and become inoperable once the
controller fails or the link is cut off [23].

As shown in Figure 1, when a flow does not conform to the table rules, the device
stores some of the flow packets in the buffer. The remaining packet-in packets are sent to
the controller through the interface with the control layer, and the controller then sends the
flow rule to the data layer. The device implements forwarding or discarding operations;
however, an attacker can send many packets to the data layer device to saturate the storage
buffer and memory capacity of the flow table causing saturation [24]; therefore, a large
number of packets can cause threats, such as API blocking, flood attacks [25], and controller
saturation [26], reducing the overall SDN network performance. In addition to using the
transmission mechanism and storage space limitations to launch DDoS attacks, they may
also impersonate a device with the same IP and name it as a legitimate switch. When the
legitimate switch establishes a connection with the controller, the impersonated switch is
turned on and establishes a connection [27]. The controller then cuts off the connection
with the legitimate switch and communicates with fake control or uses malicious programs
to perform unauthorized access [28].

Figure 1. Vulnerabilities in SDN exploited by DDoS [28]. Reprinted/adapted with permission from
ref. [28]. 2022, Elsevier.

2.2. Machine Learning in SDN

Artificial intelligence and data mining techniques have been mentioned in recent
research [29–33] to enhance the optimization and decision-making capabilities in SDN
environments. ML, meta-heuristics, and fuzzy inference systems were the most common
approaches for solving various networking-related problems [34–36]. Thus, in our study,
we focus on the high identification and quantification efficiency in SDN, so we employ
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supervised learning to rapidly improve the model accuracy using labeled data, which is the
best and most efficient solution. For example, Latah and Toker [37] surveyed AI applications
to the SDN paradigm to provide computer networks with the ability to be programmed
based on the separation between the control and forwarding planes. Moreover, hybrid
intelligent techniques can be the core for achieving advanced behavior in SDN-based
networks.

The challenges of SDN environment deployment arise from vulnerabilities and threats,
so an IDS that monitors malicious activity is a critical measure in the network architecture.
Although a centralized model of SDN can facilitate new practical applications, the detection
of DDoS attacks is used to test the effectiveness of AI approaches based on datasets used in
related research. The model prediction accuracy is directly related to the training dataset.
Most public datasets collected from traditional networks are used to predict anomaly
detection in SDN; however, public datasets such as KDD’99 [13] and NSL-KDD [14] are
incompatible and outdated. Elsayed et al. released the InSDN dataset [2] in 2020 and
carried out multi-class classification for seven abnormal attacks, including DDoS, DoS,
password-guessing attack (PGA), web attack, botnet, probe, user to root (U2R), and normal
packets. We evaluated eight common ML algorithms: decision trees, random forests,
AdaBoost, KNN, naive Bayes, support vector machine with linear kernel, radial basis
function (RBF), and multilayer perceptron (MLP).

For feature selection on datasets, Elsayed et al. [2] obtained eight features, including
protocol type, link length, and a number of packets from the SDN network. In addition, the
SDN controller based on the OpenFlow platform can calculate five statistical characteristics:
network flow duration, number of packets, number of bytes, features in specific directions,
and data distribution (for example, maximum, minimum, mean, and standard deviation).
These statistical characteristics are essential for botnets to be particularly effective at identi-
fying such attacks. There were 79 features in the InSDN dataset, and Elsayed et al. selected
48 features for model training. Referring to Krishnan’s experiments, they added source IP
and target IP features to a total of 50 features.

Recently, some studies that have adopted machine learning are applied to develop
SDN-enabling security systems [38–41]. The deployment of SDN controllers makes them
a key target for various attacks and vulnerabilities, such as link flood attacks (LFA). For
example, Rasool et al. proposed the CyberPulse approach [42]. The method adopts machine
learning data from UCI LFA attacks. Taking the burst header packet as an example, they
selected 14 features and used artificial neural networks (ANN) and MLP models for binary
classification prediction. The SDN network topology was simulated and evaluated using
Mininet and Floodlight controllers. After the SDN environment was started, the simulated
attack traffic increased. When identified as a traffic attack by the AI model, appropriate
measures were taken to mitigate the traffic; otherwise, it functioned normally. Tseng et
al. proposed another related study that used ML to detect DDoS attacks in SDN/NFV
environments [43]. This method is similar to the study by Rasool et al. [42], mainly for
TCP flooding, ICMP flooding, and UDP flooding, which are usually used for network
environment simulation, anomaly detection, and system defense. The results show that
MLP achieves the best performance of 99.1% F1-score with binary prediction and a training
time of 5.5 s.

Aslam et al. [8] proposed an adaptive machine learning framework based on SDN
to detect and mitigate distributed denial-of-service (DDoS) attacks. The framework uses
a ML classification model to detect and mitigate DDoS attacks using an SDN-assisted
security mechanism for IoT devices. Tonkal et al. [44] applied a ML algorithm equipped
with neighborhood component analysis (NCA) to classify SDN traffic as normal or attack-
related. The dataset is adapted from the public dataset “DDoS Attack SDN Dataset” for
binary classification. In addition to the NCA algorithm, Tonkal et al. used decision trees,
ANN, and SVM for classification. The experimental results indicated that the decision tree
had greater accuracy (100 %) than that of other algorithms. Multiclass classification in an
imbalanced dataset is also challenging for anomaly detection in IDS’. Toupas et al. [45]
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proposed a neural network comprising multiple stacked fully connected layers. They used
the updated CICIDS2017 dataset for training and evaluation to implement a flow-based
anomaly-detection IDS for multiclass classification. Experiments showed that the MLP
model achieves promising precision, recall, and false positives.

In summary, with the development of AI technology, related research applied to
solve security issues in the SDN environment, such as anomaly detection and conflict flow
detection, has gradually increased in recent years. Most study uses the existing ML or DL
models to meet this challenge. The purpose is to combine AI to provide early detection in
the SDN environment, so we organize and compare some related work from 2018 to 2022, as
shown in Table 1. We found that some studies only analyze the classification performance
of anomaly detection. Recent studies have discussed scenario validation of the overall
system architecture of imported AI models and analysis of the results. We summarize
the problem, datasets, models, SDN topology, and scenario verification of related work
as follows.

Table 1. Comparison of related work in SDN network. (In the model field, bold represents the best
model.)

Reference Problem Network Dataset Model Topology Verify

Yu [46],
2018

Abnormal
detection

Mininet
simulated

CAIDA,
DDoS SVM ! !

Khamaiseh [32],
2019

Abnormal
detection Mininet Physical &

simulated SVM, NB, KNN # !

Rasool [42],
2019

Abnormal
detection

Mininet
simulated UCI MLP, RF, SLR, NB ! !

Elsayed [2],
2020

Abnormal
detection

Mininet
simulated InSDN

KNN, Adaboost,
DT, RF, rbf-SVM,
lin-SVM, MLP, NB

! !

Kuranage [31],
2020

Flow
detection

Mininet
simulated Kaggle SVM, DT,

RF, KNN # #

Hamdan [30],
2020

Flow
detection

Mininet
simulated

MAWI,
UNI1&2

VFDT, EDMAR,
FlowSeer, BayesNet # !

Huseyin [47],
2020

Abnormal
detection

Docker
simulated

Simulated
generation

SVM, KNN,
ANN, NB ! #

Khairi [29],
2021

Flow
detection

Mininet
simulated

Simulated
generation [48]

DT, SVM,
DT-SVM, EFDT ! !

Aslam [8],
2022

Abnormal
detection

Mininet
real-time AMLSDM SVM, NB, RF

KNN, LR, EV ! !

Fan [7],
2022

Abnormal
detection

Mininet
simulated

Simulated
generation Entropy variants ! #

Maheshwari [9],
2022

Abnormal
detection

Mininet
simulated CICDDoS2019 SVM, RF,

GBM, MVE ! !

Liu [10],
2022

Abnormal
detection

Mininet
simulated CICIDS2017 RF, SVM, CNN,

DNN, PSO-BPNN ! !

Our study Abnormal
detection

EstiNet
simulated

DDoS-SDN,
InSDN

HMC, KNN, NB,
DT, RF, Adaboost,
Bagging, rbf-SVM,
lin-SVM, MLP, CNN,
RNN, LSTM, GRU

! !
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1. Problem: Many studies only focus on the qualitative detection (i.e., normal and ab-
normal); some studies further conduct quantitative analysis, that is, the performances
of multiclass classification, such as DoS, DDoS, PGA, botnet, web attack, probe, U2R,
etc. In addition, they discussed further the performance improvement of minority
classes under imbalanced datasets. In anomaly detection, selecting relevant features is
also a critical research issue; therefore, there are also studies on extracting the features
of the SDN environment for anomaly detection. This study compared and validated
the above three classification and feature selection problems.

2. Datasets: Most of the early studies used KDD’99 and NSL-KDD as training data
sets; however, using these datasets for anomaly detection in SDN environments may
have issues of incompatibility and obsolescence; therefore, researchers rarely used the
above datasets in recent years but generated or adopted existing public SDN datasets
through simulators. We adopted two datasets derived from DDoS-SDN and InSDN
that were published in 2020. Due to related work with different datasets and attack
types, it is difficult to evaluate performances directly; however, using these datasets
for anomaly detection in SDN environments may have issues of incompatibility and
obsolescence; therefore, researchers rarely used the above datasets in recent years but
generated or adopted existing public SDN datasets through simulators. We adopted
two datasets derived from DDoS-SDN and InSDN that were published in 2020. Due
to related work with different datasets and attack types, it is difficult to evaluate
performances directly.

3. Models: Most studies used the current common ML models for performance compar-
ison. In our research, we not only compared the existing ML and DL models but also
proposed our HMC model. The core model is based on the best of the above single
models and performs multiple binary classifications to improve the performance of
multiclass classification under the imbalanced dataset.

4. SDN topology and scenario verification: In this study, we plan the cloud service
system architecture according to practical needs and characteristics, including private
cloud customized services, general services, and data centers. To facilitate the setting
up of the SDN simulation environment in advance, the details of controllers, switch
connections, interfaces, and MACs are described in correspondence with practical
equipment. Moreover, after the ML and DL models have been trained, a DDoS
attack scenario is used to verify the effectiveness of the architecture design and model
prediction for the actual future environment.

5. Symmetry: In recent related work [49,50], learning-based anomaly detection faces
two main challenges: the robustness and the sustainability of the learning model
based on the SDN network architecture against ever-changing network attacks. In
this study, the sustainable simulation of SDN network architecture and the robust-
ness of experimental results can symmetrically face the challenges in SDN networks
and provide specific solutions. The cloud service system we plan adopted an SDN
topology design, which provides a general architecture for future sustainable develop-
ment. Moreover, our proposed HMC architecture for anomaly detection can use any
supervised learning models to combine them for the robustness of the architecture
to overcome the poor performance of minority classes due to imbalanced datasets in
real network environments. From the perspective of symmetric performance evalua-
tion, we perform coarse-grained anomaly detection and further analyze fine-grained
classification to predict the multiple types of anomaly attacks.

6. Sustainability: Machine learning has been successfully applied to studying malware
classification over the past several years; however, the distribution of test samples
with a new form of malware becomes increasingly different from the original training
sample as concept drift occurs. In addition, the malware authors may modify their
attack methods to avoid detection; therefore, the classifier uses the inherent training
materials to encounter inefficiency, making the prediction results unreliable. There
are two ways to solve the problem of concept drift. One is to develop more powerful
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functions by developing more powerful functions [51] and, for example, using neural
networks because potential feature space is better generalized. Despite this, the
diversity of malware makes designing such a feature space extremely challenging.
Another solution is to adapt to drift, use incremental retraining or online update model
learning or reject drift points [52,53]. A key issue is when and how to refuse accurate
tests and quantitative drift; therefore, in the topic of sustainability, in addition to
maintaining accurate prediction capabilities on multiple training datasets, a key issue
is to have the capability to identify aging classification models. The concept differs
from retraining methods based on various datasets. For example, Jordaney et al. [54]
proposed the Transced framework to identify concept drift to establish prediction
indicators. Barbero et al. [55] based on the former framework for performing rejection
classification, has improved efficiency and reduced computing expenses. For an
ML-based classifier to be highly sustainable, it is critical to understand the underlying
features: the ability to distinguish benign applications from malware and extract
the changing pattern of those features through evolutionary processes [56]. In this
study, facing the deterioration of anomalous attacks, we adopt multiple hierarchical
classifiers to overcome the bias or inefficiency of a single classifier.

3. System Architecture

The system architecture plans to implement SDN-designed cloud services. Owing to
the inherent properties of SDN, AI-assisted modules are designed to detect abnormal attacks
early. Furthermore, we propose a hierarchical ML architecture for multiclass classification
to identify the types of attacks and act against them.

3.1. SDN Topology Design

According to the needs and characteristics of the unit, we have planned a cloud service
system architecture, as shown in Figure 2, in which AC, BC, and CC provide customized
services for private clouds, and DC provides general services and data centers. Information
between domains is connected through switches (red dotted lines), and each controller is
responsible for the topology and packet forwarding rules in the domain, as shown in the
control plane (green dotted lines) and data plane (blue lines). In each network domain,
switches provide link information to the controllers. When no entry information is found
in the flow table, the switch requests the controller for packet-forwarding rules. The cloud
service system in this study was verified using an SDN design and implementation. The
system topology is illustrated in Figure 3.

Figure 2. Cloud service architecture.
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Figure 3. Topology architecture.

The main components of this topology include the Ryu OpenFlow controller and
OpenFlow switches (see S1–S15 in Figure 3). We assumed that the switch from S8 to S15 is
connected to two hosts, denoted by H1 to H16. Enabling the MAC address-learning function
on the controller avoids network loops. The configuration settings of each device are listed
in Table 2, which records the device configuration (including the interface and MAC
address) of the 33 nodes. The switch in red in Figure 3 is the control plane switch designed
by the EstiNet simulation software, which connects the interface between the OpenFlow
controller and OpenFlow switch. The device is not part of the OpenFlow architecture
because the OpenFlow switch is a L2 device, so it cannot be configured with IP addresses.
To communicate with the controller, EstiNet adds an OpenFlow controller switch device to
the GUI to provide an interface. The switch can be connected to this OpenFlow controller
switch by an IP address, allowing the controller to control any specified OpenFlow switch
and communicate with it properly.

Table 2. Configuration setting of devices in Figure 3.

ID Device Interface MAC IPv4 Connected Device

1 Controller eth0 00:01:00:00:00:01 1.0.1.1 Controller
plane switch

2 Controller
plane switch

eth0 00:01:00:00:00:02 - Controller
eth1 00:01:00:00:00:03 - S1
eth2 00:01:00:00:00:10 - S2
eth3 00:01:00:00:00:14 - S4
eth4 00:01:00:00:00:15 - S5
eth5 00:01:00:00:00:19 - S8
eth6 00:01:00:00:00:1a - S9
eth7 00:01:00:00:00:1e - S10
eth8 00:01:00:00:00:47 - S11
eth9 00:01:00:00:00:48 - S12
eth10 00:01:00:00:00:49 - S6
eth11 00:01:00:00:00:4a - S3
eth12 00:01:00:00:00:4b - S13
eth13 00:01:00:00:00:4c - S14
eth14 00:01:00:00:00:4d - S7
eth15 00:01:00:00:00:4e - S15
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Table 2. Cont.

ID Device Interface MAC IPv4 Connected Device

3 OpenFlow
Switch S1

eth0 00:01:00:00:00:04 1.0.1.2 Controller
plane switch

eth1 00:01:00:00:00:05 - S2
eth2 00:01:00:00:00:06 - S3

4 OpenFlow
Switch S2

eth0 00:01:00:00:00:07 - S1
eth1 00:01:00:00:00:08 - S2
eth2 00:01:00:00:00:09 - S3

eth3 00:01:00:00:00:4f 1.0.1.3 Controller
plane switch

5 OpenFlow
Switch S3

eth0 00:01:00:00:00:0a - S1
eth1 00:01:00:00:00:0b - S6
eth2 00:01:00:00:00:0c - S7

eth3 00:01:00:00:00:50 1.0.1.12 Controller
plane switch

6 OpenFlow
Switch S4

eth0 00:01:00:00:00:0d - S2
eth1 00:01:00:00:00:0e - S8
eth2 00:01:00:00:00:0f - S9

eth3 00:01:00:00:00:51 1.0.1.3 Controller
plane switch

eth4 00:01:00:00:00:5f - S5

7 OpenFlow
Switch S5

eth0 00:01:00:00:00:11 - S2
eth1 00:01:00:00:00:12 - S10
eth2 00:01:00:00:00:13 - S11

eth3 00:01:00:00:00:52 1.0.1.3 Controller
plane switch

eth4 00:01:00:00:00:5d - S6
eth5 00:01:00:00:00:60 - S4

8 OpenFlow
Switch S6

eth0 00:01:00:00:00:16 - S12
eth1 00:01:00:00:00:17 - S13
eth2 00:01:00:00:00:18 - S3

eth3 00:01:00:00:00:53 1.0.1.11 Controller
plane switch

eth4 00:01:00:00:00:5e - S5
eth5 00:01:00:00:00:61 - S7

9 OpenFlow
Switch S7

eth0 00:01:00:00:00:1b - S3
eth1 00:01:00:00:00:1c - S14
eth2 00:01:00:00:00:1d - S15

eth3 00:01:00:00:00:54 1.0.1.15 Controller
plane switch

eth4 00:01:00:00:00:62 - S6

10 OpenFlow
Switch S8

eth0 00:01:00:00:00:1f - S4
eth1 00:01:00:00:00:20 - H1
eth2 00:01:00:00:00:21 - H2

eth3 00:01:00:00:00:55 1.0.1.6 Controller
plane switch

11 OpenFlow
Switch S9

eth0 00:01:00:00:00:22 - S4
eth1 00:01:00:00:00:23 - H3
eth2 00:01:00:00:00:24 - H4

eth3 00:01:00:00:00:56 1.0.1.7 Controller
plane switch
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Table 2. Cont.

ID Device Interface MAC IPv4 Connected Device

12 OpenFlow
Switch S10

eth0 00:01:00:00:00:25 - S5
eth1 00:01:00:00:00:26 - H5
eth2 00:01:00:00:00:27 - H6

eth3 00:01:00:00:00:57 1.0.1.8 Controller
plane switch

13 OpenFlow
Switch S11

eth0 00:01:00:00:00:28 - S5
eth1 00:01:00:00:00:29 - H7
eth2 00:01:00:00:00:2a - H8

eth3 00:01:00:00:00:58 1.0.1.9 Controller
plane switch

14 OpenFlow
Switch S12

eth0 00:01:00:00:00:2b - S6
eth1 00:01:00:00:00:2c - H9
eth2 00:01:00:00:00:2d - H10

eth3 00:01:00:00:00:59 1.0.1.10 Controller
plane switch

15 OpenFlow
Switch S13

eth0 00:01:00:00:00:2e - S6
eth1 00:01:00:00:00:2f - H11
eth2 00:01:00:00:00:30 - H12

eth3 00:01:00:00:00:5a 1.0.1.13 Controller
plane switch

16 OpenFlow
Switch S14

eth0 00:01:00:00:00:31 - S7
eth1 00:01:00:00:00:32 - H13
eth2 00:01:00:00:00:33 - H14

eth3 00:01:00:00:00:5b 1.0.1.14 Controller
plane switch

17 OpenFlow
Switch S15

eth0 00:01:00:00:00:34 - S7
eth1 00:01:00:00:00:35 - H15
eth2 00:01:00:00:00:36 - H16

eth3 00:01:00:00:00:5c 1.0.1.16 Controller
plane switch

18 Host H1 eth0 00:01:00:00:00:37 1.0.2.1 S8

19 Host H2 eth0 00:01:00:00:00:38 1.0.2.2 S8

20 Host H3 eth0 00:01:00:00:00:39 1.0.2.3 S9

21 Host H4 eth0 00:01:00:00:00:3a 1.0.2.4 S9

22 Host H5 eth0 00:01:00:00:00:3b 1.0.2.5 S10

23 Host H6 eth0 00:01:00:00:00:3c 1.0.2.6 S10

24 Host H7 eth0 00:01:00:00:00:3d 1.0.2.7 S11

25 Host H8 eth0 00:01:00:00:00:3e 1.0.2.8 S11

26 Host H9 eth0 00:01:00:00:00:3f 1.0.2.9 S12

27 Host H10 eth0 00:01:00:00:00:40 1.0.2.10 S12

28 Host H11 eth0 00:01:00:00:00:41 1.0.2.11 S13

29 Host H12 eth0 00:01:00:00:00:42 1.0.2.12 S13

30 Host H13 eth0 00:01:00:00:00:43 1.0.2.13 S14

31 Host H14 eth0 00:01:00:00:00:44 1.0.2.14 S14

32 Host H15 eth0 00:01:00:00:00:45 1.0.2.15 S15

33 Host H16 eth0 00:01:00:00:00:46 1.0.2.16 S15
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3.2. AI Module and Machine Learning Models

To detect abnormal packets in the SDN network early and classify the attack type,
we deployed an AI module in the controller. The AI module process is shown in Figure 4.
In the training phase, we used two SDN public datasets to train the models for binary
and multiclass classification. Binary classification is designed to distinguish between
normal and abnormal, and multi-class classification is aimed at abnormality. Attacks
can be classified into several types. There were eight ML and five DL algorithms in
the AI model category. In the prediction phase, the network flows first enter the AI
module, perform feature extraction, and then predict the binary classification or multiclass
classification model. Finally, the controller uses the predictions to decide whether to act on
network traffic.

Figure 4. The framework of the AI module.

For binary and multi-class classification, we adopted eight common ML and five DL
models to determine the best model, including decision tree, random forest, KNN, naive
Bayes, SVM with the RBF kernel or the linear function, bagging and AdaBoost, MLP, convo-
lutional neural network (CNN), recurrent neural network (RNN), long short-term memory
(LSTM), and gated recurrent unit (GRU). There are two typical approaches to the synthetic
minority oversampling technique (SMOTE) [57]: oversampling and undersampling. In the
dataset used in this study, the number of samples in the minority class is too small, that is,
17 samples in U2R, 164 samples in Botnet, and 192 samples in Web-Attack; therefore, we
adopted an oversampling strategy that did not affect the overall performance. Minority
classes are oversampled through the creation of synthetic examples rather than by over-
sampling through replacement. Each minority class sample is oversampled by introducing
synthetic examples along the line segments joining any or all of the k-nearest neighbors in
the minority class. The neighbors from the KNN are selected randomly depending on the
amount of oversampling required.

3.3. Hierarchical Multiclass Classification

Multiclass classification is required because it is necessary to further identify the cate-
gory of the abnormal behavior. When the training dataset is unbalanced, the performance
of multiclass classifiers decreases with an increasing number of classes, especially with a
small number of classes (called minority classes); however, the overall average accuracy
was good. Aiming at minority classes, we transform the multiclass classification problem
into a hierarchical multi-classification (HMC) architecture. We adopted a top-down ap-
proach based on the divide-and-conquer strategy. The architecture is illustrated in Figure 5.
The classifiers in the hierarchical mechanism can be any binary classifiers described in the
previous subsection. First, we labeled the current class 0. The remaining categories were
marked as 1. Training is conducted based on the number of samples in the class, that is,
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the class with the greatest number of samples is trained first and training is performed
only once.

Figure 5. The HMC architecture.

3.4. Datasets and Features

Most of the training datasets published on traditional networks were collected from
IDS, such as the KDD dataset [13] and NSL-KDD [14]; however, differences between
the traditional and SDN environments remained. To resemble more closer to network
attacks that may be encountered in the SDN environment, we selected two public datasets
currently released in the SDN simulation environment for training. The binary classifier
model adopts the DDOS attack SDN dataset published by Ahuja et al. [15], with 22 features
and 104,345 records, as shown in Table 3.

Table 3. Two SDN datasets are used for binary classification and multi-class classification, respectively.

Dataset DDoS-SDN (2020) [15] InSDN (2020) [2]

The number of features 22 83

The number of classes 2 (binary) 8 (multi-class)

The number
of instances

per class

Normal 63,561 68,424

Abnormal

DoS

40,784

53,616

DDoS 121,942

BFA 1405

Botnet 164

Web-Attack 192

Probe 98,129

U2R 17

The total number of instances 104,345 343,889

The dataset generated using the mininet emulator contained two types of packet
characteristics: normal and malicious. Malicious traffic includes TCP Syn, UDP flood,
and ICMP attacks. In addition, there are 22 features, such as Switch-id, Packet_count,
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byte_count, and duration_sec, as shown in Table 4. Elsayed et al. adopted the InSDN
dataset collected from the Mininet network emulator. The dataset includes seven classes of
attack and normal packets with 83 features and 343,889 instances, as shown in Table 5. The
authors selected 48 features for the ML training models. In this study, we selected these
48 features for the evaluation.

Table 4. Features of the DDoS-SDN dataset.

ID Feature Description ID Feature Description

1 dt Convert a date and time 2 switch Switch ID

3 src Source IP 4 dst Destination IP

5 pktcount Count of packets 6 bytecount Count of bytes

7 dur Duration 8 dur_nsec Duration in nanoseconds

9 tot_dur Sum of duration in seconds 10 flow Flow amount at an interval

11 packetins # of packets 12 pktperflow Packets during a flow

13 byteperflow Bytes during a flow 14 pktrate Packets per second

15 pairflow Packet per flow in a interval 16 protocol TCP/UDP/ICMP

17 prot_no Port No. 18 tx_bytes Transfer bytes

19 rx_bytes Receiving bytes 20 tx_kbps Transfer kilobytes

21 rx_bytes Receiving kilobytes 22 tot_kbps Total kilobytes

Table 5. Features of the InSDN dataset.

ID Feature Select ID Feature Select ID Feature Select

1 Flow ID 2 Src IP 3 Src Port

4 Dst IP 5 Dst Port 6 Protocol X

7 Timestamp 8 Flow duration X 9 Tot Fwd Pkts X

10 Tot Bwd Pkts X 11 Tot Len Fwd Pkts X 12 Tot Len Bwd Pkts X

13 Fwd Pkt Len Max X 14 Fwd Pkt Len Min X 15 Fwd Pkt Len Mean X

16 Fwd Pkt Len Std X 17 Bwd Pkt Len Max X 18 Bwd Pkt Len Min X

19 Bwd Pkt Len Mean X 20 Bwd Pkt Len Std X 21 Flow Byts/s X

22 Flow Pkts/s X 23 Flow IAT Mean X 24 Flow IAT Std X

25 Flow IAT Max X 26 Flow IAT Min X 27 Fwd IAT Tot X

28 Fwd IAT Mean X 29 Fwd IAT Std X 30 Fwd IAT Max X

31 Fwd IAT Min X 32 Bwd IAT Tot X 33 Bwd IAT Mean X

34 Bwd IAT Std X 35 Bwd IAT Max X 36 Bwd IAT Min X

37 Fwd PSH Flags 38 Bwd PSH Flags 39 Fwd URG Flags

40 Fwd URG Flags 41 Fwd Header Len X 42 Bwd Header Len X

43 Fwd Pkts/s X 44 Bwd Pkts/s X 45 Pkt Len Min X

46 Pkt Len Max X 47 Pkt Len Mean X 48 Pkt Len Std X

49 Pkt Len Var X 50 FIN Flag Cnt 51 SYN Flag Cnt
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Table 5. Cont.

ID Feature Select ID Feature Select ID Feature Select

52 RST Flag Cnt 53 PSH Flag Cnt 54 ACK Flag Cnt

55 URG Flag Cnt 56 CWE Flag Count 57 ECE Flag Cnt

58 Down/Up Ratio 59 Pkt Size Avg X 60 Fwd Seg Size Avg

61 Bwd Seg Size Avg 62 Fwd Byts/b Avg 63 Fwd Pkts/b Avg

64 Fwd Blk Rate Avg 65 Bwd Byts/b Avg 66 Bwd Pkts/b Avg

67 Bwd Blk Rate Avg 68 Subflow Fwd Pkts 69 Subflow Fwd Byts

70 Subflow Bwd Pkts 71 Subflow Bwd Byts 72 Init Fwd Win Byts

73 Init Bwd Win Byts 74 Fwd Act Data Pkts 75 Fwd Seg Size Min

76 Active Mean X 77 Active Std X 78 Active Max X

79 Active Min X 80 Idle Mean X 81 Idle Std X

82 Idle Max X 83 Idle Min X

4. Experiments
4.1. SDN Simulation

The SDN simulation system environment of this study is based on the Fedora24 oper-
ating system version, which supports 64-bit processor i7 machines with 16 GB RAM and
80 GB hard disk. The SDN simulator uses the commercial version of the software EstiNet,
which combines the advantages of the simulator and the emulator (https://www.estinet.
com/ns/?page_id=21140, accessed on 25 May 2021). Thus, the host of each simulator,
including the SDN controller, has independent and real system resources, simulating the
test network traffic of the host. The occurrence of network events can also be controlled pro-
grammatically. That is, the timing resources of the simulated environment are synchronized
with the actual system time [58]. Through its GUI interface, the network configuration
and packet transmission behavior of the real network can be presented in the software
simulation.

EstiNet presents the real network configuration and packet transmission behavior
in software simulation. OpenFlow supporting the SDN protocol is part of the EstiNet
simulator. The OpenFlow communication protocol regulates the communication between
controllers and switches in software-defined networking. An OpenFlow switch can accept
control from a single controller or multiple controllers and supports an architecture where
the control plane and the data plane overlap (in-band control plane) or separate (out-of-
band control plane) architecture. The open-source controller software can execute in the
SDN environment of the EstiNet simulation and then go to control the virtual OpenFlow
switch. EstiNet also follows the OpenFlow protocol and supports FlowTable, GroupTable,
and MeterTable operations in the simulated OpenFlow switch. The user can observe
the changes of FlowTable, GroupTable, and MeterTable in the execution and playback
mode of the simulator. EstiNet can programmatically control network statuses, such as
packet transmission delay and packet loss rate for wired networks and energy/distance
for wireless network packet transmission. It sends network packets using various wired
and wireless communication protocols. Time dilation is generally used to simulate changes
in time velocity. Simulation results are achieved by slowing down the system clock and
remaining undistorted. The virtual network time of the simulated network is automatically
adjusted based on packet events in the event processing core or through a packet event
translator, providing greater accuracy and efficiency than typical time dilation methods.
EstiNet uses Linux containers that run the actual software. Build virtual networks to create
simulated environments that integrate virtual and real environments. EstiNet simulator

https://www.estinet.com/ns/?page_id=21140
https://www.estinet.com/ns/?page_id=21140
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provides a network testing field consisting of physical and virtual network devices. Both
types of devices can interact with each other for testing. Since Python language operation
is supported, our ML and DL models are placed in the SDN controller for prediction.
The Hing tool, a command-line oriented TCP/IP packet assembler/analyzer, is used as a
DDoS simulation attack tool to implement SYN flood attacks and random source attack
scenarios in the Linux environment. The attacker can send multiple connection requests to
perform DDoS and send multiple random packets with different source addresses to the
target machine.

4.2. Measure Evaluation

Comparing the classification performance objectively under the imbalanced dataset is
not possible using only the accuracy rate because the performance of the average model
tends to favor the performance of the majority classes. Thus, we select the F1-score to
evaluate these malicious attack models in SDN. The equations are as follows, in which TP
true positive (TP) and true negative (TN) indicate that the predictions are correct, and false
positive (FP) and false negative (FN) indicate the wrong predictions.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1-score =
2× Precision× Recall

Precision + Recall
(3)

4.3. Experimental Results

The experimental evaluations are divided into three performance comparison parts,
including binary classification, multi-class classification, and the performance of HMC for
multi-class classification.

In the first stage, we used the DDoS attack dataset to verify the prediction of the
AI module in an SDN environment. We used 5-fold cross-validation with a training and
testing data ratio of 8:2 (i.e., 4:1). A different part was used each time for testing, and the
remainder was trained for five epochs to obtain the average result. The data were divided
into two categories: normal and abnormal. We used eight ML classifiers for performance
comparison: decision tree (DT), random forest (RF), naive Bayes (NB), KNN, SVM-RBF,
linear kernel (L-SVM), and bagging and boosting for ensemble learning, as shown in
Figure 6. In addition, five types of DL classifiers were adopted: MLP, CNN, RNN, LSTM,
and GRU, as shown in Figure 7. ML models use default parameters without tuning. The
parameter settings of the DL models are shown in Table 6.

Figure 6. Performance of machine learning in DDoS-SDN dataset.
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The experimental results showed that the DT, RF, bagging, and boost of ensemble
learning had the best performance (F1 = 1) among the ML models. In contrast, NB had
the worst performance (F1 = 0.58, abnormal packets). In addition, Figure 7 shows the
performances of the five DL models. After optimizing the parameters, the F1-score for both
categories is 0.95 and 0.99. This result indicates that tree, ensemble learning, and neural
network models can effectively predict DDoS attacks.

Figure 7. Performance of deep learning in DDoS-SDN dataset.

Table 6. Parameter setting of deep learning models.

Models # of Layer Type # of Neurons Activation

MLP
Layer1 Dense 80 Relu
Layer2 Dense 100 Relu
Layer3 Dense 8 Softmax

CNN

Layer1 Conv1D 64 Relu
Layer2 Conv1D 64 Relu
Layer3 MaxPooling1D (pool size = 1)
Layer4 Dense 128 Relu
Layer5 Dropout (p = 0.5)
Layer6 Dense 8 Softmax

RNN

Layer1 SimpleRNN 64 Relu
Layer2 Dense 256 Relu
Layer3 Dropout (p = 0.35)
Layer4 Dense 8 Softmax

LSTM

Layer1 LSTM 64 Relu
Layer2 Dense 256 Relu
Layer3 Dense 256 Relu
Layer4 Dense 8 Softmax

GPU

Layer1 GRU 64 Relu
Layer2 Dropout (p = 0.2)
Layer3 Dense 256 Relu
Layer4 Dense 256 Relu
Layer5 Dense 8 Softmax

In the second stage, we used the InSDN dataset to validate the prediction of the AI
module for multiclass anomalous attacks in an SDN environment. The same eight machine
learning and five DL models were used in the first stage, and the performance classifications
are shown in Figure 8 and Figure 9, respectively. The horizontal axis represents the overall
F1-score performance and normal and seven abnormal attack performances. Figure 8
shows the performance comparison of machine learning for various attacks. From the
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overall average performance (see the first set of data in Figure 8), the performance of each
classifier was good (excluding NB; the F1-score was above 0.83). In detail, normal packets,
DDoS, DoS, and probe attacks have good identification performance, whereas botnets, BFA,
web-attack, and U2R have poor performance in sequence. Next, we compare the number
of classes, as shown in Table 3. There is a clear relationship between poor performance and
insufficient data; therefore, this is a problem of uneven training performance caused by a
significantly imbalanced dataset.

Figure 8. Performance of machine learning in InSDN dataset.

Figure 9. Performance of deep learning in InSDN dataset.

The performance of DL on imbalanced datasets is shown in Figure 9. Compared with
the experimental results in Figure 8, the overall performance of the DL model was better
than that of the ML model (F1 was 0.96∼0.99); however, in terms of detailed categories,
the prediction performance of the U2R class is still the worst, and the best classifica-
tion performance of web attack is only 0.49; therefore, combining the results obtained
in Figures 8 and 9, we need to strengthen the identification performance of the few-shot
categories (i.e., U2R, web-attack, BFA, and botnet).

In the third stage, we compare the performance of HMC with 13 single classifiers,
which are the same as above, focusing on the minority classes, as shown in Figure 10
and Figure 11, respectively. As shown in Figure 10, the HMC architecture with AdaBoost
as the core classifier exhibited the best performance, followed by bagging. Regarding
minority classes, we see that AdaBoost-based HMC in the U2R class attaches a 0.5 F1-
score (original F1 is 0) and bagging-based HMC attaches a 0.67 F1-score (original F1 is
0.4). For the web-attack class, the AdaBoost-based HMC obtained a 0.88 F1-score (original
F1 was 0.71) and bagging obtained a 0.9 F1-score (original F1 was 0). Because the two
classification methods, AdaBoost and bagging, use ensemble learning as the strategy, it
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also shows that multi-classifier decision-making contributes to the identification ability of
the final prediction.

As shown in Figure 11, the DL-based HMC architecture improves in most classes
but fails to identify effectively for the botnet and U2R classes. Comparing Figure 10 and
Figure 11, we found that although the DL model has been significantly improved in most
categories, AdaBoost and bagging, which are still based on ensemble learning strategies,
are still used to identify minority categories and exhibit better performance under the HMC
architecture. Finally, we averaged the eight types of performance using the Micro F1-score,
as shown in Table 7. With AdaBoost improving the most (51%) and RNN good (21%);
however, under the HMC architecture, the MLP degraded by 6%. We assumed the overall
average drop might be due to misrecognition prediction for botnet attacks.

These two SDN datasets were simulated using the Mininet software and released
publicly for research purposes. The authors labeled anomalous traffic categories so
that the model could be trained offline, predicted, and identified online. According to
Elsayed et al. [2], the InSDN dataset improves the accuracy of model identification in
predicting real-time traffic in an SDN environment. This study used these data to train an
AI model to enable an SDN system. We can also replace this with real traffic and extract
features to provide model predictions in real situations; therefore, our SDN system is
scalable and independent of datasets used.

Figure 10. Performance comparison of HMC with single machine learning classifiers.

Figure 11. Performance comparison of HMC with single deep learning classifiers.
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Table 7. Summary of HMC improved performance.

Model Single Classifier (F1) HMC Architecture (F1) Improved (%)

Decison tree 0.85 0.98 ↑ 13%

Random forest 0.86 0.91 ↑ 5%

KNN 0.84 0.90 ↑ 6%

Naïve Bayes 0.33 0.46 ↑ 13%

SVM-RBF 0.44 0.46 ↑ 2%

L-SVM 0.44 0.46 ↑ 2%

Bagging 0.86 0.93 ↑ 7%

AdaBoost 0.40 0.91 ↑ 51%

MLP 0.75 0.69 ↓ 6%

CNN 0.66 0.72 ↑ 6%

RNN 0.52 0.73 ↑ 21%

LSTM 0.63 0.74 ↑ 11%

GRU 0.53 0.72 ↑ 19%

4.4. Case of Attack Simulation

During this experiment, we generated traffic and abnormal packets using the Hping
network tool to simulate the SDN controller’s traffic monitoring and the response of the
SDN controller to the packets generated by a DDoS attack scenario. We collected normal
traffic for analysis in a simulated DDoS attack environment and distinguished between
normal and DDoS attack traffic. Finally, the flow rule is dynamically updated to the data
layer devices to discard or block abnormal packets. Figure 12 illustrates the number of
packets received and transmitted and the number of bytes received and transmitted by the
switch-on ports 1, 2, and 3. Moreover, packets were sent to a specific destination in large
numbers and after the packets exceeded the threshold value, the packets were blocked by
the SDN controller and discarded. In addition, the message “Destination Host Unreachable”
was displayed.

To better visualize the DDoS attack traffic and the throughput load imposed on the
victim host, we used EstiNet software to simulate the entire simulation process, where
node 1 acts as the initiator of the DDoS attack and node 2 is the victim. The DDoS attack
simulation tool is Hping. EstiNet can support self-built Docker mounting technology. In the
following example, a new image file is created using the Fedora Docker file, and the Hping
tool is installed on node 1 using EstiNet software. When the Hping command (hping 3–c
10000–d 60–S–p 80 –flood –rand-source 1.0.1.2) simulates a DDoS attack, the throughput
load of the victim host rises rapidly. This DDoS attack simulation scenario verifies whether
the architecture can detect and mitigate the attack traffic. The number of attacks includes
one, two, and three hosts to attack the victim host. When the system detected abnormal
traffic, the mitigation mechanism was activated within 1–2 s to restore the traffic of the
victim host to normal.
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Figure 12. DDoS attack simulation under one to three number of attack hosts.

4.5. Feature Importance and Selection

A high the number of features in a dataset can help identify the differences between
normal and abnormal packets; however, a significant disadvantage is the relative increase
in model complexity and training cost; therefore, finding important features in the dataset
and performing feature selection are beneficial for effectively identifying abnormal attack
categories and reducing training costs. The information gain (IG) indicator is often used
in the field of information theory as an indicator of the importance of an attribute and
decision making; therefore, IG value was used to indicate the important features in the
dataset, and the calculation equation is given in Equation (5).

Entropy = −
c

∑
i=1

pilogpi (4)

IG(T, A) = Entropy(T)− ∑
v∈A

Tv

T
· Entropy(Tv) (5)

where T is target, A is the variable, and v is each value in A.
In addition to the information gain index, another related index is entropy, which

measures the degree of chaos in data categories. When the value is higher, the data are more
chaotic, and vice versa, and it is easy to divide. Through ablation analysis, we calculated
the IG values per feature for the overall model prediction (i.e., the importance of features).

As shown in Figure 13, in the DDoS-SDN dataset, the features are sorted according to
their importance, which is calculated using the information gain. For example, byteperflow,
pktperflow, pktrate, bytecount, pktcount, and packets were the first six important charac-
teristics for identifying DDoS packets. Compared with the InSDN dataset, as shown in
Table 8, we list the top 20 features (IG > 0) that can be used as a basis for feature selection
for model performance and efficiency. The first three features (i.e., Dst Port, Init Bwd Win
Bytes, and Pkt Len Max) have large IG values, and these features also help correctly identify
whether the packet is normal or malicious.

Finally, we selected the top k features to compare the feature performances, as shown
in Figure 14. The experiment was evaluated based on a decision tree model. The horizontal
axis in Figure 14 is the selection of the top 10 to the top 70 and a total of 83 features;
the selected is the baseline (48 features are used in InSDN). The ranking of k is based on
the information gain. The higher the value of k, the more critical it is. The test method
employed ablation analysis. Each feature was excluded individually, relative to the overall
performance, to examine the importance of that feature. The results show that selecting
the top 20 and 60 features has the best F1 score (0.95), which is an interesting result. When
we prioritize a lower model complexity, a model trained on the top 20 features is likely to
exhibit the best performance and efficiency. Nonetheless, when we are concerned about the
need to identify multiple types of attacks, particularly for minority sample classes, using
the top 60 features may be more helpful in indicating the differences between attack classes;
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therefore, using few-shot learning by selecting relevant features to tackle unknown threat
prediction is a future research direction.

Figure 13. The rank of features in the DDoS-SDN dataset.

Table 8. InSDN dataset ranks the top 20 features by information gain.

Order Feature IG Order Feature IG

1 Dst Port 0.466337 2 Init Bwd Win Byts 0.188352

3 Pkt Len Max 0.184689 4 Bwd Header Len 0.060474

5 Bwd Pkt Len Max 0.024999 6 PSH Flag Cnt 0.024586

7 Src Port 0.018379 8 Flow IAT Std 0.018379

9 Flow IAT Max 0.005798 10 Active Min 0.004491

11 Idle Min 0.002452 12 Subflow Fwd Pkts 0.002375

13 Bwd Pkt Len Mean 0.002219 14 Subflow Fwd Pkts 0.001317

15 Flow IAT Mean 0.000926 16 Fwd Act Data Pkts 0.000898

17 Down/Up Ratio 0.000595 18 Protocol 0.000538

19 RST Flag Cnt 0.000483 20 Tot Fwd Pkts 0.000451

Figure 14. Performance of top k selected features.
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4.6. Discussion

• ML experimental design. We qualitatively compare experimental results with pre-
vious related work, exploring model combination performance, feature selection
performance, and overall and minority performance.

1. Single model and multi model. The experimental results show that our HMC model,
ensemble voting, random forest, and Adaboost have outstanding performance
among many models and can summarize the predictions of multiple models. The
performance is better than the prediction of a single model. In practice, the data
distribution is often uneven, so the combination of multiple approaches, such
as the same classifiers with different samples, and various classifiers combined
with different weighted voting, will effectively improve the performance of the
minority class under the imbalanced dataset.

2. All features and selected features. There is no need to consider the feature selection
for related work with a small number of features. That is, all of them are selected
as the model training classification; however, for datasets with many features,
the model complexity and the training time cost increase, so feature selection
needs to be considered. There may also be irrelevant features that even degrade
performance. The indicators of feature selection are also critical, especially when
some features are not uniformly distributed. As a result, they may be biased
towards the features with the majority of attributes.

3. Overall and minority performance. In most studies, we find that accuracy is often
used to measure the overall performance, but in the imbalanced datasets, the
overall results may be misleading because they may not reveal the performance of
minority attacks; therefore, we proposed the HMC model to improve multiclass
performance through multiple binary classifiers, reduce the number between the
majority class and the minority class, and adopt SMOTE sampling to increase
the samples of the minority.

• The advantages and threats of SDN in security. SDN is derived from decoupling the
control and forwarding planes of the network so that the complex routing mechanism
of the traditional network is responsible for a centralized controller, which works
according to the described strategy through an intelligent and programmable logic
centralized controller. Due to the core differences between SDN and traditional
networks, it brings new solutions to security issues. For example, the global network
view can support higher detection of malicious traffic intrusion and help detect the
malicious behavior of network switches; however, the SDN architecture itself also
faces new security threats. In conclusion, the single point of failure problem (SPOF) is
essentially due to centralization; therefore, we briefly discuss the security issues of the
SDN environment arising from the forwarding plane, the control plane, and links.

1. Forwarding plane. Due to the limited storage capacity of the switch, a reactive
caching mechanism is used. Whenever the switch does not find a matching rule
for its incoming packet flow, the packet will be temporarily stored in the switch
buffer and sent to the controller. Sending a query requires missing rules. This
reactive caching mechanism makes the switch vulnerable to DoS attacks.

2. Control plane. The control plane is also vulnerable to DDoS attacks because multi-
ple infected hosts distributed in the network may send packets to the network
switch synchronously. Since not all rules are already available in the switch’s
table, many queries will be generated and sent to the controller, eventually ex-
ploiting the controller’s limited processing power to cause legitimate queries
to be delayed or discarded. Replication can be used to address such attacks,
with multiple controllers managing the network instead of a single controller;
however, when multiple controllers work the network, deciding where to deploy
the controllers is a critical issue. In addition, the distance separating the switch
from its central controller is a crucial factor to consider when making a place-
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ment. Keeping this distance short ensures low latency on the switch controller
communication link, improving network responsiveness and making switch
DoS attacks more difficult. In addition, SDN also needs to have some resilience
against compromised controller attacks. The control duplication workaround
described above is resistant to this type of attack. Still, if all controllers are in-
stalled on similar platforms, once successfully hacking one of them, an attacker
can hack all controllers.

3. Forwarding the control link. Sending unencrypted communication messages over
the link connecting the control and forwarding planes makes the link vulnerable
to man-in-the-middle attacks. In this case, an attacker can infer control policies,
tamper with rules, and create new rules by eavesdropping on the communi-
cations exchanged on the link, giving the attacker full control of the switch;
therefore, encryption must prevent eavesdropping, thereby protecting the link
layer from such attacks.

• System scalability. According to the technical development and the actual needs of
the unit, a preplanned cloud service based on the network characteristics of the unit
is proposed, and an SDN topology architecture based on AI-assisted early detection
is constructed; therefore, the premise of our study is further to deploy this system
for practical use in the future. Considering the lack of labeled datasets in real-time
networks, we adopted the two datasets used in this study to provide offline training
for ML and DL models. These two SDN datasets were collected by Mininet software
and publicly released for research use. The authors labeled the types of abnormal
traffic and extracted 22 and 83 features from the SDN environment. According to
Elsayed et al., the features of the InSDN dataset can effectively train for traffic anomaly
detection in SDN environments. In this study, our final goal is to adopt these datasets
for offline training and online prediction. The follow-up work in our research will use
transfer learning to use the model parameters of the source domain for fine-tuning
models of the target domain; therefore, our AI-based SDN system is scalable and does
not depend on the original datasets.

5. Conclusions

With the rapid development of SDN and enhancement of information protection
awareness, the type and intensity of attacks pose a major threat to information security.
SDN architecture has the advantages of centralized control, hierarchical management,
and rapid expansion; however, owing to its centralized control, it has also become a
prime target for attackers; therefore, based on security considerations, this study used
ML and DL models to assist in building the SDN topology architecture of cloud services
to achieve early anomaly detection. In addition, we propose a hierarchical multiclass
classification architecture to improve multi-class classification performance and a variety
of model selections by replacing the combination of core classifiers. Finally, we simulate
DDoS attack scenarios to verify that the model has detection capabilities. This study was
implemented to improve the security of an SDN environment using attack prediction
and mitigation mechanisms. The main tasks of this study include (1) constructing the
SDN network topology, (2) training ML and DL models to analyze their ability to identify
abnormal attacks, and (3) improving the performance of multiclass classification based on
our proposed HMC architecture to improve imbalanced dataset classification, especially
the minority class.

In a future study of an SDN centralized control design, we will first consider adopting
multiple controllers to enhance the controller failover and load-balancing functions. Second,
we applied few-shot learning to address the prediction accuracy challenge of the minority
class in anomaly attack training. Finally, because the types of attacks change very quickly,
we use transfer learning to predict unknown threats based on the trained attack type model
to achieve early detection of abnormal attacks. We will focus on the controller design and
integrated development of cross-cloud applications.
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