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Abstract: In this paper, an attempt to unify two important lines of thought in applied optimization is
proposed. We wish to integrate the well-known (dynamic) theory of Pontryagin optimal control with
the Pareto optimization (of the static type), involving the maximization/minimization of a non-trivial
number of functions or functionals, Pontryagin optimal control offers the definitive theoretical device
for the dynamic realization of the objectives to be optimized. The Pareto theory is undoubtedly
less known in mathematical literature, even if it was studied in topological and variational details
(Morse theory) by Stephen Smale. This reunification, obviously partial, presents new conceptual
problems; therefore, a basic review is necessary and desirable. After this review, we define and unify
the two theories. Finally, we propose a Pontryagin extension of a recent multiobjective optimization
application to the evolution of trees and the related anatomy of the xylems . This work is intended as
the first contribution to a series to be developed by the authors on this subject.

Keywords: calculus of variations; optimal control; multiobjective optimization; Pareto optimality

1. Introduction and Motivations

We start by giving some motivation for the Pareto–Pontryagin investigation that
we are proposing. An interesting and simple example for understanding the notion of
multiobjective control appears to be the growth process of a tree. Like almost every living
being, a tree has to accomplish different tasks, i.e., pursue different objectives, to survive
and thrive. Different conflicting objectives for optimizing a tree may be the maximization
of water transported from the roots to the leaves and the minimization of the resources
(carbon) used to build the vessels, called xylems, and the different tree structures. The tree
exerts a physiological control on the growth process through hormonal emission, under the
physical constraints imposed by the environment, i.e., the available resources such as
lighting, carbon dioxide, humidity, and nutrients. We see that this problem, described
in detail in Sections 4.2 and 5.4, can be modeled as an optimal control problem, where
different objectives are involved and need to be optimized, maximized, or minimized in a a
suitable compromised way, by the so-called Pareto optimization.

When at least two conflicting objectives are involved, the growth process can produce
a wide range (possibly an infinity) of different optimal “balanced” solutions, named Pareto
optimal solutions. If we compare two of them, we will observe that one may be better
at transporting water, as in broad-leaved plants, while the other could result in a more
parsimonious use of carbon for vessel construction, as in conifers. Such diversification
in the solutions reflects the different relative importance between objectives observed in
different environments or ecological conditions and consists of a strong thrust toward
biodiversity. We believe that such a dynamic complexity and evolution can be framed in a
Pareto–Pontryagin theory, where the term Pontryagin proposes controlled dynamics, while
the term Pareto denotes vector optimization, realizing definitively a so-called multiobjective
control problem. In Section 5 this problem will be precisely formulated and discussed
in detail.
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A similar situation is observed in engineering design. Establishing a project to develop
a vehicle, or a space mission, usually entails maximizing travel speed and minimizing fuel
consumption at the same time. A multipurpose vehicle should be able to perform those
different tasks in many different “mixing proportions” representing different operational
situations, where the travel speed and the fuel consumption may vary in their relative
importance, although not completely disappearing in favour of the remaining objective.

In addition to the above application examples providing motivation to this area of
research, we need to recall that the genuine origin of multiobjective optimization (MO)
dates back to the work in mathematical economy by F. Y. Edgeworth [1], extended and
popularized by the engineer and economist Vilfredo Pareto [2,3]. The optimal solutions of
MO problems are named after him.

The same concepts and philosophy of multiobjective optimization may be applied
to the calculus of variations and to the mathematical control theory, although explicit
development of the theory and applications is not yet systematic even though it has grown
sensibly in recent years [4–9].

In the largest part of the present literature on multiobjective optimal control (MOC),
the control problem is reduced to a finite dimensional multiobjective optimization prob-
lem. This is performed in the following three steps. First, the problem is translated to a
multiobjective calculus of variations problem by a control-to-state operator (applicable
when the differential constraint has a unique solution for every choice of the controls).
Second, the time-dependent problem is discretized, obtaining a large but finite dimensional
multiobjective optimization problem that can finally be tackled by standard numerical
methods. In some limited cases (e.g., [8,10]), specific concepts and results of optimal control
are investigated in their possible adaptation to the multiple objectives case.

The contributions of the present work are the following. In Section 2, we survey
some important elements of mathematical control theory, with a special emphasis on the
geometric aspects. We stress in particular the use of a singular Legendre transformation.
Further investigations and analysis on the role of Lagrange multipliers and on symplectic
aspects of the theory are proposed in the Appendices A and B. In Section 3, we introduce
multiobjective optimization using the optimization of a function under constraints as the
motivating framework. We discuss the extension to calculus of variations in Section 4,
along with some applications. Finally, in Section 5, we discuss the basic necessary condi-
tions on optimal solutions for multiobjective control problems, as they should extend the
classical results contained in the Pontryagin theory [11,12]. In particular, we investigate the
multiobjective extensions of the Pontryagin maximum principle, both in the Lagrange form
and in the Hamilton(–Pontryagin) form. To obtain such results, we rely on the existence
of non-negative Lagrange multipliers, as proven in the following first-order proposition
contained in a fundamental work by Stephen Smale:

Proposition 1 (‘First-order proposition’, Smale [13,14]). A necessary and sufficient condition
for x to belong to set of Pareto optima related to k functions (or functionals) Jα is that one of the
following equivalent conditions hold:

(a) The set of vectors dJα(x), α,= 1, . . . , k, do not all lie in the same open half-space [in the dual
linear space T∗Rk];

(b) There exist λα > 0, α = 1, . . . , k, not all zero, such that ∑α λαdJα(x) = 0.

This result essentially is originally contained in the multiobjective version of the
Karush–Kuhn–Tucker theorem [15,16]. The importance of Smale’s investigations is the
generalization of the Morse theory to multiple objectives, arising in his dynamical systems
and global analysis setting. Notably, [9,17–19] investigated in more detail the fallout of
these seminal works of Smale, extending the classification of Pareto critical points by
Morse-type indices and suggesting extensions to multiple objectives of existing results in
critical point theory. The existence of such Lagrange multipliers is crucial for bridging the
multiobjective theory to the standard scalar optimization theory and thereby obtaining the
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desired corresponding results. This is obtained by writing a unique scalar function with
the linear convex combination given by the multipliers of the family of objective functions
or functionals.

2. A Simple Kind of Geometrical Portrait of the Optimization
A Singular Legendre Transformation

Coming back to the origins is always a good thing to do. Often, when we try to revisit
ancestral aspects of modern theories, we are able to reach some more deep meanings of the
matter we are concerned with. A good example is rebuilding the Pontryagin Hamiltonian
function in an optimal control environment by following some classical lines of thought. We
recall, especially with treating the Mayer problem, see, e.g., [20,21], that when the differential
constraint is ẋ = ϕ(x, u), equipped with the variation equation v̇ = 〈∇ϕ, v〉, the standard
way to produce the momenta p is to introduce the adjoint equation, 〈p, v〉 = const, arriving
to ṗ = −〈∇ϕT , p〉. In such a case, the Hamiltonian function arising is H = 〈p, ϕ(x, u)〉.
From an earlier point of view, closer to the ideas of classical mechanics, as, e.g., in [12] and
especially in [11], when dealing with the Lagrangian problem, the standard optimal control
setting could be rewritten in the following line. We recall it briefly, for the moment without
specifying the functional domains.

Optimal Control Problem:

Determine (x(·), u(·)) such that
∫ T

0
L(x(t), u(t))dt is minimized, under the

differential constraint ẋ = ϕ(x, u), x(0) = x0. (In [11] p. 320, the symbol f0 is
used in place of L).

Basic arguments (Lagrangian multipliers theory, see Appendix A) lead us to consider
equivalently the augmented Lagrangian function

L(x, λ, ẋ, λ̇; u) = L(x, u) + λ · (ẋ− ϕ(x, u))
(
= L(x, λ, ẋ, λ̇︸︷︷︸

absent

; u)
)

(1)

with Lagrange equations

d
dt

∂L
∂ẋ
− ∂L

∂x
= 0,

d
dt

∂L
∂λ̇
− ∂L

∂λ
= 0, (2)

that read as
λ̇ =

∂L
∂x
− λ · ∂ϕ

∂x
, ẋ = ϕ(x, u). (3)

We stress that (x, λ; ẋ, λ̇) can be naturally considered inside T(Rn
x ×Rn

λ), even though
λ̇ are not involving L. The Lagrangian setting L(q, λ, q̇, λ̇) = L(q, q̇) + λ · ϕ(q) is quite
natural and is used for instance in [22,23]. The presence of λ̇ is trivial, but the Euler–
Lagrange equations related to L(q, λ, q̇, λ̇) offer the exact set of dynamic equations of the
new constrainted system. The Legendre transformation from T(Rn

x ×Rn
λ) into T∗(Rn

x ×Rn
λ)

is trivially definitively singular. Moreover, we proceed by crossing our fingers, recalling
also that the present construction at this level forgets the auxiliary control variables u:

px =
∂L
∂ẋ

(x, λ, ẋ, λ̇; u) = λ, pλ =
∂L
∂λ̇

(x, λ, ẋ, λ̇; u) = 0, (4)

and the related Hamiltonian function reads

H(x, λ, px, pλ; u) = ẋ · ∂L
∂ẋ

+ λ̇ · ∂L
∂λ̇
−L, (5)
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where we are forced to insert in this definition Equation (3)2,

H(x, λ, px, pλ; u) = ϕ(x, u) · ∂L
∂ẋ
−L = ϕ(x, u) · λ− L(x, u) + λ · (ẋ− ϕ(x, u)), (6)

H(x, λ, px, pλ; u) = −L(x, u) + ϕ(x, u) · λ
(
= H(x, λ, px, pλ︸︷︷︸

absent

; u)
)

(7)

Formula (7)1 is crucial, and we will write it, after (4)1, in the following way,

H(x, p; u) = −L(x, u) + p · ϕ(x, u), (8)

where we have relaxed px into p, which coincides with λ. In other words, in a somewhat
lucky and wild way we have just restored the correct Pontryagin Hamiltonian function
(Formula (7) in [11], p. 320). This brief tale detects a suitable framework for our Pareto–
Pontryagin problem below to foresee the correct and useful way to tackle this new problem.

Moreover, we would like to recall that the use in the mechanics of Legendre de-
generate transformations as above has been well studied geometrically by Tulczyjew (see
Appendix B): a Lagrangian L(x, ẋ) which does not admit a regular Legendre transformation
leads in a natural way—that is, in the symplectic setting of analytic mechanics—to a Hamil-
tonian H(x, p; ξ) together with the Equation (A29), where (A29)3 can be thought as a sort of
optimization on the new ‘control’ parameters ξ arising form the Maslov–Hörmander theory.

Symbols used
x coordinates of the configuration space Ω ⊆ Rn.
p moments in the cotangent space TΩ.
λ Lagrange multipliers, in some cases may be transformed in the moments p.
u control parameters.
v in Appendix A represent the vectorial unknown in fields theory with constraints.
ξ in Appendix B, are the Maslov–Hörmander control parameters in H(x, p; ξ).
` in Appendix B, are the free parameters in the Lagrangian manifold Λ.

3. Optimizing Several Functions at the Same Time
3.1. Motivation

The scope of this section is to introduce multiobjective optimization as a natural
and general mindset for managing complex decision tasks that usually are modelled as
constrained optimization.

In real problems, only rarely it is possible to identify a unique criterion or objective to
be maximized or minimized at the expense of all other possible criteria. Very often, to keep
things simple enough to be accessible with available and reasonably demanding methods,
a unique objective is chosen to be improved as much as possible, while all the remaining
objectives are formulated in terms of constraints. Nevertheless, such a strategy is only a first
approximation of the process that usually is put in practice. Indeed, during the decision
process, it is not unusual to reconsider the assumptions and, for instance, reconsider the
constraint values or transform an objective function in a constraint and vice versa. This
more general point of view needs to be placed in the appropriate formal framework, where
suitable strategies can be devised and implemented.
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3.2. Constrained and Unconstrained Optimization—Lagrange Multipliers

Let us consider a standard (scalar) optimization problem (if not explicitly specified,
we always consider minimization)

f : Ω→ R, f (min) := min
x∈Ω

f (x), Ω ⊆ Rn. (9)

For f continuous and Ω compact, existence and uniqueness of a global minimum
value f (min) is guaranteed. The minimum value is realized by one or more optimal points,
counterimages of f (min), denoted by

Ω(min) := arg min
x∈Ω

f (x) = f−1( f (min)). (10)

To introduce multiobjective optimization, we consider in addition a parametric equal-
ity constraint defined as follows: {

min f (x)
g(x) = ḡ,

(11)

with g: Ω → R, at least continuous. For every fixed value ḡ ∈ g(Ω) in the range of g,
we again have existence and uniqueness of the minimum value by compactness. Indeed,
g−1(ḡ) is a nonempty closed subset of the compact Ω; therefore it is still a compact set. We
denote by

f (min)
ḡ := min f

∣∣∣
g−1(ḡ)

= min
x∈g−1(ḡ)

f (x). (12)

the solution of the constrained minimization problem for the constraint g fixed to the
value ḡ.

Varying the Constraint Value ḡ

As long as the value ḡ defining the constraint varies in the range of g, g(Ω), the con-
strained minima f (min)

ḡ span a parametric subset of Im(g× f ) ⊆ R2. Let us consider the
following smooth and convex case.

Example 1. Let Ω = S2 ⊂ R3 and consider the projections on the first two axes x1 and x2:{
f (x) = π2(x) = x2,
g(x) = π1(x) = x1.

(13)

This example is illustrated in Figure 1 and reprised in Remark 3 and in Figure 4. The range
of the vector function F := g× f : Ω → R2 is the disk

{
(x1, x2)|x2

1 + x2
2 6 1

}
. The range of

f is [−1, 1]; therefore, the global unconstrained minimum of f is f (min) = −1. The range of the
constraint g is again [−1, 1]. Let ḡ ∈ [−1, 1], as in the figure. Then the solid blue line is the image
through F of g−1(ḡ), and the blue dot corresponds to the constrained minimum f (min)

ḡ = f̄ of f

on Ωḡ. As ḡ spans g(Ω) = [−1, 1], the corresponding constrained minimum value f (min)
ḡ spans

the range [−1, 0]. The set of points realizing the minima
{

x ∈ Ω|x = arg minx∈g−1(ḡ) f (x)
}

is
mapped on the blue dashed curve by the vector function F = g× f .
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f

f (min)

f

g

g

f

Figure 1. Left panel: The image f (Ω) with the global minimum value f (min) is highlighted in red.
Right panel: Image set of the function F = g× f : Ω→ R2; blue solid line: image of the function f
restricted to the constrained subset of Ω given by g(x) = ḡ. f̄ is the constrained minimum; green
solid line: image of the function g restricted to the constrained subset of Ω given by f (x) = f̄ ; ḡ in

this case. plays the role of the constrained minimum g(min)
f̄ ; blue dashed curve: set O1 of constrained

minima of the function f . Green dashed curve: set O2 of constrained minima of the function g.

3.3. Constrained Optimization and Lagrange Multipliers

When the functions are smooth and also Ω is a smooth manifold, a necessary condition
for optimality under constraints is the stationarity of a suitable linear combination between
the functional f and the constraint g with coefficients to be determined. Another interpreta-
tion of this fact is that the gradient of the functional f and the gradient of the constraint g
have to be linearly dependent. The linear combination is called the Lagrange function:

L1(x, λ) := f (x) + λg(x), λ ∈ R. (14)

Theorem 1 (Standard Lagrange principle—existence of Lagrange multipliers). If the point
x̄ ∈ Ω is an extremum for the differentiable function, f : Ω→ R under the constraint g: Ω→ R,
g(x) = ḡ, then there exists a suitable number λ ∈ R such that

dL1(x̄, λ)

dx
=

d f
dx

(x̄) + λ
dg
dx

(x̄) = 0, g(x̄) = ḡ. (15)

3.4. Interchanging the Roles between Functionals and Constraints

In the convex case, there exists a symmetry in the roles and the behavior of the
functional and the constraint. More precisely, there exists a symmetric problem with respect
to (11) that is parametrized for every possible value f̄ ∈ f (Ω):{

min g(x),
f (x) = f̄ ,

(16)

By writing the Lagrangian, we obtain:

L2(x, µ) := g(x) + µ f (x), µ ∈ R, (17)
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and the Lagrange principle says that if x̄ is a solution for (16), then:

dL2(x̄, µ)

dx
=

dg
dx

(x̄) + µ
d f
dx

(x̄) = 0, f (x̄) = f̄ . (18)

In relevant cases, the optimum point x̄ ∈ Ω of (11) is also the optimum point for a
dual problem (16). This happens when the triple (x̄, f̄ , ḡ) ∈ Ω× f (Ω)× g(Ω) satisfies:{

f̄ = min f (x) = f (x̄),
g(x̄) = ḡ,

if and only if

{
ḡ = min g(x) = g(x̄),
f (x̄) = f̄ ,

(19)

or, in other words,
x̄ = arg min

x∈g−1(ḡ)
f (x) = arg min

x∈ f−1( f̄ )
g(x). (20)

In a more symmetric and unified way, we can say that the point x̄ ∈ Ω is a solution of a
generalized optimization problem for the two functions f and g, having as “minimum value”
the pair ( f̄ , ḡ). For such a generalized solution, we can write a generalized Lagrangian:

L3(x, λ1, λ2) := λ1 f (x) + λ2g(x), (λ1, λ2) ∈ R2, (21)

where the Lagrange principle reads as

dL3(x̄, λ1, λ2)

dx
= λ1

d f
dx

(x̄) + λ2
dg
dx

(x̄) = 0, for some (λ1, λ2) ∈ R2. (22)

The pair (λ1, λ2) can be expressed in terms of the values λ and µ related to the previous
Lagrange principles (15) and (18):

(λ1, λ2) = (1, λ) =

(
1,

1
µ

)
, or (λ1, λ2) = (µ, 1) =

(
1
λ

, 1
)

, or

(λ1, λ2) =

(
1

1 + λ
,

λ

1 + λ

)
=

(
µ

µ + 1
,

1
1 + µ

)
; therefore, λ1 + λ2 = 1.

(23)

The last relation appears natural because any nonzero scalar multiple of the pair
(λ1, λ2) is equivalent in Equation (22). Therefore, a preferred choice is the pair giving a
linear convex combination of f and g.

We now want to characterize the cases in which the symmetric problem (19) is solved
by the same x̄. Let us consider the product space of the ranges of both f and g, the pairs
composed of a constraint value for g (resp. f ) and the respective constrained minimum for
the other function f (resp. g):

O1 :=
{(

ḡ, min
x:g(x)=ḡ

f (x)
)

: ḡ ∈ g(Ω)

}
⊆ g(Ω)× f (Ω) ⊆ R2, (24)

O2 :=

{(
min

x: f (x)= f̄
g(x), f̄

)
: f̄ ∈ f (Ω)

}
⊆ g(Ω)× f (Ω) ⊆ R2. (25)

With reference to Figure 1, O1 is marked with a blue dashed line, while O2 is marked
with a green dashed line. These two subsets have a common nonempty intersectionO1∩O2,
which is exactly the set of pairs (ḡ, f̄ ) for which there exists x̄ ∈ Ω such that f̄ = f (x̄) and
ḡ = g(x̄), and that x̄ solves both (11) and (16). We have already obtained for such a problem
a symmetric unified formulation of the Lagrange principle (22). However, the symmetric
optimization problem generalizing (11) and (16) has not yet been precisely defined.

We need a suitable definition of a problem of simultaneous minimization of both f (x) and
g(x) or, in other words, of the vector function F = g× f : Ω→ R2, F(x) = (g(x), f (x)).
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3.5. Multiobjective Optimization

The precise mathematical definition of a vector minimization problem as described in
the previous paragraph owes its name to Vilfredo Pareto:

Definition 1 (Pareto optimum). A point x ∈ Ω is a Pareto optimum for a vector valued func-
tion F : Ω→ Rk, f (x) = ( f1(x), . . . , fk(x)) if one of the following equivalent conditions holds:

1. There does not exist y ∈ Ω, y 6= x, such that fi(y) 6 fi(x) for all i = 1, . . . , k and
f j(y) < f j(x) for some j = 1, . . . , k;

2. If there exist y ∈ Ω and i = 1, . . . , k such that fi(y) < fi(x), then there exist j 6= i such that
f j(x) < f j(y).

The set of all Pareto optima, a subset of Ω, is called a Pareto set or a Pareto optimal set and
denoted by P . The image of the Pareto set F(P) ⊆ Rk is called the Pareto front.

Definition 2 (Proper Pareto optimum in KT sense). A point x̂ ∈ Ω is a proper Pareto
optimum for F = f1 × · · · × fk : Ω→ Rk in the sense of Kuhn and Tucker [15] if there does not
exist a vector d ∈ Tx̂Ω such that

d fi(x̂) · d 6 0, for all i = 1, . . . , k and there exists j ∈ {1, . . . , k} d f j(x̂) · d < 0. (26)

Remark 1. We notice that the global optimum of one of the functions f1, . . . , fk is not automatically
a Pareto optimum. This is true when there exists a unique minimizer x̂ realizing the global minimum
of, say, fi. If the minimizer x̂ is not unique, then it will also be a Pareto optimum depending on the
value of the remaining functions on x̂. Moreover, it is easy to check that the global minimizer of one
of the functions fi, even if unique, is not a proper Pareto optimum, at least when a nondegeneracy
condition holds. Indeed, if d f ῑ(x̂) = 0 for an index ῑ ∈ {1, . . . , k}, and corank dF(x) = 1 for
all singular points (i.e., rank dF(x) < max), it is possible to find a half space containing all the
remaining gradients, and therefore to find d ∈ Tx̂Ω such that d fi(x̂) · d 6 0, for all i = 1, . . . , k,
and d f j(x̂) · d < 0 for at least one j. For a finer characterization of critical and optimal points in
multiobjective optimization see for instance [19,24].

Definition 3. A linear convex combination λ1, . . . , λk ∈ R>0, λ1 + · · ·+ λk = 1, of the vector
functional components fλ(x) := λ1 f1(x) + · · ·+ λk fk(x) is called a (linear) scalarization of the
vector functional f .

Proposition 2. An optimum in ordinary (scalar) sense of any scalarization fλ(x) = λ1 f1(x) +
· · ·+ λk fk(x), is a Pareto optimum for the vector functional f = ( f1, . . . , fk) if the coefficients
λ1, . . . , λk are all nonzero (When some of the λi is zero then the values of the corresponding functions
fi have to be exhamined to detect the Pareto optima. See Remark 1).

Linear scalarizations play a critical role in multiobjective optimization. In particular,
we observe that in the problem illustrated in Figure 1, the Pareto front is the intersection of
the green and the blue curved lines, i.e., f (P) = O1 ∩O2. Nevertheless, it is important to
observe that linear scalarizations do not automatically produce all of the possible Pareto op-
tima. Indeed, in the nonconvex case, there exist Pareto optima which cannot be represented
as (scalar) optima of a linear scalarization.

Example 2 (Counterexample). Let us consider P1, P2 ∈ R2, P1 6= P2 and the functions

fi(x) := |x− Pi|
1
2 . Then for any λ = (λ1, λ2) ∈ (R>0)2, λ 6= 0,

arg min
x∈Ω

fλ(x) = λ1 f1(x) + λ2 f2(x) = P1 ∨ P2. (27)

Nevertheless, any x = λ1P1 + λ2P2, λi > 0, λ1 + λ2 = 1, is a Pareto optimum for
f = ( f1, f2). This situation is illustrated in Figure 2.
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f1

f2

Figure 2. Image of the nonconvex vector function F = f2 × f1 : R2 → R2, f1(x) = |x− P1|1/2,
f2(x) = |x− P2|1/2, with P1 6= P2. The points in the nonconvex part of the Pareto front, the traedeoff
optima as the red point, are Pareto optimal, but they are never scalar optima for any linear scalar-
ization of f1 and f2. Indeed, the optimum for each λ1 f1(x) + λ2 f2(x) is P1 or P2 (green points).
Nevertheless, these tradeoff optima satisfy the necessary first-order condition: there exists a linear
scalarization for which they are critical points. The small arrows represent the image set of the
differential dF of F, which is nonsurjective on the Pareto set. The blue point is a generic point where
the differential dF is surjective, i.e., its image set is the whole R2.

On the other hand, every Pareto optimum is critical for a suitable linear scalarization.
More precisely, we have the following fact anticipated in the introduction as Proposition 1:

Proposition 3 (Smale first-order proposition [13,14]). If a point x̄ ∈ Ω is a (local) Pareto
optimum for f = ( f1, . . . , fk), then one of the following equivalent conditions holds:

1. The gradients ∇ f1(x̄), . . . ,∇ fk(x̄) are not contained in the same open half space for any half
plane in R2;

2. There exist λ1, . . . , λk ∈ R>0, not all zero, such that λ1∇ f1(x̄) + · · ·+ λk∇ fk(x̄) = 0.

If one of the previous conditions hold, then x̄ is said to be a Pareto critical point.

Interesting second-order sufficient conditions for local Pareto optimality [13] have been
proven and numerically exploited for defining efficient optimization methods, e.g., [25–29];
however, they fall beyond the scope of the present work.

4. Multiobjective Calculus of Variations

Let us consider for simplicity the case of k autonomous functionals in the absence of
equality or inequality constraints. Let us first consider the space of curves

Γt1,x1
t0,x0

:=
{

x(·) ∈ C1([t0, t1],Rn) : x(t0) = x0, x(t1) = x1

}
.

Definition 4. Let Li : R2n → R, (x, v) 7→ Li(x, v), be at least twice the differentiable functions
(k > 2), and let Ji[x(·)] be the corresponding functionals (also called variational principles) to be
minimized at the same time:

Ji[x(·)] =
∫ T

0
Li(x(t), ẋ(t))dt→ inf, i = 1, . . . , k, x(·) ∈ Γt1,x1

t0,x0
. (28)
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We will say that a curve x̂(·) ∈ Γt1,x1
t0,x0

is a Pareto optimal curve or a weak Pareto extremal
curve, if:

1. There does not exist another curve x(·) ∈ Γt1,x1
t0,x0

, such that Ji[x(·)] 6 Ji[x̂(·)] for all
i = 1, . . . , k and Jj[x(·)] < Jj[x̂(·)] for some j ∈ {1, . . . , k};

2. For any curve x(·) ∈ Γt1,x1
t0,x0

, Jj[x(·)] < Jj[x̂(·)] for some j ∈ {1, . . . , k} implies that there
exist i 6= j such that Ji[x(·)] > Ji[x̂(·)].
Choosing λ1, . . . , λk ∈ R, we define the combined Lagrangian:

Lλ(x(t), ẋ(t)) :=
k

∑
i=1

λiLi(x(t), ẋ(t)), (29)

which gives the associated combined Lagrange functional or combined variational principle:

Jλ[x(·)] =
∫ T

0
Lλ(x(t), ẋ(t))dt. (30)

The following Theorem is an infinite dimensional extension of the Lagrange principle.

Theorem 2 (Pareto–Lagrange for Calculus of Variations (CoV)). If x̂(·) ∈ Γx0,x1
t0,t1

is a Pareto
optimal curve for the vector functional J = (J1, . . . ,Jk), then there exist λ = (λ1, . . . , λk), such
that λ1, . . . , λk ∈ R>, λ1 + · · ·+ λk = 1, and

∂x(·)Jλ[x̂(·)] = 0, i.e., − d
dt

∂Lλ

∂ẋ
(x̂, ˙̂x) +

∂Lλ

∂x
(x̂, ˙̂x) ≡ 0. (31)

Proof. For the proof, we refer to [11] (pp. 241–245) where a single constrained functional
is considered. It is necessary to reduce to a finite dimensional problem and resort to the
Karush–Kuhn–Tucker Theorem. Substituting the original KKT Theorem with its multiobjec-
tive version [16] (p. 39) gives the desired result. More details will be provided in Section 5
dealing with optimal control.

Let us also consider the following “combined” Hamiltonian in the hypothesis of the
convexity of Li(x, ẋ) with respect to the ẋ variables, for every i = 1, . . . , k:

Hλ(x(t), p(t)) := sup
ẋ∈Rn

[
p · ẋ−

k

∑
α=1

λiLi(x(t), ẋ(t))

]
. (32)

4.1. Application: Continuum Mechanics

We notice that the variational approach to the continuum mechanics of a two-phase
material proposed in [30,31] can also be interpreted within the framework of multiobjective
optimization. The authors consider an Ericksen bar [32], i.e., a one-dimensional elastic
bar with a two-well nonconvex strain energy f (u′), with interfacial energy and an elastic
foundation. The corresponding total energy functional [30] (formula (2.6), p. 1378):

E =
∫ 1

0
[ f (u′(x)) + α(u′′(x))2 + βu2(x)]dx, α, β ∈ R>0 (33)

exhibits a large number of local equilibria. This functional is clearly a linear scalarization
of three different functionals that cannot be considered separately because they give rise
to a degeneracy in the solutions. Alongside a regularization of the solutions, such an
approach offers an explicit framework to study the wide variety of finite-scale equilibrium
microstructures observed in multi-phase solids, for instance in memory-shape alloys,
in which the different material properties can be described by different values of the (small)
parameters α and β.
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4.2. Application: The Widened Pipe Model for Xylems

The widened pipe model (WPM) [33] of plant hydraulic evolution is a recent proposal
for explaining by optimization through evolution, the origin of the profile of water vessels
observed in vascular plants, called xylems. The WPM predicts that xylem conduits should
be narrowest at the stem tips, widening quickly before plateauing toward the stem base
(see Figure 3a).

(a) (b)

Figure 3. Panel (a): cross-sectional area of xylem conduits in a database of 103 vascular plants
compared with the prediction of the widening pipe model WPM (red line); Panel (b): estimated
carbon cost (W) for the xylem conduit construction versus estimated hydraulic resistance (R) for the
103 plants of the same dataset. Pictures are reproduced from [33].

With reference to the theory exposed above, the WPM consists of a multiobjective
calculus of variations problem. The observed xylem profile is represented in terms of
the cross-sectional area σ widening as a function of the distance from the stem of the
conduit toward the roots h. The xylem profile σ(h) is the result of a trade-off between two
competing factors occurring in natural selection: one favoring rapid widening of conduits
tip to base, minimizing hydraulic resistance R[σ(·)] and another favoring slow widening of
conduits, minimizing carbon cost and embolism risk W[σ(·)] (see Figure 3b). The hydraulic
resistance term R is derived from the Hagen–Poisseuille law for the laminar flow of a
Newtonian fluid through a cylindrical pipe and consists of a term proportional to the
inverse of the square of the cross-sectional area and to the length of the pipe infinitesimal
element dh:

R[σ(·)] :=
∫ hmax

hmin

1
σ(h)2 dh. (34)

The construction carbon cost term W is proportional to the total surface area of the
xylem and is approximated with a term proportional to the square of σ′(h) = dσ

dh (h):

W[σ(·)] :=
∫ hmax

hmin

σ′(h)2dh. (35)

The tradeoff between these two competing functionals is obtained with a suitable
linear convex combination, where the coefficients λ1 and λ2 play the role of Lagrange
multipliers in the scalarized functionals. For every pair (λ1, λ2), we consider the scalarized
variational principle:

J(λ1,λ2)
[σ(·)] = λ1R[σ(·)] + λ2W[σ(·)] =

∫ hmax

hmin

λ1
1

σ(h)2 + λ2σ′(h)2dh→ min, (36)
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which admits as minimizer the following profile

σ(h) := σM

√
h

hM

(
2− h

hM

)
≡ σMF

(
h

hM

)
, (37)

where σM = σ(hM) depends on the proportions between λ1 and λ2, i.e., definitely from the
relative importance between the two functionals R and W. F(x) :=

√
x(2− x) is a universal

scaling function obtained by integrating the Euler–Lagrange equation associated with the
variational principle (36). The presence of a universal scaling function F is remarkable
and allows for fitting all the xylem profiles measured in the dataset of 103 vascular plants
studied in [33] with respect to the same functional form by a simple linear rescaling of each
set of data (see Figure 3a). We notice that the shortest plant in the dataset (Dendroligotrichum
dendroides) was 35 cm tall, while the tallest individual (Sequoia sempervirens) reached over
100 m, i.e., the dataset involves more than two decades of values of hmax.

By fitting the data of each tree with the analytic solution (37) it is possible to estimate
the corresponding hydraulic resistance R and carbon cost W. By representing these values
on a Cartesian plane, we visualize a remarkable Pareto front with a narrow transversal
disturbance which can be abscribed to measurements error, to fitting errors, or to higher
order terms not considered in the model (see Figure 3b).

This application may appear unusual at first sight because of its inverse nature of
detecting the optimization problem (multiobjective in this case) on the basis of the available
solutions (the physical realizations of the xylem conduits in the dataset of the 103 plants).
The crucial importance of multiobjective optimization for this kind of problems relies in
the possibility of inferring the functional meaning of the objective functions involved in the
evolution of plants process, i.e., to have an idea of what the direction pursued by nature
was while shaping the characteristics of living beings. An inverse problem gives precious
insights on the workings of nature. Similar attempts have been worked out and proposed
in [34,35].

Compare this Section with Section 5.4 below, where a dynamical version of the same
problem is considered.

5. Multiobjective Optimal Control
5.1. Necessary First Order Conditions for Multiobjective Optimal Control

Let us again consider for simplicity k functionals in the absence of equality or inequality
constraints. We start by recalling the main concepts. We refer to [11] for the standard scalar
theory and to [4], among others, for the multiobjective case.

Definition 5. Let us again consider k functionals (variational principles) depending on extra
control variables u ∈ U ⊆ Rm to be minimized at the same time:

Jα[x(·), u(·), t0, t1] =
∫ t1

t0

fα(t, x(t), u(t))dt→ inf, α = 1, . . . , k, (38)

with shared differential costraints:{
ẋi = ϕi(t, xj, uL), i = 1, . . . , n, L = 1, . . . , m,
xi(0) = x0

i .
(39)

We will say that γ̂ = (x(·), u(·), t0, t1) is a Pareto optimal process or weak Pareto
extremal if it solves the differential constraints and if

1. There does not exist a process γ solving the differential constraints, such that Ji[γ] 6 Ji[γ̂]
for all i = 1, . . . , k and Jj[γ] < Jj[γ̂] for some j ∈ {1, . . . , k};

2. For any process γ ,solving the differential constraints, Jj[γ] < Jj[γ̂] for some j ∈ {1, . . . , k}
implies that there exist i 6= j such that Ji[γ] > Ji[γ̂].
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Fixing λ1, . . . , λk ∈ R, we define the combined Lagrange functional:

Jλ[x(·), u(·), t0, t1; p(·), λ1, . . . , λk] =
∫ t1

t0

Lλ(t, x(t), ẋ(t), u(t), p(t))dt (40)

where the integrand, called combined Lagrangian, is the following function

Lλ(t, x(t), ẋ(t), p(t), u(t)) :=
k

∑
α=1

λα fα(t, x(t), u(t)) + p(t) · (ẋ− ϕ(t, x(t), u(t))). (41)

In order, we have the main results:

Theorem 3 (Pareto–Lagrange principle). If γ̂ = (x(·), u(·), t0, t1) is a Pareto optimal process,
then there exist λ1 > 0, . . . , λk > 0 not all zero, (a p(·) also exists, determined by the differential
constraints), such that

∂x(·)Ĵλ = 0, i.e., − d
dt

∂Lλ

∂ẋ
(t) +

∂L
∂x

(t) ≡ 0, (42)

∂u(·)Ĵλ = 0, i.e., − d
dt

∂Lλ

∂u
(t) ≡ 0, (43)

Proof. The proof is adapted from [11] (pp. 320–325) considered for a single constrained
functional. The original proof reduces the infinite dimensional problem to a finite di-
mensional problem and makes use of the Karush–Kuhn–Tucker Theorem. Substituting
the original KKT Theorem with its multiobjective version [16] (p. 39) gives the desired
result.

5.2. A Pareto–Pontryagin Maximum Principle

Let us fix λ1, . . . , λk and consider the following “combined” Pontryagin’s Hamiltonian:

Hλ(t, x, p, u) :=
∂Lλ

∂ẋ
· ẋ− Lλ = p(t) · ϕ(t, x, u)−

k

∑
α=1

λα fα(t, x, u). (44)

Theorem 4 (Pareto–Hamilton). In the above hypotheses, the following Hamilton equations hold:

ẋ =
∂Hλ

∂p
, ṗ = −∂Hλ

∂x
,

∂Hλ

∂u
= 0. (45)

Remark 2. The strict analogy between (45), the Equation (A28) proposed in the Appendix B, and
Equation (14) in [11] (p. 303) is remarkable.

Theorem 5 (Pareto–Pontryagin maximum principle (scalarized)). If γ̂ = (x̂(·), p̂(·), û(·),
t0, t1) is a Pareto optimal process, there exist λ1, . . . , λk ∈ R>, λ1 + · · ·+ λk = 1, such that:

Hλ(t, x̂(t), p̂(t), û(t)) > Hλ(t, x̂(t), p̂(t), ω), for all ω ∈ U , t ∈ [t0, t1]. (46)

Proof. The proof is exactly the Pontryagin proof [11], where the standard Lagrangian is sub-
stituted with a linear scalarization of the family of Lagrangians Lλ = λ1L1 + · · ·+ λkLk.

For the last result, we also consider the family of Hamiltonians associated with the
individual functionals fα:

Hα(t, x, p, u) :=
∂Lα

∂ẋ
· ẋ− Lα = p · ϕ(t, x, u)− fα(t, x, u). α = 1, . . . , k. (47)
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It is therefore possibile to formulate and prove a Pareto–Pontryagin Maximum Princi-
ple in a more genuine form without referring to the Lagrange multipliers (at least in the
statement). For this last result, we adopt the normality assumption for the Pareto optimal
process considered: an optimal process γ̂ [36] is said to be normal if the set of Lagrange
multipliers λ1, . . . , λk are all positive. In multiobjective optimization, this condition is
associated with the concept of proper Pareto optimality defined in (2) (see also [15]).

Theorem 6 (Pareto–Pontryagin maximum principle (primal, i.e., unscalarized)). If
γ̂ = (x̂(·), p̂(·), û(·), t0, t1) is a normal Pareto optimal process, and if there exists an index
α ∈ {1, . . . , k}, a t ∈ [t0, t1] and an ω ∈ U ⊆ Rm such that

Hα(t, x̂(t), p̂(t), û(t)) < Hα(t, x̂(t), p̂(t), ω) (48)

then there exists another index β 6= α such that

Hβ(t, x̂(t), p̂(t), û(t)) > Hβ(t, x̂(t), p̂(t), ω) (49)

Proof. By the preceding Theorem 5, we have that

Hλ(t, x̂(t), p̂(t), û(t)) > Hλ(t, x̂(t), p̂(t), ω) (50)

for all t ∈ [t0, t1] and ω ∈ U . Nevertheless, we have:

k

∑
α=1

λαHα(t, x, p, u) =
k

∑
α=1

λα pϕ(t, x, u)−
k

∑
α=1

λα fα(t, x, p, u) =

= pϕ(t, x, u)−
k

∑
α=1

λα fα(t, x, p, u) = Hλ(t, x, p, u), (51)

being the multipliers chosen such that ∑k
α=1 λα = 1. Let us write for simplicity

Hα(u) := Hα(t, x̂(t), p̂(t), u) for fixed t and arbitrary u ∈ U . Because of (50), we have

∑ λα(Hα(û(t))− Hα(ω)) > 0. (52)

Assume there exists an index ᾱ, with λᾱ 6= 0, such that

Hᾱ(û(t)) < Hᾱ(ω). (53)

The inequality (52) can be rewritten as:

(0 <)Hᾱ(ω)− Hᾱ(û(t)) 6 ∑
α 6=ᾱ

λα

λᾱ
(Hα(û(t))− Hα(ω)). (54)

Therefore, being all λα > 0, there must exist at least an index β 6= ᾱ such that

Hβ(û(t)) > Hβ(ω), (55)

which is what was desired.

Remark 3. We illustrate in the convex case the meaning of the notion of normality for the Pareto
optima. We start by considering the yet nontrivial case of one objective function f1 and a constraint
f2 described in the previous Example 1 illustrated in Figure 4. If x̂ is a minimum for f1 constrained
by f2(x) = f̄2, then there will exist non-negative Lagrange multipliers λ1 and λ2 such that
λ1∇ f1(x̂) + λ2∇ f2(x̂) = 0 with f2(x̂) = f̄2. If x̂ is abnormal, then λ1 = 0. This means that λ2
must be nonvanishing. Therefore, ∇ f2(x̂) = 0, i.e., x̂ is a critical point for the constraint function
f2, and it must be one of the points P2 or P4.
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f1

f2
f (P1)

f (P2)

f (P3)

f (P4)

Figure 4. Image of the convex vector function F = f2 × f1. f2 of Example 1. The red curve represents
the Pareto front, which is a subset of the image of the singular set of F, i.e., the set where the differential
dF : TΩ→ TR2 ≡ R2 is degenerate, i.e., its rank is not maximal. The small arrows going out from
the highlighted points represent the image of the differential. Such an image is 1-dimensional on
the points along the boundary of the image set, i.e., on the images of the singular set. Because of
the first-order proposition, for Pareto optimal points there exist non- negative Lagrange multipliers
giving a vanishing combination of the gradients of the objective functions λ1∇ f1(x̂) + λ2∇ f2(x̂) = 0.
On the points P1, . . . , P4, one of the multipliers vanishes; therefore, the gradient relative to the other
objective function is zero. Such cases are named abnormal. In the picture, P2 and P1 are abnormal
Pareto optimal points. They are also the (unique and global) minimizers for the two scalar functions

f2 and f1, respectively, i.e., in the notation of Section 3, f2(P2) = f (min)
2 and f1(P1) = f (min)

1 .

Now let us consider both f1 and f2 as objective functions and discuss the meaning of abnormal
Pareto optima x̂. The definition yields λ1 = 0 or λ2 = 0, i.e., the points where∇ f2 = 0 or∇ f1 = 0,
respectively. Potentially, x̂ could be one among P1, . . . , P4. Nevertheless, because we are considering
Pareto optima, the choice falls only on P1 or P2, i.e., the global optima of the two objective functions
considered separately and without constraints. We notice that such points represent boundary points
for the Pareto set.

Remark 4. It is possibile to prove that the Pareto set for the functions f1, . . . , fk is a (k − 1)-
dimensional stratified set in the sense of Thom. The strata of such a set are strictly related to
the Pareto sets associated with subsets of h < k objective functions fi1 , . . . , fih , which compose
a sort of hierarchical (h − 1)-dimensional geometrical skeleton for the full Pareto set [25–29]
(In [34,35], the vertices are referred to as archetypes). In Figure 5, the generic convex case for
k = 2, 3, 4 is illustrated, where the Pareto set is diffeomorphic to a (k− 1)-simplex.

Example 3. More precisely, if we consider the case of three positive definite second-degree polyno-
mials f1, f2, f3 : R2 → R3, where the respective minima P1, P2, P3 are in general position., then the
Pareto set is a “triangle” with curvilinear edges, where the “vertices” correspond to the minima
P1, P2, P3, and the “edges” are the Pareto set for the pairs of functions { f1, f2},{ f2, f3},{ f3, f1}.
In Figure 6, we have considered three parabolas with cylindrical symmetry:

fi(x) = (x− Pi)
2, P1 = (0, 1), P2 =

(√
3

2
,−1

2

)
, P3 =

(
−
√

3
2

,−1
2

)
. (56)
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The cylindrical symmetry causes the level sets to be perfect circles centered at the points
P1, P2, P3; therefore, the Pareto set is a perfect triangle, with straight edges that in general are curved,
as well as for the surface on which the Pareto set lies.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(a) (b) (c)

Figure 5. Pareto sets in the generic convex case: (a) two functions; (b) three functions; (c) four
functions. The boundary of the Pareto set decomposes on manifolds of decreasing dimension (faces,
edges, vertices, etc.) called strata, which are collections of simplexes of lower dimension. Each stratum
of h− 1 dimension is the Pareto set for a selection of h functions among the f1, . . . , fk. The dashed
lines represent the level sets of the objective functions. More on this hierarchical decomposition can
be found in [28].

(a) (b)

Figure 6. Pareto set and Pareto front with hierarchical stratification highlighted for the convex case
with three functions. For the explicit formulation of the functions see Example 3. Panel (a): graph
of the three functions, i.e., three parabolas with cylindrical symmetry with nonaligned minima.
The strata of the Pareto set are highlighted in colors. The triangle is the Pareto set for the three
functions together. The vertices are the optimal points for the functions considered separately
(archetypes), while the edges are obtained as a Pareto set for couples of functions. Panel (b): the
representation of the Pareto front, with the images of the strata highlighted with the same colors
of panel (a). Different colors correspond to different functions. The highlighted and colored points
correspond to the global minimal values of the functions f1, f2, f3, considered separately.
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5.3. Application: The Optimal Maneuver for Racing Motorbikes

Optimizing several functionals by scalarization is a concept that has been around
for quite a while, even without explicit reference to the Pareto theoretical framework.
For instance, in a series of works, see [37–39] among others, the authors devised efficient
numerical methods for solving the optimal control problem of obtaining the least lap time
for a racing motorbike. An accurate model for a motorbike, considering also a physically
realistic pilot, have to take into account several constraints. The authors transformed the
constraints into penalty functions and then optimized a single functional obtained as a
linear combination, with suitably tuned weights wi, of the main physical model of the
motorbike f (t, x(t), u(t)) and of the penalty functions fi(t, x(t), u(t)):

I[x(·), u(·)] =
∫ T

0

{
f0(t, x(t), u(t)) +

m

∑
i=1

wi fi(t, x(t), u(t))
}

dt, (57)

see in particular Formula (5) in [40] (p. 117).

5.4. Application: A Growth Model for Xylematic Conduits

A Pontryagin implementation of the already mentioned Pareto xylematic conduits
profile Problem 4.2 was run following the scheme below. Let us consider the following
(scalarized) functional

F[σ(·)] =
∫ hmax

hmin

L(σ(h), σ′(h))dh =
∫ hmax

hmin

(
λ1

1
σ2 + λ2

(σ′)2

2

)
dh (58)

where h is the height of the xylema, σ is the area of the local circular section, and σ′ = dσ/dh.
In more detail, we can conjecture that there is a new dynamic functional, ḣ = dh/dt,
σ̇ = dσ/dt,

F̂[h(·), σ(·)] =
∫ tmax

tmin

(
λ1

1
σ2 + λ2

(σ̇)2

2(ḣ)2

)
ḣ dt (59)

together with a differential constraint

ḣ = a + ϕ(h, σ, t; u) (60)

As a first approximation, it is meaningful to suppose that the growing time rate of
the height h of the xylems is a rather small constant, say a > 0, just in correspondence
to ϕ ≡ 0. Note that in this last case, a previous pair of multipliers (λ1, λ2) is moved into
(aλ1, λ2/a), realizing a finer calibration of the above Pareto pair and bringing back the
dynamical formulation to the previous static modellization considered in [33] and briefly
recovered in Section 4.2.

We recognize that for this new Pareto–Pontryagin problem, i.e., to minimize (59) under
the constraint (60), we have to specify some ingredients: the (perturbation of a) function ϕ
will be offered by the biologists or agronomists denoting how the natural environment is
linked with the standard description variables of the xylema. In other words, ϕ is resuming
abundance or poverty of the chemical nutrients around the tree, together with lighting,
temperature, humidity, etc. However, there is a very radically new element, the control
parameter u, denoting the ability to choose and dose the quantities available. In other
words, u represents the intelligent independent choices of the plant.

6. Conclusions and Future Research

In this paper, we have proposed a unification attempt of two research lines in applied
optimization: Pareto multiobjective optimization and Pontryagin optimal control. We have
reviewed the main features of the two theories, presenting the opportunity to reunify them
by illustrating some typical problems in constrained optimization, some static applica-
tion examples from Calculus of Variations, and dynamic applications of optimal control
involving multiple objectives. All of these domains may benefit from a genuine Pareto
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multiobjective reformulation of the theory of Pontryagin optimal control. With regards
to this purpose, we have reformulated the Pontryagin maximum principle for a family
of possibly conflicting functionals by merging the diverse functional in a linear convex
combination, highlighting the role of the coefficients as Lagrange multipliers λ. By varying
the choice of the multipliers λ, an infinite family of solutions emerges, which is the common
case for the Pareto optimization. A possible natural extension of this theory consists of
efficient numerical strategies for approximating the infinite family of solutions as a whole,
as already proposed for the static case [25,29,41]. A natural continuation of the present work
consists of a full dynamic implementation of the growth of xylems under physiological
thrusts [33], as well as further applications in mechanical engineering [37] and materials
science [30,31].
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Appendix A. Lagrangian Multipliers and the Fundamental Homomorphism Theorem

Let us consider the set of maps

v(·) ∈ ΓV :=
{

v(·) ∈ C∞
(

Ωd+1;RM
)

: v
∣∣∣ ∂Ωd+1 = V

}
(A1)

where V : ∂Ωd+1 −→ RM are boundary conditions (constraints). Let us consider the
variational principle

dJ = 0, where J : ΓV −→ R, v(·) 7−→ J [v] =
∫

Ωd+1
L(x, v(x),∇v(x))dx .

(A2)
The Gateaux derivative of J reads

dJ [v]δv = −
∫

Ωd+1

(
∂

∂xi

(
∂L

∂v∆,i

)
− ∂L

∂v∆

)
δv∆(x)dx, (A3)

where
δv(·) ∈ Γ0 :=

{
v(·) ∈ C∞

(
Ωd+1;RM

)
: v
∣∣∣ ∂Ωd+1 = 0

}
. (A4)

Appendix A.1. Functional Constraints

Take into account k functional constraints Vα

∣∣
α=1,...,k ,

Vα : Jα = cα, α = 1, . . . , k (A5)

Jα : ΓV −→ R, v(·) 7−→
∫

Ωd+1
Lα(x, v(x),∇v(x))dx. (A6)

Let v? ∈ ΓV ∩ V . Observe that

Tv?ΓV = Γ0 :=
{

v(·) ∈ C∞
(

Ωd+1;RM
)

: v
∣∣∣ ∂Ωd+1 = 0

}
(A7)

and
Tv?
(

ΓV ∩ V
)
= ker dJα

∣∣
α=1,...,k[v

?] (A8)
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From the analysis of the following diagrams

Γ0 dJ [v? ] //

dJα [v? ]
∣∣

α=1,...,k ��

R

Rk
Λ

88 δv � //
_

��

dJ [v?]δv

dJα[v?]
∣∣
α=1,...,kδv

.

77
(A9)

we see that v∗ is an extremal of J under the constraints Vα

∣∣
α=1,...,k if

ker dJα

∣∣
α=1,...,k[v

?] ⊆ ker dJ [v?] . (A10)

The fundamental homomorphism theorem gives us

dJ [v?] = Λ · dJα[v?]
∣∣
α=1,...,k (A11)

In some more detail, writing

Λ = (λα)
∣∣
α=1,...,k , (A12)

we have

0 =
(

dJ [v?]−Λ · dJα[v?]
∣∣
α=1,...,k

)
δv

=
∫

Ωd+1

[(
∂L

∂v∆,i

)
δv∆,i +

∂L
∂v∆ δv∆

]
− λα

[(
∂Lα

∂v∆,i

)
δv∆,i +

∂Lα

∂v∆ δv∆
]

dx

= −
∫

Ωd+1

[
∂

∂xi
∂(L− λαLα)

∂v∆,i
− ∂(L− λαLα)

∂v∆

]
δv∆dx . (A13)

Thus, if v? ∈ ΓV ∩ V is a stationary point for J along variations which are tangents to
the constraints, i.e., δv ∈ Tv?

(
ΓV ∩ V

)
, then there exists Λ ∈ Rk, depending on v?, and a

new functional J which is stationary at v? for any (unconstrained) variations δv ∈ Γ0,

J :=
∫

Ωd+1
(L− λαLα)dx , (A14)

where
L = L− λαLα (A15)

is said to be the augmented Lagrangian function—compared with the combined Lagrangian
functions in (29) and in (41) above.

Appendix A.2. Punctual Constraints

Whenever the new k constraints are punctual ones,

ϕα(x) = cα, α = 1, . . . , k ϕα
∣∣
α=1,...,k ∈ C∞(Ωd+1;Rk) (A16)

the above construction has to be slightly modified. We arrive at the following diagrams

Γ0 dJ [v? ] //

dϕ[v? ]
��

R

C∞
(

Ωd+1;Rk
)Λ

99 δv � //
_

��

dJ [v?]δv

dϕ[v?]δv
2

88
(A17)
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and finally the related new augmented Lagrangian function now reads

L = L(x, v,∇v)− λα(x)Lα(x, v,∇v) (A18)

Unlike the previous case, now λα is a function and no longer a set of real numbers.

Appendix B. A Symplectic Framework for Optimal Control Theory

A careful reconnaissance of the deduction in Section 2 technically shows two important
drawbacks.

First, we involved a singular Legendre transformation.
Second, the well-known decisive role in the optimality of u control variables has been

relegated in the above reconstruction to a banal parametric dependence.
Recall that the PMP is telling us that if

(x(·), u(·)) minimizes
∫ T

0
L(x(t), u(t))dt,

under the constraint ẋ = ϕ(x, u), x(0) = x0,
(A19)

then

H(x(t), p(t); u(t)) > H(x(t), p(t); ω), for all t ∈ [0, T] and ω ∈ Dom(u). (A20)

This last aspect, in a full smooth environment, implies necessarily that

∂H
∂u

(x, p, u) = 0 (A21)

Here below we will see that the standard Hamiltonian equations

ẋ =
∂H
∂p

(x, p, u), ṗ = −∂H
∂x

(x, p, u) , (A22)

together with the (A21), are intrinsically encoded into the following generalized Hamilto-
nian symplectic setting, see (A29).

Symplectic PMP

We consider a base manifold Q. To generalize the Hamiltonian vector fields XH :
T∗Q → TT∗Q, we consider their image into TT∗Q and try to interpret them as suitable
Lagrangian submanifolds.

The tangent bundle of the co-tangent bundle T∗Q, that is TT∗Q,

(x, p, ẋ, ṗ) ∈ TT∗Q, dim TT∗Q = 4n, (A23)

becomes a symplectic manifold if, e.g., we endowed it with the following closed and
nondegenerate 2-form Θ:

Θ = d( ṗdx− ẋdp) = dṗ ∧ dx− dẋ ∧ dp. (A24)

Consider here the Lagrangian submanifolds. The frame is the following:

j τ
Λ ↪→ TT∗Q −→ T∗Q
` 7→ (x(`), p(`), ẋ(`), ṗ(`)) 7→ (x(`), p(`)),

(A25)
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As before, a submanifold Λ ⊂ TT∗Q is Lagrangian iff dimΛ = 2n, and the restriction
of Θ on Λ is vanishing. As announced, the image of a Hamiltonian vector field XH

XH : T∗Q −→ TT∗Q, (x, p) 7→ (x, p,
∂H
∂p

(x, p),−∂H
∂x

(x, p)) (A26)

is Lagrangian. Effectively, the dimension is obviously one, and we see that

Θ|image(XH) = j∗Θ = j∗d( ṗdx− ẋdp) = dj∗( ṗdx− ẋdp) =

= d(−dH(x, p)) = −d2H(x, p) = 0. (A27)

Here the role of generating function is played by the Hamiltonian function.
A natural re-setting of the Maslov–Hörmander—see e.g., [42]—theorem at the actual

level leads us to characterize locally the Lagrangian submanifolds of TT∗Q as the loci of
the points (x, p, ẋ, ṗ) such that, for some function

H : T∗Q×Rk −→ R, (xi, pj, ξ A) 7→ H(xi, pj, ξA), (A28)

we have:
ẋi =

∂H
∂pi

(x, p, ξ), ṗj = −
∂H
∂xj (x, p, ξ), 0 =

∂H
∂ξA (x, p, ξ), (A29)

with a suitable rank condition on the second derivatives. The above Equation (A29) are
exactly the Hamiltonian Optimal Control equations given by the Pontryagin Maximum
Principle—see Sussmann’s papers, Formula (19) p. 39 in [43] and (V.12) p. 107 in [44].
In this symplectic framework, they are natural, giving us the more general Hamiltonian
system structure.

This order of ideas arose from Tulczyjew. He has been able to give a coherent exposition
of relativistic particle motion and to construct a very general version of the Legendre
Transformation [45–47].
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