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Abstract: This article is a study of vector-valued renewal-reward processes on Rd. The jumps of
the process are assumed to be independent and identically distributed nonnegative random vectors
with mutually dependent components, each of which may be either discrete or continuous (or
a mixture of discrete and continuous components). Each component of the process has a fixed
threshold. Operational calculus techniques and symmetries with respect to permutations are used
to find a general result for the probability of an arbitrary weak ordering of threshold crossings. The
analytic and numerical tractability of the result are demonstrated by an application to the reliability
of stochastic networks and some other special cases. Results are shown to agree with empirical
probabilities generated through simulation of the process.

Keywords: fluctuations of stochastic processes; marked point processes; ruin time; renewal processes;
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1. Introduction

Analysis of sums of independent random variables falls into the classical theory of
fluctuations, which has been widely studied, from fluctuations about thresholds [1–4] to
ruin times to limiting distributions [5,6] and bounds [7], but less frequent are studies of
sums of independent random vectors. Most development is in the areas of limit theorems
and other asymptotic results [8–11].

More infrequent are studies of the threshold crossings of sums of independent ran-
dom vectors, which may be considered in the context of multidimensional renewal pro-
cesses [12,13] or random walks [14,15]. Most of these tend to focus on exit times [16–20]
and overshoots of the boundary [21,22]. These latter ideas are commonly studied in the
context of broader Lévy processes as well [23–25], but frequently only in one dimension.
Another recent and interesting work [26] provides some analysis of fluctuations of the more
general idea of spectrally positive additive Lévy fields.

Studies in these areas have broad applications, including works applied to insur-
ance [27–29], finance [30–32], stochastic games [33,34], queueing theory [35–37], and relia-
bility theory [38,39], among other fields.

1.1. Goals and Structure of the Paper

This paper focuses on a different, but related question: if there is a threshold in each
dimension, i.i.d. sums of nonnegative random vectors (not strictly 0) will almost surely
cross them all eventually, but what is the probability that the thresholds are crossed in a
specific (weak) order?

After giving the mathematical setting for the problem in Section 1.2 and establishing
some lemmas in Section 2, we derive a formula for the probabilities through operational
calculus techniques and symmetries with respect to permutations in Section 3 to answer this
question. In Section 4, the formulas are shown to be analytically tractable in an application
to the reliability of stochastic networks and numerically tractable in a three-dimensional
problem, and all are shown to agree with simulated results for special cases. In Section 5,
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we describe how the results herein fall into a wider project and should contribute to some
forthcoming results.

1.2. The Mathematical Setting of the Problem

On a probability space (Ω,F (Ω),P), consider a sequence of i.i.d. nonnegative real
random vectors X[1], X[2], . . . with P

(
X[j] 6= 0

)
> 0 such that each X[j] =

(
X[j]

1 , . . . , X[j]
d

)
has a common Laplace–Stieltjes transform

γ(x) = E
[
e−x·X[1]

]
, (1)

where x ∈ Cd such that each component of x has a nonnegative real part. We also assume
P
(

X[j]
k > 1

)
> 0 for each k.

Note that while the random vectors X[1], X[2], . . . are independent, we make no
such assumption on the components of X[n], so X[n]

1 , . . . , X[n]
d may have some arbitrary

dependency structure.
Consider a renewal-reward process

A(t) =
∞

∑
j=1

X[j]1{τj≤t}, (2)

where {τn} forms a renewal process of jump times. Since we are concerned only with the
crossing order, studying the renewal-reward process directly is unnecessary, so we can
focus on the embedded discrete-time stochastic process

A[n] =
n

∑
j=1

X[j], n ∈ N (3)

with the marginal processes

A[n]
k =

n

∑
j=1

X[j]
k , n ∈ N, k ∈ {1, . . . , d} (4)

and the approach and crossing of fixed thresholds in each coordinate.
In other words, we are interested in the first n such that A[n]

k > Mk for each k, i.e., the
first time each coordinate crosses its fixed threshold Mk ∈ (0, ∞).

Denote the first crossing index of the threshold of the kth coordinate as

νk = inf
{

n : A[n]
k > Mk

}
. (5)

Each νk can be viewed as the first time when the process A[n] exits Rk−1 × [0, Mk)×Rd−k.
We will derive the probability of an event W, a fixed weak ordering of the threshold

crossings ν1, . . . , νd. In other words, W is an element of the following measurable partition
of the sample space Ω,

W =
{
{νp(1) �1 νp(2) �2 · · · �d−1 νp(d)} : p is a permutation

}
⊂ F (Ω) (6)

where, in each event, each relation �j is fixed to be < or = for some fixed permutation p of
the dimensions {1, . . . , d}.

We will assume that p is the identity function. Since the probability P(W) will be
shown to be symmetric with respect to permutations of the threshold crossings in the
main result of the paper, Theorem 1. Hence, the results trivially follow for arbitrary
weak ordering.
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It should be noted that deriving results about the crossing times, positions, or excess
levels of the underlying renewal-reward process would require further information about
the jump times {τn}. However, much prior scholarship by Takács [3,4] classically, and
by Dshalalow and his collaborators over the past few decades, demonstrates that results
about crossing weak orders of the embedded discrete-time process easily extend to results
about the crossing times and position of renewal-reward processes [12], as well as mono-
tone [14,30] and even oscillating [15] marked random walks. However, all such prior works
were limited to, at most, four dimensions. The present work generalises these ideas to
arbitrary finite dimension.

2. Preliminary Results

We need to establish two lemmas before proving the main result. First, a simple
algebraic lemma is established.

Lemma 1. For a vector y = (y1, . . . , yd) ∈ Cd,

d

∏
k=1

(1− yk) =
d

∑
k=0

(−1)k fy(d, k) (7)

where

fy(d, k) = ∑
N⊆{1,...,d}
|N|=k

k

∏
j=1

ynj ,

where the sum runs over all k-subsets of {1, . . . , d}, each denoted N = {n1, . . . , nk}, and we define
fy(d, 0) = 1.

Proof. We will first establish some properties of the function fy(n, k) and then prove the
lemma via induction on d.

Notice that fy(n− 1, k− 1) is the sum of all (k− 1)-factor products from {y1, . . . , yn−1},
so, if this is multiplied by yn, we have the sum of all k-factor products from {y1, . . . , yn}
including yn as a factor. Note that fy(n − 1, k) is the sum of all k-factor products from
{y1, . . . , yn−1} or, equivalently, the sum of all k-factor products of terms from {y1, . . . , yn}
not including yn as a factor. Adding them,

fy(n− 1, k) + yn fy(n− 1, k− 1) = fy(n, k). (8)

Further, since there is exactly one product of n distinct terms from {y1, . . . , yn}, we have

fy(n, n) = y1 · · · yn. (9)

Let d = 1; then, the left side of (7) is 1− y1 while the right side is

1

∑
k=0

(−1)k fy(1, k) = fy(1, 0)− fy(1, 1) = 1− y1.

Suppose that, for d = n− 1, it is true that

n−1

∏
j=1

(1− yj) =
n−1

∑
k=0

(−1)k fy(n− 1, k),

then, for d = n, we have
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n

∏
j=1

(1− yj) = (1− yn)
n−1

∑
k=0

(−1)k fy(n− 1, k)

=
n−1

∑
k=0

(−1)k fy(n− 1, k) +
n−1

∑
k=0

(−1)k+1 fy(n− 1, k)yn.

Rearranging the sums,

n

∏
j=1

(1− yj) = 1 +
n−1

∑
k=1

(−1)k fy(n− 1, k) +
n

∑
k=1

(−1)kyn fy(n− 1, k− 1)

= 1 +
n−1

∑
k=1

(−1)k
[

fy(n− 1, k) + yn fy(n− 1, k− 1)
]

+ (−1)nyn fy(n− 1, n− 1).

By (8) and (9) and the fact that fy(d, 0) = 1,

n

∏
j=1

(1− yj) = (−1)0 fy(n, 0) +
n−1

∑
k=1

(−1)k fy(n, k) + (−1)n fy(n, n)

=
n

∑
k=0

(−1)n fy(n, k).

Thus, the result of the lemma is true by induction.

Second, we establish a minor sufficient condition under which ‖γ(x)‖ < 1, where γ is
the joint Laplace–Stieltjes transform of the i.i.d. random vectors X[n] introduced in (1). This
is required later for summing γ(x)j as a geometric series.

Lemma 2. If any component of x has a positive real part, then ‖γ(x)‖ < 1.

Proof. Note that

‖γ(x)‖ =
∥∥∥∥∫Ω

e−x·X[1]
dP
∥∥∥∥ ≤ ∫Ω

∥∥∥∥e−x1X[1]
1 −···−xdX[1]

d

∥∥∥∥dP

=
∫

Ω
e−Re(x1X[1]

1 ) · · · e−Re(xdX[1]
d ) dP.

Since each X[1]
j is real and nonnegative and each Re(xj) ≥ 0 by assumption, each exponen-

tial term is in (0, 1], so, for any j ≤ d, this implies

‖γ(x)‖ ≤
∫

Ω
e−Re(xj)X[1]

j dP

Suppose that we partition Ω into B =
{

X[1]
j > 1

}
and BC =

{
X[1]

j ≤ 1
}

; then,

‖γ(x)‖ ≤
∫

B
e−Re(xj)X[1]

j dP+
∫

BC
e−Re(xj)X[1]

j dP.

If X[1]
j > 1, then e−Re(xj)X[1]

j ≤ e−Re(xj), so we have

‖γ(x)‖ ≤ e−Re(xj)
∫

B
dP+

∫
BC

dP ≤ e−Re(xj)P(B) + P(BC)
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If Re(xj) = 0, this result implies merely ‖γ(x)‖ ≤ 1, but if Re(xj) > 0, it implies ‖γ(x)‖ < 1,
recalling P(BC) < 1 by assumption. Since j was arbitrary, we have ‖γ(x)‖ < 1 if at least
one component of x has a positive real part.

With these preliminary results established, we continue towards proving the main
result of the paper.

3. The Main Result

In this section, we derive P(W) for an arbitrary weak ordering W ∈ W . Regardless
of W, the exit indices ν1, . . . , νd must occur at some n ≤ d distinct times since some may
occur simultaneously.

Without loss of generality, we can suppose that the groups of simultaneous crossing
indices are

ν1 = · · · = νs1

νs1+1 = · · · = νs2

...

νsn−1+1 = · · · = νsn ,

and ν1 < νs1+1 < · · · < νsn−1+1. The sk values are, then, the number of crossing indices in
the first k groups. (Note that, the subscripts may actually occur with some permutation p
of the given subscripts, so we may easily replace νj with νp(j) given p.)

Further, denote rk = sk − sk−1 as the number of crossing indices in the kth group.
Then, we can represent an arbitrary weak ordering W as

W = {ν1 = · · · = νs1 < νs1+1 = · · · = νs2 < · · · < νsn−1+1 = · · · = νd} ∈ F (Ω). (10)

We will partition W into events of the form

W(q, j) = { ν1(q1) = · · · = νs1(qs1) = j1
< νs1+1(qs1+1) = · · · = νs2(qs2) = j2
< · · ·
< νsn−1+1(qsn−1+1) = · · · = νd(qd) = jn},

(11)

where j is such that j1 < · · · < jn, and q = (q1, . . . , qd) ∈ Rd
≥0 is a vector of thresholds in

each dimension to be used during some intermediate steps of the upcoming proofs. As
such, the threshold function νk(Mk) equals the true νk for each k = 1, . . . , d.

To be precise, an operator to be defined next will be applied to P(W(q, j)) for an
arbitrary fixed q vector and summed over all permissible j vectors to derive P(W(q)), where

W(q) = { ν1(q1) = · · · = νs1(qs1)
< νs1+1(qs1+1) = · · · = νs2(qs2)
< · · ·
< νsn−1+1(qsn−1+1) = · · · = νd(qd)},

(12)

under the operator. The inverse operator will then be applied at the true threshold vector
q = (M1, . . . , Md) to reconstruct the desired probability P(W).

We will use an operator defined as

Hq(·)(x) = H1
q1
◦ H2

q2
◦ · · · ◦ Hd

qd
(·)(x1, . . . , xd), (13)

which is a composition of d operators, one for each component of the process A[n]. The
operators take one of two forms, depending on whether the corresponding component is
discrete or continuous,
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Hk
qk
(·)(xk) =

{
LCqk (·)(xk), if each X[n]

k is continuous and valued in (0, ∞)

Dqk (·)(xk), if each X[n]
k is discrete and valued in N

(14)

where LC is the Laplace–Carson transform,

LCqk ( f (qk))(xk) = xk

∫ ∞

qk=0
e−xkqk f (qk) dqk, (15)

defined for nonnegative measurable functions f and xk > 0. D is defined as

Dqk ( f (qk))(xk) = (1− xk)
∞

∑
qk=0

xqk
k f (qk) (16)

for functions f and ‖xk‖ < 1. This operator has the inverse

Dqk−1
xk (·) = lim

xk→0

1
(qk − 1)!

∂qk−1

∂xqk−1
k

(
1

1− xk
(·)
)

. (17)

Since each operator can reconstruct f (qk), note that using qk = Mk will allow us to
reconstruct f evaluated at Mk. This is important for the main result of the paper, Theorem 1,
so that we can derive the probabilities P(W) for the proper threshold values M1, . . . , Mk.

We see that D is similar to a z-transform and has been used in more or less the
same way for discrete problems as variants of the Laplace transforms have been used for
continuous problems in stochastic processes. Common use of such operators be found
frequently in, for example, many earlier works of Takács [3,4,35] and Dshalalow and his
collaborators [12,40].

Before deriving P(W), we need to establish one last lemma.

Lemma 3. For an event W ∈ W , suppose that each νi = jk for each i = sk−1 + 1, sk−1 + 2, . . . , sk;
then,

Hq

(
1W(q,j)

)
(x) =

n

∏
k=1

rk

∏
m=1

(
z

A
[jk−1]
`km

`km
− z

A
[jk ]
`km

`km

)
, (18)

where

`km = sk−1 + m (19)

and

zk =

{
e−xk , if A[n]

k is continuous

xk, if A[n]
k is discrete.

(20)

Proof. If a component is continuous, note simply that

LCq(1{νk(q)=j})(x) = x
∫ ∞

0 e−xq1{νk(q)=j} dq = x
∫ A[j]

k

A[j−1]
k

e−xq dq

= e−xA[j−1]
k − e−xA[j]

k

(21)

If a component is discrete, similarly, we can sum as two partial geometric series,
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Dq

(
1{νk(q)=j}

)
(x) = (1− x)

∞
∑

q=0
xq1{νk(q)=j} = (1− x)

A[j]
k −1

∑
q=A[j−1]

k

xq

= (1− x)

(
1−xA[j]

k
1−x −

1−xA[j−1]
k

1−x

)
= xA[j−1]

k − xA[j]
k .

(22)

Then, notice that if we apply d operators of the appropriate types to 1W , the result is a
product of d terms similar to (21) or (22), which, after carefully handling the indices and
notation, leads to (18).

Denote Sj = {k ∈ N : sj−1 < k ≤ sj} for j = 1, 2, . . . , n with Sn+1 = ∅ and
Tj =

⋃n
m=j Sm. Further, for B ⊆ N≤d = {1, . . . , d} and each i ≤ d, define xB = (xB

1 , . . . , xB
d )

where xB
i = 1B(i)xi and denote

γB = γ
(

xB
)

(23)

so that we may refer to the joint transform of a specific subset of the random variables
making up the random jump vectors X[n].

Given the lemmas above, we may derive P(W) as an expression in terms of inverse of
theHq operator and the common joint transform γ of the random vectors X[n] as follows.

Theorem 1. If each vector xTj contains at least one component with a positive real part, then, for
each W ∈ W ,

P(W) = E[1W ] = H−1
x

 n

∏
m=1

1
1− γTm

rm

∑
k=0

(−1)k ∑
N⊆Sm
|N|=k

γTm+1∪N

(M), (24)

Proof. Without loss of significant generality, assume that A[n] is continuous in each com-
ponent. A remark after the proof will show how the result generalises to accommodate
processes with some discrete components. To find P(W), we merely need to sum the
probabilities of the events W(q, j), which partition W, as follows.

P(W) = E[1W ] =
∞

∑
j1=1

∞

∑
j2=j1+1

· · ·
∞

∑
jn=jn−1+1

E
[
1W(q,j)

]
. (25)

Next, apply theHq operator, which bypasses all terms except the q-dependent indicator,

Hq(E[1W(q,j)])(x)

=
∞

∑
j1=1

∞

∑
j2=j1+1

· · ·
∞

∑
jn=jn−1+1

E
[

n

∏
k=1

rk

∏
m=1

e
−x`km

A
[jk ]
`kmHq

(
1W(q,j)

)
(x)

]
. (26)

Then, by Lemma 3, we have

Hq(E[1W(q)])(x)

=
∞

∑
j1=1

∞

∑
j2=j1+1

· · ·
∞

∑
jn=jn−1+1

E
[

n

∏
k=1

rk

∏
m=1

e
−x`km

A
[jk ]
`km

(
1− e

−x`km
X
[jk ]
`km

)]
. (27)
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Since the X[j] vectors are i.i.d.,

Hq

(
E[1W(q)]

)
(x)

=
∞

∑
j1=1

E
[
e−x·A[j1−1]

]
E
[

e−xT2 ·X[j1−1]
r1

∏
i=1

(
1− e−xiX

[j1 ]
i

)]
(28)

∞

∑
j2=j1+1

E
[
e−xT2 ·(X[j1+1]+···+X[j2−1])

]
E
[

e−xT3 ·X[j2 ]
r2

∏
i=1

(
1− e

−x`2i
X[j2 ]
`2i

)]
(29)

× · · ·

×
∞

∑
jn=jn−1+1

E
[

e−xTn ·
(

X[jn−1+1]+···+X[jn−1]
)]

E
[

rn

∏
i=1

(
1− e

−x`ni
X[jn ]
`ni

)]
. (30)

Notice that the expression above has n nested infinite series, which fall into two types.
First, in (28) and (29), the first n− 1 series are identical except for the subscripts. The last
series in (30) is slightly different because Tn+1 = ∅. We will consider (28) in detail, and the
other two cases follow by nearly the same argument.

Notice that (28) has two expectations. Since the X[j] vectors are i.i.d., the first expecta-
tion simplifies to γ

j1−1
T1

, yielding

∞

∑
j1=1

γj1−1
T1

E
[

e−xT2 ·X[j1 ]
r1

∏
i=1

(
1− e−xiX

[j1 ]
i

)]
. (31)

If we set yi = e−xiX
[j1 ]
i , Lemma 1 implies that the above may be written as

∞

∑
j1=1

γj1−1
T1

E

e−xT2 ·X[j1 ]
r1

∑
k=0

(−1)k ∑
N⊆S1
|N|=k

e−xN ·X[j1 ]

, (32)

which may be simplified as

∞

∑
j1=1

γj1−1
T1

r1

∑
k=0

(−1)k ∑
N⊆S1
|N|=k

E
[
e−x(T2∪N) ·X[j1 ]

]
=

∞

∑
j1=1

γj1−1
T1

r1

∑
k=0

(−1)k ∑
N⊆S1
|N|=k

γT2∪N . (33)

Note that the last sum is constant with respect to j1. Since xT1 has a component with a
positive real part, Lemma 2 implies

∥∥∥γT1

∥∥∥ < 1, so the infinite series is a geometric series, so
the above simplifies to

1
1− γT1

r1

∑
k=0

(−1)k ∑
N⊆S1
|N|=k

γT2∪N . (34)

Through a very similar argument but with different indices, the terms of the form (29)
and (30) simplify to

1
1− γTm

rm

∑
k=0

(−1)k ∑
N⊆Sm
|N|=k

γTm+1∪N . (35)
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Plugging (34) and (35) into (28)–(30) gives

Hq

(
E[1W(q)]

)
(x) = Hq

 n

∏
m=1

1
1− γTm

rm

∑
k=0

(−1)k ∑
N⊆Sm
|N|=k

γTm+1∪N

(x) (36)

Applying the inverse operator H−1
x evaluated at q = M = (M1, . . . , Md) yields (24), the

claim of the theorem.

Note that, without exploiting the symmetry of the argument above with respect to
permutations, the proof would have been infeasible since one would have to consider
each permutation of threshold crossing indices and render a separate argument. Since the
number of permutations grows factorially with dimension, prior multivariate results were
limited to d = 3 [12] or at most d = 4 [30].

Remark 1. For convenience, the proof above was rendered under the assumption that the com-
ponents of A[n] are continuous-valued. However, for any discrete component of the process, A[n]

k ,
replacing the corresponding xk with − ln(xk) and replacing xB

k with

xB
k =

{
xk, if k ∈ B
1, if k /∈ B,

(37)

and maintaining all other steps of the proof yields the same result.

Example 1. Suppose that W = {ν1 = ν2 < ν3 = ν4 < ν5}; then, we have

S1 = {ν1, ν2}, S2 = {ν3, ν4}, S3 = {ν5}, (38)

so r1 = r2 = 2 and r3 = 1. Then, Theorem 1 implies

P(W) = H−1
x

(
γ{345} − γ{1345} − γ{2345} + γ

1− γ

γ{5} − γ{35} − γ{45} + γ{345}

1− γ{345}

)
(M). (39)

If γ is known, the operators may be inverted one-by-one to find a tractable expression for the
probability, as we demonstrate with several models in the next section.

Suppose a similar weak ordering W where the permutation

p =

(
1 2 3 4 5
3 5 1 4 2

)
(40)

has been applied to the threshold numbers. Then, the weak ordering is

W = {ν3 = ν5 < ν1 = ν4 < ν2}.

By Theorem 1 and referring to (39), the result is trivially found to be

P(W) = H−1
x

(
γ{142} − γ{3142} − γ{5142} + γ

1− γ

γ{2} − γ{12} − γ{42} + γ{142}

1− γ{142}

)
(M). (41)

The symmetry of the result with respect to permutations makes this the same as (39) but for the
application of the permutation p to the dimension numbers.
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4. Applications and Special Case Results

In this section, we apply Theorem 1 to find probabilities of weak orderings of threshold
crossings in a problem associated with the reliability of stochastic networks, as well as two
special cases of random vectors with exponential distributions.

Any exact Laplace transform inversions in this section are computed using sequences
of tabled results from Supplement 5 of [41] or with Wolfram Mathematica. In Section 4.3,
some results require numerical inverse Laplace transforms rendered via methods developed
from the Talbot algorithm [42]. In particular, we use McClure’s MATLAB implementa-
tion [43] following the unified framework of Abate and Whitt [44].

Inverse D transforms will be evaluated in exact form using properties derived by
Dshalalow and summarized in Appendix B of [45]. Many of the results have been used to
invert the D operator in works from Dshalalow and his collaborators [36,46,47].

In each application and special case below, the A[n] processes are further simulated
in MATLAB to find empirical probabilities, which are shown to match the numerical and
analytic results derived from inverting the sequences of operators.

4.1. Application to Stochastic Networks

Some prior work [38,39,45] studies processes that model stochastic networks under
attack, where successive batches of nodes of random size X[j]

1 are incapacitated upon a
Poisson point process on [0, ∞), where each node has random weight Yk measuring its
value to the network. In these works, most attention was given to a ruin time where
cumulative node loss crosses a threshold M1 or cumulative weight loss crosses another
threshold M2, whichever comes first. This ruin time represents the network entering a
critical state of interest. Probabilistic information about this time and the extent of different
types of damage that should be anticipated in the near term can give security professionals
earlier warnings of attacks and help them to differentiate malicious attacks from benign
failures on the network.

While understanding the timing and extent of critical damage is important, it leaves
network administrators with more new questions than answers: What should we do about
different attack patterns? Where are our weaknesses?

The present work can address is the probability of each ordering of failures, which
would indicate the more vulnerable part of the network, whether nodes or weights, which
can suggest strategies for improving reliability.

To model the situation, suppose that each jump in the process is a vector consisting of
the batch size X[j]

1 and sum of weights X[j]
2 . Since each node weight is Yk,

X[j]
2 =

X[j]
1

∑
k=1

Yk, (42)

where we assume that the node batch sizes X[j]
1 are i.i.d. with common probability-generating

function g and the weights Yk are i.i.d. with common Laplace–Stieltjes transform l.
We will seek to apply Theorem 1 to find the probabilities of each weak ordering

of threshold crossings, which requires knowledge of γ, which we can find by double
expectation,

γ(− ln x1, x2) = E
[

x
X[1]

1
1 e−x2X[1]

2

]
= E

[
x

X[1]
1

1 E
[

e−x2X[1]
2

∣∣∣X[1]
1

]]
= g(x1l(x2)). (43)

Corollary 1. If node batch sizes are geometrically distributed with parameter p and node weights
are exponentially distributed with parameter µ, then

P(ν1 < ν2) = P(M1 − 1, µM2)−
e−pµM2

(1− p)M1−1 P(M1 − 1, (1− p)µM2), (44)
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where P(a, x) = 1
Γ(a)

∫ x
0 ta−1e−t dt is the lower regularised gamma function.

Proof. By Theorem 1,

P(ν1 < ν2) = H−1
x

(
γ((1, x2))− γ(x)

1− γ(x)

)
(M) = H−1

x

(
g(l(x2))− g(x1l(x2))

1− g(x1l(x2))

)
(M). (45)

Here, H−1
x = LC−1

x2
◦ DM1−1

x1 . To compute the inverse, we first apply the inverse DM1−1
x1 ,

which is possible when g is specified, and then apply the inverse LC−1
x2

(·)(M2), which is
possible when l is specified.

Since each node batch size X[n]
1 is geometrically distributed with parameter p,

g(z) = pz
1−qz with q = 1− p, then the term within the inverse simplifies to

g(l(x2))− g(x1l(x2))

1− g(x1l(x2))
=

pl(x2)
1−ql(x2)

− px1l(x2)
1−qx1l(x2)

1− px1l(x2)
1−qx1l(x2)

=
pl(x2)

1− ql(x2)

1− x1

1− l(x2)x1
. (46)

The operator DM1−1
x1 has the effect of truncating power series at the (M1 − 1)th term

and has a well-known property DM1−1
x1 (x1 f (x1)) = DM1−2

x1 ( f (x1)), so when we apply it to
the x1-dependent terms, we have

DM1−1
x1

(
1−x1

1−l(x2)x1

)
= DM1−1

x1

(
∞
∑

k=0
l(x2)

kxk
1

)
−DM1−2

x1

(
∞
∑

k=0
l(x2)

kxk
1

)
=

M1−1
∑

k=0
l(x2)

k −
M1−2

∑
k=0

l(x2)
k

= l(x2)
M1−1.

(47)

Since each Yk is exponentially distributed with parameter µ, l(z) = µ
µ+z , so we can

apply the inverse Laplace–Carson transform to find

P(ν1 < ν2) = L−1
x2

(
1
x2

pµ
pµ+x2

(
µ

µ+x2

)M1−1
)
(M2)

= P(M1 − 1, µM2)− e−pµM2

(1−p)M1−1 P(M1 − 1, (1− p)µM2),
(48)

where P(a, x) = 1
Γ(a)

∫ x
0 ta−1e−t dt is the lower regularised gamma function, which can be

computed to high precision efficiently.

Corollary 2. If node batch sizes are geometrically distributed with parameter p and node weights
are exponentially distributed with parameter µ, then

P(ν1 > ν2) = Q(M1 − 1, µM2)− (1− p)M1−1e
pµM2
1−p Q

(
M1 − 1,

µM2

1− p

)
, (49)

where Q(a, x) = 1
Γ(a)

∫ ∞
x ta−1e−t dt = 1− P(a, x) is the upper regularised gamma function.

Proof. Theorem 1 gives

P(ν1 > ν2) = H−1
x

(
γ((x1, 0))− γ(x)

1− γ(x)

)
(M) = H−1

x

(
g(x1)− g(x1l(x2))

1− g(x1l(x2))

)
(M). (50)

The term within the inverse simplifies to

g(x1)− g(x1l(x2))

1− g(x1l(x2))
=

px1
1−qx1

− px1l(x2)
1−qx1l(x2)

1− px1l(x2)
1−qx1l(x2)

= (1− l(x2))
px1

1− qx1

1
1− l(x2)x1

. (51)
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Applying the DM1−1
x1 to the x1-dependent terms,

DM1−1
x1

(
px1

1−qx1
1

1−l(x2)x1

)
= pDM1−2

x1

(
∞
∑

k=0
l(x2)

kxk
1

1
1−qx1

)
= p

M1−2
∑

k=0
l(x2)

kDM1−2−k
x1

(
∞
∑

j=0
qjxj

1

)
= p

M1−2
∑

k=0
l(x2)

k
M1−2−k

∑
j=0

qj

=
M1−2

∑
k=0

l(x2)
k
(

1− qM1−1−k
)

.

(52)

Then, we can apply the inverse Laplace–Carson transform to find

P(ν1 > ν2) =
M1−2

∑
k=0

(
1− qM1−1−k

)
L−1

x2

(
1
x2
(1− l(x2))l(x2)

k
)
(M2)

=
M1−2

∑
k=0

(
1− qM1−1−k

)
L−1

x2

(
1
x2

x2
µ+x2

(
µ

µ+x2

)k
)
(M2)

= e−µM2
M1−2

∑
k=0

(µM2)
k

Γ(k+1)

(
1− qM1−1−k

)
= Q(M1 − 1, µM2)− (1− p)M1−1e

pµM2
1−p Q

(
M1 − 1, µM2

1−p

)
,

(53)

where Q(a, x) = 1
Γ(a)

∫ ∞
x ta−1e−t dt = 1− P(a, x) is the upper regularised gamma func-

tion.

These two results lead trivially to

P(ν1 = ν2) = 1− P(ν1 < ν2)− P(ν1 > ν2), (54)

which completes the derivations of probabilities of each weak ordering inW .
The expressions (44), (49), and (54) are numerically very tractable since the regularised

gamma functions can be computed to high numerical precision efficiently. These are
computed numerically and compared to simulated probabilities in Figure 1.

Note that, in the first three diagrams, µ = 1 and p = 0.5, so we have

E
[

X[n]
1

]
=

p
1− p

= 1, (55)

and, by the independence of X[n]
1 and Yks and since Yks are i.i.d.,

E
[

X[n]
2

]
= E

[
Y1X[n]

1

]
= E[Y1]E

[
X[n]

1

]
=

1
µ

p
1− p

= 1, (56)

so both components grow at the same rate in this example, and it provides a good opportu-
nity to analyse the effect of the thresholds in isolation.

As M2 increases, the probability that M1 is crossed first P(ν1 < ν2) increases in
Figure 1a and the probability that M2 is crossed first P(ν1 > ν2) decreases in Figure 1b,
which is an intuitive result. Further, the probability that they are crossed simultaneously
P(ν1 = ν2) peaks when M1 = M2 in each case in Figure 1c.

In Figure 1d, by increasing µ, this only increases the average jump in the second
component, X[n]

2 , which makes crossing M2 more likely to occur more quickly, so the
probabilities P(ν1 > ν2) drop to 0 more quickly than in Figure 1b.
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(a) (b)

(c) (d)

Figure 1. In each diagram predicted results are plotted as solid curves and empirical probabilities
from 10,000 simulations are computed and plotted as dots. (a) P(ν1 < ν2) with µ = 1, p = 0.5; (b)
P(ν1 > ν2) with µ = 1, p = 0.5; (c) P(ν1 = ν2) with µ = 1, p = 0.5; (d) P(ν1 > ν2) with µ = 2, p = 0.5.
Each diagram shows plots for several M1 values.

In this subsection, we have applied the result from Section 3 to a problem related to the
reliability of networked structures experiencing node failures or attacks that incapacitate
geometric batches of nodes, each with exponentially distributed weights. In particular,
we have derived the probabilities that node losses enter a critical state before, at the same
time, or after the weight loss reaches critical levels given the parameters of the distributions
and the thresholds. The formulas are numerically very tractable as the regularised gamma
functions can easily be computed to high precision. The formulas are also shown to match
simulated results to very high precision in several special cases.

A primary practical benefit of these probabilities is that it indicates where weaknesses
lie in the network—with node losses or with weight losses. If node loss is likely to become
critical first, one should implement interventions that strengthen this aspect of the network,
and vice versa with weight loss. Pairing these results on the order of threshold crossings
and marginal probabilistic results about the first crossing times and the extent of losses
of each type upon crossings in [38,39,45] provides a suitably full understanding of the
dynamics of such a process as it approaches and enters a critical state.

While the geometric and exponential distributional assumptions on node and weight
losses may seem limiting, they were only needed to invert the operators. The under-
lying results hold with much more minimal assumptions on the losses, and the same
inversion process generally works for many other well-known distributions and empirical
distributions derived from data, several of which are shown in [39,45].
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Next, we demonstrate that Theorem 1 leads to analytically, or at least numerically,
tractable results for two other models, both with explicit inversion and with a
numerical approximation.

4.2. 2D Exponential Model

Suppose that each X[n] =
(

X[n]
1 , X[n]

2

)
is a vector of two independent exponential

random variables with parameters µ1 and µ2 and Laplace–Stieltjes transforms l1 and l2; then,

γ(x) = E
[

e−x1X[1]
1 −x2X[1]

2

]
= l1(x1)l2(x2). (57)

Here, d = 2, so we haveW = {{ν1 < ν2}, {ν1 = ν2}, {ν1 > ν2}}, so there are only
three possible weak orderings of threshold crossings, which we derive in the following
corollary to Theorem 1.

Corollary 3. If X[n] =
(

X[n]
1 , X[n]

2

)
is a vector of independent exponential random variables with

parameters µ1 and µ2 for each n,

P(ν1 < ν2) = 1− e−µ2 M2

(
1 +

√
µ1µ2M2

∫ M1

0

e−µ1τ

√
τ

I1

(
2
√

µ1µ2M2τ
)

dτ

)
, (58)

P(ν1 > ν2) = 1− e−µ1 M1

(
1 +

√
µ1µ2M1

∫ M2

0

e−µ2τ

√
τ

I1

(
2
√

µ1µ2M1τ
)

dτ

)
, (59)

and P(ν1 = ν2) = 1− P(ν1 < ν2)− P(ν1 > ν2), where I1(x) is the modified Bessel function of
the first kind.

Proof. Theorem 1 implies

P(ν1 < ν2) = H−1
x

(
γ((0,x2))−γ(x)

1−γ(x)
1−γ((0,x2))
1−γ((0,x2))

)
(M1, M2)

= L−1
x1

(
1−l1(x1)

x1
L−1

x2

(
1
x2

l2(x2)
1−l1(x1)l2(x2)

)
(M2)

)
(M1)

(60)

If we assume that X[n]
1 ’s and X[n]

2 ’s are exponential with parameters µ1 and µ2,

l1(x1) =
µ1

µ1 + x1
l2(x2) =

µ2

µ2 + x2
, (61)

Then, the innermost inverse Laplace transform is

L−1
x2

(
1
x2

µ2
µ2+x2

1− µ1
µ1+x1

µ2
µ2+x2

)
(M2) =

µ1 + x1

x1

(
1− e−

µ2 M2x1
µ1+x1

)
(62)

Therefore, noting

1− l1(x1) =
x1

µ1 + x1
, (63)

we have

P(ν1 < ν2) = L−1
x1

(
1
x1

x1
µ1+x1

µ1+x1
x1

(
1− e−

µ2 M2x1
µ1+x1

))
(M1)

= 1−
∫ M1

0 L−1
x1

(
e−

µ2 M2x1
µ1+x1

)
(τ) dτ

= 1− e−µ2 M2
(

1 +
√

µ1µ2M2
∫ M1

0
e−µ1τ
√

τ
I1
(
2
√

µ1µ2M2τ
)

dτ
)

.

(64)
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P(ν2 < ν1) can be derived by simply interchanging the parameters µ1 and µ2 and
interchanging the thresholds M1 and M2, while P(ν1 = ν2) = 1− P(ν1 < ν2)− P(ν1 > ν1)
trivially, which completes the probabilities for each weak ordering inW .

The expressions (58) and (59) are numerically very tractable since the modified Bessel
function of the first kind can be computed to high numerical precision efficiently. The
practicality of the results is demonstrated by computing them numerically and comparing
them to simulated probabilities in Figure 2.

Note that in Figure 2, M2 takes several values, while M1 ∈ {1, 1.1, 1.2, . . . , 20}, the
reverse of Figure 1, so, for example, the effect of increasing M1 makes it less likely to be
crossed first, so P(ν1 < ν2) approaches 0 rather than 1.

(a) (b)

(c) (d)

Figure 2. In the diagrams, predicted results from Corollary 3 are plotted as solid curves and em-
pirical probabilities from 10,000 simulations are computed and plotted as dots. (a) P(ν1 < ν2) with
µ1 = µ2 = 1; (b) P(ν1 < ν2) with µ1 = 1, µ2 = 2; (c) P(ν1 = ν2) with µ1 = µ2 = 1; (d) P(ν1 = ν2)

with µ1 = 2, µ2 = 1. Each diagram shows plots for several M2 values.

4.3. 3D Exponential Model

Suppose that each X[n] =
(

X[n]
1 , X[n]

2 , X[n]
3

)
is a vector of three independent exponential

random variables with parameters µ1, µ2, and µ3 and Laplace–Stieltjes transforms l1, l2,
and l3. Then,

γ(x) = E
[

e−x1X[1]
1 −x2X[1]

2 −x3X[1]
3

]
=

µ1

µ1 + x1

µ2

µ2 + x2

µ3

µ3 + x3
. (65)

We will apply Theorem 1 to derive several results giving the probability of
{ν1 < ν2 < ν3}, {ν1 = ν2 < ν3}, {ν1 < ν2 = ν3}, and {ν1 = ν2 = ν3}, which trivially
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generate probabilities of every other weak ordering of threshold crossings by interchanging
the roles of the xj, µj, and Mj terms and interchanging the operators.

Corollary 4. If X[n] =
(

X[n]
1 , X[n]

2 , X[n]
3

)
is a vector of independent exponential random variables

with parameters µ1, µ2, and µ3 for each n,

P(ν1 < ν2 < ν3) = 1− e−µ2 M2
(

1 +
√

µ1µ2M2
∫ M1

0
e−µ1τ
√

τ
I1
(
2
√

µ1µ2M2τ
)

dτ
)

−e−µ3 M3
(

1 +
√

µ2µ3M3
∫ M2

0
e−µ2τ
√

τ
I1
(
2
√

µ2µ3M3τ
)

dτ
)

+e−µ2 M2−µ3 M3

×L−1
x1

(
e

µ1µ2 M2
µ1+x1

x1

∫ M2
0

e
− µ1µ2τ

µ1+x1√
τ

I1

(
2
√

µ1µ2µ3 M3τ
µ1+x1

)
dτ

)
(M1).

(66)

Proof. By Theorem 1,

P(ν1 < ν2 < ν3) = H−1
x

(
γ((0,x2,x3))−γ(x)

1−γ(x)
γ((0,0,x3))−γ((0,x2,x3))

1−γ((0,x2,x3))

)
(M)

= L−1
x1

(
L−1

x2

(
L−1

x3
(A)(M3)

)
(M2)

)
(M1),

(67)

where

A = 1−l1(x1)
x1

(1−l2(x2))l2(x2)
x2

l3(x3)
2

x3(1−l1(x1)l2(x2)l3(x2))(1−l2(x2)l3(x3))

=
µ2µ2

3
x3((µ1+x1)(µ2+x2)(µ3+x3)−µ1µ2µ3)((µ2+x2)(µ3+x3)−µ2µ3)

.
(68)

Let B = L−1
x3

(A)(M3), and then

B =
µ2

x2

1
µ2x1 + µ1x2 + x1x2

− 1
x1

e−
µ3 M3x2
µ2+x2

x2
+

e−
µ3 M3
µ1+x1

(
µ2x1+µ1x2+x1x2

µ2+x2

)
µ2x1 + µ1x2 + x1x2

. (69)

Let C = L−1
x2

(B)(M2), and then

C = 1
x1
− e

− µ2 M2x1
µ1+x1
x1

− 1
x1

e−µ3 M3
(

1 +
√

µ2µ3
∫ M2

0
e−µ2τ
√

τ
I1
(
2
√

µ2µ3M3τ
)

dτ
)

+e−µ3 M3 e
µ1µ2 M2
µ1+x1

x1

(
1 +

√
µ1µ2µ3 M3

µ1+x1

∫ M2
0

e
− µ1µ2τ

µ1+x1√
τ

I1

(
2
√

µ1µ2µ3 M3τ
µ1+x1

)
dτ

)
.

(70)

Then, we can find the probability by applying the final inverse Laplace transform with
respect to x1, i.e., P(ν1 < ν2 < ν3) equals

1− e−µ2 M2

(
1 +

√
µ1µ2M2

∫ M1

0

e−µ1τ

√
τ

I1

(
2
√

µ1µ2M2τ
)

dτ

)
− e−µ3 M3

(
1 +

√
µ2µ3M3

∫ M2

0

e−µ2τ

√
τ

I1

(
2
√

µ2µ3M3τ
)

dτ

)

+ e−µ2 M2−µ3 M3L−1
x1

 e
µ1µ2 M2
µ1+x1

x1

∫ M2

0

e−
µ1µ2τ
µ1+x1
√

τ
I1

(
2

√
µ1µ2µ3M3τ

µ1 + x1

)
dτ

(M1).

As we will show later, this can be approximated to high precision by numerical
integration and numerical Laplace inversion.

The probability of any other weak ordering in the form {νp(1) < νp(2) < νp(3)} for
some permutation p follows trivially by interchanging the roles of the variables.

Corollary 5. If X[n] =
(

X[n]
1 , X[n]

2 , X[n]
3

)
is a vector of independent exponential random variables

with parameters µ1, µ2, and µ3 for each n,
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P(ν1 = ν2 < ν3) =
(
1− e−µ3 M3

)
e−µ1 M1−µ2 M2 I0

(
2
√

µ1µ2M1M3
)

−e−µ1 M1−µ2 M2−µ3 M3
√

µ1µ2µ3M3

×L−1
x1

(
e

µ1µ2 M2
x1

x1
√

x1

∫ M2
0

e
− µ1µ2τ

x1√
τ

I1

(
2
√

µ1µ2µ3 M3τ
x1

)
dτ

)
(τ).

(71)

Proof. By Theorem 1,

P(ν1 = ν2 < ν3) = H−1
x

(
γ((0,0,x3))−γ((x1,0,x3))−γ((0,x2,x3))+γ(x)

1−γ(x)

)
(M)

= L−1
x1

(
L−1

x2

(
L−1

x3
(A)(M3)

)
(M2)

)
(M1),

(72)

where

A =
1− l1(x1)

x1

1− l2(x2)

x2

l3(x3)

x3(1− l1(x1)l2(x2)l3(x3))

=
µ3

x3((µ1 + x1)(µ2 + x2)(µ3 + x3)− µ1µ2µ3)
. (73)

Let B = L−1
x3

(A)(M3), and then

B =
1

µ2x1 + µ1x2 + x1x2
− e−

µ3 M3
µ1+x1

(
µ2x1+µ1x2+x1x2

µ2+x2

)
µ2x1 + µ1x2 + x1x2

. (74)

Let C = L−1
x2

(B)(M2), and then

C =
− µ2 M2x1

µ1+x1
µ1+x1

− e−µ3 M3 e
− µ2 M2x1

µ1+x1
µ1+x1

−e−µ3 M3 e
− µ2 M2x1

µ1+x1
µ1+x1

√
µ1µ2µ3 M3

µ1+x1

∫ M2
0

e
− µ1µ2τ

µ1+x1√
τ

I1

(
2
√

µ1µ2µ3 M3τ
µ1+x1

)
dτ.

(75)

Then, we can find the probability by applying the final inverse Laplace transform with
respect to x1, so

P(ν1 = ν2 < ν3) =
(

1− e−µ3 M3
)

e−µ1 M1−µ2 M2 I0

(
2
√

µ1µ2M1M3

)
− e−µ1 M1−µ2 M2−µ3 M3

√
µ1µ2µ3M3

×L−1
x1

 e
µ1µ2 M2

x1

x1
√

x1

∫ M2

0

e−
µ1µ2τ

x1
√

τ
I1

(
2

√
µ1µ2µ3M3τ

x1

)
dτ

(M1).

Note that this formula trivially generates the probabilities of {ν1 = ν3 < ν2} and
{ν2 = ν3 < ν1} by interchanging the appropriate variables.

Corollary 6. If X[n] =
(

X[n]
1 , X[n]

2 , X[n]
3

)
is a vector of independent exponential random variables

with parameters µ1, µ2, and µ3 for each n,

P(ν1 < ν2 = ν3) = e−µ2 M2−µ3 M3 I0
(
2
√

µ2µ3M2M3
)

−e−µ2 M2−µ3 M3L−1
x1

(
1
x1

I0

(
2
√

µ1µ2µ3 M2 M3
µ1+x1

))
(M1).

(76)

Proof. By Theorem 1,
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P(ν1 < ν2 = ν3) = H−1
x

(
γ((0,x2,x3))−γ(x)

1−γ(x)

× 1−γ((0,x2,0))−γ((0,0,x3))+γ((0,x2,x3))
1−γ((0,x2,x3))

)
(M)

= L−1
x1

(
L−1

x2

(
L−1

x3
(A)(M3)

)
(M2)

)
(M1),

(77)

where

A = 1−l1(x1)
x1

(1−l2(x2))l2(x2)
x2

(1−l3(x3))l3(x3)
x3(1−l1(x1)l2(x2)l3(x3))(1−l2(x1)l3(x3))

= µ2µ3
((µ1+x1)(µ2+x2)(µ3+x3)−µ1µ2µ3)((µ2+x2)(µ3+x3)−µ2µ3)

.
(78)

Let B = L−1
x3

(A)(M3), and then

B =
1
x1

e−
µ3 M3x2
µ2+x2

µ2 + x2
− 1

x1

e−
µ3 M3
µ1+x1

(
µ2x1+µ1x2+x1x2

µ2+x2

)
µ2 + x2

. (79)

Let C = L−1
x2

(B)(M2), and then

C =
1
x1

e−µ2 M2−µ3 M3 I0

(
2
√

µ2µ3M2M3

)
− 1

x1
e−µ2 M2−µ3 M3 I0

(
2

√
µ1µ2µ3M2M3

µ1 + x1

)
. (80)

Then, we can find the probability by applying the final inverse Laplace transform with
respect to x1, so

P(ν1 < ν2 = ν3) =e−µ2 M2−µ3 M3 I0

(
2
√

µ2µ3M2M3

)
− e−µ2 M2−µ3 M3L−1

x1

(
1
x1

I0

(
2

√
µ1µ2µ3M2M3

µ1 + x1

))
(M1).

Note that this formula trivially generates the probabilities of {ν2 < ν1 = ν3} and
{ν3 < ν1 = ν2} by interchanging the appropriate variables.

Corollary 7. If X[n] =
(

X[n]
1 , X[n]

2 , X[n]
3

)
is a vector of independent exponential random variables

with parameters µ1, µ2, and µ3 for each n,

P(ν1 = ν2 = ν3) =e−µ1 M1−µ2 M2−µ3 M3L−1
x1

(
1
x1

I0

(
2

√
µ1µ2µ3M2M3

x1

))
(M1). (81)

Proof. By Theorem 1, P(ν1 = ν2 = ν3) is the result of applyingH−1
x to

1−γ((x1,0,0))−γ((0,x2,0))−γ((0,0,x3))+γ((x1,x2,0))
1−γ(x)

+ γ((x1,x2,0))+γ((x1,0,x3))+γ((0,x2,x3))−γ(x)
1−γ(x) ,

(82)

so

P(ν1 = ν2 = ν3) = L−1
x1

(
L−1

x2

(
L−1

x3
(A)(M3)

)
(M2)

)
(M1), (83)

where

A = 1−l1(x1)
x1

1−l2(x2)
x2

1−l3(x3)
x3(1−l1(x1)l2(x2)l3(x3))

= 1
(µ1+x1)(µ2+x2)(µ3+x3)−µ1µ2µ3

.
(84)
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Let B = L−1
x3

(A)(M3), and then

B =
1

µ1 + x1

e−
µ3 M3
µ1+x1

(
µ2x1+µ1x2+x1x2

µ2+x2

)
µ2 + x2

. (85)

Let C = L−1
x2

(B)(M2), and then

C =
1

µ1 + x1
e−µ2 M2−µ3 M3 I0

(
2

√
µ1µ2µ3M2M3

µ1 + x1

)
. (86)

Lastly, the probability is the last inverse Laplace transform with respect to x1 applied
to the formula above.

Computational and Simulated Results

The corollaries above establish that these formulas hold, but what may not be clear is
that the formulas are actually quite numerically tractable, even with modest computational
resources, as we will demonstrate.

The inverse Laplace transforms above that could not be calculated explicitly were
computed using a MATLAB implementation by McClure [43] of the fixed Talbot algorithm
developed by Talbot [42], which uses trapezoidal integration along a deformed contour in
the Bromwich inversion integral. The approach is not exactly the same as Talbot’s original
algorithm, but uses some ideas from the framework of Abate and Whitt [44], and the code
is optimised for MATLAB by McClure. A similar numerical approach was used to find
probabilities in the context of oscillating random walks by Dshalalow and Liew [15], but,
in contrast, the results in this subsection are more extensive and involve comparisons with
empirical results from simulations.

Note that, for each set of parameters, the probabilities of the weak orderings are listed
in the third column of Table 1, ordered in the following way:

ν1 < ν2 < ν3, ν1 < ν3 < ν2, ν2 < ν1 < ν3, ν2 < ν3 < ν1, ν3 < ν1 < ν2, ν3 < ν2 < ν1

ν1 = ν2 < ν3, ν1 = ν3 < ν2, ν2 = ν3 < ν1

ν1 < ν2 = ν3, ν2 < ν1 = ν3, ν3 < ν1 = ν2

ν1 = ν2 = ν3

Table 1. In each row of the table, we set some parameter values and compute the probability for each
weak ordering by Corollary 4 (line 1), Corollary 5 (line 2), Corollary 6 (line 3), and Corollary 7 (line
4), rounded to the nearest thousandth. Lastly, we have the sum of absolute errors for all thirteen
probabilities and the maximum individual error compared to empirical probabilities of each weak
ordering computed from 1,000,000 simulated paths of the process.

Parameters Signs Predicted Probabilities Errors

(1) << 0.125 0.125 0.125 0.125 0.125 0.125 Sum = 0.003
(µ1, µ2, µ3) = (1, 1, 1) =< 0.042 0.042 0.042 Max < 10−3

M1 = M2 = M3 = 10 <= 0.039 0.039 0.039
== 0.009

(2) << 0.137 0.137 0.137 0.137 0.137 0.137 Sum = 0.002
(µ1, µ2, µ3) = (1, 1, 1) =< 0.030 0.030 0.030 Max < 10−3

M1 = M2 = M3 = 20 <= 0.029 0.029 0.029
== 0.005

(3) << 0.147 0.147 0.147 0.147 0.147 0.147 Sum = 0.003
(µ1, µ2, µ3) = (1, 1, 1) =< 0.019 0.019 0.019 Max < 10−3

M1 = M2 = M3 = 50 <= 0.019 0.019 0.019
== 0.002
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Table 1. Cont.

Parameters Signs Predicted Probabilities Errors

(4) << 0.153 0.153 0.153 0.153 0.153 0.153 Sum = 0.002
(µ1, µ2, µ3) = (1, 1, 1) =< 0.014 0.014 0.014 Max < 10−3

M1 = M2 = M3 = 100 <= 0.014 0.014 0.014
== 0.001

(5) << 0.358 0.358 0.048 0.008 0.048 0.008 Sum = 0.002
(µ1, µ2, µ3) = (0.5, 1, 1) =< 0.035 0.035 0.005 Max < 10−3

M1 = M2 = M3 = 10 <= 0.082 0.007 0.007
== 0.004

(6) << 0.002 0.002 0.018 0.422 0.018 0.422 Sum = 0.002
(µ1, µ2, µ3) = (2, 1, 1) =< 0.002 0.002 0.088 Max < 10−3

M1 = M2 = M3 = 10 <= 0.001 0.011 0.011
== 0.001

(7) << 0.000 0.000 0.000 0.455 0.000 0.455 Sum = 0.002
(µ1, µ2, µ3) = (5, 1, 1) =< 0.000 0.000 0.090 Max < 10−3

M1 = M2 = M3 = 10 <= 0.000 0.000 0.000
== 0.000

(8) << 0.002 0.002 0.018 0.422 0.018 0.422 Sum = 0.001
(µ1, µ2, µ3) = (1, 1, 1) =< 0.002 0.002 0.088 Max < 10−3

M1 = 20, M2 = M3 = 10 <= 0.001 0.011 0.011
== 0.001

(9) << 0.000 0.000 0.000 0.455 0.000 0.455 Sum = 0.002
(µ1, µ2, µ3) = (1, 1, 1) =< 0.000 0.000 0.000 0.090 Max < 10−3

M1 = 50, M2 = M3 = 10 <= 0.000 0.000 0.000
== 0.000

(10) << 0.000 0.000 0.000 0.455 0.000 0.455 Sum < 10−4

(µ1, µ2, µ3) = (1, 1, 1) =< 0.000 0.000 0.090 Max < 10−4

M1 = 100, M2 = M3 = 10 <= 0.000 0.000 0.000
== 0.000

The testing above and results in the Table 1 reveal some intuitive results about
the probabilities:

• In parameter sets (1)–(4), we have µ1 = µ2 = µ3 and M1 = M2 = M3, so, in each
line of the results for each set, the probabilities are the same since there is symmetry
between the dimensions such that they are indistinguishable.

• In parameter sets (1)–(4), the µjs are 1 and the Mjs are equal but increasing. Since the
process must travel further to cross thresholds while the distribution of the jumps is
fixed, simultaneously crossing multiple thresholds (lines 2–4) becomes less probable.

• Comparing parameter sets (5)–(7) to (1) reveals that increasing a single µj decreases
the mean jump length in coordinate j so that Mj is likely to be crossed later than
others. Here, we increase µ1, and the probabilities of ν2 < ν3 < ν1, ν3 < ν2 < ν1, and
ν2 = ν3 < ν1, precisely where M1 is crossed last, grow.

• Comparing parameter sets (8)–(10) to (1) reveals that increasing a single Mj has a
similar effect as increasing a single µj:

– Parameter set (8) doubles M1 (doubling the distance to cross M1) and parameter
set (6) halves µ1 (doubling mean jump length in dimension 1), which have the
precisely same impact on the probabilities.

– Parameter sets (7) and (9) exhibit an analogous relationship.

While the testing above reveals some details of the relationship between the parame-
ters and probabilities, its scope is constrained by our choice of only 10 sets of parameters, so
further testing took a large sample random parameters, computed the predicted and empir-
ical probabilities, and compared them. In particular, we sampled sets of the six parameters,
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with µ1, µ2, µ3 chosen from a uniform distribution on [0.5, 3] population and M1, M2, M3
from a uniform distribution on [10, 40], and compared the results to empirical results.

Note the boundaries of the intervals are somewhat arbitrarily selected within a region
where an existing MATLAB implementation of the fixed Talbot algorithm for numerical
inverse Laplace transforms generally converges properly, with a few exceptions (2% of the
sampled parameters).

A random sample of 500 sets of parameters from the distributions mentioned above
was taken, the process was simulated 100,000 times for each set, and the predicted and
empirical probabilities were compared. In 10 samples, the numerical inverse Laplace
transform failed due to rounding or overflow errors, but in the remaining 490 cases,
predictions again showed good matching with empirical results. In the worst case, the
sum of errors between empirical and predicted reached 0.023, with a maximum individual
error of 0.012. This is quite accurate, but even this is an outlier—in the other 489 cases, the
maximum sum of errors is 0.012, with maximum individual error 0.004.

4.4. Further Applications of P(W)

The tractable formula for P(W) found in Theorem 1 has further applications in insur-
ance, finance, reliability theory, and more advanced stochastic network models. Herein, we
discuss two of these areas as a motivation for further study and adoption of the present
modeling approach in diverse disciplines. Lastly, we will consider the versatility of the
result in a more mathematical sense.

4.4.1. Applications to Insurance

Insurance companies receive a random number of claims from their customers per
month, each with a random, nonnegative cost to the company. Assuming that the company
has a budget of agents to adjudicate claims and a planned budget for costs, then it will
be of interest which budget will be exhausted first. If the agent budget is highly likely
to exhausted first, the company may optimise its resources by shifting some of the funds
pre-allocated for paying the claims to hiring more agents. If the claims budget is highly
likely to be exhausted first, the company may optimise resources by hiring fewer agents.

If the distributions of claims per unit time and cost per claim are time-independent,
this example is essentially equivalent to the stochastic network application from Section 4.1
above, with X[j]

1 equal to the number of claims received in month j and X[j]
2 the sum of the

costs of those claims in month j. However, the distributions of claims per month or cost per
claim need not be geometric and exponential, respectively.

While this two-dimensional problem does not exceed the capabilities inherent in the
methods of prior works on stochastic networks [38], the problem becomes far more complex
and higher-dimensional if we consider claims budgets in a localised sense. For example, if
agents or funding for claims need to be assigned to certain cities, there may be city-specific
budgets, and the probabilities of certain orders of these budgets being exhausted can be
used to study the effects of allocating agents to different cities. Likewise, a company with
diverse offerings may need to assign specialist agents to claims on home, auto, health, or
life insurance.

4.4.2. Reliability Theory

The model can also be used to analyse a complex system made up of numerous de-
teriorating parts. For example, some approaches [48] model the deterioration of a part
as a renewal-reward process where the jumps consist of a sum of a continuous deteriora-
tion (e.g., linear) plus a random number of “shocks” that introduce damage of random
magnitudes approaching a threshold of irrecoverable failure.

The present work can allow such models to be extended to complex systems and
determine the most likely order(s) of failures of multiple parts critical to the operation
of the system. Such systems frequently require upkeep and repairs to different types of
parts, so understanding the most vulnerable parts given these likely orders can allow
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administrators to design maintenance programs to ensure consistent, reliable operation of
the system.

4.4.3. Versatility of Theorem 1

A point that may be missed in the focus on finding the probability of a fixed weak
ordering of threshold crossings, P(W), is that they trivially can build probabilities of weak
orderings of subsets of thresholds.

For example, in a three-dimensional model, we may have a weak ordering
V = {ν1 < ν3} of two of the threshold crossings. Since any weak ordering of a sub-
set can be represented as a sum of some distinct weak orderings, in this case,

V = {ν1 < ν2 < ν3} ∪ {ν1 < ν3 < ν2} ∪ {ν1 = ν2 < ν3} ∪ {ν1 < ν2 = ν3}
= W1 ∪W2 ∪W3 ∪W4

(87)

The probability of V is, then, the sum of the probabilities of the weak orderings on the right
side, all of which are given by Theorem 1 as follows:

P(V) = P(W1) + P(W2) + P(W3) + P(W4)

= H−1
x

(
γ((0,x2,x3))−γ(x)

1−γ(x)
γ((0,0,x3))−γ((0,x2,x3))

1−γ((0,x2,x3))

)
(M)

+H−1
x

(
γ((0,x2,x3))−γ(x)

1−γ(x)
γ((0,x2,0))−γ((0,x2,x3))

1−γ((0,x2,x3))

)
(M)

+H−1
x

(
γ((0,0,x3))−γ((x1,0,x3))−γ((0,x2,x3))+γ(x)

1−γ(x)

)
(M)

+H−1
x

(
γ((0,x2,x3))−γ(x)

1−γ(x)
1−γ((0,x2,0))−γ((0,0,x3))+γ((0,x2,x3))

1−γ((0,x2,x3))

)
(M)

= H−1
x

(
γ((0,0,x3))−γ((x1,0,x3))

1−γ(x)

)
(M)

(88)

As such, while Theorem 1 focuses on probabilities of weak orderings of all the threshold
crossings, these results can be summed to obtain the probability of a weak ordering of
a subset of threshold crossings. Moreover, in this case, the sum actually simplifies the
expression tremendously.

In addition, identifying the likely first threshold crossing can be important. In the
stochastic network problem, this identifies the most vulnerable aspect of the network. In
insurance, it locates the first budget likely to be exhausted. In reliability problems, it can
find the first part that will likely need maintenance. In each case, identifying the likely
vulnerabilities can help to determine appropriate strategies to avoid such problems.

Mathematically, this means that we find P(νk < min{νj : j 6= k}) for each k = 1, . . . , d,
i.e., the probability that the kth threshold will be crossed first. Clearly, any such probability
will be the sum of all probabilities of weak orderings of threshold crossings where νk comes
first—precisely what Theorem 1 expresses.

5. Significance and Future Work

The work above can reasonably be expected to extend in several directions, some of
which are the subject of current and future projects.

Closed-form expressions for Φ(u) = E
[
e−u·A[ν]

]
have been derived by brute force for

dimensions d = 2 and d = 3 in a similar setting by Dshalalow [12], as well as d = 4 in the
context of a continuous-time marked random walk by Dshalalow and Liew [30]. Although
the setting is different in the latter case, the approach and result are quite similar. Their
approach was to derive ΦW = E

[
e−u·A[ν]

1W

]
separately for each W ∈ W and add them

together, but the size ofW grows very quickly with d; in fact, it grows at a super-factorial
rate since the set of total orderings of the threshold crossings grows factorially, but is only a
subset ofW . The number of weak orderings follows the pattern of the Fubini numbers (also
called the ordered Bell numbers), 3, 13, 75, 541, 4683, 47,293, . . . , so the brute force approach
quickly becomes impractical to carry out by hand. The author did some prior work on
an algorithmic solution [45], but even listing all the elements ofW poses computational
problems for current consumer-grade computers at dimension 7 or 8. More extensive
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computational power would not be able to handle much beyond this on a practical time
scale given the super-factorial rate of growth.

However, the result of Theorem 1 provides a path to representing an arbitrary ΦW
in finite dimension d in a manageable formula. An ongoing project seeks to either con-
firm a conjecture from Dshalalow and Liew [30] or correct it by deriving a closed-form
expression for

Φ(u) = ∑
W∈W

ΦW(u) (89)

through a recursive approach exploiting patterns in the ΦW expressions.
Further, it is possible to move beyond discrete-time stochastic processes. For example,

some prior studies [14,38,39] have considered (continuous-time) marked random walks
{A(t) : t ≥ 0} with multidimensional jump times forming a renewal process {τn} for small
d with each random vector X[n] actually being the d-dimensional jump A(τn)− A(τn−1),
which are i.i.d. in this scenario. This work can be adapted to find a joint LST for the position
and time of the exit of such a process, E

[
e−u·A(τν)−θτν

]
, in terms of a joint LST of the jump

vector and time between jumps, E
[
e−u·A(τ1)−θτ1

]
.
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