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Abstract: The increasing structural flexibility of large aircraft leads to significant aeroelastic effects.
More efficient topology optimization techniques are required for the design to further take advantage
of aeroelasticity and obtain lightweight structures. This paper proposes a moving boundary meshfree
topology optimization that combines the Galerkin method of weighted residuals and non-uniform
rational B-splines (NURBS). The solution domain is described by the control points of NURBS and its
property is calculated adaptively with an integration subtraction technique. The minimal compliance
is searched for using the globally convergent method of moving asymptotes (GCMMA) by designing
the locations of control points as subject to volume and flux constraints. The method is first applied
to a typical two-dimensional design example with symmetric boundary conditions. The results show
that the shape constraints can be conveniently applied, and smoother boundaries are obtained with
fewer parameters. Then, a three-dimensional wing structure with asymmetric boundary conditions
is optimized. A three-dimensional flight load that combines the high-order-panel and meshfree
methods is employed to calculate the elastic loads and update asymmetric external loads during
the optimization process. The designed wing satisfies engineering requirements and the presented
method can solve the practical topology optimization problems of three-dimensional structures.

Keywords: meshfree method; topology optimization; NURBS; aeroelasticity; large aircraft

1. Introduction

Structural optimization is an efficient approach to seeking the optimal structure distri-
bution in engineering design. Structural optimization in engineering can usually be divided
into three categories: size optimization, shape optimization, and topology optimization.
The topology optimization of aircraft is generally applied in the conceptual stage and it
has more design parameters and a larger design space than size optimization and shape
optimization [1]. Therefore, topology optimization plays an essential role across the whole
design and the optimization results are the basis of subsequent designs.

Topology optimization was developed first in aerospace engineering due to the strict
requirements of high-performance and lightweight structures. Researchers and airline
industries have invested much effort in structural optimization. The topology optimization
of the full-scale wing structure of a Boeing 777 adopted super-large-scale parallel computing
and obtained a wing design scheme similar to bionic structures [2], and the weight of a
single wing was reduced by 2% to 5%. Groen [3] proposed a novel method to obtain a
near-optimal frame structure based on the solution of a homogenization-based topology
optimization model. Ghasemi [4] proposed a high-performance density-based topology
optimization tool for laminar flows with a focus on 2D and 3D aerodynamic problems via
the OpenFOAM software. Munk [5] developed a design methodology that reduces the
maximum stress in a component for a given applied load and weight constraint, and the
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sustainability of the aircraft was increased. Palacios [6] investigated the use of density-based
topology optimization for the aeroelastic design of very flexible wings using a nonlinear
aeroelasticity solver and a gradient-based approach. The structural weight was reduced
while maintaining the lift. Li [7] presented a multiscale optimization method to solve size
distribution problems in conformal lattice materials, and the design resulted in mechanical
experiments on specimens fabricated by 3D printing. López [8] compared the structural
designs derived from deterministic topology optimization and reliability-based topology
optimization and proved that including uncertain data in the topology optimization can
help to reduce the weight of the component.

The current topology optimization methods mainly include the level set method
(LSM) [9], evolutionary structural optimization (ESO) [10], and solid isotropic material with
penalization (SIMP) [11]. All the above methods are based on the finite element method
(FEM) and SIMP is widely employed in the topology modules of commercial FEM software
systems. The increasing demands of the low flexibility structures of modern aircraft lead
to significant structural deformation and non-negligible aeroelastic effects [12], which are
a challenge for traditional topology optimization. For FEM-based optimization methods,
if the boundary of the solution domain is changed, matched meshes are needed and the
global stiffness matrix should also be partially corrected. The above process is complicated
and, once aeroelasticity is considered, the topology optimization becomes tedious and
time-consuming.

The analysis domain of meshfree methods is represented only by arbitrarily discrete
field nodes. It is possible to overcome the limitation of tensor product mesh in complex
topology problems using isogeometric analysis [13]. Belytschko [14] published a com-
prehensive review article detailing meshfree methods in 1996, which is considered the
beginning of meshfree methods as an independent branch of mechanics. Although they
started late, meshfree methods have developed various forms with differing discretiza-
tion and approximation. The essential software framework developed gradually [15]. So
far, meshfree methods have been applied widely in astrophysics, microparticles, hydro-
dynamics, solid mechanics, fracture mechanics, explosion mechanics, thermodynamics,
biomechanics, and electromagnetic mechanics [16,17]. The proposal of the element-free
Galerkin method (EFG) [18] is important progress, and it can be combined well with the
approximation techniques such as the radial point interpolation method (RPIM) [19], Krig-
ing method [20], reproducing kernel particle method (RKPM) [21], etc. The EFG greatly
extends the application range and has become a very competitive meshfree method.

This paper presents an efficient technique named moving boundary meshfree topology
optimization that can solve complex topology optimization problems in aircraft wing
structures. The Galerkin method of weighted residuals and RPIM are employed to discretize
the system equations. The control points of non-uniform rational B-splines (NURBS) are
employed to exactly describe the analysis domain. The domain property is calculated
adaptively through integration subtraction and the globally convergent method of moving
asymptotes (GCMMA) is used to search for the optimal topology structure subject to the
volume and flux constraints. The two-dimensional beam proposed by Messerschmitt-
Bolkow-Blohm (the MBB beam) is a typical example of topology optimization and it is
used as the first design object for the proposed method. National Aeronautics and Space
Administration (NASA) provide many common research models (CRMs), and a three-
dimensional wing structure with a high aspect ratio is selected as the second design object.
The three-dimensional flight load is used to calculate the elastic load and update the external
loads of the topology optimization. The proposed optimization framework is expected to
be a reference for the structural design and aeroelastic optimization of large aircraft.

2. Moving Boundary Meshfree Method
2.1. Meshfree RPIM Method

For a linear elastic problem in domain Ω of the boundary Γ, the governing equation is
described as [22]:
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
LTσ + b = 0 in Ω

n · σ =
¯
t in Γt

u =
¯
u in Γu

(1)

where LT is the differential operator; σ is the stress vector; and b is the external force vector.
¯
t and

¯
u are the applied stress and displacement vectors on the boundary, respectively.

Using the Galerkin method of weighted residuals, the general weak form of Equation (1) is
given by ∫

Ω
(Lδu)TD(Lu)dΩ−

∫
Ω
δuTbdΩ−

∫
Γt
δuT¯

t dΓ = 0 (2)

where D is the elastic matrix. Unlike FEM meshes, the meshfree method employs scattered
field nodes to discretize the complex solution domain Ω, as shown in Figure 1.

Figure 1. Discretization of solution domain.

The information of an unknown node is interpolated by the field nodes of the sup-
port domain around the unknown node. RPIM is an efficient and stable interpolation
method [23] and is used to approximate the field function. The value of the field nodes in
the support domain is written as:

Ũs =

[
Us
0

]
=

[
R0 Pm
Pm 0

][
a
b

]
= Ga0 (3)

where R0 is the radial basis matrix related to the distance of the Euclidean distance of the
field points. Pm is the polynomial matrix, and a and b are the undetermined coefficient
matrices. The unknown node values in the support domain are approximated by:

u(x) = R(x)a + P(x)b =
[
R(x) P(x)

]
G−1Ũs

= Φ(x)Ũs
(4)

where Φ(x) is the shape function of RPIM that represents the influence of each field node
in the support domain to the unknown node.

Combined with RPIM, the solution domain is approximated by finite field nodes
and the global integration can be further discretized to the Gaussian integral of several
background meshes. The integral of the governing equation is usually transformed into the
parameter domain for calculation, which is written as:

∫
Ω

f (x)dΩ =
nc

∑
k=1

∫
Ωk

f (x)dΩ =
nc

∑
k=1

nk

∑
i=1

ωi f (xi)|Jik| (5)

where Ωk is the k-th background mesh; nc is number of background meshes; nk is the
number of Gaussian integral points of the k-th background mesh; ωi is the weighted factor
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of the i-th Gaussian integral point; and Jik is the Jacobian matrix of the k-th background
mesh at the i-th point. The background meshes are divided conveniently by homotopic
mapping after deploying field nodes. Therefore, Equation (2) can be written in matrix form:

KU = F (6)

where K is the stiffness matrix, and U and F are the vectors of displacement and applied
load, respectively. The deformation, stress, strain, and other responses can be solved by
applying the boundary condition.

2.2. NURBS

NURBS curves can efficiently describe arbitrary free-form shapes and conic sections,
which makes NURBS the basis for all standard geometric exchange formats [24,25]. NURBS
is a linear combination of B-spline basic functions and the B-spline curve C(u) is defined as:

C(u) =
n

∑
i=0

Ni,p(u)Pi a ≤ u ≤ b (7)

where u is the parameter of the knot vector between a and b and Pi are the control points
to determine the shape of the curve. Ni,p(u) is the i-th B-spline basic function of de-
gree p, which has the important properties of nonnegativity, unit partition, local support,
and differentiability.

The NURBS surface is defined using the tensor-production method and the generalized
forms of the NURBS curve and surface with normalized parameters are written as:

C(u) =

n
∑

i=0
Ni,p(u)ωiPi

n
∑

i=0
Ni,p(u)ωi

0 ≤ u ≤ 1

S(u) =

n
∑

i=0

m
∑

j=0
Ni,p(u)Nj,q(v)ωi,jPi,j

n
∑

i=0

m
∑

j=0
Ni,p(u)Nj,q(v)ωi,j

0 ≤ u, v ≤ 1

(8)

where ω is the corresponding weight. The shapes of the domain boundary and the holes
inside the boundary can be described precisely by the control points of NURBS.

2.3. Integration Subtraction Technique

The integration is performed in the parameter domain conveniently compared with
the physical domain. The stiffness of the j-th background element in the i-th hole is given by

Kj =
ng

∑
k=1

ωk(B
T
k DBk)|Jk| (9)

where Bk is the strain matrix and D is the material constant matrix; ng is the number of
Gaussian integral points in the current background element; ωk is the integral weight; and
Jk is the Jacobian matrix.

The shape and inner holes of the solution domain change during the topology opti-
mization. To solve this problem, the process in conventional methods involves deleting
extra meshes, repairing gaps, and reconstructing boundary meshes. It is complex and
time-consuming to reconstruct the meshes and the stiffness matrix when changing the
inner boundary shape or adding new holes, even though the background meshes are easy
to generate. An integration subtraction technique is proposed and the stiffness matrix of
the predesigned domain is assumed to be K0; Equation (6) can then be rewritten as

(K0 −∑ Ki)U = F (10)
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As shown in Figure 2, when a hole moves from C1 (red) to C2 (blue), the homotopic
mesh is conveniently applied between the changed regions. Instead of deleting ΩC1 and
adding ΩC2 , the new global stiffness matrix is obtained easily by adding the stiffness
K(C2−C1)

of the changed region Ω(C2−C1)
, and the accuracy is satisfied. More details and

the numerical results of the integration subtraction are introduced in authors’ previous
research [26].

Figure 2. Integration subtraction when a hole moves from C1 (red) to C2 (blue).

3. Moving Boundary Optimization

Moving boundary optimization (MBO) refers to the presented topology optimization
based on the moving boundary meshfree method. The parametric modeling, sensitivity
analysis, and optimization strategy are the key points in topology optimization.

3.1. Topological Structure Based on NURBS

The solution domains of the meshfree method are described by several NURBS closed
curves. Figure 3 depicts the variation of the solution domain and its boundary from the
k-th generation to the k + 1-th generation. The domain Ω2 stays the same and the domain
Ω3 is a new hole generated during the optimization.

Figure 3. Solution domains and boundaries of the k-th and k + 1-th generations.

The shape of the NURBS is determined by the coordinates of the control points, so
the optimization problem is to minimize the structural compliance by searching for the
optimal control points subject to topological constraints.

min
P

C(P) = UTKU

s.t. KU = F

V = 1
V0

N
∑

i=1

s

Ωi

dΩ ≤ V

ψi =
n
∑

j=1

∫
Γj

rij

r2
ij

ndΓj ≤ δ, i = 1, 2, . . . , n0

(11)
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where C(P) is the structural compliance; V ≤ V indicates the volume constraint; and
ψi < δ is the flux constraint. The design variables increase or decrease with the variation of
the holes and the boundaries.

3.2. Sensitivity Analysis

The positions of control points are the design variables, so the sensitivity analysis
involves calculating the derivatives of responses to the coordinates of control points.

3.2.1. Volume Sensitivity

The volume sensitivity of a two-dimensional problem is written as
∂VΓ
∂Pix

= 1
2

ngi

∑
j=1

wj

[
∂ f ′j
∂Pix

g(uj)− g′(uj)
∂ f j

∂Pix

]
∂VΓ
∂Piy

= 1
2

ngi

∑
j=1

wj

[
f ′(uj)

∂gj
∂Piy
−

∂g′j
∂Piy

f (uj)

] (12)

where 
∂ f ′j
∂Pix

=
∂ f ′j
∂Pω

ix
· ∂Pω

ix
∂Pix

=
N′ i,p(uj)−Ni,p(uj)/ω(uj)·ω′(u)

ω(uj)
·ωi =

∂g′j
∂Piy

∂ f j
∂Pix

=
∂ f j

∂Pω
ix
· ∂Pω

ix
∂Pix

=
Ni,p(uj)

ω(uj)
·ωi =

∂gj
∂Piy

In Equation (12), Pi(xi, yi, ωi) is a control point of the NURBS curve Γ(u) (Γ(u) =
( f (u), g(u))) and VΓ is the volume surrounded by Γ(u).

3.2.2. Compliance Sensitivity

The calculation of compliance sensitivity can be divided into two aspects: curve
homotopy mapping and point homotopy mapping. Point homotopy requires calculation
of the partial derivatives of the strain matrix B, which require calculation of the second
derivatives of the shape function. The interpolation accuracy of the second derivatives
is low and point homotopy mapping is not recommended. Curve homotopy only needs
the integral along the curve and avoids the calculation of partial derivatives, so curve
homotopy mapping is more accurate and convenient. Similar to the moving boundary
method, the varied stiffness of the global solution domain is approximately regarded as
the stiffness of the changed region. When the i-th control point moves ∆Pix along the
x-direction, the j-th integral point moves ∆x(uj) and the varied stiffness can be simplified
to the integral along the curve.

∆K =
s

Ω

BTDBdxdy =
s

∆Ω

BTDB(−g′(u))dudx

≈
∫
Γ

BTDB · (−g′(u))∆x(u)du

=
nk
∑

k=1

ng

∑
j=1

BT
j DBjωj(−g′(uj))∆x(uj)

=
nk
∑

k=1

ng

∑
j=1

BT
j DBjωj(−g′(uj))

∂ f j
∂Pix

∆Pix

(13)

where nk is the segment number between [ui, ui+p+1). The approximate value of the
compliance sensitivity is written as

∂K
∂Pix
≈ ∆K

∆Pix
=

nk
∑

k=1

ng

∑
j=1

BT
j DBjωj(−g′(uj))

∂ f j
∂Pix

∂C
∂Pix

= −UT ∂K
∂Pix

U
(14)
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3.2.3. Topological Sensitivity

The topological sensitivity is the influence of a new hole on the objective and con-
straints, and the topological sensitivity of a field node is defined as{

δTV = ∂V
∂r = 2πr

δTCi = −UT
s BT

i DBiUs
(15)

where δTV is the topological sensitivity of the volume constraint and r is the radius of the
new hole. δTCi is the topological sensitivity of compliance of the i-th field point and Us are
the displacements of the field points in the support domain surrounding the i-th field point.

When the average value of the topological sensitivities of a field point is larger than a
specific threshold value, a new hole is generated at the current field point.

3.3. Optimization Flowchart

The GCMMA is utilized to search for the optimal topology structure [27], and the
standard form of a general nonlinear optimization problem is written as

min f0(x) + a0z +
m
∑

i=1
(ciyi +

1
2 diy2

i )

s.t. gi(x)− aiz− yi ≤ 0 i = 1, . . . , m
xmin

j ≤ xj ≤ xmax
j j = 1, . . . , n

yi ≥ 0, z ≥ 0 i = 1, . . . , m

(16)

where ai, bi, ci, di are the coefficients; x is the vector of design variables; f0(x) is the
objective function; gi(x) are the constraint functions, including volume and flux constraints,
in the topology optimization; and yi, z are the additional design variables.

The optimization flowchart using MBO is shown in Figure 4 and the main procedures
include (1) initialization of the design variables and solution domain, (2) construction of
GCMMA form of the topology problem, (3) analysis of the solution domain, (4) resolution
of the dual problem of GCMMA and the increase of new holes and design variables, and
(5) convergence judgment.

Figure 4. Flowchart of topology optimization using MBO.
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3.4. Topology Optimizaiton of MBB Beam
3.4.1. Design Strategy

The MBB beam is a common model for topology optimization. The dimensionless
beam with symmetric, simply supported ends is shown in Figure 5 and the unit load is
applied at the middle of the top edge.

Figure 5. Initial structure of MBB beam.

The constraint is that the volume ratio is less than 50%. The initial number of the
control points is 36 and the two coordinates of a control point correspond to two design
variables. The control points guarantee that the current solution domain must be within
the initial boundary. When the volume ratio is less than 60%, the boundary optimization is
completed and the inner structure optimization is carried out. Three holes with radii of
1 are generated at the appropriate positions according to the topological sensitivity. The
circumference of each hole is divided into 12 segments and another 12 control points are
added to the design variables to optimize the inner boundary, as shown in Figure 6. The
initial circular hole is tiny and almost equal to a point. The circular hole gradually develops
into an arbitrary shape according to the movement of the control points.

Figure 6. Distribution of control points.

In addition, SIMP and LSM are also performed subject to the same constraints to verify
the effectiveness of MBO. The design variables of these two methods are the densities of
2400 elements, and the minimal density is 0.001.

3.4.2. Design Results

The convergence processes of SIMP, LSM, and MBO are compared in Figure 7.
SIMP has the fastest convergence speed, while the convergence speeds of MBO and

LSM are similar. The optimal structural compliances and volume ratios of SIMP, LSM, and
MBO are compared in Table 1.

Table 1. Optimization results.

SIMP LSM MBO

Compliance 49.35 47.39 47.43
Volume ratio 50.0% 50.4% 50.0%

The optimal structural compliance of SIMP is the largest. The optimal volume ratio
of LSM is larger than the constraint, and the volume ratio cannot be further reduced by
adjusting parameters. The MBB beam structure optimization processes in the three methods
are shown in Figure 8. SIMP, LSM, and MBO show their particular variation trends in the
optimization process, and the final topological structures are similar.
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Figure 7. Convergence process: structural compliance (left) and volume ratio (right).

Figure 8. Optimization processes of SIMP, LSM, and MBO.

According to the optimization results for the MBB beam, MBO can obtain better
structural compliance than SIMP and a better volume ratio than LSM, so MBO shows an
advantage in topology optimization.

3.4.3. Influence of Design Variables and Constraint

SIMP and LSM both have the problem of mesh dependence, so the influence of the
number of design variables on the three optimization methods should be studied. The
mesh density is increased by two times. The numbers of finite elements for SIMP and LSM
are increased to 9600 and the initial number of control points for MBO is increased to 68.
The optimization results are shown in Table 2.

Table 2. Optimization results (increased design variables).

SIMP LSM MBO

Compliance 50.01 49.38 48.06
Volume ratio 50.0% 50.1% 49.6%

The optimal topological structures are compared in Figure 9.
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Figure 9. Optimal topological structures of SIMP, LSM, and MBO.

The optimization results for SIMP are quite different from the results for the original
meshes. Holes appear in the solid beam structure of the original model. Compared with
the results for LSM with the original meshes, the optimization is insufficient and many
small beams appear, which can impact engineering applications. The optimization results
for MBO show little difference from the previous results.

These three optimizations were performed on the same personal computer and the
calculation times are compared in Table 3. For an n-dimensional problem, when the
mesh density increases by two times, the numbers of design variables for SIMP and LSM
increase to 2n times and the number of design variables for MBO increases to 2n−1 times.
More design variables mean more time for the sensitivity analysis. Judging from the
design results and the calculation time, SIMP and LSM are greatly influenced by the mesh
density. With the increase in design variables, MBO gradually shows its advantages in
optimization efficiency.

Table 3. Optimization generation and calculation time.

Coarse Mesh Fine Mesh

Variable Time (s) Generation Variable Time (s) Generation

SIMP 2400 10.7 31 9600 699.1 100
LSM 2400 17.0 59 9600 293.9 48
MBO 72 309.0 100 136 326.0 100

The influence of constraint on the three optimization methods is examined next. The
optimizations are carried out subject to the constraints of a 60% and 40% volume ratio,
respectively. Except for the volume constraint, the object function, design variables, and
analysis conditions are the same as those in Section 3.4.1. The optimization results are
shown in Table 4.

Table 4. Optimization results (different constraints for the volume ratio).

Constraint SIMP LSM MBO

Compliance
40%

59.46 57.27 58.98
Volume ratio 40.0% 39.9% 39.9%

Compliance
60%

43.52 42.50 42.28
Volume ratio 60.0% 60.4% 59.9%

The optimal topological structures are compared in Figure 10.
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Figure 10. Optimal topological structures of different constraints.

The optimization results show that SIMP and LSM are greatly influenced by constraint
and the number of design variables. MBO is more stable and has better boundary quality
and less structural compliance.

3.5. Discussion

The SIMP, LSM, and MBO methods are compared according to the topology optimiza-
tion results for the two-dimensional MBB beam. Then, the optimization stability of these
three methods is preliminarily explored by adjusting the number of design variables and
the volume constraint.

SIMP and LSM are limited by the mesh density and the volume constraint. Different
conditions may lead to different results and the structural boundary may appear serrated,
which requires manual smoothing. On the other hand, MBO is almost uninfluenced by
them and has better optimization stability in simple two-dimensional problems.

MBO comprises shape optimization and topology optimization. For the MBB opti-
mization, MBO can obtain a lighter result with smoother boundaries, which is more suitable
for practical manufacturing.

It is more time-consuming for MBO to solve the problem with fewer design variables.
However, with the increase in design variables, MBO needs much fewer parameters to
describe the structure than FEM-based optimization, which helps MBO save much time in
the sensitivity analysis.

The result of MBO can be pre-designed manually. In addition to automatically judging
the hole numbers or the hole positions with the algorithm, they can also be specified
manually. If the MBB beam is optimized using a symmetric four-hole topological structure,
the optimum has a compliance of 48.28 and a volume ratio of 49.9%. The topological
structure result is shown in Figure 11.

Figure 11. Optimal topological structure with four holes.

4. Topology Optimization of CRM Wing Structure

The topology optimization of the CRM wing structure is performed under asymmetric
boundary conditions. The wing has a fixed support root and the external loads of the
topology optimization are developed in the static aeroelastic analysis. The aeroelastic
analysis of the wing structure needs to be analyzed repeatedly because its topological
structure varies in each optimization generation.
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4.1. Static Aeroelasticity

The static aeroelasticity is analyzed with an improved three-dimensional flight load
that combines the high-order panel method and the meshfree method. The high-order
panel method is employed for aerodynamic analysis and the meshfree method is employed
for static analysis. The difference between the improved and basic three-dimensional flight
load methods is that the static analysis is changed from FEM to the meshfree method. The
method contains two iterative loops: the inner loop concerns the structural deformation
convergence and the outer loop concerns the trim parameter convergence. More details
about the basic three-dimensional flight load are introduced in the authors’ previous
research [28,29]. The flowchart is shown in Figure 12.

Figure 12. Meshfree method-based three-dimensional flight load.

The fight speed is 0.785 Ma at an altitude of 10,000 m and the dynamic pressure is
13,360 Pa. The static aeroelasticity is analyzed at a fixed angle of attack of 2◦, so only the
inner loop of the three-dimensional flight load is executed. After the static aeroelastic
equilibrium is reached, the aerodynamic loads on the high-order aerodynamic panels are
applied as the external loads to the wing structure to carry out the topology optimization.

The optimization object is the CRM wing structure, which is a common research model
for aerodynamic and aeroelastic research, as shown in Figure 13. The half span is 29.38 m,
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the root chord is 11.87 m, and the taper ratio is 4.34. The sweep angle of the leading
edge is 37.23◦ and the dihedral angle is 4.85◦. The material of the wing is 7075 aluminum
alloy, the elastic modulus is 71.7 GPa, the Poisson ratio is 0.33, and the material density is
2700 kg/m3.

Figure 13. Structural model of CRM wing.

The structural model is adjusted to satisfy the requirements of topology optimization.
The wing shape remains unchanged and the inner space is filled. Some ribs are reserved to
maintain the shape and transfer flight loads. The stiffness matrix of a three-dimensional
wing structure is extremely huge, so, limited by the calculation conditions, only the red
inner wing segment is optimized and the green segment is used for aeroelastic analysis.

4.2. Design Strategy

The design object is expanded from a two-dimensional beam to a three-dimensional
wing. SIMP and MBO are carried out to compare the optimization results. The aerody-
namic shape of the CRM wing remains unchanged and only the inner topology structure
is optimized.

In the MBO method, the inner holes of the wing structure are controlled by the NURBS
surfaces and the hole shapes vary with the coordinates of the control points. A sphere
hole, like the earth, is described by 2 poles, 12 longitude lines, and 5 latitude lines. The
distribution of the 62 control points is shown in Figure 14a and the initial spherical hole
shape with a radius of 1 described by these control points is shown in Figure 14b.

Figure 14. Control points along longitude and latitude lines (a) and initial sphere hole (b).
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The sphere centers are can be automatically generated by the algorithm or specified
manually. In this research, six initial sphere centers are specified at the inner segment
of the wing, as shown in Figure 15. The initial sphere holes in Figure 15 are a little
exaggerated to display them more clearly. They are tiny and almost point-like. A sphere
hole gradually develops into an arbitrary shape with the movement of its control points.
The moving direction of a control point is determined by its compliance sensitivity and
volume sensitivity. Therefore, the number of design variables is 372 in total.

Figure 15. Initial positions of the spherical hole centers.

The optimization flowchart is similar to that described in Section 3.3 and the external
loads used in the topology optimization are updated by the three-dimensional flight load
in each generation, as shown in Figure 16. The object is the minimal structural compliance
and the volume ratio constraint is 50%.

Figure 16. Flowchart of aeroelastic topology optimization.

4.3. Design Results

The design results for MBO and SIMP are compared in Table 5.

Table 5. Optimization results for MBO and SIMP.

Design Variable Compliance Volume Ratio Generation

MBO 372 9.426 × 107 49.57% 65
SIMP 18,000 9.420 × 107 50.00% 27

The final topological structure optimized by MBO is shown in Figure 17a and the
basic configuration extracted from the optimization result is shown in Figure 17b. The
MBO result tends toward an integral panel wing structure and retains the thick skin. The
interior is a honeycomb-like support structure and the support beams are perpendicular
to the rib, which is conducive to improving the structural stiffness. The configuration is
consistent with the form of the integral panels commonly used in aircraft wing surfaces,
and the boundary is relatively smooth.
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Figure 17. Topological configuration (a) and extraction of structural feature (b).

The final topological structure optimized by SIMP is shown in Figure 18a and, with
regard to the beam positions of the CRM wing structure, a double-beam configuration of
the inner wing segment with a 50% volume ratio is designed, as shown in Figure 18b.

Figure 18. SIMP result (a) and designed CRM wing structure (b).

In the SIMP result, the wing structure changes from a double-beam configuration to a
single-beam configuration, and holes appear in the middle of the front beam. The structural
compliance of the CRM structure is 9.865 × 107 and the volume ratio is 50.44%. The results
show that topology optimization can help reduce structural compliance.

4.4. Discussion

MBO is preliminarily applied to a three-dimensional CRM wing structure and, as a
comparison, SIMP is also performed with the same conditions.

The optimization results of MBO and SIMP have similar levels of compliance, but the
structural boundary of MBO is smoother and flatter. The clear structure of MBO is more
suitable for engineering practice than SIMP.

Compared with SIMP, MBO has poor computational robustness and unstable results.
The calculation codes of the meshfree methods need to be further improved and optimized.

For the problem of a three-dimensional complex structure, some particular boundaries,
edges, and corners with large curvatures are difficult for the current NURBS curves and
surfaces to describe. They should be further designed in the subsequent shape and size
optimization.

5. Conclusions

A moving boundary meshfree topology optimization that combines the Galerkin
method of weighted residuals and NURBS is presented in this paper.

The proposed method was first applied to the two-dimensional MBB beam. Compared
with the results of the FEM-based methods, the moving boundary optimization could
obtain more than 3.5% compliance reduction subject to the same constraints. The shape
constraints were conveniently applied and the optimized boundary was smoother. The
proposed method only needed 2% of the design variables of the FEM-based methods
or fewer, which helps reduce the time taken for sensitivity analysis and improves the
optimization efficiency. Furthermore, the moving boundary method was almost unaffected
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by mesh density, the number of design variables, and constraints. The optimization stability
makes it more flexible in dealing with two-dimensional problems.

Then, the proposed method was applied to the inner segment of a three-dimensional
CRM wing structure, considering the aeroelastic effect. The moving boundary optimization
needed 2% of the design variables of the FEM-based method and obtained the prospective
compliance subject to the same constraint. The optimal wing structure was clear and close
to the double-beam configuration in practical engineering. The proposed method was still
efficient for the three-dimensional wing structure.

As a new topology optimization method, there is still a big gap between the proposed
method and commercial FEM-based software in terms of robustness and applicability with
complex structures. Some regions with large curvatures need to be described more exactly
in the meshfree method. The program codes need to be further improved and optimized.
The moving boundary technique has great research value and broad development prospects.
Our future research will focus on the above key points.
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