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Abstract: This paper aims to deal with the multiplicity of weak solutions for quasilinear differential
models generated by instantaneous and non-instantaneous impulses. By establishing the new
variational structure and overcoming the influence of impulsive effects brought by the quasilinear
term, some new results are acquired via the gene property, which extends and enriches some previous
results. Moreover, an example is given to illustrate the conclusion of the main results.
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1. Introduction

In this paper, we are concerned with the following one-dimensional second-order
quasilinear differential equation with instantaneous and non-instantaneous impulses
as follows.

−u′′(t) + b(t)u(t)− (u2(t))′′u(t) = fi(t, u(t)), a.e. t ∈ (si, ti+1], i = 0, 1, 2, ..., N,
∆(u′(ti)) = Ii(u(ti)), i = 1, 2, ..., N,
u′(t) = θi(t+i ), t ∈ (ti, si], i = 1, 2, ..., N,
u′(s+i ) = u′(s−i ), i = 1, 2, ..., N,
u(0) = u(T) = 0,

(1)

where fi(t, u) = gi(t, u) + λhi(t)|u|ν−2u, gi ∈ C((si, ti+1] × R,R), b ∈ L∞([0, T],R),
h ∈ L∞((si, ti+1],R), θi ∈ L∞((ti, si],R+), λ ∈ R+, R+ = [0,+∞), v ∈ [1, 2), s0 = 0
< t1 < s1 < t2 < · · · < sN < tN+1 = T, Ii ∈ C(R,R), ∆(u′(ti)) = u′(t+i )− u′(t−i ) and
u′(t±i ) = limt→t±i

u′(t), θi(t+i ) = limt→t+i
θi(t).

This problem has a practical background that arises from the standing wave solutions
(φ(t, x) = e−iwtu(x), w ∈ R) of a kind of quasilinear Schrödinger equation as follows.

i∂tφ = −∂xxφ + V(x)φ− ∂xx(|φ|2)φ− |φ|q−1φ, x ∈ R, q > 1. (2)

For the theme of existence and multiplicity of standing wave solutions for (2), one can refer
to [1–4] and the references therein. Naturally, an interesting question is whether there is a
standing wave solution to (2) with suitable boundary conditions when impulsive effects
happen. The multiplicity of solutions of boundary value problems (BVPs for short) to
differential equations is an important research topic in the qualitative theory of differential
equations. It originated from the practical application in the fields of physics and engineer-
ing, etc., and can ensure that appropriate solutions may be found in practical nonlinear
problems. Therefore, it has important theoretical significance. By establishing the new
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variational structure and overcoming the influence of impulsive effects, the multiplicity of
weak solutions for Dirichlet BVP (1) is considered via the gene property.

As is known to all that the BVPs of impulsive differential equations are an effective
means to describe the discontinuous change of things. It has many practical applications
in the scientific and technological fields, such as SIR epidemic models, aerospace tech-
nology, controllability, optimization, signal communication, and economic regulation, etc.
(see [5–8] and references therein). Thus, BVPs of differential equations with impulses have
attracted the attention of many scholars. For example, Nieto and O’Regan [9] dealt with
the instantaneous impulsive Dirichlet BVP

−u′′(t) + λu(t) = f (t, u(t)), a.e. t ∈ J,
∆(u′(tj)) = Ij(u(tj)), j = 1, 2, ..., m,
u(0) = u(T) = 0,

(3)

and achieved some existing results via employing some critical point theorems. Zhou
and Li [10] extended the results of [9] to the case of the variable coefficient. For more
articles concerning the second-order Dirichlet BVP with instantaneous impulsive effects,
see Zhang and Yuan [11], Sun and Chen [12], etc. It should be mentioned that Shen and
Liu [13] investigated the multiplicity of solutions for the Dirichlet BVP (1) by the symmetry
mountain pass theorem with instantaneous impulsive effects.

In 2013, Hernández and O’Regan [14] firstly introduced the non-instantaneous im-
pulsive problem, whose impulsive effects keep active on a finite time interval. Since then,
more and more scholars have paid attention to this interesting problem (see [15,16] and
references therein). Recently, Bai and Nieto [17] made use of the classical Lax–Milgram
Theorem to construct the variational structure of the second-order Dirichlet BVP with
non-instantaneous impulsive effects and obtained the existence and uniqueness of weak so-
lutions. Khaliq and ur Rehman [18] extended the results of [17] to the case of the fractional
Dirichlet BVP with non-instantaneous impulsive effects. Based on Ekeland’s variational
principle, Tian and Zhang [19] created a further study on the existence of solutions for the
second-order Dirichlet BVP with non-instantaneous and instantaneous impulses as follows.

−u′′(t) = gi(t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, ..., N
∆(u′(ti)) = Ii(u(ti)), i = 1, 2, ..., N,
u′(t) = u(t+i ), t ∈ (ti, si], i = 1, 2, ..., N,
u′(s+i ) = u′(s−i ), i = 1, 2, ..., N,
u(0) = u(T) = 0.

(4)

Zhang and Liu [20] extended the results of [19] to the case of the fractional Dirichlet BVP
with non-instantaneous and instantaneous impulsive effects. Moreover, for the topic of
the existence of multiple weak solutions for impulsive equations, one can read [21,22] and
references therein.

Motivated by the works mentioned above, we are concerned with the multiplicity of
weak solutions for the Dirichlet BVP (1). Let us present the characteristics of this paper: First,
under the influence of non-instantaneous and instantaneous impulsive effects, a new en-
ergy functional is established for the second-order Dirichlet BVP of quasilinear differential
equations, which implies that the variational methods can be used to investigate the exis-
tence and multiplicity of weak solutions for this problem. Second, the non-instantaneous
and instantaneous impulsive effects generated by the quasilinear term (u2)′′u are more
complicated than the case of u′′, which makes this problem more interesting and difficult.
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2. Preliminaries

To begin with, we introduce some necessary basic knowledge and signs. Let
C := C([0, T],R) with norm ‖u‖∞ = maxt∈[0,T] |u(t)| and Lp := Lp([0, T],R) with norm

‖u‖Lp = (
∫ T

0 |u(t)|
pdt)

1
p , 1 ≤ p ≤ ∞. In the Sobolev space H1

0(0, T), define the
inner product

< u, v >=
∫ T

0
u(t)v(t)dt +

∫ T

0
u′(t)v′(t)dt, ∀u, v ∈ H1

0(0, T),

inducing the norm

‖u‖ =
(∫ T

0
|u(t)|2 + |u′(t)|2dt

) 1
2

. (5)

By Poincaré’s inequality ‖u‖L2 ≤ 1√
µ‖u

′‖L2 , where µ = π2

T2 means the first eigenvalue

relating to −u′′ = µu with Dirichlet boundary conditions, it follows that ‖u′‖2
L2 ≤ ‖u‖2 ≤

(1 + 1
µ )‖u′‖2

L2 . Therefore, the norm ‖u′‖L2 is equivalent to ‖u‖. In this paper, assume that

ess inft∈[0,T]b(t) > q and ρ = min{2θ2
min, q} > −µ, where θmin = mini=1,2,...,N θi(t+i ), q is a

constant. If we consider the following inner product

< u, v >ρ=
∫ T

0
ρu(t)v(t)dt +

∫ T

0
u′(t)v′(t)dt, ∀u, v ∈ H1

0(0, T),

inducing the norm

‖u‖ρ =

(∫ T

0
ρ|u(t)|2 + |u′(t)|2dt

) 1
2

, (6)

by the Lemma 2.1 in [10] and Poincaré’s inequality, there exists a constant ϑ ∈ (0, 1)
such that

ϑ‖u′‖2
L2 ≤ ‖u‖2

ρ ≤ (1 +
ρ

µ
)‖u′‖2

L2 . (7)

Thus, the norms ‖u′‖L2 , ‖u‖ρ and ‖u‖ are equivalent. Moreover, in view of the Sobolev
imbedding theorem, we can find a constant S > 0 such that ‖u‖∞ ≤ S‖u‖. It should
be mentioned that for each u ∈ H1

0(0, T), u is absolutely continuous and u′ ∈ L2. Thus,
impulsive effects may occur. Therefore, the following lemma can be established.

Lemma 1. If a function u ∈ H1
0(0, T) is a solution of problem (1), then the following identity

∫ T

0
u′(t)v′(t)dt +

∫ T

0
(2u′2(t)u(t)v(t) + 2u2(t)u′(t)v′(t))dt +

N

∑
i=1

∫ si

ti

2θ2
i (t

+
i )u(t)v(t)dt

+
N

∑
i=0

∫ ti+1

si

b(t)u(t)v(t)dt +
N

∑
i=1

(2u2(ti) + 1)Ii(u(ti))v(ti) =
N

∑
i=0

∫ ti+1

si

fi(t, u(t))v(t)dt (8)

holds for any v ∈ H1
0(0, T).

Proof. In view of (1), we have
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∫ T

0
(2u′2(t)u(t)v(t) + 2u2(t)u′(t)v′(t))dt

=
∫ T

0
(u(t)v(t))′(u2(t))′dt

=
N

∑
i=0

∫ ti+1

si

((u(t)v(t))′(u2(t))′dt +
N

∑
i=1

∫ si

ti

((u(t)v(t))′(u2(t))′dt

=
N

∑
i=0

(2u2(t)u′(t)v(t)) |t
−
i+1

s+i
−

N

∑
i=0

∫ ti+1

si

(u2(t))′′u(t)v(t)dt

+
N

∑
i=1

(2u2(t)u′(t)v(t)) |s
−
i

t+i
−

N

∑
i=1

∫ si

ti

(2u(t)u′(t))′u(t)v(t)dt

=
N

∑
i=1

(2u2(ti)u′(t−i )v(ti)− 2u2(ti)u′(t+i )v(ti)) + 2u2(T)u′(T)v(T)− 2u2(0)u′(0)v(0)

+
N

∑
i=1

(2u2(si)u′(s−i )v(si)− 2u2(si)u′(s+i )v(si))−
N

∑
i=0

∫ ti+1

si

(u2(t))′′u(t)v(t)dt

−
N

∑
i=1

∫ si

ti

2u′2(t)u(t)v(t)dt

= −
N

∑
i=1

2Ii(u(ti))u2(ti)v(ti)−
N

∑
i=0

∫ ti+1

si

(u2(t))′′u(t)v(t)dt

−
N

∑
i=1

2θ2
i (t

+
i )
∫ si

ti

u(t)v(t)dt. (9)

Similarly, it follows that

∫ T

0
u′(t)v′(t)dt = −

N

∑
i=1

Ii(u(ti))v(ti)−
N

∑
i=0

∫ ti+1

si

u′′(t)v(t)dt. (10)

Moreover, we can obtain

∫ T

0
b(t)u(t)v(t)dt =

N

∑
i=0

∫ ti+1

si

b(t)u(t)v(t)dt +
N

∑
i=1

∫ si

ti

b(t)u(t)v(t)dt, (11)

which together with the eqution

−u′′(t) + b(t)u(t)− (u2(t))′′u(t) = fi(t, u(t)), a.e. t ∈ (si, ti+1],

(9) and (10) yield (8).

Definition 1. A function u ∈ H1
0(0, T) is labeled as a weak solution of problem (1), if (8) is

satisfied for any v ∈ H1
0(0, T).

Define the functional Φ : H1
0(0, T)→ R by

Φ(u) =
1
2

∫ T

0
u′2(t)dt +

1
2

N

∑
i=0

∫ ti+1

si

b(t)u2(t)dt +
N

∑
i=1

∫ si

ti

θ2
i (t

+
i )u

2(t)dt +
∫ T

0
u′2(t)u2(t)dt

+
N

∑
i=1

∫ u(ti)

0
(2t2 + 1)Ii(t)dt−

N

∑
i=0

∫ ti+1

si

Gi(t, u(t))dt− λ

ν

N

∑
i=0

∫ ti+1

si

hi(t)|u(t)|νdt.
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where Gi(t, u) =
∫ u

0 gi(t, s)ds. In view of the continuity of gi and Ii, by employing the
standard approaches, we can get that Φ(u) ∈ C1(H1

0(0, T),R) and the critical points of
Φ(u) are weak solutions of the problem (1).

Next, for obtaining our main results, some knowledge on “genus” will be presented.
Let E be a Banach space, Φ ∈ C1(E,R),

Σ = {A ⊂ E \ {0} : A is closed in E and symmetric with respect to 0},
Kσ = {u ∈ E : Φ(u) = σ, Φ′(u) = 0}, Φσ = {u ∈ E : Φ(u) ≤ σ},

where σ ∈ R.

Definition 2 ([23]). For A ∈ Σ, if there is an odd map φ ∈ C(A,Rn \ {0}) such that n is the
smallest integer with this property, then the genus of A is n defined by γ(A) = n.

Lemma 2 ([23]). Assume that Φ ∈ C1(E,R) meets the (PS)-condition. Moreover, Φ is an even
functional. For any n ∈ N, set

Σn = {A ∈ Σ : γ(A) ≥ n}, σn = inf
A∈Σn

sup
u∈A

Φ(u).

(i) If Σn 6= 0 and σn ∈ R, then σn is a critical value of Φ;
(ii) If there exists κ ∈ N such that σn = σn+1 = · · · = σn+κ = σ ∈ R, and σ 6= Φ(0), then
γ(Kσ) ≥ κ + 1.

3. Main Results

In order to describe our main results, the following assumptions are given.

(I1) For any u ∈ R, Ii(u) are odd in u and Ii(u)u ≥ 0, i = 1, 2..., N.

(I2) There exist constants αi > 0, d1 > 0 and γi ∈ [0, 1) such that

|Ii(u)| ≤ αi|u|γi for any |u| ≤ d1.

(G1) There exist constants βi > 0, d2 > 0 and l ∈ [0, 1) such that gi(t, u) are odd in u,
∀(t, u) ∈ (si, ti+1]× [−d2, d2] and

gi(t, u) ≤ βi|u|l , ∀(t, u) ∈ (si, ti+1]×R, i = 1, 2..., N.

(G2) There exist constants ξi > 0, d3 > 0, τ ∈ [ν, γ∗ + 1) and the open sets Ωi ⊂ (si, ti+1]
such that

Gi(t, u) ≥ ξi|u|τ , ∀ (t, u) ∈ Ωi × [−d3, d3], i = 1, 2..., N,

where γ∗ = mini=1,2,...,N γi. Moreover,
∫ ti+1

si
Gi(t, u)dt > 0.

Let ξmin = mini=1,2,...,N ξi. Now, we state our main results.

Theorem 1. Assuming that the conditions (I1), (I2), (G1) and (G2) are fulfilled, there exist positive
constants ξ∗, λ∗ such that if ξmin ∈ (0, ξ∗) and λ ∈ [0, λ∗), the Dirichlet BVP (1) has infinitely
many nontrivial weak solutions {uk} satisfying Φ(uk)→ 0 as k→ +∞.

Remark 1. In (G1), the oddness of gi(t, u) in u are local.
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For obtaining our main results, inspired by [24], by constructing the following trun-
cated functional, the following Lemma 3 can be established.

J(u) =
1
2

∫ T

0
u′2(t)dt +

1
2

N

∑
i=0

∫ ti+1

si

b(t)u2(t)dt +
N

∑
i=1

∫ si

ti

θ2
i (t

+
i )u2(t)dt +

∫ T

0
u′2(t)u2(t)dt

− λ

ν

N

∑
i=0

∫ ti+1

si

hi(t)|u(t)|νdt +
N

∑
i=1

∫ u(ti)

0
(2t2 + 1)Ii(t)dt− Υ(‖u‖)

N

∑
i=0

∫ ti+1

si

Gi(t, u(t))dt,

where Υ ∈ C1(R+, [0, 1]) satisfying
Υ′(t) ≤ 0, ∀t ∈ [0, T];
Υ(t) = 0, ∀t ≥ η

S ;
Υ(t) = 1, ∀t ≤ η

2S ,
(12)

where η = min{d1, d2, d3}. Assume that βmax < ϑµη1−l

4TS2(1+µ)
, where βmax = maxi=1,2,...,N βi.

Thus, the critical points {un} of J satisfying ‖un‖ ≤ η
2S are the critical points of Φ. Next,

we show that the functional J satisfies the (PS)-condition.

Lemma 3. Assume that the conditions of Theorem 1 hold, then there exists a positive constant λ∗

such that if λ ∈ [0, λ∗), J(u) satisfies the (PS)-condition, i.e., for any {un} ∈ H1
0(0, T), if

{J(un)} is bounded and J′(un)→ 0 as n→ +∞,

then {un} has a convergent subsequence in H1
0(0, T).

Proof. Based on the definition of J(u), if ‖u‖ ≥ η
S , by (I1), we can obtain

J(u) =
1
2

∫ T

0
u′2(t)dt +

1
2

N

∑
i=0

∫ ti+1

si

b(t)u2(t)dt +
N

∑
i=1

∫ si

ti

θ2
i (t

+
i )u

2(t)dt

+
∫ T

0
u′2(t)u2(t)dt +

N

∑
i=1

∫ u(ti)

0
(2t2 + 1)Ii(t)dt− λ

ν

N

∑
i=0

∫ ti+1

si

hi(t)|u(t)|νdt

≥ 1
2

∫ T

0
u′2(t)dt +

1
2

∫ T

0
ρu2(t)dt− λhmax

ν

∫ T

0
|u(t)|νdt

≥ ϑµ

2(1 + µ)
‖u‖2 − λhmaxTSν

ν
‖u‖ν,

which yields that

J(u)→ +∞ as ‖u‖ → +∞, (13)

where hmax = maxi=1,2,...,N ‖hi‖L∞ . Thus, J(u) is coercive and bounded from below. More-
over, for any {un} ∈ H1

0(0, T), if {J(un)} is bounded and J′(un)→ 0, it follows that {un}
is bounded in H1

0(0, T) by (13). Based on the fact that H1
0(0, T) is a reflexive Banach space,

{un} has a convergent subsequence (called again {un}). Since H1
0(0, T) is compactly em-

bedded into C, so un ⇀ u in H1
0(0, T), un → u uniformly in C. If η

2S < ‖un‖ ≤ η
S , by (I1),

(G1) and (G2), we have
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J′(un)un =
∫ T

0
u′2n(t)dt +

N

∑
i=0

∫ ti+1

si

b(t)u2
n(t)dt + 2

N

∑
i=1

∫ si

ti

θ2
i (t

+
i )u

2
n(t)dt + 4

∫ T

0
u′2n(t)u

2
n(t)dt

+
N

∑
i=1

(2u2(ti) + 1)Ii(u(ti))un(ti)− λ
N

∑
i=0

∫ ti+1

si

hi(t)|un(t)|νdt

−Υ′(‖un‖)‖un‖
N

∑
i=0

∫ ti+1

si

Gi(t, un(t))dt− Υ(‖un‖)
N

∑
i=0

∫ ti+1

si

gi(t, un(t))un(t)dt

≥
∫ T

0
u′2n(t)dt +

∫ T

0
ρu2

n(t)dt− λhmax

∫ T

0
|un(t)|νdt− βmax

∫ T

0
|un(t)|l+1dt

≥ ϑµ

1 + µ
‖un‖2 − λhmaxTSν‖un‖ν − βmaxTSl+1‖un‖l+1

≥ ϑµ

1 + µ
(

η

2S
)2 − λhmaxTην − βmaxTηl+1,

which together with βmax < ϑµη1−l

4TS2(1+µ)
yield that there exists a positive constant λ∗∗ such

that if λ ∈ [0, λ∗∗), J′(un)un > 0. If ‖un‖ > η
S , J′(un)un ≥ ‖un‖v( ϑµ

1+µ (
η
s )

2−v − λhmaxTSν).
Hence, there exists a positive constant λ∗∗∗ such that if λ ∈ [0, λ∗∗∗), J′(un)un > 0. There-
fore, J′(un) 9 0 forλ ∈ [0, λ∗), where λ∗ = min{λ∗∗, λ∗∗∗}. Thus, we just need to deal
with the case of ‖un‖ ≤ η

2S . It follows that |un| ≤ ‖un‖∞ ≤ S‖un‖ ≤ η
2 , which together

with (I2), (G1), un ⇀ u in H1
0(0, T), un → u uniformly in C, J′(un)→ 0 as n→ +∞ and

∫ T

0
(u2

n(t)u
′
n(t)− u2(t)u′(t))(u′n(t)− u′(t))dt

=
∫ T

0
u′n(t)(u

′
n(t)− u′(t))(u2

n(t)− u2(t))dt +
∫ T

0
u2(t)|u′n(t)− u′(t)|2dt

yields that

o(1) = < J′(un)− J′(u), un − u >=
∫ T

0
|u′n(t)− u′(t)|2dt +

N

∑
i=0

∫ ti+1

si

b(t)|un(t)− u(t)|2dt

+
N

∑
i=1

∫ si

ti

2θ2
i (t

+
i )|un(t)− u(t)|2dt +

∫ T

0
(u′2n (t)un(t)− u′2(t)u(t))(un(t)− u(t))dt

+
∫ T

0
(u2

n(t)u
′
n(t)− u2(t)u′(t))(u′n(t)− u′(t))dt

−λ
N

∑
i=0

∫ ti+1

si

hi(t)(|un(t)|ν−2un(t)− |u(t)|ν−2u(t))(un(t)− u(t))dt

+
N

∑
i=1

(2u2
n(ti) + 1)Ii(un(ti))(un(ti)− u(ti))−

N

∑
i=1

(2u2(ti) + 1)Ii(u(ti))(un(ti)− u(ti))

−
N

∑
i=0

∫ ti+1

si

(gi(t, un(t))− gi(t, u(t)))(un(t)− u(t))dt

=
∫ T

0
|u′n(t)− u′(t)|2dt +

∫ T

0
u2(t)|u′n(t)− u′(t)|2dt + o(1),

which leads to that un → u in H1
0(0, T), which means that J(u) satisfies the (PS)-condition.

Proof. Note that J ∈ C1(H1
0(0, T),R) and J(0) = 0. If ‖u‖ ≥ η

S , based on the definition of
Υ, we have J(−u) = J(u). If ‖u‖ ≤ η

S , we have |u| ≤ ‖u‖∞ ≤ S‖u‖ ≤ η, which together
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with (I1) and (G1) yield that J(−u) = J(u). Thus, J(−u) = J(u), ∀u ∈ H1
0(0, T). Next,

in view of Lemma 2, we aim to present that there exists m > 0 such that

γ(J−m) ≥ k, k ∈ Z+.

Let k disjoint open sets Λi satisfy
⋃k

i=1 Λi ⊂
⋃N

i=1 Ωi, where k ≥ N. Moreover, there has at
least one ι ∈ {1, 2, ..., k} such that

Λι ⊂ Ωi ⊂ (si, ti+1].

Let ui ∈ H1
0(Λi) \ {0}, ‖ui‖ = 1 and

∆k = span{u1, u2, ..., uk}, Πk = {u ∈ ∆k : ‖u‖ = 1}.

For any u ∈ ∆k, in view of the equivalence of the norms on the finite-dimensional space,
there exist c1 > 0, c2 > 0 such that c1‖u‖ ≤ ‖u‖Lτ , ‖u‖Lν ≤ c2‖u‖. Moreover, it follows
that there exists ωi ∈ R, i = 1, 2, ..., k such that u(t) = ∑k

i=1 ωiui(t),

‖u‖τ
Lτ =

k

∑
i=1
|ωi|τ

∫
Λi

|ui(t)|τdt, ‖u‖ν
Lν =

k

∑
i=1
|ωi|ν

∫
Λi

|ui(t)|νdt

and

‖u‖2 =
k

∑
i=1

ω2
i

∫
Λi

(|ui(t)|2 + |u′i(t)|2)dt =
k

∑
i=1

ω2
i . (14)

Let us reorder γi (i = 1, 2, ..., N) as follows.

0 ≤ γ̃1 ≤ γ̃2 ≤ · · · ≤ γ̃N < 1,

where γ̃1 = γmin. Now, we need to consider two cases:

(i) hi is a negative or sign-changing function; (ii) hi is a positive function.

For case (i), from (I2), (G2) and (14), for any u ∈ Πk and 0 < ζ ≤ r that r = min{1, η
2S},

we have

J(ζu) ≤ (‖b‖L∞ + 2θ2
max + 1)ζ2

2
‖u‖2 +

N

∑
i=1

αiSγi+1ζγi+1‖u‖γi+1 +
N

∑
i=1

2αiSγi+3ζγi+3‖u‖γi+3

+S2ζ4‖u‖4 − ζτξmin

k

∑
i=1
|ωi|τ

∫
Λi

|ui(t)|τdt + λζνhmax

k

∑
i=1
|ωi|ν

∫
Λi

|ui(t)|νdt

≤ (‖b‖L∞ + 2θ2
max + 1)ζ2

2
+

N

∑
i=1

αiSγi+1ζγi+1 +
N

∑
i=1

2αiSγi+3ζγi+3

+S2ζ4 − ζτξmincτ
1 + λζνhmaxcν

2

≤ Mζ γ̃1+1 − ζτξmincτ
1 + λζνhmaxcν

2

= ζν(Mζ γ̃1+1−ν − ζτ−νξmincτ
1 + λhmaxcν

2),

where M = ‖b‖L∞+2θ2
max+1

2 +
N
∑

i=1
αiSγi+1 +

N
∑

i=1
2αiSγi+3 + S2, θmax = maxi=1,2,...,N θi(t+i ).

Define
ψ(t) = Mtγ̃1+1−ν − tτ−νξmincτ

1 , 0 < t ≤ r.
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Thus, from ξmin ∈ (0, ξ∗) that ξ∗ = Mrγ̃1+1−ν(γ̃1+1−ν)
cτ

1 (τ−ν)
, there exists

t0 = (
ξmincτ

1(τ − ν)

M(γ̃1 + 1− ν)
)

1
γ̃1+1−τ ∈ (0, r],

such that for τ − γ̃1 − 1 < 0,

ψ(t0) = min
0<t≤r

ψ(t) =
ξmincτ

1(τ − γ̃1 − 1)
γ̃1 + 1− ν

(
ξmincτ

1(τ − ν)

M(γ̃1 + 1− ν)
)

τ−ν
γ̃1+1−τ < 0.

Hence, if λ ∈ [0, λ∗∗∗∗) and

λ∗∗∗∗ =
ξminνcτ

1(γ̃1 + 1− τ)

cν
2hmax(γ̃1 + 1− ν)

(
ξmincτ

1(τ − ν)

M(γ̃1 + 1− ν)
)

τ−ν
γ̃1+1−τ > 0,

we can find constats m > 0, v > 0 such that

J(vu) < −m for u ∈ Πk. (15)

Moreover, (15) holds for case (ii), provided that ξmin ∈ R+ \ {0}, λ ∈ R+. Choose λ ∈
[0, λ∗), where λ∗ = min{λ∗∗∗∗, λ∗}. It implies that J satisfies the (PS)-condition and
(15). Let

Πv
k = {vu : u ∈ Πk}, Ξ = {(ω1, ω2, ..., ωk) ∈ Rk :

k

∑
i=1

ω2
i < v2}.

From (15), we have
J(u) < −m for u ∈ Πv

k ,

which implies that Πv
k ⊂ J−m ∈ Σ. Moreover, based on (15), there exists an odd homeo-

morphism mapping φ ∈ C(Πv
k , ∂Ξ), which together with the properties of genus (see [23])

yield that

γ(J−m) ≥ γ(Πv
k ) = γ(∂Ξ) = k. (16)

Let
σk = inf

A∈Σk
sup
u∈A

J(u).

Since J(u) is coercive and bounded from below, by (16), one has −∞ < σk ≤ −m < 0.
Based on the above facts, by Lemma 2, the Dirichlet BVP (1) has infinitely many nontrivial
weak solutions {uk} satisfying ‖uk‖ ≤

η
2S and Φ(uk)→ 0 as k→ +∞.

Next, an example is given to illustrate the conclusion of the main results.

4. Example

Consider the following problem:

−u′′(t) + (t + 1)u(t)− (u2(t))′′u(t) = u
1
9 (t) + λ|u(t)|− 17

18 u(t), a.e. t ∈ (si, ti+1], i = 0, 1, 2, ..., N,
∆(u′(ti)) = u

1
3 (ti), i = 1, 2, ..., N,

u′(t) = sin2(t+i ), t ∈ (ti, si], i = 1, 2, ..., N,
u′(s+i ) = u′(s−i ), i = 1, 2, ..., N,
u(0) = u(T) = 0.

(17)

It is not difficult to verify that the conditions (I1), (I2), (G1), (G2) are satisfied.

5. Conclusions

Under the influence of non-instantaneous and instantaneous impulsive effects, by con-
structing a new energy functional, which makes the variational methods applicable, and



Symmetry 2022, 14, 1141 10 of 11

overcoming the difficulties brought by the quasilinear term (u2(t))′′u, the multiplicity of
weak solutions for quasilinear differential models generated by instantaneous and non-
instantaneous impulses are obtained, which extend and enrich some previous results. In the
future, we will develop a further study of the multiplicity of weak solutions to BVPs of
differential equations with non-instantaneous and instantaneous impulsive effects when
the nonlinear term g satisfies the satisfies superlinear growth.
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