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Abstract: The dyadic Helmholtz Green’s function for electromagnetic (EM) wave transmission/
diffraction through a subwavelength nano-hole in a two-dimensional (2D) plasmonic layer is dis-
cussed here analytically and numerically, employing “contact potential”-like Dirac delta functions in
1 and 2 dimensions (δ(z) and δ(x) δ(y) ≡ δ(2)(~r)). This analysis is carried out employing a succession
of two coupled integral equations. The first integral equation determines the dyadic electromagnetic
Green’s function Ĝ f s for the full non-perforated 2D quantum plasma layer in terms of the bulk 3D
infinite-space dyadic electromagnetic Green’s function Ĝ3D, with δ(z) representing the confinement
of finite quantum plasma conductivity to the plane of the plasma layer at z = 0. The second integral
equation determines the dyadic electromagnetic “hole” Green’s function Ĝhole for the perforated 2D
quantum plasma layer (containing the nano-hole) in terms of the dyadic electromagnetic Green’s
function Ĝ f s for the full non-perforated 2D plasma layer, with δ(2)(~r) describing the exclusion of the
quantum plasma layer conductivity properties from the nano-hole region in the vicinity of~r = 0 on
the plane. Taking the radius of the subwavelength nano-hole to be the smallest length scale of the
system in conjunction with the 2D Dirac delta function representation of the excluded nano-hole
plasma conductivity, both of the successive coupled integral equations are solved exactly, and we
present a thorough numerical analysis (based on the exact analytic solution) for the resulting dyadic
“hole” Green’s function Ĝhole in full detail in both 3D and density plots. This result has been suc-
cessfully applied to the determination of electromagnetic wave transmission/diffraction through
the nano-hole of the perforated quantum plasmonic layer, jointly with the EM wave transmission
through the rest of the plasma layer. This success necessarily involves spatial translational asymmetry
induced by the use of spatial Dirac delta functions confining finite conductivity to the 2D quantum
plasma sheet and the excision at a bit of it about the origin to represent the nano-hole perforation,
thus breaking spatial translational invariance symmetry.

Keywords: Green’s function; electromagnetic wave transmission/diffraction; Helmholtz; nano-hole;
plasmonic layer; subwavelength; contact potential; dirac delta function; dyadic

1. Introduction

The transmission/diffraction properties of an electromagnetic dyadic Green’s function
for wave propagation through a nano-hole in a two-dimensional (2D) quantum plasmonic
layer are analyzed here using a succession of two coupled integral equations jointly with
“contact interaction”-like Dirac delta functions representing positional localization of the
layer and the nano-hole [1–3]. The nano-hole is taken to lie on a 2D plasmonic sheet
(located on the plane z = 0 embedded in a three-dimensional (3D) bulk host medium with
background dielectric constant ε

(3D)
b ). In Section 2 of this paper, we briefly review in some
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detail the analytic determination of the electromagnetic dyadic Helmholtz Green’s function
Ĝ f s in the presence of the layer in which a uniform two-dimensional quantum plasma is
embedded. The first associated integral equation employs a “contact interaction”-like 1D
Dirac delta function that localizes the plasma conductivity to the 2D sheet at z = 0 and
its solution yields Ĝ f s in terms of the well-known bulk 3D infinite-space electromagnetic
dyadic Green’s function Ĝ3D explicitly. Section 3 reviews the electromagnetic dyadic
Helmholtz Green’s function solution Ĝhole for the perforated 2D plasmonic layer embedded
in a 3D host medium, with the presence of a nano-hole aperture in the subwavelength
regime. In this second associated integral equation, the excision of nano-hole conductivity
from the 2D plasma sheet is represented in terms of a “contact interaction”-like 2D Dirac
delta function; the exact solution of this second integral equation yields Ĝhole in terms
of Ĝ f s explicitly, which has been determined as above in terms of Ĝ3D. The results of
our thorough numerical analysis (based on the exact analytic solution) for the perforated
plasma layer electromagnetic dyadic Helmholtz Green’s function are exhibited in Section 4
with illustrative 3D and density plots showing results in the near-, middle- and far-field
zones of the transmission region. Finally, our conclusions are summarized in Section 5.
Obtaining an exact analytic solution to the involved electromagnetic issues of diffraction
jointly with transmission through the 2D plasma sheet has necessarily introduced spatial
translational asymmetry through the use of spatial Dirac delta functions confining finite
conductivity to the plasma sheet and the excision of a bit of it about the origin to represent
the nano-hole perforation.

2. Dyadic Electromagnetic Green’s Function for a Full 2D Plasmonic Layer Embedded
in a 3D Bulk Host Medium
Integral Equation for the Full 2D Plasma Layer Electromagnetic Dyadic Helmholtz Green’s
Function Ĝ f s(~k‖; z, z′; ω) and Solution

We consider a two-dimensional quantum plasmonic layer S1 with a dynamic, nonlocal
2D plasma conductivity, σ

(2D)
f s (~k‖, ω), located on the plane z = 0, embedded in a three-

dimensional infinite bulk host medium with background dielectric constant ε
(3D)
b (Figure 1).

The associated electromagnetic dyadic Helmholtz Green’s function including the full
two-dimensional plasmonic sheet, Ĝ f s without a nano-hole, satisfies the integral equation
(position/frequency representation) [1–3]

Ĝ f s(~r,~r′; ω) = Ĝ3D(~r,~r′; ω)

+
4π iω

c2

∫
d3~r

′′
∫

d3~r
′′′

Ĝ3D(~r,~r
′′
; ω)σ̂

(2D)
f s (~r”,~r

′′′
; ω)Ĝ f s(~r

′′′
,~r′; ω), (1)

where Ĝ3D satisfies the inversion condition[
Î
(
~∇2 +

ω2

c2 ε
(3D)
b

)
− ~∇~∇

]
Ĝ3D(~r,~r′; ω) = − Îδ(3D)(~r−~r′), (2)

as the bulk 3D infinite-space dyadic electromagnetic Green’s function, and Î = x̂x̂ + ŷŷ+ ẑẑ
is the 3D unit dyadic tensor and c is the speed of light in vacuum. The conductivity σ

(2D)
f s

of the full 2D plasmonic layer has the form

σ̂2D
fs

(~r,~r′; ω) = Î σ
(2D)
f s (~r‖,~r

′
‖; ω) δ(z) δ(z′), (3)

where~r = (~r‖; z) and σ̂2D
fs

(~r‖,~r′‖; ω) is the 2D plasmonic conductivity of the 2D sheet; δ(z)
is the “contact potential”-like Dirac delta function employed to confine the conductivity
to the plane of the 2D layer at z = 0. Fourier transforming~r‖ −~r

′
‖ 7→~k‖ = kx êx + ky êy to

lateral wavenumber representation,
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σ̂
(2D)
f s (~k‖; z

′′
, z
′′′

; ω) = Î σ
(2D)
f s (~k‖; ω)δ(z

′′
)δ(z

′′′
), (4)

where σ̂
(2D)
f s is taken in the local limit as

σ
(2D)
f s (~k‖; ω) =

i ω

4π

[
ε
(3D)
b − ε(ω)

]
d, (5)

with ε(ω) as the local, dynamic dielectric function of the 2D plasmonic layer of thickness d.
It should be noted that 2D plasma nonlocality could easily be included here.

> 

-----1----L---------------------------i

- - - - - - - - - - - - - - - - _L_______________________ _____y

Figure 1. (Color online). Schematic illustration of a two-dimensional plasmonic layer S1 of thickness

d embedded at z = 0 in a three-dimensional bulk medium with dielectric constant ε
(3D)
b .

The solution of Equation (1) for Ĝ f s(~k‖; z, z′; ω) in~k‖ representation may be deter-
mined algebraically in terms of Ĝ3D by using Equation (4) in the indicated integrations of
Equation (1), with the result [1–3]

Ĝ f s(~k‖; z, z′; ω) = Ĝ3D(~k‖; z, z′; ω)

+ γ Ĝ3D(~k‖; z, 0; ω)

×
[

Î − γ Ĝ3D(~k‖; 0, 0; ω)
]−1

Ĝ3D(~k‖; 0, z′; ω), (6)

where we have defined γ as

γ =
4π i ω

c2 σ
(2D)
f s (~k‖; ω) (7)

and the bulk 3D infinite-space dyadic electromagnetic Green’s function Ĝ3D is

Ĝ3D(~k‖; z, z′; ω) = − ei kz |z−z′ |

2 i kz

×
{

Î − 1
q2

ω

[
~k‖~k‖ + kz sgn(z− z′)

(
~k‖ êz + êz~k‖

)
+ êz êz

(
k2

z − 2ikzδ(z− z′)
)]}

, (8)

in mixed (~k‖; z, z′) Fourier representation and qω = (ω/c)
√

ε
(3D)
b . Furthermore,

kz =
√

q2
ω − k2

‖ (9)
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and

sgn(z) =


1, for z > 0 ;
0, for z = 0 ;
−1, for z < 0 ,

(10)

where z = z− z′. Arnoldus and Foley have carried out interesting studies of traveling and
evanescent parts of Ĝ3D and the optical near field [4,5].

The determination of Ĝ f s(~k‖; z, z′; ω) in Equation (6) involves evaluation of

Ĝ3D(~k‖; z, z′; ω) at z = 0 and z′ = 0 : This introduces the divergent quantity δ(z− z′) 7→
δ(0), which is an artifact of our confinement of the plasma layer to a sheet of zero thickness.
As an analysis of the original integral equation (Equation (1)), taking account of a small
but finite layer thickness d would involve an integration “smearing” the z, z′ ∼ variables
over the small range of layer thickness d. We estimate its effect on the result in terms of a
representation of δ(z− z′) as the limit of the sequence of “square pulse” functions given by

δ(z− z′) = lim
d→0

η+
(

d
2 − | z− z′ |

)
d

, so δ(0) ≈ 1
d

, (11)

for z = z′ 7→ 0. This estimate is dimensionally correct and may be expected to properly
represent the order of magnitude of the result for small d in removing the divergent δ(0)-
quantity. Thus, we have

Ĝ3D(~k‖; 0, 0; ω) = − 1
2 i kz

{
Î − 1

q2
ω

[
~k‖~k‖ + êz êz

(
k2

z −
2ikz

d

)]}
. (12)

As the solution of Equation (6) involves Ĝ f s(~k‖; z, 0; ω) and the 3D matrix inversion of[
Î − γ Ĝ3D(~k‖; 0, 0; ω)

]
, it is worthwhile to point out that

Ĝ f s(~k‖; z, 0; ω) = Ĝ3D(~k‖; z, 0; ω)
[

Î − γ Ĝ3D(~k‖; 0, 0; ω)
]−1

. (13)

The inversion of
[

Î − γ Ĝ3D(~k‖; 0, 0; ω)
]

is straightforward due to the block diago-

nality of Ĝ3D(~k‖; 0, 0; ω) (Equation (12)), and the resulting elements of Ĝ f s(~k‖; z, 0; ω) are
exhibited explicitly in full detail in Reference [4].

3. Dyadic Electromagnetic Green’s Function for a Perforated 2D Plasmonic Layer with
a Nano-Hole Embedded in a 3D Bulk Host Medium
Integral Equation for the 2D Electromagnetic Dyadic Helmholtz Green’s Function for a Perforated
Plasmonic Layer Ĝhole and Solution

The conductivity of a 2D quantum plasmonic layer perforated by a nano-scale aperture
of area A in the (x− y) plane can be represented by subtracting from σ̂

(2D)
f s the part of the full

sheet conductivity associated with the hole, σ̂
(2D)
hole (Figure 2), so the effective conductivity

σ̂(2D) is given by

σ̂(2D)(~r,~r′; ω) = σ̂
(2D)
f s (~r,~r′; ω) − σ̂

(2D)
hole (~r,~r′; ω). (14)

The corresponding dyadic electromagnetic Green’s function for the perforated sheet, Ĝhole,
obeys an integral equation relating it to Ĝ f s as follows (position–frequency representation):

Ĝhole(~r,~r′; ω) = Ĝ f s(~r,~r′; ω)

− 4π iω
c2

∫
d3~r

′′
∫

d3~r
′′′

Ĝ f s(~r,~r
′′
; ω) σ̂2D

hole(~r
′′
,~r
′′′

; ω)Ĝhole(~r
′′′

,~r′; ω). (15)
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Figure 2. (Color online). Schematic representation of a perforated 2D plasmonic layer (thickness d,
embedded at z = 0 in a three-dimensional bulk medium) with a nano-hole of radius R at the origin
of the (x− y)-plane.

The excised part of the conductivity defining the hole is described by the spatially
localized conductivity tensor given by

σ̂
(2D)
hole (x, x′; y, y′; z, z′; ω) = Îσ

(2D)
f s (ω)η+

( a
2
− |x|

)
η+

(
a′

2
− |x′|

)
× η+

(
b
2
− |y|

)
η+

(
b′

2
− |y′|

)
δ(z) δ(z′), (16)

where σ
(2D)
f s (ω) is given by Equation (5) and η+(x) is the Heaviside unit step function

confining the integration range on the 2D sheet to the subwavelength nano-hole dimensions
(a, b) in the (x, y) directions. In considering small hole dimensions, (a 7→ 0; b 7→ 0), we
again note that the following limit of the sequence of “square pulse” functions

lim
a→0

[
η+
( a

2 − | x |
)

a

]
= δ(x) (17)

is a representation of the “contact potential”-like Dirac delta function δ(x), whence we
write

σ̂
(2D)
hole (~r‖,~r

′
‖; z, z′; ω) ≈ ÎA2σ

(2D)
f s (ω)δ2D(~r‖)δ

2D(~r′‖)δ(z)δ(z
′), (18)

where A = a b = a′ b′ is the area of the nano-hole. Employing Equation (18) in Equation (15),
the integrations yield an algebraic solution for Ĝhole in terms of Ĝ f s as

Ĝhole(~r‖,~r
′
‖; z, z′; ω) = Ĝ f s(~r‖,~r

′
‖; z, z′; ω)− β Ĝ f s(~r‖, 0; z, 0; ω) Ĝhole(0,~r′‖; 0, z′; ω), (19)

where

β = γA2 =

(
4 iπω

c2 σ
(2D)
f s (ω)

)
A2. (20)

The algebraic solution of Equation (19) setting~r‖ = 0 and z = 0 yields

Ĝhole(0,~r′‖; 0, z′; ω) =
[

Î + β Ĝ f s(0, 0; 0, 0; ω)
]−1

Ĝ f s(0,~r′‖; 0, z′; ω), (21)

so we obtain an exact solution for the electromagnetic dyadic “hole” Green’s function as
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Ĝhole(~r‖,~r
′
‖; z, z′; ω) = Ĝ f s(~r‖,~r

′
‖; z, z′; ω)

− βĜ f s(~r‖, 0; z, 0; ω)
[

Î + βĜ f s(0, 0; 0, 0; ω)
]−1

Ĝ f s(0,~r′‖; 0, z′; ω). (22)

Ĝhole(~r‖, 0; z, 0; ω) is of particular importance in assessing electromagnetic wave transmis-
sion/diffraction through the nano-hole, and it may be written as

Ĝhole(~r‖, 0; z, 0; ω) = Ĝ f s(~r‖, 0; z, 0; ω)
[

Î + βĜ f s(0, 0; 0, 0; ω)
]−1

. (23)

The denominator term Ĝ f s(0, 0; 0, 0; ω) involves a divergent integral due to confine-
ment of the nano-hole to a single point by its Dirac delta function representation. In
recognition that the nano-hole actually has a small, finite radius R and that there is an
associated “smearing” in the original integral equation, we note that in lateral wavenumber
representation,

Ĝ f s(0, 0; 0, 0; ω) =
1

2π

∫ ∞

0
dk‖k‖ Ĝ f s(~k‖; 0, 0; ω), (24)

the divergence may be removed (“regularization”) by introducing a cut-off of the k‖-integration
range, namely that k‖ < 1/R for nano-holes of subwavelength dimension R.

Finally, in lateral wavenumber representation, we find [1–3]

Ĝhole(~r‖, 0; z, 0; ω) =


Gxx

f s (~r‖ ,0;z,0;ω)

1+ β Gxx
f s (0,0;0,0;ω)

0
Gxz

f s (~r‖ ,0;z,0;ω)

1+ β Gzz
f s(0,0;0,0;ω)

0
Gyy

f s (~r‖ ,0;z,0;ω)

1+ β Gyy
f s (0,0;0,0;ω)

0

Gzx
f s (~r‖ ,0;z,0;ω)

1+ β Gxx
f s (0,0;0,0;ω)

0
Gzz

f s(~r‖ ,0;z,0;ω)

1+ β Gzz
f s(0,0;0,0;ω)

, (25)

which represents the electromagnetic dyadic Green’s function Ĝhole of the perforated quan-
tum plasmonic sheet system in the presence of the aperture, expressed explicitly in terms
of Ĝ f s elements. The requisite matrix inversions and integrations are carried out in detail in
Ref. [2], and in the next section, we present a full graphical exposition of Ĝhole(~r‖, 0; z, 0; ω)
as a function of position, based on our numerical evaluation of the exact analytical solutions
for the matrix elements of Ĝhole(~r‖, 0; z, 0; ω) set forth in References [1–3].

4. Numerical Results

Our numerical evaluations of the real and imaginary parts of the five non-vanishing
dyadic Green’s function matrix elements of Equation (25), Re[Ĝhole(~r‖, 0; z, 0; ω)] and
Im[Ĝhole(~r‖, 0; z, 0; ω)], respectively, are presented in graphical form in both 3D and density
plots below in Figures 3–17 as functions of x and y for frequency f = 300 THz. These
numerical evaluations are exhibited for several values of distance z away from the layer
screen: We chose z = 50 R (near-field), z = 300 R (middle-field) and z = 1000 R (far-field).
These figures reveal the structure of the Green’s function elements for the perforated layer
in terms of near-field (z = 50 R), middle-field (z = 300 R) and far-field (z = 1000 R) zones
for R = 5 nm. Our use of the terms “near-field”, “middle-field” and “far-field” do not
have the usual reference to distance from a center at the nano-hole relative to wavelength;
instead, these terms are used here for describing z− distance from the plasmonic layer
relative to wavelength λ = 2 π

qω
. (This includes, for example, that a “near-field” figure

exhibits results at both large and small lateral~r‖-distances from the nano-hole so long as
the z-distance is small in relation to wavelength, etc.). In summary, near-field is defined as
z
λ � 1, middle-field as z

λ ∼ 1 and far-field as z
λ � 1.

NOTATION: IN ALL FIGURES BELOW Ĝhole ≡ Ĝ.
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[𝑮

𝐱
𝐱
(𝒙
,𝒙

′
=
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=
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=
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Figure 3. (Color online). Figures (a,b) exhibit Re[Gxx(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gxx(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 50 R (Near-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.

𝑹
𝒆
[𝑮

𝐲
𝐲
(𝒙
,𝒙

′
=

𝟎
;𝒚

;𝒚
′
=

𝟎
;𝒛
,𝒛

′
=

𝟎
)]

(a) R = 5 nm ; Z = 50 R Near − Field

y
 (

n
m

)

x (nm)

(b) R = 5 nm ; Z = 50 R Near − Field

𝑹
𝒆
[𝑮

𝐲
𝐲
(𝒙
,𝒙

′
=

𝟎
;𝒚

;𝒚
′
=

𝟎
;𝒛
,𝒛

′
=

𝟎
)]

Figure 4. Cont.
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Figure 4. (Color online). Figures (a,b) exhibit Re[Gyy(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gyy(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 50 R (Near-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.
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(c) R = 5 nm ; Z = 50 R Near − Field

y
 (
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(d) R = 5 nm ; Z = 50 R Near − Field
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Figure 5. (Color online). Figures (a,b) exhibit Re[Gzz(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gzz(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 50 R (Near-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.
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(c) R = 5 nm ; Z = 50 R Near − Field
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(d) R = 5 nm ; Z = 50 R Near − Field
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Figure 6. (Color online). Figures (a,b) exhibit Re[Gxz(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gxz(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 50 R (Near-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.
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Figure 7. Cont.
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(c) R = 5 nm ; Z = 50 R Near − Field
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(d) R = 5 nm ; Z = 50 R Near − Field
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Figure 7. (Color online). Figures (a,b) exhibit Re[Gzx(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gzx(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 50 R (Near-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.
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(a) R = 5 nm ; Z = 300 R Middle − Field
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(b) R = 5 nm ; Z = 300 R Middle − Field
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(c) R = 5 nm ; Z = 300 R Middle − Field
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(d) R = 5 nm ; Z = 300 R Middle − Field
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=
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=
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Figure 8. (Color online). Figures (a,b) exhibit Re[Gxx(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gxx(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 300 R (Middle-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.
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(d) R = 5 nm ; Z =300 R Middle − Field
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Figure 9. (Color online). Figures (a,b) exhibit Re[Gyy(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gyy(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 300 R (Middle-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.
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(a) R = 5 nm ; Z =300 R Middle − Field

y
 (

n
m

)

x (nm)
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Figure 10. Cont.
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(d) R = 5 nm ; Z =300 R Middle − Field
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Figure 10. (Color online). Figures (a,b) exhibit Re[Gzz(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gzz(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 300 R (Middle-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.
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(c) R = 5 nm ; Z = 300 R Middle − Field
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(d) R = 5 nm; Z = 300 R Middle − Field
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=
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=
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Figure 11. (Color online). Figures (a,b) exhibit Re[Gxz(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gxz(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 300 R (Middle-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.
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Figure 12. (Color online). Figures (a,b) exhibit Re[Gzx(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gzx(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 1000 R (Far-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.
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Figure 13. Cont.
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(c) R = 5 nm ; Z =1000 R Far − Field
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(d) R = 5 nm ; Z = 1000 R Far − Field
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Figure 13. (Color online). Figures (a,b) exhibit Re[Gxx(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gxx(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 1000 R (Far-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.
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Figure 14. (Color online). Figures (a,b) exhibit Re[Gyy(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gyy(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 1000 R (Far-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.
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Figure 15. (Color online). Figures (a,b) exhibit Re[Gzz(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gzz(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 1000 R (Far-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.
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Figure 16. Cont.
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Figure 16. (Color online). Figures (a,b) exhibit Re[Gxz(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gxz(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 1000 R (Far-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.
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Figure 17. (Color online). Figures (a,b) exhibit Re[Gzx(~r‖, 0; z, 0; ω)] and (c,d) present
Im[Gzx(~r‖, 0; z, 0; ω)] (in 3D (a,c) and density (b,d) plots) for a perforated 2D plasmonic layer of
GaAs in the presence of a nano-hole of radius R = 5 nm at z = 1000 R (Far-Field) for εb = 1,
n2D = 4× 1015 cm−2, d = 10 nm and m∗ = 0.065m0 where m0 is the free-electron mass.

5. Concluding Remarks

In this paper, we have discussed the exact analytic solution and its thorough numerical
analysis for the closed-form expression of the dyadic electromagnetic Green’s function of
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a perforated, thin 2D quantum plasmonic layer embedded in a 3D host medium in the
presence of a subwavelength nano-hole. This solution is exact and devoid of assumptions,
having represented the perforation in terms of a “contact interaction”-like 2D Dirac delta
function and having represented the 2D layer localization to the plane z = 0 in terms
of a 1D Dirac delta function. Such exactness is elusive in earlier work and in classic
approaches to the analysis of electromagnetic transmission problems involving diffraction.
Our results for the Green’s function have been applied to a number of calculations of
electromagnetic wave transmission/diffraction through a perforated plasmonic layer with
a subwavelength nano-hole for both normal and non-normal incidence, including both
nano-hole transmission/diffraction effects jointly with transmission through the entire
plasma layer [1–3].

Earlier reports by Bethe [6] and Levine and Schwinger [7–9] have relied on the assump-
tion that the screen is perfectly conducting and is represented by the associated metallic
boundary conditions, which are simulated by the use of fictitious magnetic charges and
currents. These reports also review the limitations of the classic diffraction studies of Kir-
choff, Stratton and Chu and Lord Rayleigh. Other important analyses of resonant enhanced
and collimated EM wave transmission/diffraction by subwavelength slits in thick metal
films have been reported by Kukhlevsky, Mechler, Csapo, Janssens and Samek [10,11] and
Neerhoff and Mur [12]. This strong enhancement of light by subwavelength apertures is
nicely reviewed by Genet and Ebbersen [13], who emphasize the important role of the
interaction of the EM wave with electronic resonances in the surface of the metal film. Of
course, the incident EM wavefield drives such electronic modes to subsequently re-radiate
EM field contributions that add to the incident field to ensure the satisfaction of the perfect
metal boundary conditions. It is in the context of these references that the present results
are meaningful, albeit with significant contrast: Firstly, the limitation to perfect metal
boundary conditions is not appropriate and is not employed here, as a layer of plasma has
been addressed in our work, with no explicit reference to boundary conditions (which are
implicit in the layer conductivity distribution). Secondly, we address a thin (2D) layer of
plasma rather than a thick slab, and in our case, the interaction of the incident EM wave
with the electronic resonances of the material is explicitly evident in the structure of the
“hole” Green’s function of Equation (25), whose elements involve [1 + βG f s(0,0;0,0;ω)]−1,
and the corresponding dispersion relation, det[1 + βG f s(0,0;0,0;ω)] = 0, identifies the 2D
sheet polariton/plasmon resonant modes of the material system explicitly. Obviously, with
this determinant in the denominator of the “hole” Green’s function, a driving frequency
ωres that causes the determinant to vanish leads to the resonant enhancement of the EM
radiation by the excitation of the radiating 2D sheet polaritons/plasmons, which contribute
to the transmitted electromagnetic field throughout the thin layer as well as through the
aperture. Finally, we again emphasize that our results are exact within the framework of
the “contact interaction”-like Dirac delta function representation of the material dimen-
sions involved, which are pertinent to 2D/nano systems, and are not limited by other
approximations like perfect metal boundary conditions.

The inspection of the resulting Green’s function elements exhibited in both 3D and
density plots (above) shows that, for large r‖ 7→ x > 2500 nm, the spatial dependence of
the Green’s function for electromagnetic transmission/diffraction through the perforated
plasmonic layer becomes oscillatory as a function of r‖(x) with peaks uniformly spaced.
In this regard, it should be noted that our designation of near, middle and far zones is
defined in terms of z-values (50R, 300R, 1000R) alone, to the exclusion of r‖: In consequence
of this exclusion, the figures actually carry useful information for r‖ in all radiation zones
as conventionally defined in terms of the incident wavelength λ ≈ 2π/qω. Furthermore,
this approach to oscillatory behavior as a function of r‖ with uniformly spaced peaks is
accompanied by a geometric 1/r‖-diminution of the amplitude of the Green’s function. On
the other hand, our far-zone figures also show that when z < r‖ = x, the Green’s function
flattens as a function of r‖ = x into a region of constancy. In connection with this, it should
be borne in mind that the electromagnetic wave transmission occurs through the entire
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thin plasmonic layer, as well as through the nano-hole aperture in the layer. For sufficiently
large r‖ >z, the nano-hole contribution to transmission is relatively ineffective.
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