Article

Maximal Product and Symmetric Difference of Complex Fuzzy Graph with Application

Muhammad Shoaib ${ }^{1, * *(D)}$ Waqas Mahmood ${ }^{1}$, Qin Xin $^{2(D)}$ and Fairouz Tchier ${ }^{3}$ (D)
1 Department of Mathematics, Quaid-I-Azam University, Islamabad 45320, Pakistan; wmahmood@qau.edu.pk
${ }^{2}$ Faculty of Sciences and Technology, University of the Faroe Islands, Vestarabryggja 15, FO 100 Torshavn, Faroe Islands, Denmark; qinx@setur.fo
3 Department of Mathematics, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; ftchier@ksu.edu.sa
* Correspondence: muhammadshoaibe14@gmail.com

Citation: Shoaib, M.; Mahmood, W.; Xin, Q.; Tchier, F. Maximal Product and Symmetric Difference of Complex Fuzzy Graph with
Application. Symmetry 2022, 14, 1126.
https://doi.org/10.3390/sym14061126

Academic Editors: Yiming Tang, Yong Zhang, Zhaohong Deng and Xiaohui Yuan

Received: 29 April 2022
Accepted: 21 May 2022
Published: 30 May 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

A complex fuzzy set (CFS) is described by a complex-valued truth membership function, which is a combination of a standard true membership function plus a phase term. In this paper, we extend the idea of a fuzzy graph (FG) to a complex fuzzy graph (CFG). The CFS complexity arises from the variety of values that its membership function can attain. In contrast to a standard fuzzy membership function, its range is expanded to the complex plane's unit circle rather than [0,1]. As a result, the CFS provides a mathematical structure for representing membership in a set in terms of complex numbers. In recent times, a mathematical technique has been a popular way to combine several features. Using the preceding mathematical technique, we introduce strong approaches that are properties of CFG. We define the order and size of CFG. We discuss the degree of vertex and the total degree of vertex of CFG. We describe basic operations, including union, join, and the complement of CFG. We show new maximal product and symmetric difference operations on CFG, along with examples and theorems that go along with them. Lastly, at the base of a complex fuzzy graph, we show the application that would be important for measuring the symmetry or asymmetry of acquaintanceship levels of social disease: COVID-19.

Keywords: CFG; order; size; complement; union; join; vertex degree and total vertex degree; maximal product; symmetric difference: application

1. Introduction

It is frequently recognized that graphs are basically representations of relations. A graph is a useful means of describing information concerning object relationships. Vertices represent objects, while edges describe relationships.

It can be used to look at combinatorial problems in a lot of different fields, such as algebra, topology, zoology, number theory, geometry, and image capture and clustering.

The graph's vertices and edges are used to describe objects and the relationships between them, respectively. Vagueness in global issues can emerge in the information that specifies the conditions. FG models are useful mathematical tools for dealing with combinatorial issues in different fields, such as topology, algebra, optimization, computers, and environmental science. Because of the inherent presence of vagueness and ambiguity, FG models are more complex in comparison to simple graphical models. The first time fuzzy set theory was used, it was used to deal with a lot of complicated situations that did not have enough information.

Zadeh [1] proposed the theory of a fuzzy set (FS), which is applicable in several areas, and his FS has a true membership function which is limited to [0,1]. In approximate reasoning, the importance of fuzzy theory is particularly significant in overcoming combinatorial challenges in numerous domains, such as algebra, image segmentation, topology,
operational research, medical science, and algebraic structure. Rosenfeld [2] discussed the fuzzy versions of various graph-based theories. Ghorai and Pal [3,4] recently studied the extensions of FG, such as bipolar fuzzy graphs, m-polar fuzzy planner graphs, and m-polar fuzzy graphs. They defined the density of m-polar fuzzy graph techniques as well as a set of operations. Nagoor Gani and Radha [5] discussed a few operations on regular FG. Mathew and Sunitha described some kinds of arcs of FG. Bhattacharya [6] gave some remarks on FG. Atanassov [7] extended the FS to the intuitionistic fuzzy set. Shao et al. [8] developed new notions of the bondage number in intuitionistic fuzzy graphs. Rashmanlou et al. [9,10] discussed briefly a bipolar fuzzy graph with the product of bipolar fuzzy graphs, categorical operations, and related degrees. Rashmanlou et al. [11] were interested in research on interval-valued fuzzy graphs. Zeng et al. [12] invented different properties for single-valued neutrosophic graphs. Shao et al. [13] studied the properties of vague graphs.

Ramot et al. [14] proposed the notion of a "CFS" in 2002. CFSs are an innovative development of Zadeh's fuzzy sets. Despite all of the benefits of this theory, we still face enormous challenges when attempting to counter various physical conditions using a true membership function. Because of this, it is very important to add a new step to fuzzy set theory that takes into account complex numbers, which are an expansion of real numbers. Complex fuzzy logic is a linear extension of standard fuzzy logic. It lets problems in fuzzy logic that cannot be solved with a simple membership function grow and change in a natural way. This specific set plays a critical role in a variety of executions, particularly intelligent control systems and the prediction of periodic phenomena, where various fuzzy variables are connected in a complicated way that cannot be accurately represented by simple fuzzy operations. Furthermore, these sets are employed to tackle a variety of difficulties, particularly the various periodic aspects and forecasting challenges. One of the far-reaching implications of researching the CFS is that it effectively illustrates data with uncertainty and periodicity. Buckley described fuzzy complex numbers in [15]. Yaqoob et al. [16] studied the complex intuitionistic fuzzy graph and the complex neutrosophic graph. Shoaib et al. [17] proposed the concept of a complex Pythagorean fuzzy graph. Shoaib et al. [18] discussed some properties, symmetric difference and maximal product of picture fuzzy graphs. Gulzar et al. [19-21] discussed fuzzy groups.

The CFG is the generalization of the FG. We define the order and size of CFG. Furthermore, we present the degree of vertex and total degree of vertex concepts for CFG. We describe some basic properties, including the join, union, and complement of CFG. We discuss some new operations with maximal product and symmetric difference on CFG with elaboration of examples and related theorems. Lastly, we analyze the application of CFG.

2. Preliminaries

Definition 1 ([1]). Fuzzy set is defined as $Q=<p: \mu_{Q}(p)>, p \in X$, where $\mu_{Q}: A \rightarrow[0,1]$ represent the degree of true membership function.

Definition 2 ([17]). Let X be a non-empty universal set. A complex fuzzy set Q is defined as $Q=<p: \mu_{Q}(p) e^{i \alpha_{Q}}>, p \in X$ where $\mu_{Q}: A \rightarrow[0,1]$ and $\alpha_{Q}: A \rightarrow[0,2 \pi]$

Definition 3 ([22]). FG is a pair $\mathbb{G}=(Q, L)$ with fuzzy set Q on A and a fuzzy relation L on A such that

$$
\mu_{L}(p q) \leq \max \left\{\mu_{Q}(p), \mu_{Q}(q)\right\}
$$

where $\mu_{Q}: A \rightarrow[0,1]$ denotes the degree of true membership function and the function $\mu_{L}: B \subseteq$ $A \times A \rightarrow[0,1]$

3. CFGs

This section presents the idea of complex fuzzy relations and CFG, as well as some of their properties.

Definition 4. A CFG on a universe Y with underlying set A is an ordered pair $\tau=(Q, L) ; Q$ is a complex fuzzy set on A and L is a complex fuzzy set on $B \subseteq A \times A$ such that

$$
\mu_{L}(x y) e^{i \alpha_{L}(x y)} \leq \min \left\{\mu_{Q}(x), \mu_{Q}(y)\right\} e^{i \min \left\{\alpha_{Q}(x), \alpha_{Q}(y)\right\}}
$$

$\mu_{Q}(x) \in[0,1]$, and $\alpha_{Q}(x) \in[0,2 \pi]$
$\forall x, y \in A$.
Definition 5. Let $\left.Q=\left\{x, \mu_{Q}(x) e^{i \alpha_{Q}(x)}\right\}, Q_{1}=\left\{x, \mu_{Q_{1}}(x) e^{i \alpha Q_{1}(x)}\right\} \mid x \in Y\right\}$,
$\left.Q_{2}=\left\{x, \mu_{Q_{2}}(x) e^{i \alpha Q_{2}(x)}\right\} \mid x \in Y\right\}$, be the three CFSs in Y :
(i) $\quad Q_{1} \subseteq Q_{2}$ if and only if $\mu_{Q_{1}} \leq \mu_{Q_{2}}$ for amplitude terms and $\alpha_{Q_{1}} \leq \alpha_{Q_{2}}$ for phase terms, $\forall x \in Y$.
(ii) $\quad Q_{1}=Q_{2}$ if and only if $\mu_{Q_{1}}=\mu_{Q_{2}}$ for amplitude terms and $\alpha_{Q_{1}}=\alpha_{Q_{2}}$ for phase terms, $\forall x \in Y$.
For simplicity, $\mu e^{i \alpha}$ is called the complex fuzzy number where $\mu \in[0,1]$, and $\alpha \in[0,2 \pi]$.
Definition 6. Let $Q_{1}=\left\{x, \mu_{Q_{1}}(x) e^{i \alpha Q_{1}(x)} \mid x \in Y\right\}$ and $Q_{2}=\left\{x, \mu_{Q_{2}}(x) e^{i \alpha Q_{2}(x)} \mid x \in Y\right\}$ be the two complex picture fuzzy sets in Y, then
(i) $\quad Q_{1} \cup Q_{2}=\left\{x, \max \left(\mu_{Q_{1}}(x), \mu_{Q_{2}}(x)\right) e^{i \max \left(\alpha_{Q_{1}}(x), \alpha_{Q_{2}}(x)\right)} \mid x \in Y\right\}$.
(ii) $\quad Q_{1} \cap Q_{2}=\left\{x, \min \left(\mu_{Q_{1}}, \mu_{Q_{2}}(x)\right) e^{i \min \left(\alpha_{Q_{1}}(x), \alpha_{Q_{2}}(x)\right)} \mid x \in Y\right\}$.

Definition 7. A complex fuzzy set L in $Y \times Y$ is called a complex fuzzy relation in Y, characterized by $L=\left\{x y, \mu_{L}(x y) e^{i \alpha_{L}(x y)} \mid x y \in Y \times Y\right\}$, where $\mu_{L}: Y \times Y \rightarrow[0,1]$ depicts the membership function of L and $\alpha_{L}(x y) \in 2 \pi \forall x y \in Y \times Y$.

Example 1. Let $G=(A, B)$ be a graph with $Q=\left\{s_{1}, s_{3}, s_{4}\right\}$ as the vertex set and $L=\left\{s_{1} s_{3}, s_{3} s_{4}\right\}$ as the edge set of G. $\tau=(Q, L)$ is a CFG on A, as given in Figure 1, defined by $Q=$ $<\left(\frac{s_{1}}{0.3 e^{0.2 \pi i}}, \frac{s_{3}}{0.3 e^{0.3 \pi i}}, \frac{s_{4}}{0.33^{0.3 \pi i}}\right)>L=\left\langle\left(\frac{s_{1} s_{3}}{0.2 e^{0.1 \pi i}}, \frac{s_{3} s_{4}}{0.2 e^{0.2 \pi i}}\right)>\right.$

$$
s_{3}\left(0.3 e^{0.3 \pi i}\right)
$$

Figure 1. CFG.

Definition 8. Let $Q=\left\{x, \mu_{Q}(x) e^{i \alpha_{Q}(x)} \mid x \in A\right\}$ and $L=\left\{x y, \mu_{L}(x y) e^{i \alpha_{L}(x y)} \mid x y \in B\right\}$ be the vertex set and edge set of a CFG τ, then the order of a CFG τ is denoted by $O(\tau)$ and is defined as $O(\tau)=\sum_{x_{i} \in A} \mu_{Q}\left(x_{i}\right) e^{i \sum_{x_{i} \in A} \alpha_{Q}\left(x_{i}\right)}$

The size of a CFG τ is denoted by $S(\tau)$ and is defined as $S(\tau)=\sum_{x_{i} \in A} \mu_{L}\left(x_{i} y_{j}\right) e^{i \sum_{x_{i} y_{j} \in A} \alpha_{L}\left(x_{i} y_{j}\right)}$.
Example 2. The order and size of the $C F G$ given in Figure 1 is $O(\tau)=0.9 e^{0.8 \pi i}$ and $S(\tau)=0.4 e^{0.3 \pi i}$, respectively.

Definition 9. The complement of a $C F G \tau=(Q, L)$ on the underlying graph $G=(A, B)$ is a $C F G$ $\bar{\tau}=(\bar{Q}, \bar{L})$ defined by

1. $\overline{\mu_{Q}(x) e^{i \alpha_{Q}(x)}}=\mu_{Q}(x) e^{i \alpha_{Q}(x)}$
2.

$\overline{\mu_{L}(x y) e^{i \alpha_{L}(x y)}}=\left\{\begin{array}{ll}\min \left\{\mu_{Q}(x), \mu_{Q}(y)\right\} e^{\min \left\{\alpha_{Q}(x), \alpha_{Q}(y)\right\} i} & \text { if } \mu_{L}(x y) e^{i \alpha_{L}(x y)}=0, \\ \min \left\{\mu_{Q}(x), \mu_{Q}(y)\right\} e^{\min \left\{\alpha_{Q}(x), \alpha_{Q}(y)\right\} i}-\mu_{L}(x y) e^{i \alpha_{L}(x y)} & \text { if } 0<\mu_{L}(x y) e^{i \alpha_{L}(x y)} \leq 1 .\end{array}\right.$.
Example 3. Consider a CFG $\tau=(Q, L)$ on $A=\left\{s_{1}, s_{2}, s_{3}\right\}$, which is shown as in Figure 2 where $Q=<\left(\frac{s_{1}}{0.3 e^{0.3 \pi i}}, \frac{s_{2}}{0.4 e^{0.4 \pi i}}, \frac{s_{3}}{0.2 e^{0.2 \pi i}}\right), L=<\left(\frac{s_{2} s_{1}}{0.3 e^{0.3 \pi i}}, \frac{s_{1} s_{3}}{0.1 e^{0.1 \pi i}}\right)$.

$$
s_{1}\left(0.3 e^{0.3 \pi i}\right)
$$

Figure 2. CFG1.
Utilizing the Definition 9, the complement of a CFG can be obtained, which is shown as in Figure 3.

Where $\left.\bar{Q}=<\left(\frac{s_{1}}{0.3 e^{0.3 \pi i}}, \frac{s_{2}}{0.4 e^{0.4 \pi i}}, \frac{s_{3}}{0.2 e^{0.2 \pi i}}\right)>\bar{L}=<\left(\frac{s_{1} s_{3}}{0.10^{0.1 \pi i}}, \frac{s_{2} s_{3}}{0.2 e^{0.2 \pi i}}\right)\right)$.
It is easy to see from Figure 3 that $\bar{\tau}=(\bar{Q}, \bar{L})$ is a $C F G$.

$$
s_{1}\left(0.3 e^{0.3 \pi i}\right)
$$

Figure 3. Complement of CFG.
Theorem 1. The complement of a complement of CFG is a CFG itself, that is, $\overline{\bar{\tau}}=\tau$
Proof. Suppose that τ is a CFG. Then, by utilizing Definition 9 .
$\overline{\overline{\mu_{Q}(x)}} \overline{\overline{e^{i \alpha_{Q}(x)}}}=\overline{\mu_{Q}(x)} \overline{e^{i \alpha_{Q}(x)}}=\mu_{Q}(x) e^{i \alpha_{Q}(x)}$ for all $\mathrm{x} \in \mathrm{A}$
if $\mu_{L}(x y) e^{i \alpha_{L}(x y)}=0$ then
$\overline{\overline{\mu_{L}(x y)}} \overline{\overline{e^{i \alpha_{L}(x y)}}}=\min \left\{\overline{\mu_{Q}(x)}, \overline{\mu_{Q}(y)}\right\} e^{i \min \left\{\overline{\alpha_{Q}(x)}, \overline{\alpha_{Q}(y)}\right\}}$
$\left.=\min \left\{\mu_{Q}(x), \mu_{Q}(y)\right\} e^{i \min \left\{\alpha_{Q}(x), \alpha_{Q}(y)\right.}\right\}=\mu_{L}(x y) e^{i \alpha_{L}(x y)}$
if $0<\mu_{L}(x y) e^{i \alpha_{L}(x y)} \leq 1$ then
$\overline{\overline{\mu_{L}(x y)}} \overline{\overline{e^{i \alpha_{L}(x y)}}}=\min \left\{\overline{\mu_{Q}(x)}, \overline{\mu_{Q}(y)}\right\} e^{i \min \left\{\overline{\alpha_{Q}(x)}, \overline{\alpha_{Q}(y)}\right\}}-\overline{\mu_{L}(x y)} \overline{e^{i \alpha_{L}(x y)}}$
$\overline{\overline{\mu_{L}(x y)}} \overline{e^{i \alpha_{L}(x y)}}=\min \left\{\overline{\mu_{Q}(x)}, \overline{\mu_{Q}(y)}\right\} e^{i \min \left\{\overline{\alpha_{Q}(x), \alpha_{Q}(y)}\right\}}-$
$\left.\operatorname{min\{ \mu _{Q}(x),\mu _{Q}}(y)\right\} e^{\min \left\{\alpha_{Q}(x), \alpha_{Q}(y)\right\} i}-\mu_{L}(x y) e^{i \alpha_{L}(x y)}$
$\overline{\overline{\mu_{L}(x y)}} \overline{\overline{e^{i \alpha_{L}(x y)}}}=\mu_{L}(x y) e^{i \alpha_{L}(x y)}$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}$. Hence $\overline{\bar{\tau}}=\tau$.
Definition 10. The union $\tau_{1} \cup \tau_{2}=\left(Q_{1} \cup Q_{2}, L_{1} \cup L_{2}\right)$ of two CFGs $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ of the graphs $G_{1}=\left(A_{1}, B_{1}\right)$ and $G_{2}=\left(A_{2}, B_{2}\right)$, respectively, is defined as follows: $\left(\mu_{Q_{1}} \cup \mu_{Q_{2}}\right)(x) e^{i\left(\alpha_{Q_{1}} \cup \alpha_{Q_{2}}\right)}$

$$
\begin{gathered}
\left(\mu_{Q_{1}} \cup \mu_{Q_{2}}\right)(x) e^{i\left(\alpha_{Q_{1}} \cup \alpha_{Q_{2}}\right)(x)}= \begin{cases}\mu_{Q_{1}}(x) e^{i \alpha_{Q_{1}}(x)} & \text { if } x \in A_{1}-A_{2}, \\
\mu_{Q_{2}}(x) e^{i \alpha_{Q_{2}}(x)} & \text { if } x \in A_{2}-A_{1}, \\
\max \left\{\mu_{Q_{1}}(x), \mu_{Q_{2}}(x)\right\} e^{i \max \left\{\alpha_{Q_{1}}(x), \alpha_{Q_{2}}(x)\right\}} & \text { if } x \in A_{1} \cap A_{2},\end{cases} \\
\left(\mu_{L_{1}} \cup \mu_{L_{2}}\right)(x y) e^{i\left(\alpha_{L_{1}} \cup \alpha_{L_{2}}\right)(x y)}= \begin{cases}\mu_{L_{1}}(x y) e^{i \alpha_{L_{1}}(x y)} & \text { if } x y \in B_{1}-B_{2}, \\
\mu_{L_{2}}(x y) e^{i \alpha_{L_{2}}(x y)} & \text { if } x y \in B_{2}-B_{1}, \\
\max \left\{\mu_{L_{1}}(x y), \mu_{L_{2}}(x y)\right\} e^{i \max \left\{\alpha_{L_{1}}(x y), \alpha_{L_{2}}(x y)\right\}} & \text { if } x y \in B_{1} \cap B_{2},\end{cases}
\end{gathered}
$$

Definition 11. The ring-sum $\tau_{1} \oplus \tau_{2}=\left(Q_{1} \oplus Q_{2}, L_{1} \oplus L_{2}\right)$ of two CFGs $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ of the graphs G_{1} and G_{2}, respectively, is defined as follows:

$$
\begin{aligned}
& \left(\mu_{Q_{1}} \oplus \mu_{Q_{2}}\right)(x) e^{i\left(\alpha_{Q_{1}} \oplus \alpha_{Q_{2}}\right)(x)}=\left(\mu_{Q_{1}} \cup \mu_{Q_{2}}\right)(x) e^{i\left(\alpha_{Q_{1}} \cup \alpha_{Q_{2}}\right)(x)}, \\
& \quad\left(\mu_{L_{1}} \otimes \mu_{L_{2}}\right)(x y) e^{i\left(\alpha_{L_{1}} \cup \alpha_{L_{2}}\right)(x y)}= \begin{cases}\mu_{L_{1}}(x y) e^{i \alpha_{L_{1}}(x y)} & \text { if } x y \in B_{1}-B_{2}, \\
\mu_{L_{2}}(x y) e^{i \alpha_{L_{2}}(x y)} & \text { if } x y \in B_{2}-B_{1}, \\
0 & \text { if } x y \in B_{1} \cap B_{2},\end{cases}
\end{aligned}
$$

Definition 12. Let $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ be two CFGs of G_{1} and G_{2}, respectively. The join $\tau_{1}+\tau_{2}=\left(Q_{1}+Q_{2}, L_{1}+L_{2}\right)$ of $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$, defined as
(i) $\quad\left(\mu_{Q_{1}}+\mu_{Q_{2}}\right)(x) e^{i\left(\alpha_{Q_{1}}+\alpha_{Q_{2}}\right)(x)}=\left(\mu_{Q_{1}} \cup \mu_{Q_{2}}\right)(x) e^{i\left(\alpha_{Q_{1}} \cup \alpha_{Q_{2}}\right)(x)}$,
(ii) $\quad\left(\mu_{L_{1}}+\mu_{L_{2}}\right)(x y) e^{i\left(\alpha_{L_{1}}+\alpha_{L_{2}}\right)(x y)}=\left(\mu_{L_{1}} \cup \mu_{L_{2}}\right)(x y) e^{i\left(\alpha_{L_{1}} \cup \alpha_{L_{2}}\right)(x y)}$,
(iii) $\left(\mu_{L_{1}}+\mu_{L_{2}}\right)(x y) e^{i\left(\alpha_{L_{1}}+\alpha_{L_{2}}\right)(x y)}=\min \left\{\mu_{Q_{1}}(x), \mu_{Q_{2}}(y)\right\} e^{i \min \left\{\alpha_{Q_{1}}(x), \alpha_{Q_{2}}(y)\right\}}$ where B^{\prime} is the arcs set joining the nodes of A_{1} and $A_{2}, A_{1} \cap A_{2}=\varnothing$.

Definition 13. The degree of a vertex $x \in A$ in a CFG τ stands for $d_{\tau}(x)$, and is described as $d_{\tau}(x)=d_{\mu e^{i \alpha}}(x)$, where $d_{\mu e^{i \alpha}}(x)=\sum_{x, y \neq x \in A} \mu_{L}(x y) e^{i \sum_{x \neq x \in A} \alpha_{L}(x y)}$

Definition 14. The total degree of a vertex $x \in A$ in a CFG τ stands for $t d_{\tau}(x)$, and is described as $t d_{\tau}(x)=t d_{\mu e^{i \alpha}}(x)$, where $t d_{\mu e^{i \alpha}}(x)=\sum_{x, y \neq x \in A} \mu_{L}(x y) e^{i \sum_{x, y \neq x \in A} \alpha_{L}(x y)}+\mu_{Q}(x) e^{i \alpha_{Q}(x)}$

Definition 15. Let τ_{1} and τ_{2} be two CFGs. For any vertex $x \in A_{1} \cup A_{2}$, there are three cases to consider.
Case 1: Either $x \in A_{1}-A_{2}$ or $x \in A_{2}-A_{1}$. Then no arc incident at x lies in $B_{1} \cap B_{2}$. Thus, for

$$
c \in C_{1}-C_{2},
$$

$$
\begin{aligned}
& \left(d_{\mu e^{i \alpha}}\right)_{\tau_{1} \cup \tau_{2}}(x)=\sum_{x y \in B_{1}} \mu_{L_{1}}(x y) e^{i \sum_{x y \in B_{1}} \alpha_{L_{1}}(x y)}=\left(d_{\mu e^{i \alpha}}\right)_{G_{1}}(x) \\
& \left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1} \cup \tau_{2}}(x)=\left(t d_{\mu e^{i \alpha}}\right)_{G_{1}}(x) . \text { For } x \in A_{2}-A_{1} . \\
& \left(d_{\mu e^{i \alpha}}\right)_{\tau_{1} \cup \tau_{2}}(x)=\sum_{x y \in B_{2}} \mu_{L_{2}}(x y) e^{x y \in B_{2}} \alpha_{L_{2}}(x y)
\end{aligned}=\left(d_{\mu e^{i \alpha}}\right)_{G_{2}}(x) .
$$

Case 2: $x \in A_{1} \cap A_{2}$ but no arc incident at x lies in $B_{1} \cap B_{2}$. Then any arc incident at x is either $B_{1}-B_{2}$ or $B_{2}-B_{1}$.

$$
\begin{aligned}
& \left(d_{\mu e^{i \alpha}}\right)_{\tau_{1} \cup \tau_{2}}(x)=\sum_{x y \in B_{1} \cup B_{2}}\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \cup \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)(x y) \\
& \left(d_{\mu e^{i \alpha}}\right)_{\tau_{1} \cup \tau_{2}}(x)=\sum_{x y \in B_{1}} \mu_{L_{1}} e^{i \alpha_{L_{1}}}(x y)+\sum_{x y \in B_{2}} \mu_{L_{2}} e^{i \alpha_{L_{2}}}(x y) \\
& \left(d_{\mu e^{i \alpha}}\right)_{\tau_{1} \cup \tau_{2}}(x)=\left(d_{\mu e^{i \alpha}}\right)_{G_{1}}(x)+\left(d_{\mu e^{i \alpha}}\right) G_{G_{2}}(x) \\
& \left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1} \cup \tau_{2}}(x)=\sum_{x y \in B_{1} \cup B_{2}}\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \cup \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)(x y)+\max \left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(x), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(x)\right\} \\
& \left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1} \cup \tau_{2}}(x)=\sum_{x y \in B_{1}} \mu_{L_{1}} e^{i \alpha_{L_{1}}}(x y)+\sum_{x y \in B_{2}} \mu_{L_{2}} e^{i \alpha_{L_{2}}}(x y)+\max \left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(x), \mu_{Q_{2}} e^{i \alpha Q_{Q_{2}}}(x)\right\} \\
& \left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1} \cup \tau_{2}}(x)=\left(d_{\mu e^{i \alpha}}\right)_{G_{1}}(x)+\left(d_{\mu e^{i \alpha}}\right)_{G_{2}}(x)+\max \left\{\mu_{Q_{1}} e^{i \alpha Q_{1}}(x), \mu_{Q_{2}} e^{i \alpha Q_{2}}(x)\right\} \\
& \left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1} \cup \tau_{2}}(x)=\left(t d_{\mu e^{i \alpha}}\right)_{G_{1}}(x)+\left(t d_{\mu e^{i \alpha}}\right)_{G_{2}}(x)-\min \left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(x), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(x)\right\}
\end{aligned}
$$

Case 3:

$$
\begin{aligned}
\left(d_{\mu e^{i \alpha}}\right)_{\tau_{1} \cup \tau_{2}}(x)= & \sum_{x y \in B_{1} \cup B_{2}}\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \cup \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)(x y) \\
= & \sum_{x y \in B_{1}-B_{2}} \mu_{L_{1}} e^{i \alpha_{L_{1}}}(x y)+\sum_{x y \in B_{2}-B_{1}} \mu_{L_{2}} e^{i \alpha_{L_{2}}}(x y) \\
& +\sum_{x y \in B_{1} \cap B_{2}} \max \left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}(x y), \mu_{L_{2}} e^{i \alpha_{L_{2}}}(x y)\right\} \\
= & \sum_{x y \in B_{1}-B_{2}} \mu_{L_{1}} e^{i \alpha_{L_{1}}}(x y)+\sum_{x y \in B_{2}-B_{1}} \mu_{L_{2}} e^{i \alpha_{L_{1}}}(x y) \\
& +\sum_{x y \in B_{1} \cap B_{2}} \max \left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}(x y), \mu_{L_{2}} e^{i \alpha_{L_{2}}}(x y)\right\} \\
& +\sum_{x y \in B_{1} \cap B_{2}} \min \left\{\mu_{L_{1}}(x y), \mu_{L_{2}}(x y)\right\} e^{i \min \left\{\alpha_{L_{1}}(x y), \alpha_{L_{2}}(x y)\right\}} \\
& -\sum_{x y \in B_{1} \cap B_{2}} \min \left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}(x y), \mu_{L_{2}} e^{i \alpha_{L_{2}}}(x y)\right\} \\
= & \sum_{x y \in B_{1}} \mu_{L_{1}} e^{i \alpha_{L_{1}}}(x y)+\sum_{x y \in B_{2}} \mu_{L_{2}} e^{i \alpha_{L_{1}}}(x y) \\
& -\sum_{x y \in B_{1} \cap B_{2}} \min \left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}(x y), \mu_{L_{2}} e^{i \alpha_{L_{2}}}(x y)\right\} \\
& =\left(d_{\mu e^{i \alpha}}\right)_{\tau_{1}}(x)+\left(d_{\mu e^{i \alpha}}\right) \tau_{\tau_{2}}(x)-\sum_{x y \in B_{1} \cap B_{2}} \min \left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}(x y), \mu_{L_{2}} e^{\left.i \alpha_{L_{2}}(x y)\right\}}\right.
\end{aligned}
$$

In addition,

$$
\begin{aligned}
\left(\mathrm{td}_{-\mathrm{e}} \mathrm{eff}\right)_{\mathscr{O}_{1} \cup \mathscr{\sigma}_{2}}(\mathrm{x}) & =\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1}}(x)+\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{2}}(x) \\
& \left.-\sum_{x y \in B_{1} \cap B_{2}} \min \left\{\mu_{L_{1}}(x y), \mu_{L_{2}}(x y)\right\} e^{i \min \left\{\alpha_{L_{1}}\right.}(x y), \alpha_{L_{2}}(x y)\right\} \\
& -\min \left\{\mu_{Q_{1}}(x), \mu_{Q_{2}}(x)\right\} e^{i \min \left\{\alpha_{Q_{1}}(x), \alpha_{Q_{2}}(x)\right\}},
\end{aligned}
$$

Example 4. Suppose that $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ are two CFGs on $A_{1}=\left\{s_{1}, s_{2}, s_{4}\right\}$ and $A_{2}=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$, respectively, as shown in Figures 4 and 5 .

Figure 4. τ_{1}.

Figure 5. τ_{2}.
Moreover, $\tau_{1} \cup \tau_{2}$ is shown in Figure 6.

Figure 6. $\tau_{1} \mathrm{U} \tau_{2}$.
If $s_{3} \in A_{2}-A_{1}$, then
$\left(d_{\mu e^{i x}}\right)_{\tau_{1} \cup \tau_{2}}\left(s_{3}\right)=\left(d_{\mu e^{i x}}\right)_{\tau_{2}}\left(s_{3}\right)=0.3 e^{0.2 \pi i}$
Therefore, $\left(d_{\tau_{1} \cup \tau_{2}}\left(s_{3}\right)=d_{\tau_{2}}\left(s_{3}\right)=0.3 e^{0.2 \pi i}\right.$
$\left(t d_{\left.\mu e^{i x}\right)_{\tau_{1}} \cup \tau_{2}}\left(s_{3}\right)=\left(t d_{\left.\mu e^{i x}\right)_{\tau_{2}}}\left(s_{3}\right)=0.6 e^{0.3 \pi i}\right.\right.$
Therefore, $\left(t d_{\tau_{1} \cup \tau_{2}}\left(s_{3}\right)=t d_{\tau_{2}}\left(s_{3}\right)=0.6 e^{0.3 \pi i}\right)$
Since $s_{4} \in A_{1} \cap A_{2}$ but there is no edge incident at s_{4} lies in $B_{1} \cap B_{2}$,
$\left(d_{\mu e^{i x}}\right)_{\tau_{1} \cup \tau_{2}}\left(s_{4}\right)=\left(d_{\mu e^{i \alpha}}\right)_{\tau_{1}}\left(s_{4}\right)+\left(d_{\mu e^{i x}}\right)_{\tau_{2}}\left(s_{4}\right)=0.4 e^{0.5 \pi i}$
Therefore, $\left(d_{\tau_{1} \cup \tau_{2}}\left(s_{4}\right)=d_{\tau_{1}}\left(s_{4}\right)+d_{\tau_{2}}\left(s_{4}\right)=\left(0.4 e^{0.5 \pi i}\right)\right.$
$\left(t d_{\left.\mu e^{i \alpha}\right)_{\tau_{1}} \cup \tau_{2}}\left(s_{4}\right)=\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1}}\left(s_{4}\right)+\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{2}}\left(s_{4}\right)+\max \left\{\mu_{Q_{1}}\left(s_{4}\right), \mu_{Q_{2}}\left(s_{4}\right)\right\} e^{\max \left\{\alpha_{Q_{1}}\left(s_{4}\right), \alpha_{Q_{2}}\left(s_{4}\right)\right\} i}\right.$
$=0.7 e^{0.8 \pi i}$
Since $s_{2} \in A_{1} \cap A_{2}$ and $s_{1} s_{2} \in B_{1} \cap B_{2}$,
$\left(d_{\mu e^{i \alpha}}\right)_{\tau_{1} \cup \tau_{2}}\left(s_{2}\right)=\left(d_{\mu e^{i \alpha}}\right)_{\tau_{1}}\left(s_{2}\right)+\left(d_{\left.\mu e^{i \alpha}\right)} \tau_{\tau_{2}}\left(s_{2}\right)-\min \left\{\mu_{L_{1}}\left(s_{1} s_{2}\right), \mu_{L_{2}}\left(s_{1} s_{2}\right)\right\} e^{\min \left\{\alpha_{L_{1}}\left(s_{1} s_{2}\right), \alpha_{L_{2}}\left(s_{1} s_{2}\right)\right\} i}=0.5 e^{0.5 \pi i}\right.$
Therefore, $\left(d_{\tau_{1} \cup \tau_{2}}\left(s_{2}\right)=0.5 e^{0.5 \pi i}\right.$
$\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1} \cup \tau_{2}}\left(s_{2}\right)=\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1}}\left(s_{2}\right)+\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{2}}\left(s_{2}\right)-$
$\min \left\{\mu_{L_{1}}\left(s_{1} s_{2}\right), \mu_{L_{2}}\left(s_{1} s_{2}\right)\right\} e^{\min \left\{\alpha_{L_{1}}\left(s_{1} s_{2}\right), \alpha_{L_{2}}\left(s_{1} s_{2}\right)\right\} i}$
$+\max \left\{\mu_{\mathrm{Q}_{1}}\left(s_{2}\right), \mu_{Q_{2}}\left(s_{2}\right)\right\} e^{\max \left\{\alpha_{Q_{1}}\left(s_{2}\right), \alpha_{Q_{2}}\left(s_{2}\right)\right\} i}=0.7 e^{0.8 \pi i}$
Therefore, $\left(t d_{\tau_{1} \cup \tau_{2}}\left(s_{2}\right)=0.7 e^{0.8 \pi i}\right.$

Definition 16. Maximal product $\tau_{1} * \tau_{2}=\left(Q_{1} * Q_{2}, L_{1} * L_{2}\right)$ of two $C F G s \tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ is defined as
(i)

$$
\begin{array}{r}
\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} * \mu_{\mathrm{Q}_{2}} e^{i \alpha_{Q_{2}}}\right)\left(\left(u_{1}, u_{2}\right)\right)=\vee\left\{\mu_{\mathrm{Q}_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{\mathrm{Q}_{2}} e^{\left.i \alpha_{Q_{2}}\left(u_{2}\right)\right\}}\right. \\
\forall\left(u_{1}, u_{2}\right) \in\left(V_{1} \times V_{2}\right),
\end{array}
$$

(ii)

$$
\begin{array}{r}
\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} * \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(\left(m, u_{2}\right)\left(m, w_{2}\right)\right)=\vee\left\{\mu_{Q_{Q}} e^{i \alpha_{Q_{1}}}(m), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
\forall m \in V_{1} \text { and } u_{2} w_{2} \in E_{2}
\end{array}
$$

(iii)

$$
\begin{array}{r}
\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} * \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(\left(u_{1}, z\right)\left(w_{1}, z\right)\right)=\vee\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(z)\right\} \\
\forall z \in V_{2} \text { and } u_{1} w_{1} \in E_{1} .
\end{array}
$$

Example 5. Suppose $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ are two CFGs, shown in Figures 7 and 8. Their maximal product $\tau_{1} * \tau_{2}$ is shown in Figure 9.

Figure 7. τ_{1}.

Figure 8. τ_{2}.

Figure 9. $\tau_{1} * \tau_{2}$.

For vertex (e,a), we find membership value (Mv) as follows:

$$
\begin{aligned}
\left(\mu e_{Q_{1}}^{i \alpha} * \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)((e, a)) & =\vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(e), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(a)\right\} \\
& =\vee\{0.1,0.2\} e^{i \vee\{0.1,0.2\}}=0.2 e^{i 0.2 \pi},
\end{aligned}
$$

for $e \in V_{1}$ and $a \in V_{2}$.
For edge $(e, a)(e, b)$, we find $M v$.

$$
\begin{aligned}
\left(\mu_{Q_{1}} e^{i \alpha}{Q_{1}}_{1} * \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)((e, a)(e, b)) & =\vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(e), \mu_{L_{2}} e^{i \alpha_{L_{2}}}(a b)\right\} \\
& =\vee\{0.1,0.1\} e^{i \vee\{0.1,0.1\} \pi}=0.1 e^{i \vee\{0.1,0.1\} \pi}
\end{aligned}
$$

for $e \in V_{1}$ and $a b \in E_{2}$.
For edge $(e, a)(f, a)$:

$$
\begin{aligned}
\left(\mu_{Q_{1}} e^{i \alpha}{Q_{1}}_{1} * \mu_{Q_{2}} e^{i \alpha Q_{Q_{2}}}\right)((e, a)(f, a)) & =\vee\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}(e f), \mu_{Q_{2}} e^{i \alpha}{Q_{2}}_{2}(a)\right\} \\
& =\vee\{0.1,0.2\} e^{i \vee\{0.1,0.2\} \pi}=0.2 e^{i 0.2 \pi} .
\end{aligned}
$$

for $a \in V_{2}$ and ef $\in E_{1}$. Similarly, Mv for all others nodes and edges can be calculated.
Proposition 1. Maximal product of two CFGs τ_{1} and τ_{2}, is a CFG.
Proof. Suppose $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ are two CFGs on crisp graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, respectively and $\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right) \in E_{1} \times E_{2}$.
(i) if $u_{1}=w_{1}=m$

$$
\begin{aligned}
\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} * \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right) & \left(\left(m, u_{2}\right)\left(m, w_{2}\right)\right) \\
& =\vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(m), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& \leq \vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(m), \wedge\left\{\mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(w_{2}\right)\right\}\right\} \\
& =\wedge\left\{\vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(m), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\}, \vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(m), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}\left(w_{2}\right)}\right\}\right\} \\
& =\wedge\left\{\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} * \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(m, u_{2}\right),\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} * \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(m, w_{2}\right)\right\} .
\end{aligned}
$$

(ii) if $u_{2}=w_{2}=z$

$$
\begin{aligned}
\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} * \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right) & \left(\left(u_{1}, z\right)\left(w_{1}, z\right)\right) \\
& =\vee\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(z)\right\} \\
& \leq \vee\left\{\wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(z)\right\}\right. \\
& =\wedge\left\{\vee\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(z)\right\}, \vee\left\{\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(z)\right\}\right\}\right\} \\
& =\wedge\left\{\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} * \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(u_{1}, z\right),\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} * \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(w_{1}, z\right)\right\} .
\end{aligned}
$$

We conclude that $\tau_{1} * \tau_{2}$ is a CFG.

Theorem 2. Maximal product of two strong CFGs τ_{1} and τ_{2} is a strong CFG.
Proof. Suppose $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ are two strong CFGs on two crisp graphs and $\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right) \in E_{1} \times E_{2}$.
(i) if $u_{1}=w_{1}=m$

$$
\begin{aligned}
& \left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} * \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(m, u_{2}\right)\left(m, w_{2}\right)\right)=\vee\left\{\mu_{Q_{1}} e^{i \alpha} Q_{Q_{1}}(m), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& =\vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(m), \wedge\left\{\mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(w_{2}\right)\right\}\right\} \\
& =\wedge\left\{\vee\left\{\mu_{Q_{1}} e^{i \alpha}{Q_{1}}_{1}(m), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\}, \vee\left\{\left\{\mu_{Q_{1}} e^{i \alpha Q_{Q_{1}}}(m), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(w_{2}\right)\right\}\right\}\right\} \\
& \begin{aligned}
&= \wedge\left\{\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} * \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(m, u_{2}\right),\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} * \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(m, w_{2}\right)\right\} . \\
& u_{2}=w_{2} \xlongequal[=]{ } \quad .
\end{aligned} \\
& \left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} * \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(u_{1}, z\right)\left(w_{1}, z\right)\right)=\vee\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(z)\right\} \\
& =\vee\left\{\wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(z)\right\}\right. \\
& =\wedge\left\{\vee\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(z)\right\}, \vee\left\{\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(z)\right\}\right\}\right\} \\
& =\wedge\left\{\left(\mu_{Q_{1}} e^{i \alpha}{Q_{1}}_{1} * \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(u_{1}, z\right),\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} * \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(w_{1}, z\right)\right\} .
\end{aligned}
$$

Hence, $\tau_{1} * \tau_{2}$ is a strong CFG.

Example 6. Suppose τ_{1} and τ_{2} are two strong CFGs as shown in Figure 10.

Figure 10. CFGs.
Hence $G_{1} * G_{2}$ is also a strong CFG.
Remark 1. If maximal product of two CFGs $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ is a strong, then $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ not necessary to be strong, in general.

Example 7. Suppose τ_{1} and τ_{2} are two CFGs as in Figures 11 and 12. We can see that the maximal product of two CFGs τ_{1} and τ_{2}, that is $\tau_{1} * \tau_{2}$ in Figure 13 .

$$
\left(0.2 e^{i 0.2 \pi}\right)
$$

$a\left(0.2 e^{i 0.2 \pi}\right) \quad b\left(0.3 e^{i 0.3 \pi}\right)$

Figure 11. τ_{1}.
$c\left(0.2 e^{i 0.2 \pi}\right)$

$$
d\left(0.1 e^{i 0.1 \pi}\right)
$$

Figure 12. τ_{2}.

Figure 13. $\tau_{1} * \tau_{2}$.
Then τ_{1} and $\tau_{1} * \tau_{2}$ are strong CFGs, but τ_{2} is not strong. Since $\mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2}, w_{2}\right)=0.2 e^{i 0.2 \pi}$, on other hand $\wedge\left\{\mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(w_{2}\right)\right\}=\wedge\left\{0.2 e^{i 0.2 \pi}, 0.1 e^{i 0.1 \pi}\right\}=0.1 e^{i 0.1 \pi}$. Hence $\mu_{L_{2}} e^{i \mu_{L_{2}}}\left(u_{2}, w_{2}\right) \neq \wedge\left\{\mu_{Q_{2}} e^{i \mu_{Q_{2}}}\left(u_{2}\right), \mu_{Q_{2}} e^{i \mu_{Q_{2}}}\left(w_{2}\right)\right\}$.

Remark 2. The maximal product of two complete CFGs may or may not be a complete CFG because $\left(u_{1}, u_{2}\right) \in E_{1}$ and $\left(w_{1}, w_{2}\right) \in E_{2}$ do not exist in the definition of the maximal product of two CFGs.

Definition 17. Suppose $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ are two $C F G s . \forall\left(u_{1}, u_{2}\right) \in V_{1} \times V_{2}$

$$
\begin{aligned}
\left(d_{\mu e^{\alpha}}\right)_{\tau_{1} * \tau_{2}}\left(u_{1}, u_{2}\right) & =\sum_{\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right) \in E_{1} \times E_{2} .}\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} * \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right) \\
& =\sum_{u_{1}=w_{1}, u_{2} w_{2} \in E_{2}} \vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& +\sum_{u_{1} w_{1} \in E_{1}, u_{2}=w_{2}} \vee\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\}
\end{aligned}
$$

Theorem 3. Suppose $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ are two CFGs. If $\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} \geq \mu_{L_{2}} e^{i \alpha_{L_{2}}}$, and $\mu_{Q_{2}} e^{i \alpha}{Q_{2}}_{2} \geq \mu_{L_{1}} e^{i \alpha_{L_{1}}}$. Then for every $\forall\left(u_{1}, u_{2}\right) \in V_{1} \times V_{2}$ $\left(d_{\mu}\right) e_{\tau_{1} * \tau_{2}}^{i \alpha}\left(u_{1}, u_{2}\right)=(d)_{G_{2}}\left(u_{2}\right) \mu_{Q_{1}} e^{i \alpha Q_{1}}\left(u_{1}\right)+(d)_{G_{1}}\left(u_{1}\right) \mu_{Q_{2}} e^{i \alpha Q_{2}}\left(u_{2}\right)$

Proof.

$$
\begin{aligned}
\left(d_{\mu e^{i \alpha}}\right)_{\tau_{1} * \tau_{2}}\left(u_{1}, u_{2}\right) & =\sum_{\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right) \in E_{1} \times E_{2} .}\left(\mu_{L_{1}} e^{i-\alpha L_{1}} * \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right) \\
& =\sum_{u_{1}=w_{1}, u_{2} w_{2} \in E_{2}} \vee\left\{\mu_{Q_{1}} e^{\left.i \alpha_{Q_{1}}\left(u_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\}}\right. \\
& +\sum_{u_{1} w_{1} \in E_{1}, u_{2}=w_{2}} \vee\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha Q_{Q_{2}}}\left(u_{2}\right)\right\} \\
& =\sum_{u_{2} w_{2} \in E_{2}, u_{1}=w_{1}} \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)+\sum_{u_{1} w_{1} \in E_{1}, u_{2}=w_{2}} \mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right) \\
& =(d)_{G_{2}}\left(u_{2}\right) \mu_{Q_{1}} e^{i \alpha_{Q_{1}}}+(d)_{G_{1}}\left(u_{1}\right) \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}
\end{aligned}
$$

Example 8. Take the CFGs τ_{1}, τ_{2}, and $\tau_{1} * \tau_{2}$ as in Figure 14. Since $\mu_{Q_{1}} \geq \mu_{L_{2}}, \alpha_{Q_{1}} \geq \alpha_{L_{2}}$, $\mu_{Q_{2}} \geq \mu_{L_{1}}, \alpha_{Q_{2}} \geq \alpha_{L_{1}}$, by Theorem 3.8, we have the following.

$$
\begin{aligned}
& \left(d_{\mu} e^{i \alpha}\right)_{G_{1} * G_{2}}(a, d)=(d)_{G_{2}}(d) \mu_{Q_{1}} e^{i \alpha Q_{Q_{1}}}(a) \\
& +(d)_{G_{1}}(a) \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(d)=1 \cdot\left(0.3 e^{i 0.3 \pi}\right)+1 \cdot\left(0.3 e^{i 0.3 \pi}\right)=0.6 e^{i 0.6 \pi}
\end{aligned}
$$

Figure 14. CFG3.
By direct calculations:

$$
\begin{aligned}
& \left(d_{\mu} e_{G_{1} * G_{2}}^{i \alpha}(b, d)\right)=0.2 e^{i 0.2 \pi}+0.3 e^{i 0.3 \pi}=0.5 e^{i 0.5 \pi}, \\
& \left(d_{\mu} e_{G_{1} * G_{2}}^{i \alpha}(a, c)\right)=0.5 e^{i 0.5 \pi}, \\
& \left(d_{\mu} e_{G_{1} * G_{2}}^{i \alpha}(a, d)\right)=0.6 e^{i 0.6 \pi}, \\
& \left(d_{\mu} e_{G_{1} * G_{2}}^{i \alpha}(b, c)\right)=0.4 e^{i 0.4 \pi},
\end{aligned}
$$

We conclude from the above calculations that "the degrees of nodes determined by using the formula of the above theorem and by the directed method are equal".

Definition 18. Let $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ be two CFGs. $\forall\left(u_{1}, u_{2}\right) \in V_{1} \times V_{2}$

$$
\begin{aligned}
\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1} * \tau_{2}}\left(u_{1}, u_{2}\right) & =\sum_{\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right) \in E_{1} \times E_{2} .}\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} * \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right)+\left(\alpha_{Q_{1}} * \alpha_{Q_{2}}\left(u_{1}, u_{2}\right)\right. \\
& =\sum_{u_{1}=w_{1}, u_{2} w_{2} \in E_{2}} \vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& +\sum_{u_{1} w_{1} \in E_{1}, u_{2}=w_{2}} \vee\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\} \\
& +\vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\} e^{i \vee\left\{\alpha_{Q_{1}}\left(u_{1}\right), \alpha_{Q_{2}}\left(u_{2}\right)\right\}},
\end{aligned}
$$

Theorem 4. Suppose $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ are two CFGs. If $\mu_{Q_{1}} \geq \mu_{L_{2}}, \alpha_{Q_{1}} \geq \alpha_{L_{2}}$ and $\mu_{Q_{2}} \geq \mu_{L_{1}}, \alpha_{Q_{2}} \geq \alpha_{L_{1}}$. Then for every $\forall\left(u_{1}, u_{2}\right) \in V_{1} \times V_{2}$

$$
\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1} * \tau_{2}}\left(u_{1}, u_{2}\right)=(d)_{G_{2}}\left(u_{2}\right) \mu e_{Q_{1}}^{i \alpha}\left(u_{1}\right)+(d)_{G_{1}}\left(u_{1}\right) \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)+\vee\left\{\mu_{Q_{1}} e^{i \alpha}{Q_{1}}_{1}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha Q_{2}}\left(u_{2}\right)\right\}
$$

Proof.

$$
\begin{aligned}
&\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1} * \tau_{2}}\left(u_{1}, u_{2}\right)=\sum_{\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right) \in E_{1} \times E_{2} .}\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} * \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right) \\
&+\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} * \mu_{Q_{2}} e^{i \alpha_{Q_{1}}}\right)\left(u_{1}, u_{2}\right) \\
& \quad=\sum_{u_{1}=w_{1}, u_{2} w_{2} \in E_{2}} \vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
&+\sum_{u_{1} w_{1} \in E_{1}, u_{2}=w_{2}} \vee\left\{\mu_{L_{1}}\left(u_{1} w_{1}\right), \mu_{Q_{2}}\left(u_{2}\right)\right\} e^{i} e_{u_{1} w_{1} \in E_{1}, u_{2}=w_{2}} \vee\left\{\alpha_{L_{1}}\left(u_{1} w_{1}\right), \alpha_{Q_{2}}\left(u_{2}\right)\right\} \\
&+\vee\left\{\mu_{Q_{Q}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\} \\
&=\sum_{u_{2} w_{2} \in E_{2}, u_{1}=w_{1}} \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right) \\
&+\sum_{u_{1} w_{1} \in E_{1}, u_{2}=w_{2}} \mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right) \\
&+\max \left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\} \\
&=(d))_{G_{2}}\left(u_{2}\right) \mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right)+(d)_{G_{1}}\left(u_{1}\right) \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)+\max \left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\}
\end{aligned}
$$

Example 9. Let $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ be two CFGs. If $\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} \geq \mu_{L_{2}} e^{i \alpha_{L_{2}}}$ and $\mu_{Q_{2}} e^{i \alpha_{Q_{2}}} \geq \mu_{L_{1}} e^{i \alpha_{L_{1}}}$.

In Example 9, we calculate total degree of nodes of $\tau_{1} * \tau_{2}$ by using Figures 7-9. We calculate the total degree of nodes in the maximal product. Choose node (e, a).

$$
\begin{aligned}
\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1} * \tau_{2}}(e, a) & =(d)_{G_{2}}(e) \mu_{Q_{1}} e^{i \alpha} Q_{1}(a)+(d)_{G_{1}}(a) \mu_{Q_{2}} e^{i \alpha}{Q_{2}}(e)+\vee\left\{\mu_{Q_{1}} e^{i \alpha Q_{1}}(e), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(a)\right\} \\
& =1\left(0.1 e^{i 0.1 \pi}\right)+3\left(0.2 e^{i 0.2 \pi}\right)+\vee(0.2,0.1) e^{i \vee(0.2,0.1) \pi} \\
& =(0.1+0.6+0.2) e^{i(0.1+0.6+0.2) \pi}=0.9 e^{i 0.9 \pi}
\end{aligned}
$$

Similarly, we can calculate it for other nodes.
Definition 19. Symmetric difference $\tau_{1} \oplus \tau_{2}=\left(Q_{1} \oplus Q_{2}, L_{1} \oplus L_{2}\right)$ of two CFGs $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ is defined as
(i)

$$
\begin{gathered}
\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} \oplus \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(\left(u_{1}, u_{2}\right)\right)=\wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\} \\
\forall\left(u_{1}, u_{2}\right) \in\left(V_{1} \times V_{2}\right),
\end{gathered}
$$

(ii)

$$
\begin{gathered}
\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \oplus \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(m, u_{2}\right)\left(m, w_{2}\right)\right)=\wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(m), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
\forall m \in V_{1} \text { and } u_{2} w_{2} \in E_{2}
\end{gathered}
$$

(iii)

$$
\begin{gathered}
\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \oplus \mu_{L_{2}}\right) e^{i \alpha_{L_{1}}}\left(\left(u_{1}, z\right)\left(w_{1}, z\right)\right)=\wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha Q_{2}}(z)\right\} \\
\forall z \in V_{2} \text { and } u_{1} w_{1} \in E_{1},
\end{gathered}
$$

(iv)

$$
\begin{aligned}
\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \oplus \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right) & =\wedge\left\{\mu_{Q_{1}} e^{i \alpha Q_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{1}} e^{i \alpha Q_{1}}\left(w_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& \text { forall } u_{1} w_{1} \notin E_{1} \text { and } u_{2} w_{2} \in E_{2} \\
& \text { or } \\
& =\wedge\left\{\mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(w_{2}\right), \mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right)\right\} \\
& \text { forall } u_{1} w_{1} \in E_{1} \text { and } u_{2} w_{2} \notin E_{2}
\end{aligned}
$$

Example 10. Take τ_{1} and τ_{2} as CFGs as shown in Figures 15 and 16. We can see the symmetric difference of two CFGs τ_{1} and τ_{2}, that is $\tau_{1} \oplus \tau_{2}$ in Figure 17.

Figure 15. τ_{1}.

Figure 16. τ_{2}.

Figure 17. $\tau_{1} \oplus \tau_{2}$.

For node (a, f), we calculate Mv , IDv and NMv as follows:

$$
\begin{gathered}
\left(\mu_{Q_{1}} \oplus \mu_{Q_{2}}\right)((a, f)) e^{i\left(\alpha_{Q_{1}} \oplus \alpha_{Q_{2}}\right)((a, f))}=\wedge\left\{\mu_{Q_{1}}(a), \mu_{Q_{2}}(f)\right\} e^{i \wedge\left\{\alpha_{Q_{1}}(a), \alpha_{Q_{2}}(f)\right\}} \\
=\wedge\{0.2,0.4\} e^{i \wedge\{0.2,0.4\} \pi}=0.2 e^{i 0.2 \pi},
\end{gathered}
$$

for $a \in V_{1}$ and $f \in V_{2}$.
For arc/edge $(a, d)(a, e)$, we calculate the Mv.

$$
\begin{gathered}
\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}}\right) \oplus\left(\mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)((a, d)(a, e))=\wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(a), \mu_{L_{2}} e^{i \alpha_{L_{2}}}(d e)\right\} \\
=\wedge\{0.2,0.2\} e^{i \wedge\{0.2,0.2\} \pi}=0.2 e^{i 0.2 \pi},
\end{gathered}
$$

for $a \in V_{1}$ and $d e \in E_{2}$.
Now, for edge $(a, d)(b, d)$ we have

$$
\begin{gathered}
\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \oplus \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)((a, d)(b, d))=\wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}(a b), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}(d)\right\} \\
=\wedge\{0.2,0.2\} e^{i \wedge\{0.2,0.2\}}=0.2 e^{i 0.2 \pi}
\end{gathered}
$$

for $a b \in E_{1}$ and $d \in V_{2}$.
We can calculate Mv for all other nodes and edges.
Proposition 2. Symmetric difference of two $C F G s \tau_{1}$ and τ_{2} is a $C F G$.
Proof. Suppose $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ are two CFGs on two crisp graphs and $\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right) \in E_{1} \times E_{2}$.
(i) If $u_{1}=w_{1}=m$

$$
\begin{aligned}
\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \oplus \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right) & \left(\left(m, u_{2}\right)\left(m, w_{2}\right)\right)=\wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(m), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& \leq \wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(m), \min \left\{\mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(w_{2}\right)\right\}\right\} \\
& =\wedge\left\{\wedge\left\{\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(m), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\}, \wedge\left\{\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}(m), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}\left(w_{2}\right)}\right)\right\}\right\}\right. \\
& =\wedge\left\{\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} \oplus \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(m, u_{2}\right),\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} \oplus \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(m, w_{2}\right)\right\} .
\end{aligned}
$$

(ii) If $u_{2}=w_{2}=z$

$$
\begin{aligned}
&\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \oplus\right.\left.\mu_{L_{2}} e^{i \alpha_{L_{2}}} e i\left(\alpha_{L_{1}} \oplus \alpha_{L_{2}}\right)\right)\left(\left(u_{1}, z\right)\left(w_{1}, z\right)\right)=\wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}} e i \alpha_{L_{1}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}} e^{i \alpha_{Q_{2}}}(z)\right\} \\
& \leq \wedge\left\{\wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}} e^{i \alpha_{Q_{2}}}(z)\right\}\right. \\
&=\wedge\left\{\wedge \left\{\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}} e^{i \alpha_{Q_{2}}}(z)\right\}, \wedge\left\{\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} e^{\left.\left.i \alpha_{Q_{1}}\left(w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}} e^{i \alpha_{Q_{2}}}(z)\right\}\right\}}\right.\right.\right.\right. \\
& \quad=\wedge\left\{\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} e^{i \alpha_{Q_{1}}} \oplus \mu_{Q_{2}} e^{i \alpha_{Q_{2}}} e^{i \alpha_{Q_{2}}}\right)\left(u_{1}, z\right),\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} e^{i \alpha_{Q_{1}}} \oplus \mu_{Q_{2}} e^{i \alpha_{Q_{2}}} e^{i \alpha_{Q_{2}}}\right)\left(w_{1}, z\right)\right\} .
\end{aligned}
$$

(iii) If $u_{1} w_{1} \notin E_{1}$ and $u_{2} w_{2} \in E_{2}$

$$
\begin{aligned}
\left(\mu_{L_{1}} e i \alpha_{L_{1}} \oplus\right. & \left.\mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right)=\wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(w_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& \leq \wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(w_{1}\right), \min \left\{\mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right) \mu_{Q_{2}} e^{\left.\left.i \alpha_{Q_{2}}\left(w_{2}\right)\right\}\right\}}\right.\right. \\
& =\wedge\left\{\wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\},\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(w_{2}\right)\right\}\right. \\
& =\wedge\left\{\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} \oplus \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(u_{1}, u_{2}\right),\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} \oplus \mu_{Q_{2}}\right) e^{i \alpha_{Q_{1}}}\left(w_{1}, w_{2}\right)\right\} .
\end{aligned}
$$

(iv) If $u_{1} w_{1} \in E_{1}$ and $u_{2} w_{2} \notin E_{2}$

$$
\begin{aligned}
\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \oplus\right. & \left.\mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right)=\wedge\left\{\mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(w_{2}\right), \mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right)\right\} \\
& \leq \wedge\left\{\mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(w_{2}\right), \wedge\left\{\mu_{Q_{1}} e^{i \alpha Q_{Q_{1}}}\left(u_{1}\right) \mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(w_{1}\right)\right\}\right\} \\
& =\wedge\left\{\wedge\left\{\mu_{Q_{Q}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\},\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(w_{2}\right)\right\}\right. \\
& =\wedge\left\{\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} \oplus \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(u_{1}, u_{2}\right),\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} \oplus \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(w_{1}, w_{2}\right)\right\} .
\end{aligned}
$$

Hence, $\tau_{1} \oplus \tau_{2}$ is a CFG.
Definition 20. Suppose $G_{1}=\left(Q_{1}, L_{1}\right)$ and $G_{2}=\left(Q_{2}, L_{2}\right)$ are two CFGs. For any node $\left(u_{1}, u_{2}\right) \in V_{1} \times V_{2}$, we have

$$
\begin{aligned}
\left(d_{\mu e^{i \alpha}}\right)_{\tau_{1} \oplus \tau_{2}}\left(u_{1}, u_{2}\right) & =\sum_{\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right) \in E_{1} \times E_{2} .}\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \bigoplus \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right) \\
& =\sum_{u_{1}=w_{1}, u_{2} w_{2} \in E_{2}} \wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& +\sum_{u_{1} w_{1} \in E_{1}, u_{2}=w_{2}} \wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}, \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\}\right. \\
& +\sum_{u_{1} w_{1} \notin E_{1} \text { and } u_{2} w_{2} \in E_{2}} \wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{1}} e^{\left.i \alpha_{Q_{1}}\left(w_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\}}\right. \\
& +\sum_{u_{1} w_{1} \in E_{1} \text { and } u_{2} w_{2} \notin E_{2}} \wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right), \mu_{Q_{2}} e^{\left.i \alpha_{Q_{2}}\left(w_{2}\right)\right\}}\right.
\end{aligned}
$$

Theorem 5. Suppose $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, Y_{2}\right)$ are two CFGs. If $\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} \geq \mu_{L_{2}} e^{i \alpha_{L_{2}}}$ and $\mu_{Q_{2}} e^{i \alpha_{Q_{2}}} \geq \mu_{L_{1}} e^{i \alpha_{L_{1}}}$. Then $\forall\left(u_{1}, u_{2}\right) \in V_{1} \times V_{2}$
$(d)_{\tau_{1} \oplus \tau_{2}}\left(u_{1}, u_{2}\right)=q(d)_{\tau_{1}}\left(u_{1}\right)+s(d)_{\tau_{2}}\left(u_{2}\right)$ where $\mathrm{s}=\left|V_{1}\right|-(d)_{G_{1}}\left(u_{1}\right)$ and $\mathrm{q}=\left|V_{2}\right|$ $-(d)_{G_{2}}\left(u_{2}\right)$.

Proof.

$$
\begin{aligned}
\left(d_{\mu e^{i \alpha}}\right)_{\tau_{1} \oplus \tau_{2}}\left(u_{1}, u_{2}\right) & =\sum_{\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right) \in E_{1} \times E_{2}}\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \bigoplus \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right) \\
& =\sum_{u_{1}=w_{1}, u_{2} w_{2} \in E_{2}} \wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& +\sum_{u_{1} w_{1} \in E_{1}, u_{2}=w_{2}} \wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\} \\
& +\sum_{u_{1} w_{1} \notin E_{1} a n d u_{2} w_{2} \in E_{2}} \wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(w_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& +\sum_{u_{1} w_{1} \in E_{1} a n d u_{2} w_{2} \notin E_{2}} \wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(w_{2}\right)\right\} \\
& =\sum_{u_{2} w_{2} \in E_{2}} \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)+\sum_{u_{1} w_{1} \in E_{1}} \mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right) \\
& +\sum_{u_{1} w_{1} \notin E_{1} a n d u_{2} w_{2} \in E_{2}} \mu_{L_{2}} e^{\left.i \alpha_{L_{2}}\left(u_{2} w_{2}\right)\right\}+\sum_{u_{1} w_{1} \in E_{1} a n d} u_{u_{2} w_{2} \notin E_{2}} \mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right)} \\
& =q\left(d_{\mu}\right)_{\tau_{1}}\left(u_{1}\right)+s\left(d_{\mu}\right)_{\tau_{2}}\left(u_{2}\right),
\end{aligned}
$$

We conclude that $(d)_{\tau_{1} \oplus \tau_{2}}\left(u_{1}, u_{2}\right)=\mathrm{q}(d)_{\tau_{1}}\left(u_{1}\right)+s(d)_{\tau_{2}}\left(u_{2}\right)$, where $s=\left|V_{1}\right|-(d)_{G_{1}}\left(u_{1}\right)$ and $q=\left|V_{2}\right|-(d)_{G_{2}}\left(u_{2}\right)$.

Example 11. In Figure 18, $\mu_{Q_{1}} \geq \mu_{L_{2}}, \psi_{Q_{1}} \leq \psi_{L_{2}}, \mu_{Q_{2}} \geq \mu_{L_{1}}$, and $\psi_{Q_{2}} \leq \psi_{L_{1}}$. Then, the total degree of vertex in the symmetric difference is calculated by using the following formula:

$$
\left(d_{\mu} e^{i \alpha}\right)_{G_{1} \oplus G_{2}}\left(m_{1}, m_{2}\right)=q\left(d_{T}\right)_{G_{1}}\left(m_{1}\right)+s\left(d_{T}\right)_{G_{2}}\left(m_{2}\right),
$$

$$
\begin{aligned}
& \left(d_{\mu e^{i \alpha}}\right)_{G_{1} \oplus G_{2}}(a, c)=1 \cdot\left(0.2 e^{i 0.2 \pi}\right)+1 \cdot\left(0.2 e^{i 0.2 \pi}\right)=0.4 e^{i 0.4 \pi} \\
& \left(d_{\mu e^{i \alpha}}\right)_{G_{1} \oplus G_{2}}(a, d)=1 \cdot\left(0.2 e^{i 0.2 \pi}\right)+1 \cdot\left(0.2 e^{i 0.2 \pi}\right)=0.4 e^{i 0.4 \pi}
\end{aligned}
$$

Figure 18. Symmetric difference.
So, $(d)_{G_{1} \oplus G_{2}}(a, c)=0.4 e^{i 0.4 \pi}$ and $(d)_{G_{1} \oplus G_{2}}(a, d)=0.4 e^{i 0.4 \pi}$. Applying the same technique, we can obtain $(d)_{G_{1} \oplus G_{2}}(b, c)=(d)_{G_{1} \oplus G_{2}}(b, d)=(0.4,0.9,0.9)$. Now by direct calculations we have:

$$
\begin{aligned}
& \left(d_{\mu e^{i \alpha}}\right)_{\mathrm{G}_{1} \oplus G_{2}}(a, c)=0.2 e^{i 0.2 \pi}+0.2 e^{i 0.2 \pi}=0.4 e^{i 0.4 \pi}, \\
& \left(d_{\mu e^{i \alpha}}\right)_{\mathrm{G}_{1} \oplus G_{2}}(a, d)=0.2 e^{i 0.2 \pi}+0.2 e^{i 0.2 \pi}=0.4 e^{i 0.4 \pi}, \\
& \left(d_{\mu e^{i \alpha}}\right)_{G_{1} \oplus G_{2}}(b, c)=0.2 e^{i 0.2 \pi}+0.2 e^{i 0.2 \pi}=0.4 e^{i 0.4 \pi}, \\
& \left(d_{\mu e^{i \alpha}}\right)_{G_{1} \oplus G_{2}}(b, d)=0.2 e^{i 0.2 \pi}+0.2 e^{i 0.2 \pi}=0.4 e^{i 0.4 \pi} .
\end{aligned}
$$

It is obvious from the above calculations that the degrees of nodes determined by using the formula of the above theorem and by the direct method are equal.

Definition 21. Let $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, L_{2}\right)$ be two CFGs. For any vertex $\left(u_{1}, u_{2}\right) \in$ $V_{1} \times V_{2}$, we have

$$
\begin{aligned}
\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1} \oplus \tau_{2}}\left(u_{1}, u_{2}\right) & =\sum_{\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right) \in E_{1} \times E_{2}}\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \bigoplus \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right) \\
& +\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} \bigoplus \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{1}, u_{2}\right)\right. \\
& =\sum_{u_{1}=w_{1}, u_{2} w_{2} \in E_{2}} \wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& +\sum_{u_{1} w_{1} \in E_{1}, u_{2}=w_{2}} \wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}, \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\}\right. \\
& +\sum_{u_{1} w_{1} \notin E_{1} a n d u_{2} w_{2} \in E_{2}} \wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{1}} e^{\left.i \alpha_{Q_{1}}\left(w_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\}}\right. \\
& +\sum_{u_{1} w_{1} \in E_{1} a n d u_{2} w_{2} \notin E_{2}} \wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}\left(u_{2}\right), \mu_{Q_{2}} e^{\left.i \alpha_{Q_{2}}\left(w_{2}\right)\right\}}}\right. \\
& +\wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{\left.i \alpha_{Q_{2}}\left(u_{2}\right)\right\},}\right.
\end{aligned}
$$

Theorem 6. Suppose $\tau_{1}=\left(Q_{1}, L_{1}\right)$ and $\tau_{2}=\left(Q_{2}, Y_{2}\right)$ are two CFGs. If

$$
\begin{aligned}
& \mu_{Q_{1}} \geq \mu_{L_{2}} \text { and } \mu_{Q_{2}} \geq \mu_{L_{1}} \text { then } \forall\left(u_{1}, u_{2}\right) \in V_{1} \times V_{2} \\
& \qquad \begin{aligned}
\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1} \oplus \tau_{2}}\left(u_{1}, u_{2}\right) & =q\left(t d_{\left.\mu e^{i \alpha}\right)_{\tau_{1}}\left(u_{1}\right)+s\left(t d_{\left.\mu e^{i o \alpha}\right)_{\tau_{2}}}\left(u_{2}\right)\right.}\right. \\
& -(q-1) \mu e^{i \alpha}{ }_{\tau_{1}}\left(u_{1}\right)-\vee\left\{\mu e^{i \alpha}{ }_{\tau_{1}}\left(u_{1}\right), \mu e^{i \alpha}{ }_{\tau_{1}}\left(u_{1}\right)\right\} \\
\forall\left(u_{1}, u_{2}\right) \in V_{1} \times V_{2}, \mathrm{~s}=\left|V_{1}\right| & -(d)_{G_{1}}\left(u_{1}\right) \text { and } \mathrm{q}=\left|V_{2}\right|-(d)_{G_{2}}\left(u_{2}\right) .
\end{aligned}
\end{aligned}
$$

Proof. $\forall\left(u_{1}, u_{2}\right) \in V_{1} \times V_{2}$

$$
\begin{aligned}
& \left(t d_{\mu e^{i x}}\right)_{\tau_{1} \oplus \tau_{2}}\left(u_{1}, u_{2}\right) \\
& =\sum_{\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right) \in E_{1} \times E_{2} .}\left(\mu_{L_{1}} e^{i \alpha_{L_{1}}} \bigoplus \mu_{L_{2}} e^{i \alpha_{L_{2}}}\right)\left(\left(u_{1}, u_{2}\right)\left(w_{1}, w_{2}\right)\right)+\left(\mu_{Q_{1}} e^{i \alpha_{Q_{1}}} \bigoplus \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\right)\left(u_{1}, u_{2}\right) \\
& =\sum_{u_{1}=w_{1}, u_{2} w_{2} \in E_{2}} \wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& +\sum_{u_{1} w_{1} \in E_{1}, u_{2}=w_{2}} \wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\} \\
& +\sum_{u_{1} w_{1} \notin E_{1} \text { and } u_{2} w_{2} \in E_{2}} \wedge\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(w_{1}\right), \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& +\sum_{u_{1} w_{1} \in E_{1} \text { and } u_{2} w_{2} \notin E_{2}} \wedge\left\{\mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(w_{2}\right)\right\} \\
& +\vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\} \\
& =\sum_{u_{2} w_{2} \in E_{2}} \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)+\sum_{u_{1} w_{1} \in E_{1}} \mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right) \\
& +\sum_{u_{1} w_{1} \notin E_{1} \text { and }}{u_{2} w_{2} \in E_{2}}^{\left.\mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\}+\sum_{u_{1} w_{1} \in E_{1} \text { and }}{u_{2} w_{2} \notin E_{2}} \mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right)} \\
& +\vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\} \\
& \left.=\sum_{u_{2} w_{2} \in E_{2}} \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)+\sum_{u_{1} w_{1} \in E_{1}} \mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right)+\sum_{u_{1} w_{1} \notin E_{1} a n d} u_{u_{2} w_{2} \in E_{2}} \mu_{L_{2}} e^{i \alpha_{L_{2}}}\left(u_{2} w_{2}\right)\right\} \\
& +\sum_{u_{1} w_{1} \in E_{1} \text { and } u_{2} w_{2} \notin E_{2}} \mu_{L_{1}} e^{i \alpha_{L_{1}}}\left(u_{1} w_{1}\right)+\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right)+\mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right) \\
& -\vee\left\{\mu_{Q_{1}} e^{i \alpha_{Q_{1}}}\left(u_{1}\right), \mu_{Q_{2}} e^{i \alpha_{Q_{2}}}\left(u_{2}\right)\right\} \\
& =q\left(t d_{\mu e^{i x}}\right)_{\tau_{1}}\left(u_{1}\right)+s\left(t d_{\mu e^{i x}}\right)_{\tau_{2}}\left(u_{2}\right) \\
& -(q-1) \mu e^{i \alpha}{ }_{\tau_{1}}\left(u_{1}\right)-\vee\left\{\mu e^{i \alpha}{ }_{\tau_{1}}\left(u_{1}\right), \mu e^{i \alpha} \tau_{1}\left(u_{1}\right)\right\}
\end{aligned}
$$

where value of s and q as follows $s=\left|V_{1}\right|-(d)_{G_{1}}\left(u_{1}\right)$ and $q=\left|V_{2}\right|-(d)_{G_{2}}\left(u_{2}\right)$
Example 12. We find the total degree of nodes by using Example 10.

$$
\begin{gathered}
\left(d_{\mu e^{i \alpha}}\right)_{\tau_{1} \oplus \tau_{2}}(a, e)=q\left(d_{\mu}\right)_{\tau_{1}}(a)+s\left(d_{\mu e^{i \alpha}}\right)_{\tau_{2}}(e) \\
s=\left|V_{1}\right|-(d)_{G_{1}}(a) \\
=2-1=1
\end{gathered}
$$

Now,

$$
\begin{aligned}
q & =\left|V_{2}\right|-(d)_{G_{2}}(e) \\
& =4-2=2
\end{aligned}
$$

$$
\begin{aligned}
(t d-)_{\varnothing_{1} \oplus ळ_{2}}(a, e) & =q\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{1}}(a)+s\left(t d_{\mu e^{i \alpha}}\right)_{\tau_{2}}(e) \\
& -(s-1) \mu e^{i \alpha}{ }_{\tau_{2}}(e)-(q-1) \mu e^{i \alpha}{ }_{\tau_{1}}(a)-\vee\left\{\mu e^{i \alpha}{ }_{\tau_{1}}(a), \mu e^{i \alpha}{ }_{\tau_{2}}(e)\right\} \\
& =2\left(0.2 e^{i 0.2 \pi}+0.2 e^{i 0.2 \pi}\right)+1\left(0.3 e^{i 0.3 \pi}+0.3 e^{i 0.3 \pi}+0.2 e^{i 0.2 \pi}\right) \\
& -(1-1)\left(0.3 e^{i 0.3 \pi}\right)-(2-1)\left(0.2 e^{i 0.2 \pi}\right)-\vee\left\{0.2 e^{i 0.2 \pi}, 0.3 e^{i 0.3 \pi}\right\} \\
& =2(0.4+0.8-0.2-0.3) e^{i 0.4+0.8-0.2-0.3 \pi} \\
& =1.1 e^{i 1.1 \pi}
\end{aligned}
$$

$$
(t d)_{\tau_{1} \oplus \tau_{2}}(a, e)=1.1 e^{i 1.1 \pi}
$$

We conclude from the calculations that the total degrees of nodes calculated by the formula of the above theorem and by the direct method are equal.

4. Application of CFG

CFGs play a great role in fuzzy decision making and image segmentation. We presented a few factors in the application which will help in a physical way. For this, the government of Pakistan wants to construct COVID-19 Designated Tertiary Hospitals in any district that has a plan to make the minimum number of COVID-19 Designated Tertiary Hospitals in the district so that many people can benefit from this project. For this purpose, the following are some parameters taken into account: (1) a good place to build a COVID-19 Tertiary Hospital; (2) patients; (3) an urban location; (4) access to the facility; (5) security and safety; and (6) cost and efficiency. Assume that members of a team select 10 areas where they are engaged in the established COVID-19 Designated Tertiary Hospitals so that they may assist more patients for their treatment purposes. They see the following two scenarios: Constructing a COVID-19 Designated Tertiary Hospital in 1 of the 10 approved locations.

Constructing a COVID-19 Designated Tertiary Hospital between any 2 of the selected 10 places. Suppose that $\mathrm{P}=\{$ Islamabad, Thatha, Okara, Lailpur, Sakhar, Nawabshah, Vihari, Lahore, Foortabas, Layia\} is the set of locations where the team wishes to construct the COVID-19 Designated Tertiary Hospital as a node set. Assume that, after carefully analyzing the various characteristics, 80 percent of the specialists on the panel agree that Islamabad will have a COVID-19 Designated Tertiary Hospital. As a result, we can determine the term of membership. The phase term, which defines the time, must be computed for this. Twenty percent of professionals believe that Islamabad always manages a large number of patients. We will make a model of this information as $0.8 e^{0.2 \pi i}>$. Hence, it is their final argument. The team now wished to travel to Thatha. Assume that 70 percent of the team's specialists feel that Thatha will have a COVID-19 Designated Tertiary Hospital after thoroughly analyzing the various factors. As a result, we may determine the terms of the membership functions. The phase term, which defines the period, must be computed for this. According to 50 percent of professionals, Thatha led a large number of patients at one point in time. We make a model of this information as $<0.7 e^{0.5 \pi i}>$. After this, they visit Okara for their valuable mission. Suppose the model information about Okara is $<0.4 e^{0.3 \pi i}>$. This means that 40 percent of the population prefers this location. However, 30 percent of those polled are opposed to it. In a similar way, they go to every place and collect all the information as follows:
$<$ Lailpur : $0.8 e^{0.4 \pi i}>,<$ Sakhar : $0.1 e^{0.5 \pi i}>,<$ Nawabshah : $0.2 e^{0.5 \pi i}>,<$ Vihari : $0.2 e^{0.5 \pi i}>,<$ Lahore : $0.3 e^{0.6 \pi i}>,<$ Foortabas : $0.5 e^{0.6 \pi i}>,<$ Lyia $: 0.5 e^{0.4 \pi i}>$. We can denote this model as

$$
B=\left\{\begin{array}{l}
<\text { Islamabad }: 0.8 e^{0.2 \pi i}> \\
<\text { Thatha }: 0.7 e^{0.5 \pi i}> \\
<\text { Okara }: 0.3 e^{0.2 \pi i}> \\
<\text { Lailpur }: 0.8 e^{0.4 \pi i}> \\
<\text { Sakhar }: 0.1 e^{0.5 \pi i}> \\
<\text { Nawabshah }: 0.2 e^{0.5 \pi i}> \\
<\text { Vihari }: 0.2 e^{0.5 \pi i}> \\
<\text { Lahore : } 0.3 e^{0.6 \pi i}> \\
<\text { Foortabas }: 0.5 e^{0.6 \pi i}> \\
<\text { Lyia }: 0.5 e^{0.4 \pi i}>
\end{array}\right.
$$

The complex membership of the nodes represents the positive characteristics of a specific parameter for choosing a city for the COVID-19 Designated Tertiary Hospital. Now, we have truth membership function
Islamabad $=0.8$,
Thatha $=0.7$,
Okara $=0.3$,
Lailpur $=0.8$,
Sakhar = 0.1,
Nawabshah = 0.2,
Vihari $=0.2$,
Lahore $=0.3$,
Foortabas $=0.5$,
Lyia $=0.5$,
To determine the optimal choice, we see 10 truth membership functions. The value of Islamabad and Lailpur are the same. Now we add tradition and phase terms, for Islamabad, $0.8+0.2=1$ and for Lailpur, $0.8+0.4=1.2$. Lailpur city is the best choice for the COVID-19 Designated Tertiary Hospital. This is the application of CFG where it has no edge between vertices. CFG with no edge is shown in Figure 19.

Figure 19. CFG with no edge.
Take $\mathrm{P}=\{$ Islamabad, Thatha, Okara, Lailpur, Sakhar, Nawabshah, Vihari, Lahore, Foortabas, Lyia $\}=\left\{R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}, R_{7}, R_{8}, R_{9}, R_{10}\right\}$.

Now the team goes to look at situation two as follows: we find other edges according to the condition of the team.
traditional membership values of edges are given
$R_{1} R_{2}=0.7, R_{1} R_{3}=0.4, R_{1} R_{4}=0.6, R_{1} R_{5}=0.2, R_{1} R_{6}=0.3$,
$R_{1} R_{7}=0.1, R_{1} R_{8}=0.6, R_{1} R_{9}=0.7, R_{1} R_{10}=0.5, R_{2} R_{3}=0.4$,
$R_{2} R_{4}=0.3, R_{2} R_{5}=0.2, R_{2} R_{6}=0.3, R_{2} R_{7}=0.1, R_{2} R_{8}=0.8$,
$R_{2} R_{9}=0.7, R_{2} R_{10}=0.5, R_{3} R_{4}=0.4, R_{3} R_{5}=0.2, R_{3} R_{6}=0.3$,
$R_{3} R_{7}=0.1, R_{3} R_{8}=0.4, R_{3} R_{9}=0.2, R_{3} R_{10}=0.4, R_{4} R_{5}=0.2$,
$R_{4} R_{6}=0.3 . R_{4} R_{7}=0.1, R_{4} R_{8}=0.6, R_{4} R_{9}=0.3, R_{4} R_{10}=0.6$,
$R_{5} R_{6}=0.4, R_{5} R_{7}=0.1, R_{5} R_{8}=0.2, R_{5} R_{9}=0.2, R_{5} R_{10}=0.2$,
$R_{6} R_{7}=0.1, R_{6} R_{8}=0.3, R_{6} R_{9}=0.3, R_{6} R_{10}=0.3, R_{7} R_{8}=0.1$,
$R_{7} R_{9}=0.1, R_{7} R_{10}=0.1, R_{8} R_{9}=0.3, R_{8} R_{10}=0.6, R_{9} R_{10}=0.4$
$S\left(R_{2} R_{8}\right)$ is the largest value and therefore more suitable for making the COVID-19 Designated Tertiary Hospital. CFG with an edge is shown in Figure 20.

Figure 20. CFG with edge.

5. Conclusions

Complex fuzzy models have greater flexibility and comparability than fuzzy models. The CFG is a FG extension. Each vertex and edge in a complex fuzzy graphical model has only one complex membership grade. To improve the approximation, CFG can be employed. Different sorts of degrees of vertices were employed in this project. Only the overall contribution of the amplitude in the system is determined by the degree of vertices in FG. The overall information and contribution of the amplitude and phase components are given by the degree of vertices in CFG. This article looked at the communication between a few hospitals. The CFGs and their associated network systems were the exclusive focus of this study. This strategy can only be used if one-directed thinking occurs in a linked, complex fuzzy graphical system. Obtaining accurate data is not always easy. We defined the order and size of the CFG. We determined the operations on CFG, including union, intersection, and join of CFG. We discussed the degree and total degree of vertex of the CFG. Finally, we described how CFG can be used to solve decision-making problems in the COVID-19 environment. The maximal product and symmetric difference of CFG are discussed. In the future, our aim is to introduce (1) bipolar-CFG and (2) rejection of CFG.

Abstract

Author Contributions: Conceptualization, M.S., W.M., Q.X. and F.T.; methodology, M.S., W.M., Q.X. and F.T.; validation, M.S., W.M. and F.T.; formal analysis, M.S., W.M. and F.T.; investigation, M.S., W.M., Q.X. and F.T.; data curation, M.S., W.M., Q.X. and F.T.; writing-original draft preparation, M.S. and W.M.; writing-review and editing, M.S., W.M., Q.X. and F.T.; visualization, M.S., W.M., Q.X., and F.T.; supervision, M.S. and W.M.; project administration, M.S., W.M., Q.X. and F.T.; funding acquisition, F.T. All authors have read and agreed to the published version of the manuscript. Funding: This research was supported by the researchers, Supporting Project Number (RSP-2021/401), King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable. Data Availability Statement: Not applicable. Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338-353.
2. Rosenfeld, A. Fuzzy groups. J. Math. Anal. Appl. 1971, 35, 512-517.
3. Ghorai, G.; Pal, M. Faces and dual of m-polar fuzzy planar graphs. J. Intell. Fuzzy Syst. 2016, 31, 2043-2049.
4. Ghorai, G.; Pal, M. On degrees of m-polar fuzzy graph with application. J. Uncertain Syst. 2017, 11, 294-305.
5. Gani, N.; Radha, K. On regular fuzzy graphs. J. Phys. Sci. 2008, 12, 33-44.
6. Bhattacharya, P. Some remarks on fuzzy graphs. Pattern Recognit. Lett. 1983, 6, 297-302.
7. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87-96.
8. Shao, Z.; Kosari, S.; Rashmanlou, H.; Shoaib, M. New Concepts in Intuitionistic Fuzzy Graph with Application in Water Supplier Systems. Mathematics 2020, 8, 1241.
9. Rashmanlou, H.; Pal, M.; Samanta, S.; Borzooei, R.A. Product of bipolar fuzzy graphs and their degree. Int. J. Gen. Syst. 2016, 45, 1-14.
10. Rashmanlou, H.; Samanta, S.; Pal, M.; Borzooei, R.A. A study on bipolar fuzzy graphs. J. Intell. Fuzzy Syst. 2015, 28, 571-580.
11. Rashmanlou, H.; Pal, M. Some properties of highly irregular interval-valued fuzzy graphs. World Appl. Sci. J. 2013, 27, 1756-1773.
12. Zeng, S.; Shoaib, M.; Ali, S.; Smarandache, F.; Rashmanlou, H.; Mofidnakhaei, F. Certain Properties of Single-Valued Neutrosophic graph with Application in Food and Agriculture Organization. Int. J. Comput. Intell. Syst. 2021, 14, 1516-1540.
13. Shao, Z.; Kosari, S.; Shoaib, M.; Rashmanlou, H. Certain Concepts of Vague Graphs With Applications to Medical Diagnosis. Font. Phys. 2020, 8, 357.
14. Remot, D.; Milo, R.; Friedman, M.; Kandel, A. Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 2002, 10, 171-186.
15. Buckley, J.J. Fuzzy complex numbers. Fuzzy Sets Syst. 1989, 33, 333-345.
16. Yaqoob, N.; Akram, M. Complex Neutrosophic graph. Bull. Comput. Appl. Math. 2018, 6, 2224-8659.
17. Shoaib, M.; Kosari, S.; Rashmanlou, H.; Malik, M.A.; Rao, Y.; Talebi, Y.; Mofidnakhaei, F. Notion of Complex Pythagorean Fuzzy Graph with Properties and Application. J. Multi-Valued Logic Soft Comput. 2020, 34, 553-586.
18. Shoaib, M.; Mahmood, W.; Xin, Q.; Tchier, F. Certain Operations on Picture Fuzzy Graph with Applicatioin. Symmetry 2021, 13, 2400.
19. Gulzar, M.; Abbas, G.; Dilawar, F. Algebraic Properties of w-Q-fuzzy subgroups. Int. J. Math. Comput. Sci. 2020, 15, 265-274.
20. Gulzar, M.; Alghazzawi, M.H.; Mateen, D.; Kausar, N. A Certain Class of t-intuitionistic Fuzzy Subgroup. IEEE Access 2020, 8, 163260-163268.
21. Gulzar, M.; Mateen, M.H.; Alghazzawi, D.; Kausar, N. A novel applicatioin of complex intutionistic fuzzy sets in group theory. IEEE Access 2020, 8, 196075-196085.
22. Zeng, S.; Shoaib, M.; Ali, S.; Abbas, Q.; Nadeem, M.S. Complex Vague Graphs and Their Application in Decision-Making Problems. IEEE Access 2020, 8, 174094-174104.
