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Abstract: A complex fuzzy set (CFS) is described by a complex-valued truth membership function,
which is a combination of a standard true membership function plus a phase term. In this paper, we
extend the idea of a fuzzy graph (FG) to a complex fuzzy graph (CFG). The CFS complexity arises
from the variety of values that its membership function can attain. In contrast to a standard fuzzy
membership function, its range is expanded to the complex plane’s unit circle rather than [0,1]. As a
result, the CFS provides a mathematical structure for representing membership in a set in terms of
complex numbers. In recent times, a mathematical technique has been a popular way to combine
several features. Using the preceding mathematical technique, we introduce strong approaches
that are properties of CFG. We define the order and size of CFG. We discuss the degree of vertex
and the total degree of vertex of CFG. We describe basic operations, including union, join, and the
complement of CFG. We show new maximal product and symmetric difference operations on CFG,
along with examples and theorems that go along with them. Lastly, at the base of a complex fuzzy
graph, we show the application that would be important for measuring the symmetry or asymmetry
of acquaintanceship levels of social disease: COVID-19.

Keywords: CFG; order; size; complement; union; join; vertex degree and total vertex degree; maximal
product; symmetric difference: application

1. Introduction

It is frequently recognized that graphs are basically representations of relations. A
graph is a useful means of describing information concerning object relationships. Vertices
represent objects, while edges describe relationships.

It can be used to look at combinatorial problems in a lot of different fields, such as
algebra, topology, zoology, number theory, geometry, and image capture and clustering.

The graph’s vertices and edges are used to describe objects and the relationships
between them, respectively. Vagueness in global issues can emerge in the information
that specifies the conditions. FG models are useful mathematical tools for dealing with
combinatorial issues in different fields, such as topology, algebra, optimization, computers,
and environmental science. Because of the inherent presence of vagueness and ambiguity,
FG models are more complex in comparison to simple graphical models. The first time
fuzzy set theory was used, it was used to deal with a lot of complicated situations that did
not have enough information.

Zadeh [1] proposed the theory of a fuzzy set (FS), which is applicable in several ar-
eas, and his FS has a true membership function which is limited to [0,1]. In approximate
reasoning, the importance of fuzzy theory is particularly significant in overcoming combi-
natorial challenges in numerous domains, such as algebra, image segmentation, topology,

Symmetry 2022, 14, 1126. https://doi.org/10.3390/sym14061126 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14061126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-8715-0738
https://orcid.org/0000-0002-6178-8538
https://orcid.org/0000-0001-7855-508X
https://doi.org/10.3390/sym14061126
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14061126?type=check_update&version=1


Symmetry 2022, 14, 1126 2 of 24

operational research, medical science, and algebraic structure. Rosenfeld [2] discussed
the fuzzy versions of various graph-based theories. Ghorai and Pal [3,4] recently studied
the extensions of FG, such as bipolar fuzzy graphs, m-polar fuzzy planner graphs, and
m-polar fuzzy graphs. They defined the density of m-polar fuzzy graph techniques as
well as a set of operations. Nagoor Gani and Radha [5] discussed a few operations on
regular FG. Mathew and Sunitha described some kinds of arcs of FG. Bhattacharya [6]
gave some remarks on FG. Atanassov [7] extended the FS to the intuitionistic fuzzy set.
Shao et al. [8] developed new notions of the bondage number in intuitionistic fuzzy graphs.
Rashmanlou et al. [9,10] discussed briefly a bipolar fuzzy graph with the product of bipolar
fuzzy graphs, categorical operations, and related degrees. Rashmanlou et al. [11] were
interested in research on interval-valued fuzzy graphs. Zeng et al. [12] invented different
properties for single-valued neutrosophic graphs. Shao et al. [13] studied the properties of
vague graphs.

Ramot et al. [14] proposed the notion of a “CFS” in 2002. CFSs are an innovative
development of Zadeh’s fuzzy sets. Despite all of the benefits of this theory, we still face
enormous challenges when attempting to counter various physical conditions using a true
membership function. Because of this, it is very important to add a new step to fuzzy set
theory that takes into account complex numbers, which are an expansion of real numbers.
Complex fuzzy logic is a linear extension of standard fuzzy logic. It lets problems in fuzzy
logic that cannot be solved with a simple membership function grow and change in a natural
way. This specific set plays a critical role in a variety of executions, particularly intelligent
control systems and the prediction of periodic phenomena, where various fuzzy variables
are connected in a complicated way that cannot be accurately represented by simple
fuzzy operations. Furthermore, these sets are employed to tackle a variety of difficulties,
particularly the various periodic aspects and forecasting challenges. One of the far-reaching
implications of researching the CFS is that it effectively illustrates data with uncertainty and
periodicity. Buckley described fuzzy complex numbers in [15]. Yaqoob et al. [16] studied the
complex intuitionistic fuzzy graph and the complex neutrosophic graph. Shoaib et al. [17]
proposed the concept of a complex Pythagorean fuzzy graph. Shoaib et al. [18] discussed
some properties, symmetric difference and maximal product of picture fuzzy graphs.
Gulzar et al. [19–21] discussed fuzzy groups.

The CFG is the generalization of the FG. We define the order and size of CFG. Fur-
thermore, we present the degree of vertex and total degree of vertex concepts for CFG. We
describe some basic properties, including the join, union, and complement of CFG. We
discuss some new operations with maximal product and symmetric difference on CFG with
elaboration of examples and related theorems. Lastly, we analyze the application of CFG.

2. Preliminaries

Definition 1 ([1]). Fuzzy set is defined as Q = < p : µQ(p) >, p ∈ X, where µQ : A → [0, 1]
represent the degree of true membership function.

Definition 2 ([17]). Let X be a non-empty universal set. A complex fuzzy set Q is defined as
Q = < p : µQ(p)eiαQ >, p ∈ X where µQ : A→ [0, 1] and αQ : A→ [0, 2π]

Definition 3 ([22]). FG is a pair G = (Q, L) with fuzzy set Q on A and a fuzzy relation L on A
such that

µL(pq) ≤ max{µQ(p), µQ(q)}

where µQ : A→ [0, 1] denotes the degree of true membership function and the function µL: B ⊆
A×A→ [0,1]
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3. CFGs

This section presents the idea of complex fuzzy relations and CFG, as well as some of
their properties.

Definition 4. A CFG on a universe Y with underlying set A is an ordered pair τ = (Q, L); Q is a
complex fuzzy set on A and L is a complex fuzzy set on B ⊆ A× A such that

µL(xy)eiαL(xy) ≤ min{µQ(x), µQ(y)}ei min{αQ(x),αQ(y)}

µQ(x) ∈ [0, 1], and αQ(x) ∈ [0, 2π]
∀ x, y ∈ A.

Definition 5. Let Q = {x, µQ(x)eiαQ(x)}, Q1 = {x, µQ1(x)eiαQ1
(x)}|x ∈ Y},

Q2 = {x, µQ2(x)eiαQ2 (x)}|x ∈ Y}, be the three CFSs in Y:

(i) Q1 ⊆ Q2 if and only if µQ1 ≤ µQ2 for amplitude terms and αQ1 ≤ αQ2 for phase terms,
∀ x ∈ Y.

(ii) Q1 = Q2 if and only if µQ1 = µQ2 for amplitude terms and αQ1 = αQ2 for phase terms,
∀ x ∈ Y.

For simplicity, µeiα is called the complex fuzzy number where µ ∈ [0,1], and α ∈ [0, 2π].

Definition 6. Let Q1 = {x, µQ1(x)eiαQ1
(x)|x ∈ Y} and Q2 = {x, µQ2(x)eiαQ2 (x)|x ∈ Y} be the

two complex picture fuzzy sets in Y, then

(i) Q1 ∪ Q2 ={x, max(µQ1(x), µQ2(x))ei max(αQ1
(x),αQ2 (x))|x ∈ Y}.

(ii) Q1 ∩ Q2 ={x, min(µQ1 , µQ2(x))ei min(αQ1
(x),αQ2 (x))|x ∈ Y}.

Definition 7. A complex fuzzy set L in Y× Y is called a complex fuzzy relation in Y, characterized
by L = {xy, µL(xy)eiαL(xy)|xy ∈ Y × Y}, where µL: Y × Y → [0,1] depicts the membership
function of L and αL(xy) ∈ 2π ∀ xy ∈ Y × Y.

Example 1. Let G = (A,B) be a graph with Q = {s1, s3, s4} as the vertex set and L = {s1s3, s3s4}
as the edge set of G. τ = (Q, L) is a CFG on A, as given in Figure 1, defined by Q =
< ( s1

0.3e0.2πi ,
s3

0.3e0.3πi ,
s4

0.3e0.3πi ) > L = < ( s1s3
0.2e0.1πi ,

s3s4
0.2e0.2πi ) >

s1(0.3e
0.2πi)

b

b
b

s3(0.3e
0.3πi)

(0.2e0.
2πi)

(0
.2
e0

.1
π
i )

s4(0.3e
0.3πi)

b

1

Figure 1. CFG.
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Definition 8. Let Q = {x, µQ(x)eiαQ(x)|x ∈ A} and L = {xy, µL(xy)eiαL(xy)|xy ∈ B} be the
vertex set and edge set of a CFG τ, then the order of a CFG τ is denoted by O(τ) and is defined as

O(τ) = ∑
xi∈A

µQ(xi)e
i ∑

xi∈A
αQ(xi)

The size of a CFG τ is denoted by S(τ ) and is defined as S(τ) = ∑
xi∈A

µL(xiyj)e
i ∑

xiyj∈A
αL(xiyj)

.

Example 2. The order and size of the CFG given in Figure 1 is O(τ) = 0.9e0.8πi and S(τ) = 0.4e0.3πi,
respectively.

Definition 9. The complement of a CFG τ = (Q,L) on the underlying graph G = (A,B) is a CFG
τ = (Q,L) defined by

1. µQ(x)eiαQ(x) = µQ(x)eiαQ(x)

2.

µL(xy)eiαL(xy) =

{
min{µQ(x), µQ(y)}emin{αQ(x),αQ(y)}i if µL(xy)eiαL(xy) = 0,
min{µQ(x), µQ(y)}emin{αQ(x),αQ(y)}i − µL(xy)eiαL(xy) if 0 < µL(xy)eiαL(xy) ≤ 1.

.

Example 3. Consider a CFG τ = (Q,L) on A = {s1, s2, s3}, which is shown as in Figure 2 where
Q = < ( s1

0.3e0.3πi ,
s2

0.4e0.4πi ,
s3

0.2e0.2πi ), L = < ( s2s1
0.3e0.3πi ,

s1s3
0.1e0.1πi ).

s1(0.3e
0.3πi)

b

b

b

s 2
(0
.4
e0

.4
π
i )

s3(0.2e
0.2πi)

(0
.3e

0.
3π

i )

(0
.1
e0

.1
π
i )

1

Figure 2. CFG1.

Utilizing the Definition 9, the complement of a CFG can be obtained, which is shown as in
Figure 3.

Where Q = < ( s1
0.3e0.3πi ,

s2
0.4e0.4πi ,

s3
0.2e0.2πi ) > L = < ( s1s3

0.1e0.1πi ,
s2s3

0.2e0.2πi )).
It is easy to see from Figure 3 that τ = (Q, L) is a CFG.
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s1(0.3e
0.3πi)

b

b

b

s 2
(0
.4
e0

.4
π
i )

s3(0.2e
0.2πi)

(0.2e 0.2πi)

(0
.1
e0

.1
π
i )

1

Figure 3. Complement of CFG.

Theorem 1. The complement of a complement of CFG is a CFG itself, that is, τ = τ

Proof. Suppose that τ is a CFG. Then, by utilizing Definition 9.

µQ(x) eiαQ(x) = µQ(x) eiαQ(x) = µQ(x)eiαQ(x) for all x ∈ A
if µL(xy)eiαL(xy) = 0 then

µL(xy) eiαL(xy) = min{µQ(x), µQ(y)} ei min{αQ(x),αQ(y)}

= min{µQ(x), µQ(y)} ei min{αQ(x),αQ(y)} = µL(xy)eiαL(xy)

if 0 < µL(xy)eiαL(xy) ≤ 1 then

µL(xy) eiαL(xy) = min{µQ(x), µQ(y)} ei min{αQ(x),αQ(y)} − µL(xy) eiαL(xy)

µL(xy) eiαL(xy) = min{µQ(x), µQ(y)} ei min{αQ(x),αQ(y)} −
min{µQ(x), µQ(y)}emin{αQ(x),αQ(y)}i − µL(xy)eiαL(xy)

µL(xy) eiαL(xy) = µL(xy) eiαL(xy)

for all x, y ∈ A. Hence τ = τ.

Definition 10. The union τ1 ∪ τ2 = (Q1 ∪ Q2, L1 ∪ L2) of two CFGs τ1 = (Q1, L1) and
τ2 = (Q2, L2) of the graphs G1 = (A1, B1) and G2 = (A2, B2), respectively, is defined as follows:
(µQ1 ∪ µQ2)(x)ei(αQ1

∪αQ2 )

(µQ1 ∪ µQ2)(x)ei(αQ1
∪ αQ2 )(x) =





µQ1(x)eiαQ1
(x) if x ∈ A1 − A2 ,

µQ2(x)eiαQ2 (x) if x ∈ A2 − A1 ,

max{µQ1(x), µQ2(x)}ei max{αQ1
(x),αQ2 (x)} if x ∈ A1 ∩ A2,

(µL1 ∪ µL2)(xy)ei(αL1∪ αL2 )(xy) =





µL1(xy)eiαL1 (xy) if xy ∈ B1 − B2 ,
µL2(xy)eiαL2 (xy) if xy ∈ B2 − B1 ,
max{µL1(xy), µL2(xy)}ei max{αL1 (xy),αL2 (xy)} if xy ∈ B1 ∩ B2,

Definition 11. The ring-sum τ1 ⊕ τ2 = (Q1 ⊕ Q2, L1 ⊕ L2) of two CFGs τ1 = (Q1, L1) and
τ2 = (Q2, L2) of the graphs G1 and G2, respectively, is defined as follows:
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(µQ1 ⊕ µQ2)(x)ei(αQ1
⊕ αQ2 )(x)=(µQ1 ∪ µQ2)(x)ei(αQ1

∪ αQ2 )(x),

(µL1 ⊗ µL2)(xy)ei(αL1∪ αL2 )(xy) =





µL1(xy)eiαL1 (xy) if xy ∈ B1 − B2 ,
µL2(xy)eiαL2 (xy) if xy ∈ B2 − B1 ,
0 if xy ∈ B1 ∩ B2,

Definition 12. Let τ1 = (Q1, L1) and τ2 = (Q2, L2) be two CFGs of G1 and G2, respectively. The
join τ1 + τ2 = (Q1 + Q2, L1 + L2) of τ1 = (Q1, L1) and τ2 = (Q2, L2), defined as

(i) (µQ1 + µQ2)(x)ei(αQ1
+ αQ2 )(x)=(µQ1 ∪ µQ2)(x)ei(αQ1

∪ αQ2 )(x),
(ii) (µL1 + µL2)(xy)ei(αL1+ αL2 )(xy)=(µL1 ∪ µL2)(xy)ei(αL1∪ αL2 )(xy),
(iii) (µL1 + µL2)(xy)ei(αL1+ αL2 )(xy) = min{µQ1(x), µQ2(y)}e

i min{αQ1
(x),αQ2 (y)} where B′ is

the arcs set joining the nodes of A1 and A2, A1 ∩ A2 = ∅.

Definition 13. The degree of a vertex x ∈ A in a CFG τ stands for dτ(x), and is described as

dτ(x) = dµeiα(x), where dµeiα(x) = ∑
x,y 6=x∈A

µL(xy)e
i ∑

x,y 6=x∈A
αL(xy)

Definition 14. The total degree of a vertex x ∈ A in a CFG τ stands for tdτ(x), and is described as

tdτ(x) = tdµeiα(x), where tdµeiα(x) = ∑
x,y 6=x∈A

µL(xy)e
i ∑

x,y 6=x∈A
αL(xy)

+ µQ(x)eiαQ(x)

Definition 15. Let τ1 and τ2 be two CFGs. For any vertex x ∈ A1 ∪ A2, there are three cases to
consider.

Case 1: Either x ∈ A1 − A2 or x ∈ A2 − A1 . Then no arc incident at x lies in B1 ∩ B2. Thus, for
c ∈ C1 − C2,

(dµeiα)τ1∪τ2(x) = ∑
xy∈B1

µL1(xy)e
i ∑

xy∈B1
αL1 (xy)

= (dµeiα)G1(x)

(tdµeiα)τ1∪τ2(x) = (tdµeiα)G1(x). For x ∈ A2 − A1.

(dµeiα)τ1∪τ2(x) = ∑
xy∈B2

µL2(xy)e
i ∑

xy∈B2
αL2 (xy)

= (dµeiα)G2(x)

(tdµeiα)τ1∪τ2(x) = (tdµeiα)G2(x).
Case 2: x ∈ A1 ∩ A2 but no arc incident at x lies in B1 ∩ B2. Then any arc incident at x is either

B1 − B2 or B2 − B1 .
(dµeiα)τ1∪τ2(x) = ∑

xy∈B1∪B2

(µL1 eiαL1 ∪ µL2 eiαL2 )(xy)

(dµeiα)τ1∪τ2(x) = ∑
xy∈B1

µL1 eiαL1 (xy) + ∑
xy∈B2

µL2 eiαL2 (xy)

(dµeiα)τ1∪τ2(x) = (dµeiα)G1(x) + (dµeiα)G2(x)

(tdµeiα)τ1∪τ2(x) = ∑
xy∈B1∪B2

(µL1 eiαL1 ∪ µL2 eiαL2 )(xy) + max{µQ1 eiαQ1 (x), µQ2 eiαQ2 (x)}

(tdµeiα)τ1∪τ2(x) = ∑
xy∈B1

µL1 eiαL1 (xy) + ∑
xy∈B2

µL2 eiαL2 (xy) + max{µQ1 eiαQ1 (x), µQ2 eiαQ2 (x)}

(tdµeiα)τ1∪τ2(x) = (dµeiα)G1(x) + (dµeiα)G2(x) + max{µQ1 eiαQ1 (x), µQ2 eiαQ2 (x)}
(tdµeiα)τ1∪τ2(x) = (tdµeiα)G1(x) + (tdµeiα)G2(x)−min{µQ1 eiαQ1 (x), µQ2 eiαQ2 (x)}



Symmetry 2022, 14, 1126 7 of 24

Case 3:

(dµeiα)τ1∪τ2(x) = ∑
xy∈B1∪B2

(µL1 eiαL1 ∪ µL2 eiαL2 )(xy)

= ∑
xy∈B1−B2

µL1 eiαL1 (xy) + ∑
xy∈B2−B1

µL2 eiαL2 (xy)

+ ∑
xy∈B1∩B2

max{µL1 eiαL1 (xy), µL2 eiαL2 (xy)}

= ∑
xy∈B1−B2

µL1 eiαL1 (xy) + ∑
xy∈B2−B1

µL2 eiαL1 (xy)

+ ∑
xy∈B1∩B2

max{µL1 eiαL1 (xy), µL2 eiαL2 (xy)}

+ ∑
xy∈B1∩B2

min{µL1(xy), µL2(xy)}ei min{αL1 (xy),αL2 (xy)}

− ∑
xy∈B1∩B2

min{µL1 eiαL1 (xy), µL2 eiαL2 (xy)}

= ∑
xy∈B1

µL1 eiαL1 (xy) + ∑
xy∈B2

µL2 eiαL1 (xy)

− ∑
xy∈B1∩B2

min{µL1 eiαL1 (xy), µL2 eiαL2 (xy)}

= (dµeiα)τ1(x) + (dµeiα)τ2(x)− ∑
xy∈B1∩B2

min{µL1 eiαL1 (xy), µL2 eiαL2 (xy)}

In addition,

(td¯eiff)ø1∪ø2(x) = (tdµeiα)τ1(x) + (tdµeiα)τ2(x)

− ∑
xy∈B1∩B2

min{µL1(xy), µL2(xy)}ei min{αL1 (xy),αL2 (xy)}

−min{µQ1(x), µQ2(x)}ei min{αQ1
(x),αQ2 (x)},

Example 4. Suppose that τ1 = (Q1, L1) and τ2 = (Q2, L2) are two CFGs on A1 = {s1, s2, s4}
and A2 = {s1, s2, s3, s4}, respectively, as shown in Figures 4 and 5.

b

b

b

s2(0.2e
0.3πi)

s1(0.1e
0.3πi) s4(0.3e

0.1πi)

(0
.2
e
0.
1π
i )(0.1e 0.3π

i)

1

Figure 4. τ1.
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1 
 

 

 

 

Figure 5. τ2.

Moreover, τ1 ∪ τ2 is shown in Figure 6.

1 
 

 

 

 
Figure 6. τ1 U τ2.

If s3 ∈ A2 − A1, then
(dµeiα)τ1∪τ2(s3) = (dµeiα)τ2(s3) = 0.3e0.2πi

Therefore, (dτ1∪τ2(s3) = dτ2(s3) = 0.3e0.2πi

(tdµeiα)τ1∪τ2(s3) = (tdµeiα)τ2(s3) = 0.6e0.3πi

Therefore, (tdτ1∪τ2(s3) = tdτ2(s3) = 0.6e0.3πi)
Since s4 ∈ A1 ∩ A2 but there is no edge incident at s4 lies in B1 ∩ B2,
(dµeiα)τ1∪τ2(s4) = (dµeiα)τ1(s4) + (dµeiα)τ2(s4) = 0.4e0.5πi

Therefore, (dτ1∪τ2(s4) = dτ1(s4) + dτ2(s4) = (0.4e0.5πi)
(tdµeiα)τ1∪τ2(s4) = (tdµeiα)τ1(s4) + (tdµeiα)τ2(s4) + max{µQ1(s4), µQ2(s4)}emax{αQ1

(s4),αQ2 (s4)}i

= 0.7e0.8πi

Since s2 ∈ A1 ∩ A2 and s1s2 ∈ B1 ∩ B2,

(dµeiα)τ1∪τ2(s2) = (dµeiα)τ1(s2) + (dµeiα)τ2(s2)−min{µL1(s1s2), µL2(s1s2)}emin{αL1 (s1s2),αL2 (s1s2)}i = 0.5e0.5πi

Therefore, (dτ1∪τ2(s2) = 0.5e0.5πi

(tdµeiα)τ1∪τ2(s2) = (tdµeiα)τ1(s2) + (tdµeiα)τ2(s2)−
min{µL1(s1s2), µL2(s1s2)}emin{αL1 (s1s2),αL2 (s1s2)}i

+ max{µQ1(s2), µQ2(s2)}emax{αQ1
(s2),αQ2 (s2)}i = 0.7e0.8πi

Therefore, (tdτ1∪τ2(s2) = 0.7e0.8πi
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Definition 16. Maximal product τ1 ∗ τ2 = (Q1 ∗Q2, L1 ∗ L2) of two CFGs τ1 = (Q1, L1) and
τ2 = (Q2, L2) is defined as

(i)

(µQ1 eiαQ1 ∗ µQ2 eiαQ2 )((u1, u2)) = ∨{µQ1 eiαQ1 (u1), µQ2 eiαQ2 (u2)}
∀ (u1, u2) ∈ (V1 ×V2),

(ii)

(µQ1 eiαQ1 ∗ µQ2 eiαQ2 )((m, u2)(m, w2)) = ∨{µQ1 eiαQ1 (m), µL2 eiαL2 (u2w2)}
∀ m ∈ V1 and u2w2 ∈ E2,

(iii)

(µQ1 eiαQ1 ∗ µQ2 eiαQ2 )((u1, z)(w1, z)) = ∨{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (z)}
∀ z ∈ V2 and u1w1 ∈ E1.

Example 5. Suppose τ1 = (Q1, L1) and τ2 = (Q2, L2) are two CFGs, shown in Figures 7 and 8.
Their maximal product τ1 ∗ τ2 is shown in Figure 9.
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Figure 7. τ1.
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Figure 8. τ2.
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Figure 9. τ1 ∗ τ2.
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For vertex (e,a), we find membership value (Mv) as follows:

(µeiα
Q1
∗ µQ2 eiαQ2 )((e, a)) = ∨{µQ1 eiαQ1 (e), µQ2 eiαQ2 (a)}

= ∨{0.1, 0.2}ei∨{0.1,0.2} = 0.2ei0.2π ,

for e ∈ V1 and a ∈ V2.
For edge (e,a)(e,b), we find Mv.

(µQ1 eiαQ1 ∗ µQ2 eiαQ2 )((e, a)(e, b)) = ∨{µQ1 eiαQ1 (e), µL2 eiαL2 (ab)}
= ∨{0.1, 0.1}ei∨{0.1,0.1}π = 0.1ei∨{0.1,0.1}π .

for e ∈ V1 and ab ∈ E2.
For edge (e, a)( f , a):

(µQ1 eiαQ1 ∗ µQ2 eiαQ2 )((e, a)( f , a)) = ∨{µL1 eiαL1 (e f ), µQ2 eiαQ2 (a)}
= ∨{0.1, 0.2}ei∨{0.1,0.2}π = 0.2ei0.2π .

for a ∈ V2 and e f ∈ E1. Similarly, Mv for all others nodes and edges can be calculated.

Proposition 1. Maximal product of two CFGs τ1 and τ2, is a CFG.

Proof. Suppose τ1 = (Q1, L1) and τ2 = (Q2, L2) are two CFGs on crisp graphs
G1 = (V1, E1) and G2 = (V2, E2), respectively and ((u1, u2)(w1, w2)) ∈ E1 × E2.

(i) if u1 = w1 = m

(µL1 eiαL1 ∗ µL2 eiαL2 )((m, u2)(m, w2))

= ∨{µQ1 eiαQ1 (m), µL2 eiαL2 (u2w2)}
≤ ∨{µQ1 eiαQ1 (m),∧{µQ2 eiαQ2 (u2), µQ2 eiαQ2 (w2)}}
= ∧{∨{µQ1 eiαQ1 (m), µQ2 eiαQ2 (u2)},∨{µQ1 eiαQ1 (m), µQ2 eiαQ2 (w2)}}
= ∧{(µQ1 eiαQ1 ∗ µQ2 eiαQ2 )(m, u2), (µQ1 eiαQ1 ∗ µQ2 eiαQ2 )(m, w2)}.

(ii) if u2 = w2 = z

(µL1 eiαL1 ∗ µL2 eiαL2 )((u1, z)(w1, z))

= ∨{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (z)}
≤ ∨{∧{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (z)}
= ∧{∨{µL1 eiαL1 (u1), µQ2 eiαQ2 (z)},∨{{µQ1 eiαQ1 (w1), µQ2 eiαQ2 (z)}}}
= ∧{(µQ1 eiαQ1 ∗ µQ2 eiαQ2 )(u1, z), (µQ1 eiαQ1 ∗ µQ2 eiαQ2 )(w1, z)}.

We conclude that τ1 ∗ τ2 is a CFG.

Theorem 2. Maximal product of two strong CFGs τ1 and τ2 is a strong CFG.

Proof. Suppose τ1 = (Q1, L1) and τ2 = (Q2, L2) are two strong CFGs on two crisp graphs
and ((u1, u2)(w1, w2)) ∈ E1 × E2.

(i) if u1 = w1 = m
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(µL1 eiαL1 ∗ µL2 eiαL2 )((m, u2)(m, w2)) = ∨{µQ1 eiαQ1 (m), µL2 eiαL2 (u2w2)}
= ∨{µQ1 eiαQ1 (m),∧{µQ2 eiαQ2 (u2), µQ2 eiαQ2 (w2)}}
= ∧{∨{µQ1 eiαQ1 (m), µQ2 eiαQ2 (u2)},∨{{µQ1 eiαQ1 (m), µQ2 eiαQ2 (w2)}}}
= ∧{(µQ1 eiαQ1 ∗ µQ2 eiαQ2 )(m, u2), (µQ1 eiαQ1 ∗ µQ2 eiαQ2 )(m, w2)}.

(ii) if u2 = w2 = z

(µL1 eiαL1 ∗ µL2 eiαL2 )((u1, z)(w1, z)) = ∨{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (z)}
= ∨{∧{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (z)}
= ∧{∨{µL1 eiαL1 (u1), µQ2 eiαQ2 (z)},∨{{µQ1 eiαQ1 (w1), µQ2 eiαQ2 (z)}}}
= ∧{(µQ1 eiαQ1 ∗ µQ2 eiαQ2 )(u1, z), (µQ1 eiαQ1 ∗ µQ2 eiαQ2 )(w1, z)}.

Hence, τ1 ∗ τ2 is a strong CFG.

Example 6. Suppose τ1 and τ2 are two strong CFGs as shown in Figure 10.

b

b

b

b

b b

bb

a(0.2ei0.2π)

b(0.1ei0.1π)

c(0.1ei0.1π)

d(0.2ei0.2π)

(a, c)(0.2ei0.2π) (a, d)(0.2ei0.2π)

(b, c)(0.1ei0.1π) (b, d)(0.1ei0.1π)

0
.1
ei

0
.1
π

0
.1
ei

0
.1
π

0
.2
ei

0
.2
π

0
.2
ei

0
.2
π

0.2ei0.2π

0.1ei0.1π

τ1 τ2
τ1 ∗ τ2

1

Figure 10. CFGs.

Hence G1 ∗ G2 is also a strong CFG.

Remark 1. If maximal product of two CFGs τ1 = (Q1, L1) and τ2 = (Q2, L2) is a strong, then
τ1 = (Q1, L1) and τ2 = (Q2, L2) not necessary to be strong, in general.

Example 7. Suppose τ1 and τ2 are two CFGs as in Figures 11 and 12. We can see that the maximal
product of two CFGs τ1 and τ2, that is τ1 ∗ τ2 in Figure 13.

b b

a(0.2ei0.2π) b(0.3ei0.3π)

(0.2ei0.2π)

1

Figure 11. τ1.

b b

c(0.2ei0.2π) d(0.1ei0.1π)

(0.2ei0.2π)

1

Figure 12. τ2.
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b b

(a, c)(0.2ei0.2π)
(a, d)(0.2ei0.2π)0.2ei0.2π

b b

(b, c)(0.3ei0.3π) 0.3ei0.3π (b, d)(0.3ei0.3π)

0
.2
e
i0
.2
π0

.2
ei

0
.2
π

1

Figure 13. τ1 ∗ τ2.

Then τ1 and τ1 ∗ τ2 are strong CFGs, but τ2 is not strong. Since µL2 eiαL2 (u2, w2) = 0.2ei0.2π ,
on other hand ∧{µQ2 eiαQ2 (u2), µQ2 eiαQ2 (w2)} = ∧{0.2ei0.2π , 0.1ei0.1π} = 0.1ei0.1π .
Hence µL2 eiµL2 (u2, w2) 6= ∧{µQ2 eiµQ2 (u2), µQ2 eiµQ2 (w2)}.

Remark 2. The maximal product of two complete CFGs may or may not be a complete CFG because
(u1, u2) ∈ E1 and (w1, w2) ∈ E2 do not exist in the definition of the maximal product of two CFGs.

Definition 17. Suppose τ1 = (Q1, L1) and τ2 = (Q2, L2) are two CFGs. ∀(u1, u2) ∈ V1 ×V2

(dµeα)τ1∗τ2(u1, u2) = ∑
(u1,u2)(w1,w2)∈E1×E2.

(µL1 eiαL1 ∗ µL2 eiαL2 )((u1, u2)(w1, w2))

= ∑
u1=w1,u2w2∈E2

∨{µQ1 eiαQ1 (u1), µL2 eiαL2 (u2w2)}

+ ∑
u1w1∈E1,u2=w2

∨{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (u2)}

Theorem 3. Suppose τ1 = (Q1, L1) and τ2 = (Q2, L2) are two CFGs. If µQ1 eiαQ1 ≥ µL2 eiαL2 ,
and µQ2 eiαQ2 ≥ µL1 eiαL1 . Then for every ∀(u1, u2) ∈ V1 ×V2

(dµ)eiα
τ1∗τ2

(u1, u2) =(d)G2(u2)µQ1 eiαQ1 (u1) + (d)G1(u1)µQ2 eiαQ2 (u2)

Proof.

(dµeiα)τ1∗τ2(u1, u2) = ∑
(u1,u2)(w1,w2)∈E1×E2.

(µL1 ei_αL1 ∗ µL2 eiαL2 )((u1, u2)(w1, w2))

= ∑
u1=w1,u2w2∈E2

∨{µQ1 eiαQ1 (u1), µL2 eiαL2 (u2w2)}

+ ∑
u1w1∈E1,u2=w2

∨{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (u2)}

= ∑
u2w2∈E2,u1=w1

µL2 eiαL2 (u2w2) + ∑
u1w1∈E1,u2 = w2

µL1 eiαL1 (u1w1)

= (d)G2(u2)µQ1 eiαQ1 + (d)G1(u1)µQ2 eiαQ2

Example 8. Take the CFGs τ1, τ2, and τ1 ∗ τ2 as in Figure 14. Since µQ1 ≥ µL2 , αQ1 ≥ αL2 ,
µQ2 ≥ µL1 , αQ2 ≥ αL1 , by Theorem 3.8, we have the following.
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(dµeiα)G1∗G2(a, d) = (d)G2(d)µQ1 eiαQ1 (a)

+(d)G1(a)µQ2 eiαQ2 (d) = 1 · (0.3ei0.3π) + 1 · (0.3ei0.3π) = 0.6ei0.6π ,

b

b

b

b

b b

bb

a(0.3ei0.3π)

b(0.2ei0.2π)

c(0.2ei0.2π)

d(0.3ei0.3π)

(a, c)(0.3ei0.3π) (a, d)(0.3ei0.3π)

(b, c)(0.3ei0.3π) (b, d)(0.3ei0.3π)

0
.2
ei

0
.2
π

0
.2
ei

0
.2
π

0
.2
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0
.2
π

0
.3
ei

0
.3
π

0.3ei0.3π

0.2ei0.2π

τ1 τ2
τ1 ∗ τ2

1

Figure 14. CFG3.

By direct calculations:

(dµeiα
G1∗G2

(b, d)) = 0.2ei0.2π + 0.3ei0.3π = 0.5ei0.5π ,

(dµeiα
G1∗G2

(a, c)) = 0.5ei0.5π ,

(dµeiα
G1∗G2

(a, d)) = 0.6ei0.6π ,

(dµeiα
G1∗G2

(b, c)) = 0.4ei0.4π ,

We conclude from the above calculations that ”the degrees of nodes determined by using the
formula of the above theorem and by the directed method are equal”.

Definition 18. Let τ1 = (Q1, L1) and τ2 = (Q2, L2) be two CFGs. ∀(u1, u2) ∈ V1 ×V2

(tdµeiα)τ1∗τ2(u1, u2) = ∑
(u1,u2)(w1,w2)∈E1×E2.

(µL1 eiαL1 ∗ µL2 eiαL2 )((u1, u2)(w1, w2)) + (αQ1 ∗ αQ2(u1, u2)

= ∑
u1=w1,u2w2∈E2

∨{µQ1 eiαQ1 (u1), µL2 eiαL2 (u2w2)}

+ ∑
u1w1∈E1,u2=w2

∨{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (u2)}

+ ∨{µQ1 eiαQ1 (u1), µQ2 eiαQ2 (u2)}ei∨{αQ1
(u1),αQ2 (u2)},

Theorem 4. Suppose τ1 = (Q1, L1) and τ2 = (Q2, L2) are two CFGs. If µQ1 ≥ µL2 , αQ1 ≥ αL2

and µQ2 ≥ µL1 , αQ2 ≥ αL1 . Then for every ∀(u1, u2) ∈ V1 ×V2

(tdµeiα)τ1∗τ2(u1, u2) =(d)G2(u2)µeiα
Q1
(u1) + (d)G1(u1)µQ2 eiαQ2 (u2) + ∨{µQ1 eiαQ1 (u1), µQ2 eiαQ2 (u2)}
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Proof.

(tdµeiα )τ1∗τ2 (u1, u2) = ∑
(u1,u2)(w1,w2)∈E1×E2.

(µL1 eiαL1 ∗ µL2 eiαL2 )((u1, u2)(w1, w2))

+ (µQ1 eiαQ1 ∗ µQ2 eiαQ1 )(u1, u2)

= ∑
u1=w1,u2w2∈E2

∨{µQ1 eiαQ1 (u1), µL2 eiαL2 (u2w2)}

+ ∑
u1w1∈E1,u2=w2

∨{µL1 (u1w1), µQ2 (u2)}e
i ∑

u1w1∈E1,u2=w2

∨{αL1 (u1w1),αQ2 (u2)}

+ ∨{µQ1 eiαQ1 (u1), µQ2 eiαQ2 (u2)}
= ∑

u2w2∈E2,u1=w1

µL2 eiαL2 (u2w2)

+ ∑
u1w1∈E1,u2=w2

µL1 eiαL1 (u1w1)

+ max{µQ1 eiαQ1 (u1), µQ2 eiαQ2 (u2)}
= (d)G2 (u2)µQ1 eiαQ1 (u1) + (d)G1 (u1)µQ2 eiαQ2 (u2) + max{µQ1 eiαQ1 (u1), µQ2 eiαQ2 (u2)}

Example 9. Let τ1 = (Q1, L1) and τ2 = (Q2, L2) be two CFGs. If µQ1 eiαQ1 ≥ µL2 eiαL2 and
µQ2 eiαQ2 ≥ µL1 eiαL1 .

In Example 9, we calculate total degree of nodes of τ1 ∗ τ2 by using Figures 7–9. We calculate the
total degree of nodes in the maximal product. Choose node (e,a).

(tdµeiα)τ1∗τ2(e, a) = (d)G2(e)µQ1 eiαQ1 (a) + (d)G1(a)µQ2 eiαQ2 (e) + ∨{µQ1 eiαQ1 (e), µQ2 eiαQ2 (a)}
= 1(0.1ei0.1π) + 3(0.2ei0.2π) + ∨(0.2, 0.1)ei∨(0.2,0.1)π

= (0.1 + 0.6 + 0.2)ei(0.1+0.6+0.2)π = 0.9ei0.9π

Similarly, we can calculate it for other nodes.

Definition 19. Symmetric difference τ1 ⊕ τ2 = (Q1 ⊕Q2, L1 ⊕ L2) of two CFGs τ1 = (Q1, L1)
and τ2 = (Q2, L2) is defined as

(i)

(µQ1 eiαQ1 ⊕ µQ2 eiαQ2 )((u1, u2)) = ∧{µQ1 eiαQ1 (u1), µQ2 eiαQ2 (u2)}

∀(u1, u2) ∈ (V1 ×V2),
(ii)

(µL1 eiαL1 ⊕ µL2 eiαL2 )((m, u2)(m, w2)) = ∧{µQ1 eiαQ1 (m), µL2 eiαL2 (u2w2)}

∀ m ∈ V1 and u2w2 ∈ E2,

(iii)

(µL1 eiαL1 ⊕ µL2)e
iαL1 ((u1, z)(w1, z)) = ∧{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (z)}

∀ z ∈ V2 and u1w1 ∈ E1,
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(iv)

(µL1 eiαL1 ⊕ µL2 eiαL2 )((u1, u2)(w1, w2)) = ∧{µQ1 eiαQ1 (u1), µQ1 eiαQ1 (w1), µL2 eiαL2 (u2w2)}
f orall u1w1 6∈ E1 and u2w2 ∈ E2

or

= ∧{µQ2 eiαQ2 (u2), µQ2 eiαQ2 (w2), µL1 eiαL1 (u1w1)}
f orall u1w1 ∈ E1 and u2w2 6∈ E2

Example 10. Take τ1 and τ2 as CFGs as shown in Figures 15 and 16. We can see the symmetric
difference of two CFGs τ1 and τ2, that is τ1 ⊕ τ2 in Figure 17.

b b
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1

Figure 15. τ1.
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Figure 16. τ2.
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⊕

τ2.
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For node (a, f ), we calculate Mv, IDv and NMv as follows:

(µQ1 ⊕ µQ2)((a, f ))ei(αQ1
⊕αQ2 )((a, f )) = ∧{µQ1(a), µQ2( f )}ei∧{αQ1

(a),αQ2 ( f )}

= ∧{0.2, 0.4}ei∧{0.2,0.4}π = 0.2ei0.2π ,

for a ∈ V1 and f ∈ V2.
For arc/edge (a, d)(a, e), we calculate the Mv.

(µL1 eiαL1 )⊕ (µL2 eiαL2 )((a, d)(a, e)) = ∧{µQ1 eiαQ1 (a), µL2 eiαL2 (de)}
= ∧{0.2, 0.2}ei∧{0.2,0.2}π = 0.2ei0.2π ,

for a ∈ V1 and de ∈ E2.
Now, for edge (a, d)(b, d) we have

(µL1 eiαL1 ⊕ µL2 eiαL2 )((a, d)(b, d)) = ∧{µL1 eiαL1 (ab), µQ2 eiαQ2 (d)}
= ∧{0.2, 0.2}ei∧{0.2,0.2} = 0.2ei0.2π .

for ab ∈ E1 and d ∈ V2.
We can calculate Mv for all other nodes and edges.

Proposition 2. Symmetric difference of two CFGs τ1 and τ2 is a CFG.

Proof. Suppose τ1 = (Q1, L1) and τ2 = (Q2, L2) are two CFGs on two crisp graphs and
((u1, u2)(w1, w2)) ∈ E1 × E2.

(i) If u1 = w1 = m

(µL1 eiαL1 ⊕ µL2 eiαL2 )((m, u2)(m, w2)) = ∧{µQ1 eiαQ1 (m), µL2 eiαL2 (u2w2)}
≤ ∧{µQ1 eiαQ1 (m), min{µQ2 eiαQ2 (u2), µQ2 eiαQ2 (w2)}}
= ∧{∧{{µQ1 eiαQ1 (m), µQ2 eiαQ2 (u2)},∧{{µQ1 eiαQ1 (m), µQ2 eiαQ2 (w2)}}
= ∧{(µQ1 eiαQ1 ⊕ µQ2 eiαQ2 )(m, u2), (µQ1 eiαQ1 ⊕ µQ2 eiαQ2 )(m, w2)}.

(ii) If u2 = w2 = z

(µL1 eiαL1⊕µL2 eiαL2 ei(αL1 ⊕ αL2))((u1, z)(w1, z)) = ∧{µL1 eiαL1 eiαL1(u1w1), µQ2 eiαQ2 eiαQ2 (z)}
≤ ∧{∧{µL1 eiαL1 eiαL1 (u1w1), µQ2 eiαQ2 eiαQ2 (z)}
= ∧{∧{{µQ1 eiαQ1 eiαQ1 (u1), µQ2 eiαQ2 eiαQ2 (z)},∧{{µQ1 eiαQ1 eiαQ1 (w1), µQ2 eiαQ2 eiαQ2 (z)}}
= ∧{(µQ1 eiαQ1 eiαQ1 ⊕ µQ2 eiαQ2 eiαQ2 )(u1, z), (µQ1 eiαQ1 eiαQ1 ⊕ µQ2 eiαQ2 eiαQ2 )(w1, z)}.

(iii) If u1w1 6∈ E1andu2w2 ∈ E2

(µL1 eiαL1⊕µL2 eiαL2 )((u1, u2)(w1, w2)) = ∧{µQ1 eiαQ1 (u1), µQ1 eiαQ1 (w1), µL2 eiαL2 (u2w2)}
≤ ∧{µQ1 eiαQ1 (u1), µQ1 eiαQ1 (w1), min{µQ2 eiαQ2 (u2)µQ2 eiαQ2 (w2)}}
= ∧{∧{µQ1 eiαQ1 (u1), µQ2 eiαQ2 (u2)}, {µQ1 eiαQ1 (u1), µQ2 eiαQ2 (w2)}
= ∧{(µQ1 eiαQ1 ⊕ µQ2 eiαQ2 )(u1, u2), (µQ1 eiαQ1 ⊕ µQ2)e

iαQ1 (w1, w2)}.

(iv) If u1w1 ∈ E1 and u2w2 6∈ E2
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(µL1 eiαL1⊕µL2 eiαL2 )((u1, u2)(w1, w2)) = ∧{µQ2 eiαQ2 (u2), µQ2 eiαQ2 (w2), µL1 eiαL1 (u1w1)}
≤ ∧{µQ2 eiαQ2 (u2), µQ2 eiαQ2 (w2),∧{µQ1 eiαQ1 (u1)µQ1 eiαQ1 (w1)}}
= ∧{∧{µQ1 eiαQ1 (u1), µQ2 eiαQ2 (u2)}, {µQ1 eiαQ1 (w1), µQ2 eiαQ2 (w2)}
= ∧{(µQ1 eiαQ1 ⊕ µQ2 eiαQ2 )(u1, u2), (µQ1 eiαQ1 ⊕ µQ2 eiαQ2 )(w1, w2)}.

Hence, τ1
⊕

τ2 is a CFG.

Definition 20. Suppose G1 = (Q1, L1) and G2 = (Q2, L2) are two CFGs. For any node
(u1, u2) ∈ V1 ×V2, we have

(dµeiα)τ1
⊕

τ2(u1, u2) = ∑
(u1,u2)(w1,w2)∈E1×E2.

(µL1 eiαL1
⊕

µL2 eiαL2 )((u1, u2)(w1, w2))

= ∑
u1=w1,u2w2∈E2

∧{µQ1 eiαQ1 (u1), µL2 eiαL2 (u2w2)}

+ ∑
u1w1∈E1,u2=w2

∧{µL1 eiαL1 (u1w1, µQ2 eiαQ2 (u2)}

+ ∑
u1w1 6∈E1and u2w2∈E2

∧{µQ1 eiαQ1 (u1), µQ1 eiαQ1 (w1), µL2 eiαL2 (u2w2)}

+ ∑
u1w1∈E1and u2w2 6∈E2

∧{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (u2), µQ2 eiαQ2 (w2)},

Theorem 5. Suppose τ1 = (Q1, L1) and τ2 = (Q2, Y2) are two CFGs. If µQ1 eiαQ1 ≥ µL2 eiαL2

and µQ2 eiαQ2 ≥ µL1 eiαL1 . Then ∀(u1, u2) ∈ V1 ×V2
(d)τ1

⊕
τ2(u1, u2) =q(d)τ1(u1) + s(d)τ2(u2) where s = | V1 | − (d)G1(u1) and q = | V2 |

− (d)G2(u2) .

Proof.

(dµeiα )τ1
⊕

τ2 (u1, u2) = ∑
(u1,u2)(w1,w2)∈E1×E2.

(µL1 eiαL1
⊕

µL2 eiαL2 )((u1, u2)(w1, w2))

= ∑
u1=w1,u2w2∈E2

∧{µQ1 eiαQ1 (u1), µL2 eiαL2 (u2w2)}

+ ∑
u1w1∈E1,u2=w2

∧{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (u2)}

+ ∑
u1w1 6∈E1and u2w2∈E2

∧{µQ1 eiαQ1 (u1), µQ1 eiαQ1 (w1), µL2 eiαL2 (u2w2)}

+ ∑
u1w1∈E1and u2w2 6∈E2

∧{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (u2), µQ2 eiαQ2 (w2)}

= ∑
u2w2∈E2

µL2 eiαL2 (u2w2) + ∑
u1w1∈E1

µL1 eiαL1 (u1w1)

+ ∑
u1w1 6∈E1and u2w2∈E2

µL2 eiαL2 (u2w2)}+ ∑
u1w1∈E1and u2w2 6∈E2

µL1 eiαL1 (u1w1)

= q(dµ)τ1 (u1) + s(dµ)τ2 (u2),

We conclude that (d)τ1
⊕

τ2 (u1, u2) = q(d)τ1 (u1) + s(d)τ2 (u2), where s = | V1 | − (d)G1 (u1) and
q = | V2 | − (d)G2 (u2) .

Example 11. In Figure 18, µQ1 ≥ µL2 , ψQ1 ≤ ψL2 , µQ2 ≥ µL1 , and ψQ2 ≤ ψL1 . Then, the total
degree of vertex in the symmetric difference is calculated by using the following formula:

(dµeiα)G1⊕G2(m1, m2) = q(dT)G1(m1) + s(dT)G2(m2),
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(dµeiα)G1⊕G2(a, c) = 1 · (0.2ei0.2π) + 1 · (0.2ei0.2π) = 0.4ei0.4π ,

(dµeiα)G1⊕G2(a, d) = 1 · (0.2ei0.2π) + 1 · (0.2ei0.2π) = 0.4ei0.4π ,

b

b

b

b

b b

bb

a(0.3ei0.3π)

b(0.2ei0.2π)

c(0.2ei0.2π)

d(0.3ei0.3π)

(a, c)(0.2ei0.2π) (a, d)(0.3ei0.3π)

(b, c)(0.2ei0.2π) (b, d)(0.2ei0.2π)

0
.2
ei

0
.2
π

0
.2
ei

0
.2
π

0
.2
ei

0
.2
π

0
.2
ei

0
.2
π

0.2ei0.2π

0.2ei0.2π

τ1 τ2 τ1
⊕

τ2

1

Figure 18. Symmetric difference.

So, (d)G1⊕G2(a, c) = 0.4ei0.4π and (d)G1⊕G2(a, d) = 0.4ei0.4π . Applying the same technique,
we can obtain (d)G1⊕G2(b, c) = (d)G1⊕G2(b, d) = (0.4, 0.9, 0.9). Now by direct calculations we
have:

(dµeiα)G1⊕G2(a, c) = 0.2ei0.2π + 0.2ei0.2π = 0.4ei0.4π ,

(dµeiα)G1⊕G2(a, d) = 0.2ei0.2π + 0.2ei0.2π = 0.4ei0.4π ,

(dµeiα)G1⊕G2(b, c) = 0.2ei0.2π + 0.2ei0.2π = 0.4ei0.4π ,

(dµeiα)G1⊕G2(b, d) = 0.2ei0.2π + 0.2ei0.2π = 0.4ei0.4π .

It is obvious from the above calculations that the degrees of nodes determined by using the
formula of the above theorem and by the direct method are equal.

Definition 21. Let τ1 = (Q1, L1) and τ2 = (Q2, L2) be two CFGs. For any vertex (u1, u2) ∈
V1 × V2, we have

(tdµeiα)τ1
⊕

τ2(u1, u2) = ∑
(u1,u2)(w1,w2)∈E1×E2.

(µL1 eiαL1
⊕

µL2 eiαL2 )((u1, u2)(w1, w2))

+ (µQ1 eiαQ1
⊕

µQ2 eiαQ2 (u1, u2)

= ∑
u1=w1,u2w2∈E2

∧{µQ1 eiαQ1 (u1), µL2 eiαL2 (u2w2)}

+ ∑
u1w1∈E1,u2=w2

∧{µL1 eiαL1 (u1w1, µQ2 eiαQ2 (u2)}

+ ∑
u1w1 6∈E1and u2w2∈E2

∧{µQ1 eiαQ1 (u1), µQ1 eiαQ1 (w1), µL2 eiαL2 (u2w2)}

+ ∑
u1w1∈E1and u2w2 6∈E2

∧{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (u2), µQ2 eiαQ2 (w2)}

+ ∧{µQ1 eiαQ1 (u1), µQ2 eiαQ2 (u2)},

Theorem 6. Suppose τ1 = (Q1, L1) and τ2 = (Q2, Y2) are two CFGs. If
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µQ1 ≥ µL2 and µQ2 ≥ µL1 then ∀(u1, u2) ∈ V1 ×V2

(tdµeiα)τ1
⊕

τ2(u1, u2) = q(tdµeiα)τ1(u1) + s(tdµeioα)τ2(u2)

− (q− 1)µeiα
τ1
(u1)−∨{µeiα

τ1
(u1), µeiα

τ1
(u1)}

∀(u1, u2) ∈ V1 ×V2, s = | V1 | − (d)G1(u1) and q = | V2 | − (d)G2(u2) .

Proof. ∀(u1, u2) ∈ V1 ×V2

(tdµeiα )τ1
⊕

τ2 (u1, u2)

= ∑
(u1,u2)(w1,w2)∈E1×E2.

(µL1 eiαL1
⊕

µL2 eiαL2 )((u1, u2)(w1, w2)) + (µQ1 eiαQ1
⊕

µQ2 eiαQ2 )(u1, u2)

= ∑
u1=w1,u2w2∈E2

∧{µQ1 eiαQ1 (u1), µL2 eiαL2 (u2w2)}

+ ∑
u1w1∈E1,u2=w2

∧{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (u2)}

+ ∑
u1w1 6∈E1and u2w2∈E2

∧{µQ1 eiαQ1 (u1), µQ1 eiαQ1 (w1), µL2 eiαL2 (u2w2)}

+ ∑
u1w1∈E1and u2w2 6∈E2

∧{µL1 eiαL1 (u1w1), µQ2 eiαQ2 (u2), µQ2 eiαQ2 (w2)}

+ ∨{µQ1 eiαQ1 (u1), µQ2 eiαQ2 (u2)}
= ∑

u2w2∈E2

µL2 eiαL2 (u2w2) + ∑
u1w1∈E1

µL1 eiαL1 (u1w1)

+ ∑
u1w1 6∈E1and u2w2∈E2

µL2 eiαL2 (u2w2)}+ ∑
u1w1∈E1and u2w2 6∈E2

µL1 eiαL1 (u1w1)

+ ∨{µQ1 eiαQ1 (u1), µQ2 eiαQ2 (u2)}
= ∑

u2w2∈E2

µL2 eiαL2 (u2w2) + ∑
u1w1∈E1

µL1 eiαL1 (u1w1) + ∑
u1w1 6∈E1and u2w2∈E2

µL2 eiαL2 (u2w2)}

+ ∑
u1w1∈E1and u2w2 6∈E2

µL1 eiαL1 (u1w1) + µQ1 eiαQ1 (u1) + µQ2 eiαQ2 (u2)

−∨{µQ1 eiαQ1 (u1), µQ2 eiαQ2 (u2)}
= q(tdµeiα )τ1 (u1) + s(tdµeiα )τ2 (u2)

− (q− 1)µeiα
τ1
(u1)−∨{µeiα

τ1
(u1), µeiατ1(u1)}

where value of s and q as follows s = |V1| − (d)G1 (u1) and q = |V2| − (d)G2 (u2)

Example 12. We find the total degree of nodes by using Example 10 .

(dµeiα)τ1
⊕

τ2(a, e) = q(dµ)τ1(a) + s(dµeiα)τ2(e)

s =| V1 | − (d)G1(a)

= 2− 1 = 1

Now,

q =| V2 | − (d)G2(e)

= 4− 2 = 2
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(td¯)ø1
⊕

ø2(a, e) = q(tdµeiα)τ1(a) + s(tdµeiα)τ2(e)

− (s− 1)µeiα
τ2
(e)− (q− 1)µeiα

τ1
(a)−∨{µeiα

τ1
(a), µeiα

τ2
(e)}

= 2(0.2ei0.2π + 0.2ei0.2π) + 1(0.3ei0.3π + 0.3ei0.3π + 0.2ei0.2π)

− (1− 1)(0.3ei0.3π)− (2− 1)(0.2ei0.2π)−∨{0.2ei0.2π , 0.3ei0.3π}
= 2(0.4 + 0.8− 0.2− 0.3)ei0.4+0.8−0.2−0.3π

= 1.1ei1.1π

(td)τ1
⊕

τ2(a, e) = 1.1ei1.1π

We conclude from the calculations that the total degrees of nodes calculated by the
formula of the above theorem and by the direct method are equal.

4. Application of CFG

CFGs play a great role in fuzzy decision making and image segmentation. We pre-
sented a few factors in the application which will help in a physical way. For this, the
government of Pakistan wants to construct COVID-19 Designated Tertiary Hospitals in any
district that has a plan to make the minimum number of COVID-19 Designated Tertiary
Hospitals in the district so that many people can benefit from this project. For this purpose,
the following are some parameters taken into account: (1) a good place to build a COVID-19
Tertiary Hospital; (2) patients; (3) an urban location; (4) access to the facility; (5) security
and safety; and (6) cost and efficiency. Assume that members of a team select 10 areas
where they are engaged in the established COVID-19 Designated Tertiary Hospitals so that
they may assist more patients for their treatment purposes. They see the following two
scenarios: Constructing a COVID-19 Designated Tertiary Hospital in 1 of the 10 approved
locations.

Constructing a COVID-19 Designated Tertiary Hospital between any 2 of the selected
10 places. Suppose that P = {Islamabad, Thatha, Okara, Lailpur, Sakhar, Nawabshah,
Vihari, Lahore, Foortabas, Layia} is the set of locations where the team wishes to construct
the COVID-19 Designated Tertiary Hospital as a node set. Assume that, after carefully
analyzing the various characteristics, 80 percent of the specialists on the panel agree
that Islamabad will have a COVID-19 Designated Tertiary Hospital. As a result, we can
determine the term of membership. The phase term, which defines the time, must be
computed for this. Twenty percent of professionals believe that Islamabad always manages
a large number of patients. We will make a model of this information as 0.8e0.2πi >. Hence,
it is their final argument. The team now wished to travel to Thatha. Assume that 70 percent
of the team’s specialists feel that Thatha will have a COVID-19 Designated Tertiary Hospital
after thoroughly analyzing the various factors. As a result, we may determine the terms of
the membership functions. The phase term, which defines the period, must be computed
for this. According to 50 percent of professionals, Thatha led a large number of patients
at one point in time. We make a model of this information as < 0.7e0.5πi >. After this,
they visit Okara for their valuable mission. Suppose the model information about Okara is
< 0.4e0.3πi >. This means that 40 percent of the population prefers this location. However,
30 percent of those polled are opposed to it. In a similar way, they go to every place and
collect all the information as follows:

< Lailpur : 0.8e0.4πi >, < Sakhar : 0.1e0.5πi >, < Nawabshah : 0.2e0.5πi >, < Vihari :
0.2e0.5πi >, < Lahore : 0.3e0.6πi >, < Foortabas : 0.5e0.6πi >, < Lyia : 0.5e0.4πi >. We can
denote this model as
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B =





< Islamabad : 0.8e0.2πi >

< Thatha : 0.7e0.5πi >

< Okara : 0.3e0.2πi >

< Lailpur : 0.8e0.4πi >

< Sakhar : 0.1e0.5πi >

< Nawabshah : 0.2e0.5πi >

< Vihari : 0.2e0.5πi >

< Lahore : 0.3e0.6πi >

< Foortabas : 0.5e0.6πi >

< Lyia : 0.5e0.4πi >

The complex membership of the nodes represents the positive characteristics of a
specific parameter for choosing a city for the COVID-19 Designated Tertiary Hospital. Now,
we have truth membership function

Islamabad = 0.8,
Thatha = 0.7,
Okara = 0.3,
Lailpur = 0.8,
Sakhar = 0.1,
Nawabshah = 0.2,
Vihari = 0.2,
Lahore = 0.3,
Foortabas = 0.5,
Lyia = 0.5,

To determine the optimal choice, we see 10 truth membership functions. The value of
Islamabad and Lailpur are the same. Now we add tradition and phase terms, for Islamabad,
0.8 + 0.2 = 1 and for Lailpur, 0.8 + 0.4 = 1.2. Lailpur city is the best choice for the COVID-19
Designated Tertiary Hospital. This is the application of CFG where it has no edge between
vertices. CFG with no edge is shown in Figure 19.

bc
bc

bc
bc

bc
bc
bc

bc
bc

bc
Islamabad

Thatha

Okara

Lailpur

Sakhar

Nawabshah

V ihari

Lahore

Foortabas

Lyia

1

Figure 19. CFG with no edge.

Take P = {Islamabad, Thatha, Okara, Lailpur, Sakhar, Nawabshah, Vihari, Lahore,
Foortabas, Lyia} = {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}.

Now the team goes to look at situation two as follows: we find other edges according
to the condition of the team.
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F =





< R1R2 : 0.7e0.3πi >

< R1R3 : 0.4e0.2πi >

< R1R4 : 0.6e0.3πi >

< R1R5 : 0.2e0.3πi >

< R1R6 : 0.3e0.3πi >

< R1R7 : 0.1e0.3πi >

< R1R8 : 0.6e0.3πi >

< R1R9 : 0.7e0.3πi >

< R1R10 : 0.5e0.3πi >

< R2R3 : 0.4e0.2πi >

< R2R4 : 0.3e0.4πi >

< R2R5 : 0.2e0.4πi >

< R2R6 : 0.3e0.4πi >

< R2R7 : 0.1e0.4πi >

< R2R8 : 0.8e0.4πi >

< R2R9 : 0.7e0.3πi >

< R2R10 : 0.5e0.4πi >

< R3R4 : 0.4e0.2πi >

< R3R5 : 0.2e0.2πi >

< R3R6 : 0.3e0.2πi >

< R3R7 : 0.1e0.2πi >

< R3R8 : 0.4e0.2πi >

< R3R9 : 0.2e0.2πi >

< R3R10 : 0.4e0.2πi >

< R4R5 : 0.2e0.4πi >

< R4R6 : 0.3e0.4πi >

< R4R7 : 0.1e0.4πi >

< R4R8 : 0.6e0.4πi >

< R4R9 : 0.3e0.3πi >

< R4R10 : 0.6e0.4πi >

< R5R6 : 0.4e0.5πi >

< R5R7 : 0.1e0.4πi >

< R5R8 : 0.2e0.5πi >

< R5R9 : 0.2e0.3πi >

< R5R10 : 0.2e0.4πi >

< R6R7 : 0.1e0.4πi >

< R6R8 : 0.3e0.6πi >

< R6R9 : 0.3e0.3πi >

< R6R10 : 0.3e0.4πi >

< R7R8 : 0.1e0.4πi >

< R7R9 : 0.1e0.3πi >

< R7R10 : 0.1e0.4πi >

< R8R9 : 0.3e0.3πi >

< R8R10 : 0.6e0.4πi >

< R9R10 : 0.4e0.3πi >
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traditional membership values of edges are given
R1R2 = 0.7, R1R3 = 0.4, R1R4 = 0.6, R1R5 = 0.2, R1R6 = 0.3,
R1R7 = 0.1, R1R8 = 0.6, R1R9 = 0.7, R1R10 = 0.5, R2R3 = 0.4,
R2R4 = 0.3, R2R5 = 0.2, R2R6 = 0.3, R2R7 = 0.1, R2R8 = 0.8,
R2R9 = 0.7, R2R10 = 0.5, R3R4 = 0.4, R3R5 = 0.2, R3R6 = 0.3,
R3R7 = 0.1, R3R8 = 0.4, R3R9 = 0.2, R3R10 = 0.4, R4R5 = 0.2,
R4R6 = 0.3. R4R7 = 0.1, R4R8 = 0.6, R4R9 = 0.3, R4R10 = 0.6,
R5R6 = 0.4, R5R7 = 0.1, R5R8 = 0.2, R5R9 = 0.2, R5R10 = 0.2,
R6R7 = 0.1, R6R8 = 0.3, R6R9 = 0.3, R6R10 = 0.3, R7R8 = 0.1,
R7R9 = 0.1, R7R10 = 0.1, R8R9 = 0.3, R8R10 = 0.6, R9R10 = 0.4
S(R2R8) is the largest value and therefore more suitable for making the COVID-19 Desig-
nated Tertiary Hospital. CFG with an edge is shown in Figure 20.
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Figure 20. CFG with edge.

5. Conclusions

Complex fuzzy models have greater flexibility and comparability than fuzzy models.
The CFG is a FG extension. Each vertex and edge in a complex fuzzy graphical model
has only one complex membership grade. To improve the approximation, CFG can be
employed. Different sorts of degrees of vertices were employed in this project. Only the
overall contribution of the amplitude in the system is determined by the degree of vertices
in FG. The overall information and contribution of the amplitude and phase components are
given by the degree of vertices in CFG. This article looked at the communication between a
few hospitals. The CFGs and their associated network systems were the exclusive focus
of this study. This strategy can only be used if one-directed thinking occurs in a linked,
complex fuzzy graphical system. Obtaining accurate data is not always easy. We defined
the order and size of the CFG. We determined the operations on CFG, including union,
intersection, and join of CFG. We discussed the degree and total degree of vertex of the
CFG. Finally, we described how CFG can be used to solve decision-making problems in
the COVID-19 environment. The maximal product and symmetric difference of CFG are
discussed. In the future, our aim is to introduce (1) bipolar-CFG and (2) rejection of CFG.
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