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Abstract: Entropy indicates a measure of information contained in a complex system, and its es-
timation continues to receive ongoing focus in the case of multivariate data, particularly that on
the unit simplex. Oftentimes the Dirichlet distribution is employed as choice of prior in a Bayesian
framework conjugate to the popular multinomial likelihood with K distinct classes, where consid-
eration of Shannon- and Tsallis entropy is of interest for insight detection within the data on the
simplex. However, this prior choice only accounts for negatively correlated data, therefore this
paper incorporates previously unconsidered mixtures of Dirichlet distributions as potential priors
for the multinomial likelihood which addresses the drawback of negative correlation. The power
sum functional, as the product moment of the mixture of Dirichlet distributions, is of direct interest
in the multivariate case to conveniently access the Tsallis- and other generalized entropies that is
incorporated within an estimation perspective of the posterior distribution using real economic
data. A prior selection method is implemented to suggest a suitable prior for the consideration of
the practitioner; empowering the user in future for consideration of suitable priors incorporating
entropy within the estimation environment as well as having the option of certain mixture of Dirichlet
distributions that may require positive correlation.

Keywords: flexible Dirichlet; functional; moments; posterior; Wasserstein

1. Introduction

Entropy is a measure of uncertainty, diversity and randomness often adopted for
characterizing complex dynamical systems [1], and has seen several expansions over the
last few years. The most popular form of entropy is that of Shannon, however, various
generalized cases of this entropy exists which relies on the power sum [2,3]. This probability
functional has the particular appeal of circumventing occasionally arduous computation
of the logarithm of pi in the expression for the Shannon entropy, and has already been
established as a valuable addition and measure in an array of operational problems within
information theory [4].

The Dirichlet prior is a popular choice in the Bayesian framework for estimation of
entropy when considering a multinomial likelihood [4]. The Dirichlet distribution is a
conjugate prior for the multinomial distribution when a Bayes perspective is of interest.
The Dirichlet distribution is well known when working with data on the unitary simplex
(0, 1) and is a multivariate generalization of the beta distribution. Several generaliza-
tions of the Dirichlet distribution has been developed and investigated, such as a class of
Dirichlet generators as explored in [4], the noncentral Dirichlet construction in [5], as well
as the Dirichlet-gamma of [6] in order to strengthen the capability to model different
dependence patterns.

The Bayesian framework is a popular choice for complex statistical investigations,
specifically with the increase in computational power readily available in personal comput-
ers. This framework also allows for more flexibility and intuitive interpretations compared
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to the frequentist methods [7]. The choice of prior distribution is a crucial aspect of Bayesian
analysis and may impact the overall inference. This paper considers three (of which two are
previously unconsidered) prior distributions and investigates methods which can be used
to select the most appropriate prior. The Dirichlet distribution will be considered as the base
prior, followed by the flexible Dirichlet distribution as proposed by [8] which is expressed
as a finite mixture of Dirichlet components. The double flexible Dirichlet distribution as
proposed by [9] is also considered and is a further generalization of the Dirichlet structure
which takes advantage of the finite mixture structure of the flexible Dirichlet distribution.
Both these mixtures of Dirichlet distributions are capable of modelling multimodality in
data, and so, expert input and opinion regarding potential multimodality in prior behaviour
can be captured using these models.

The first of two main contributions of this paper implements and illustrates that
using elegant constructs of the complete product moments of the posteriors gives one the
comparative advantage of obtaining explicit estimators for three generalised entropy forms
(via the power sum functional) subject to these Dirichlet priors. The second shows how
these generalised entropy measures can be used as tools to estimate the parameters for
fitting these considered distributions (as part of the Bayesian calibration methodology) to
data using estimation steps as described in [10] and hence ensuring insightful data fits.
These entropy measures as well as prior impact measures can then be used to determine
which of the priors will be the best choice for the estimation of the parameters [4].

Interesting research which focuses on Dirichlet forms and entropy measures include
(1) ref. [11] who focused on multinomial scaled Dirichlet mixture models with specific
application in clustering. The examples evaluated different models, their accuracy, preci-
sion, recall and mutual information while applying this on a image classification problem,
(2) ref. [12] used multivariate Beta mixture models to proposed a novel variational inference
via an entropy-based splitting method. The performance was then evaluated in real-world
applications like breast tissue texture classification, cytological breast data analysis and
age estimation, and (3) ref. [13] focused on comparing 18 different entropy measures
with specific interest in short sequence bits and bytes data. They evaluated the behaviour
(means, bias, mean squared error) of these entropy estimators as the sample sizes increased,
the correlations between the different entropy estimates and how these estimates were
grouped when using logic like hierarchical clustering.

The paper is outlined as follows. In Section 2, the preliminary definitions and prop-
erties that are used in the paper are outlined as well as alternative Dirichlet priors as
candidates for the Bayesian analysis of the considered generalised entropies. Section 3
derives the resultant posterior models together with their respective complete product
moments and estimates for the generalised entropies. In Section 4 an explorative study
is performed to obtain optimal values for the parameters of interest and the Wasserstein
Impact Measure (WIM) [7] is utilized to determine the impact on entropy via the prior.
Section 5 contains concluding remarks.

2. Some Definitions and Properties

In this section, basic notation and definitions relevant for this paper are reviewed.
Multivariate count data constrained to add up to a certain constant are commonly modelled
using the multinomial distribution, and forms the basis of a countably discrete likelihood
in conjunction with our proposed Dirichlet type priors. The fundamental Bayesian rela-
tionship between the likelihood function and the prior distribution to form the posterior
distribution is given by

f (p|x) = f (x|p)h(p)∫
f (x|p)h(p)dp

. (1)
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A multivariate discrete random variable X = (X1, . . . , XK) follows the multinomial
distribution (i.e. with K distinct classes of interest) with parameters p = (p1, p2, . . . , pK)
and n > 0 if its probability mass function (pmf) is given by

f (x|p) = n!

∏K
i=1 xi!(n−∑K

i=1 xi)!

K

∏
i=1

pxi
i (1−

K

∑
i=1

pi)
n−∑K

i=1 xi . (2)

2.1. Entropy Forms of Interest

The most popular form of entropy is that of Shannon:

H(P) =
K+1

∑
i=1
−pi ln pi.

Various generalised versions of this entropy exist, which relies on the power sum:

Fα(P) =
K+1

∑
i=1

pα
i (3)

where α > 0 (see [2]). Under the assumption of squared error loss within Bayes estimation,
the estimators of both these quantities is given by their expected values:

E(H(P)) = E

(
K+1

∑
i=1
−pi ln pi

)

and

F̂α(P) = E(Fα(P)) = E

(
K+1

∑
i=1

pα
i

)
=

K+1

∑
i=1

E(pα
i ). (4)

Since the power sum functional is oftentimes easier to estimate than the Shannon
entropy, the power sum is a main consideration in this paper. The entropies of interest
considered in this paper are summarised in Table 1, which are explicitly expressed with
the power sum functional. The well known Tsallis entropy, the generalized instance of
the Mathai (the generalized Mathai) as well as the symmetrical modification of the Tsallis
entropy (the Abe formulation [1]) is considered, and summarised in Table 1.

Table 1. Entropy measures considered in this paper.

Type Expression Estimate Considered

Tsallis T =
∑K+1

i=1 pα
i − 1

1− α
; α ≥ 0, α 6= 1. E(T) =

F̂α(p)− 1
1− α

Generalized Mathai 1
GM =

∑K+1
i=1 pφ−α

i − 1
α− 1

; α ≤ φ, α 6= 1. E(GM) =
F̂φ−α(p)− 1

α− 1

Abe A = −
K+1

∑
i=1

pα
i − pα−1

i
α− α−1 ; α ∈ [0, 1] E(A) =

(
− F̂α(p)− F̂α−1

α− α−1

)
1 For the remainder of the paper we will consider φ = 2.

2.2. Considered Priors

In this section, two alternative Dirichlet formulations as mixtures of the well known
usual Dirichlet model will be reviewed and used as priors, together with the usual Dirichlet
model. These alternatives are suggested since the Dirichlet type 1 distribution, despite
its ease of parameter interpretation [8], is known to be poorly parameterized and cannot
model many dependence patterns [9] such as positive correlation. A particular focus of the
considered mixtures is to illustrate instances where positive correlation on the constrained
unit simplex is achievable for certain parameter structures.
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2.2.1. The Dirichlet Distribution

Here, we briefly define our departure model of interest, the well known Dirichlet
distribution.

Definition 1. Suppose p is distributed as a Dirichlet distribution (of type 1, see [14]) of order
K ≥ 2 and parameters Π = (π1, π2, . . . , πK+1) for πi > 0, i = 1, . . . , K + 1, with respect to the
Lebesgue measure on the Euclidean space RK, then its pdf is given by

f (p1, . . . , pK; Π) =
Γ(π+)

∏K+1
i=1 Γ(πi)

(
K+1

∏
i=1

pπi−1
i

)
(5)

on the K dimensional simplex, defined by

p1, p2, . . . , pK > 0

p1 + p2 + · · ·+ pK < 1

pK+1 = 1− p1 − · · · − pK

and where Γ(·) denotes the usual gamma function with π+ = ∑K+1
i=1 πi (the space and constraints

of this K dimensional simplex is denoted by A).

Figure 1 shows how the changes in π1 and π2 affects the correlation for k = 2.
The heatmap here indicates that positive correlation is not feasible for this model, as is
known from the literature (see [4]).

Figure 1. Correlation plot for the Dirichlet distribution (5).

2.2.2. The Flexible Dirichlet Distribution

The following prior is represented by the flexible Dirichlet distribution as proposed
by [8] and is expressed as a finite mixture of particular Dirichlet components. This distribu-
tion models multimodality and has shown to be capable of discriminating among many of
the independence concepts relevant for compositional data.

Definition 2. Suppose p is distributed as flexible Dirichlet distribution. Then its pdf is given by

g(p1, . . . , pK; Π, τ, β) =
K+1

∑
r=1

βi f (p, Π + τei)

=
Γ(∑K+1

i=1 πi + τ)

∏K+1
i=1 Γ(πi)

(
K+1

∏
i=1

pπi−1
i

)[
K+1

∑
r=1

βr pτ
r

Γ(πr)

Γ(πr + τ)

]
(6)

where ei is the vector with elements equal to zero except for the i-th that is equal to 1. The flexible
Dirichlet also includes the Dirichlet as a special case if τ = 1 and βi =

πi
π+

, i = 1, 2, . . . , K.
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Figure 2 aims to show what role each of the parameters play in creating this flexible
distribution. The first row of contours can be used as a base to compare the suggested
changes against in order to illustrate the effects that each parameter has on the distribution
form. The second row shows how increasing τ, from 3 to 7, splits the pdfs into different
modes. The last row kept the larger τ = 7 but rearranged β (by exchanging β1 and β2)
and illustrates how this rearrangement flips the concentration of these modes. For this
examples β1 = 0.5, β2 = 0.2 and β3 = 0.3 was used for the first and second row with
the third row represented by β1 = 0.2, β2 = 0.5 and β3 = 0.3. Figure 3 shows how the
correlations changes as the values of τ and β change. Specifically, no positive correlation is
observed from this mixture structure of Dirichlet distributions.

Figure 2. Contour plots for the flexible Dirichlet distribution (6) with β1 = 0.5, β2 = 0.2 and β3 = 0.3
for the first and second row and the third row represented by β1 = 0.2, β2 = 0.5 and β3 = 0.3.
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Figure 3. Correlation plots for the flexible Dirichlet distribution (6). (a) Shows how the change in π1

and π2 affects the correlation, (b) how the change in τ affects the correlation and (c) shows how the
change in β1 and β2 affects the correlation results.

2.2.3. The Double Flexible Dirichlet Distribution

The following prior is represented by the double flexible Dirichlet distribution as
proposed by [9] and is a generalization of the Dirichlet structure which takes advantage of
the finite mixture structure of the flexible Dirichlet distribution and also allows positive
covariances. As such, potential positive correlation observed in a prior may be well
modelled by this particular prior choice.

Definition 3. Suppose p is distributed as a double flexible Dirichlet distribution. Then its pdf is
given by

h(p1, . . . , pK; Π, τ, β) (7)

=
K+1

∑
r=1

K+1

∑
s=1

βi f (p, Π + τ(er + es))

=
Γ(∑K+1

i=1 πi + 2τ)

∏K+1
i=1 Γ(πi)

(
K+1

∏
i=1

pπi−1
i

)
K+1

∑
r=1

K+1

∑
s=1

r 6=s

βrs pτ
r pτ

s
Γ(πr)Γ(πs)

Γ(πr + τ)Γ(πs + τ)
+

K+1

∑
r=1

βrr p2τ
r

Γ(πr)

Γ(πr + 2τ)

 (8)

where ei is the vector with elements equal to zero except for the i-th that is equal to 1.

Figure 4 shows the role that each of the parameters play in this flexible form while β
are similar. The first row of contours can be used as a reference to compare the changes
against, while the second row shows how increasing τ from 3 to 7 splits the pdfs into
multiple modes similar to what was seen in the flexible Dirichlet pdf (6). For this example
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β11 = 0.2; β22 = 0.1; β33 = 0.1; β12 = 0.1; β13 = 0.1; β21 = 0.1; β23 = 0.1; β31 = 0.1;
β32 = 0.1. For Figure 5 β were chosen to be less consistent (β11 = 0.4; β12 = 0.2;
β13 = 0.2; β21 = 0.09; β22 = 0.09; β23 = 0.09; β31 = 0.01; β32 = 0.01; β33 = 0.01) for
the first row. For the second row the β11 = 0.09; β12 = 0.09; β13 = 0.09; β21 = 0.4; β22 = 0.2;
β23 = 0.1; β31 = 0.01; β32 = 0.01; β33 = 0.01 and the last being β11 = 0.09; β12 = 0.09;
β13 = 0.09; β21 = 0.01; β22 = 0.01; β23 = 0.01; β31 = 0.4; β32 = 0.2; β33 = 0.1. By changing
the values of β we can see how the concentration of the modes changes.

Figure 6 shows how the correlations changes as the values of π; τ and β change.
The first correlation plot (a) speaks to the parameters in the first row of Figure 5 and
investigate the effect that the change in τ has on the correlation. In (b) the parameters in the
last row of Figure 5 were used and illustrates and it can be seen that the positive correlation
is dependent on β as also discussed in [9].

Figure 4. Contour plots for the double flexible Dirichlet distribution (8). This figure shows the effect
the value of τ (changing from 3 to 7) has on the distribution form.
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Figure 5. Contour plots for the double flexible Dirichlet distribution (8). By changing the values of β

it can be seen how the concentrations of the different modes change.

Figure 6. Correlation plot for the double flexible Dirichlet distribution (8). (a) shows how the change
in τ influences the correlation while we can see in (b) that the values of β captures positive correlation.
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3. Bayesian Estimation of Entropy

In this section the usual multinomial-Dirichlet setup is enriched with the additional
consideration of the flexible Dirichlet- and double flexible Dirichlet mixtures ((6) and
(8)) as priors for the multinomial likelihood. In this way, it allows the practitioner to
obtain a posterior distribution from where closed form expressions for the entropies under
consideration can be obtained, by particularly focussing on the product moment of the
posterior model, in order to access the power sum functional under the assumption of
squared error loss.

3.1. For the Dirichlet Prior

Theorem 1. The posterior distribution for the multinomial likelihood as in (2) and the Dirichlet
prior distribution in (5) follows a Dirichlet distribution with parameters (π1 + x1, . . . , πK+1 + xK+1)
with the form:

f (p|x) =
Γ(∑K+1

i=1 πi + xi)

∏K+1
i=1 Γ(πi + xi)

(
K+1

∏
i=1

pπi+xi−1
i

)
(9)

where 0 < pi < 1 and πi > 0 for i = 1, . . . , K + 1.

Proof. From (2) and (5) the proof follows directly [4].

Since the complete product moments of the posterior distribution is of interest in order
to determine the power sum (4) we are interested in E

(
pk1

1 pk2
2 . . . pkK+1

K+1

)
.

Definition 4. The definition of the complete product moment of a (K + 1) variable Y with pdf
f (y) is given by [4]

E

(
K+1

∏
i=1

Yxi
i

)
=

∫
· · ·

∫
A

K+1

∏
i=1

yxi
i f (y)dy1 . . . dyK+1. (10)

Theorem 2. Suppose that p|x follows a Dirichlet posterior distribution with pdf given in (9). Then
the complete product moment is given by

E
(

pk1
1 pk2

2 . . . pkK+1
K+1

)
=

Γ(∑K+1
i=1 πi + xi)

∏K+1
i=1 Γ(πi + xi)

∏K+1
i=1 Γ(πi + xi + ki)

Γ(∑K+1
i=1 πi + xi + ki)

. (11)

Proof. The result follows directly from (9) and (10) using the law of total probability of the
Dirichlet distribution with parameters (π1 + x1 + k1, . . . , πK+1 + xK+1 + kK+1) [4].

Using the complete product moments derived in (11), the Bayesian estimator for the
power sum (4) can be derived by setting ki = α with i = 1, . . . , K + 1 and k 6=i = 0.

Theorem 3. The Bayesian estimator for the power sum functional under the Dirichlet posterior (9)
is given by:

F̂α(p) =
K+1

∑
j∗=1

E(pα
j∗)

=
Γ(∑K+1

i=1 πi + xi)

∏K+1
i=1 Γ(πi + xi)

∑K+1
j∗=1 Γ(πj∗ + xj∗ + α)∏i 6=j∗ Γ(πi + xi)

Γ
(

α + ∑K+1
i=1 πi + xi

)
 (12)

Proof. From (11) and (4) the proof follows directly [4].
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3.2. For the Flexible Dirichlet Prior

Theorem 4. The posterior distribution for the multinomial likelihood as in (2) and the flexible
Dirichlet prior distribution in (6) is given by

g(p|x) =
1
C

K

∏
i=1

pπi+xi−1
i

(
1−

K

∑
i=1

pi

)πK+1+xK+1−1[K+1

∑
r=1

βr pτ
r

Γ(πr)

Γ(πr + τ)

]
(13)

where 0 < pi < 1, πi > 0; 0 ≤ βi < 1, for i = 1, . . . , K + 1, τ > 0, ∑K+1
i=1 βi = 1 and where

C =
K+1

∑
r=1

βr
Γ(πr)

Γ(πr + τ)


Γ(πr + xr + τ)∏K+1

j=1
j 6=r

Γ(πj + xj)

Γ(∑K+1
i=1 πi + xi + τ)

.

Proof. By applying Bayes’s theorem (1) the numerator will have the following form:

f (x|p)g(p) =
n!

∏K
i=1 xi!

(
n−∑K

i=1 xi

)
!

Γ
(

∑K+1
i=1 πi + τ

)
∏K+1

i=1 Γ(πi)

K

∏
i=1

pπi+xi−1
i

(
1−

K

∑
i=1

pi

)πK+1+xK+1−1

×
[

K+1

∑
r=1

βr pτ
r

Γ(πr)

Γ(πr + τ)

]
. (14)

The denominator of the posterior distribution will be given by

∫
· · ·

∫
A

f (x|p)g(p)dp

=
n!

∏K
i=1 xi!

(
n−∑K

i=1 xi

)
!

Γ
(

∑K+1
i=1 πi + τ

)
∏K+1

i=1 Γ(πi)

×
∫
· · ·

∫
A

K

∏
i=1

pπi+xi−1
i

(
1−

K

∑
i=1

pi

)πK+1+xK+1−1[K+1

∑
r=1

βr pτ
r

Γ(πr)

Γ(πr + τ)

]
dp1 . . . dpK+1. (15)
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The second line of the above equation can be written as

∫
· · ·

∫
A

K

∏
i=1

pπi+xi−1
i

(
1−

K

∑
i=1

pi

)πK+1+xK+1−1[K+1

∑
r=1

βr pτ
r

Γ(πr)

Γ(πr + τ)

]
dp1 . . . dpK+1

= β1
Γ(π1)

Γ(π1 + τ)

Γ(π1 + x1 + τ)∏K+1
i=1

i 6=1
Γ(πi + xi)

Γ
(

∑K+1
i=1 πi + xi + τ

) [∫
· · ·

∫
A

Γ
(

∑K+1
i=1 πi + xi + τ

)
Γ(π1 + x1 + τ)∏K+1

i=1
i 6=1

Γ(πi + xi)

pπ1+x1+τ−1
1 pπ2+x2−1

2 . . . pπk+xk−1
k

(
1−

k

∑
i=1

pi

)πK+1+xK+1−1

dp1 . . . dpK+1

]

+ β2
Γ(π2)

Γ(π2 + τ)

Γ(π2 + x2 + τ)∏K+1
i=1

i 6=2
Γ(πi + xi)

Γ
(

∑K+1
i=1 πi + xi + τ

) [∫
· · ·

∫
A

Γ
(

∑K+1
i=1 πi + xi + τ

)
Γ(π2 + x2 + τ)∏K+1

i=1
i 6=2

Γ(πi + xi)

pπ1+x1−1
1 pπ2+x2+τ−1

2 . . . pπk+xk−1
k

(
1−

k

∑
i=1

pi

)πK+1+xK+1−1

dp1 . . . dpK+1

]
. . .

+ βK+1
Γ(πK+1)

Γ(πK+1 + τ)

Γ(πK+1 + xK+1 + τ)∏K+1
i=1

i 6=K+1
Γ(πi + xi)

Γ
(

∑K+1
i=1 πi + xi + τ

)
×

[∫
· · ·

∫
A

Γ
(

∑K+1
i=1 πi + xi + τ

)
Γ(πK+1 + xK+1 + τ)∏K+1

i=1
i 6=K+1

Γ(πi + xi)

× pπ1+x1−1
1 pπ2+x2−1

2 . . . pπk+xk−1
k

(
1−

k

∑
i=1

pi

)πK+1+xK+1+τ−1

dp1 . . . dpK+1

]
.

Each integral is equal to 1, since it corresponds to the total probability of a Dirichlet
distribution, hence the denominator will simplify to the following form:∫

· · ·
∫

A

f (x|p)g(p)dp

=
n!

∏K
i=1 xi!

(
n−∑K

i=1 xi

)
!

Γ
(

∑K+1
i=1 πi + τ

)
∏K+1

i=1 Γ(πi)

×

K+1

∑
r=1

βr
Γ(πr)

Γ(πr + τ)

Γ(πr + xr + τ)∏K+1
j=1

j 6=r

Γ(πj + xj)

Γ(∑K+1
i=1 πi + xi + τ)

. (16)

Combining (14) and (16), the result follows.

In the case of the flexible Dirichlet (13) the following theorem derives the complete
product moment as defined in (10).

Theorem 5. Suppose that p|x follows a flexible Dirichlet posterior distribution with pdf given in
(13). Then the complete product moment is given by

E
(

pk1
1 pk2

2 . . . pkK+1
K+1

)
=

∑K+1
r=1 βr

Γ(πr)
Γ(πr+τ)

[
∏K+1

i=1 Γ(πi+xi+ki+τer)

Γ(∑K+1
i=1 πi+xi+ki+τ)

]
∑K+1

r=1 βr
Γ(πr)

Γ(πr+τ)

[
∏K+1

i=1 Γ(πi+xi+τer)

Γ(∑K+1
i=1 πi+xi+τ)

] . (17)
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Proof. From (13) and (10) it follow that

E
(

pk1
1 pk2

2 . . . pkK+1
K+1

)
=

1
C

∫
· · ·

∫
A

K

∏
i=1

pπi+xi+ki−1
i

(
1−

K

∑
i=1

pi

)πK+1+xK+1+kK+1−1[K+1

∑
i=1

βi pτ
i

Γ(πi)

Γ(πi + τ)

]
dp1 . . . dpK+1

=
1
C

β1
Γ(π1)

Γ(π1 + τ)

×

∫ · · · ∫
A

pπ1+x1+k1+τ−1
1 pπ2+x2+k2−1

2 . . .

(
1−

k

∑
i=1

pi

)πK+1+xK+1+kK+1−1

dp1 . . . dpK+1


+

1
C

β2
Γ(π2)

Γ(π2 + τ)

×

∫ · · · ∫
A

pπ1+x1+k1−1
1 pπ2+x2+k2+τ−1

2 . . .

(
1−

k

∑
i=1

pi

)πK+1+xK+1+kK+1−1

dp1 . . . dpK+1


. . .

+
1
C

βK+1
Γ(πK+1)

Γ(πK+1 + τ)

×

∫ · · · ∫
A

pπ1+x1+k1−1
1 pπ2+x2+k2−1

2 . . .

(
1−

k

∑
i=1

pi

)πK+1+xK+1+kK+1+τ−1

dp1 . . . dpK+1

. (18)

We identify that each integral in the above expression is of the form of the Dirichlet
kernel. Using the definition of total probability, the result follows.

Using the complete product moments derived in (17), the Bayesian estimator for the
power sum (4) can be derived by setting ki = α with i = 1, . . . , K + 1 and k 6=i = 0.

Theorem 6. The Bayesian estimator for the power sum functional under the flexible Dirichlet
posterior distribution (13) is given by:

F̂α(p) =
K+1

∑
j∗=1

E(pα
j∗)

=
K+1

∑
j∗=1

∑K+1
r=1 βr

Γ(πr)
Γ(πr+τ)

[
Γ(πj∗+xj∗+α+τer)∏K+1

j 6=j∗Γ(πj+xj+τer)

Γ(α+∑K+1
i=1 πi+xi+τ)

]
∑K+1

r=1 βr
Γ(πr)

Γ(πr+τ)

[
∏K+1

i=1 Γ(πi+xi+τer)

Γ(∑K+1
i=1 πi+xi+τ)

]
. (19)

3.3. For the Double Flexible Dirichlet Prior

Theorem 7. The posterior distribution for the multinomial likelihood as in (2) and the double
flexible Dirichlet prior distribution in (8) is given by

h(p|x) =
1
C

K

∏
i=1

pπi+xi−1
i

(
1−

K

∑
i=1

pi

)πK+1+xK+1−1

×

K+1

∑
r=1

K+1

∑
s=1

r 6=h

βrs(pr ps)
τ Γ(πr)Γ(πs)

Γ(πr + τ)Γ(πs + τ)
+

K+1

∑
r=1

βrr p2τ
r

Γ(πr)

Γ(πr + 2τ)

 (20)
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where 0 < pi < 1, πi > 0; 0 ≤ βi < 1, for i = 1, . . . , K + 1, τ > 0, ∑K+1
r=1 βi = 1 and

C =

[
K+1

∑
r=1

K+1

∑
s=1

r 6=s

βrs
Γ(πr)Γ(πs)

Γ(πr + τ)Γ(πs + τ)

∏K+1
i=1 Γ(πi + xi + τ(er + es))

Γ(∑K+1
i=1 πi + xi + 2τ)

+
K+1

∑
r=1

βrr
Γ(πr)

Γ(πr + 2τ)

∏K+1
i=1 Γ(πi + xi + 2τer)

Γ(∑K+1
i=1 πi + xi + 2τ)

]
.

Proof. By applying Bayes’s theorem (1) the numerator will have the following form:

f (x|p)h(p) =
n!

∏K
i=1 xi!

(
n−∑K

i=1 xi

)
!

Γ
(

∑K+1
i=1 πi + τ

)
∏K+1

i=1 Γ(πi)

K

∏
i=1

pπi+xi−1
i

(
1−

K

∑
i=1

pi

)πK+1+xK+1−1

×

K+1

∑
r=1

K+1

∑
s=1

r 6=s

βrs(pr ps)
τ Γ(πr)Γ(πs)

Γ(πr + τ)Γ(πs + τ)
+

K+1

∑
r=1

βrr p2τ
r

Γ(πr)

Γ(πr + 2τ)

. (21)

The denominator of the posterior will be given by∫
· · ·

∫
A

f (x|p)h(p)dp

=
n!

∏K
i=1 xi!

(
n−∑K

i=1 xi

)
!

Γ
(

∑K+1
i=1 πi + τ

)
∏K+1

i=1 Γ(πi)

×
∫
· · ·

∫
A

K

∏
i=1

pπi+xi−1
i

(
1−

K

∑
i=1

pi

)πK+1+xK+1−1

×

K+1

∑
r=1

K+1

∑
s=1

r 6=s

βrs(pr ps)
τ Γ(πr)Γ(πs)

Γ(πr + τ)Γ(πs + τ)
+

K+1

∑
r=1

βrr p2τ
r

Γ(πr)

Γ(πr + 2τ)

dp1 . . . dpK+1

= I1. (22)

See that

I1 = β12
Γ(π1)Γ(π2)

Γ(π1 + τ)Γ(π2 + τ)

Γ(π1 + x1 + τ)Γ(π2 + x2 + τ)∏K+1
i=1

i 6=1,2
Γ(πi + xi)

Γ
(

∑K+1
i=1 πi + xi + 2τ

)
×

[∫
· · ·

∫
A

Γ
(

∑K+1
i=1 πi + xi + 2τ

)
Γ(π1 + x1 + τ)Γ(π2 + x2 + τ)∏K+1

i=1
i 6=1,2

Γ(πi + xi)

pπ1+x1+τ−1
1 pπ2+x2+τ−1

2 . . . pπk+xk−1
k

(
1−

k

∑
i=1

pi

)πK+1+xK+1−1

dp1 . . . dpK+1

]

+ β13
Γ(π1)Γ(π3)

Γ(π1 + τ)Γ(π3 + τ)

Γ(π1 + x1 + τ)Γ(π3 + x3 + τ)∏K+1
i=1

i 6=1,3
Γ(πi + xi)

Γ
(

∑K+1
i=1 πi + xi + 2τ

)
×

[∫
· · ·

∫
A

Γ
(

∑K+1
i=1 πi + xi + 2τ

)
Γ(π1 + x1 + τ)Γ(π3 + x3 + τ)∏K+1

i=1
i 6=1,3

Γ(πi + xi)
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pπ1+x1+τ−1
1 . . . pπ3+x3+τ−1

3 . . . pπk+xk−1
k

(
1−

k

∑
i=1

pi

)πK+1+xK+1−1

dp1 . . . dpK+1

]
. . .

+ βK,K+1
Γ(πK)Γ(πK+1)

Γ(πK + τ)Γ(πK+1 + τ)

Γ(πK + xK + τ)Γ(πK+1 + xK+1 + τ) ∏K+1
i=1

i 6=K,K+1
Γ(πi + xi)

Γ
(

∑K+1
i=1 πi + xi + 2τ

)
×

[∫
· · ·

∫
A

Γ
(

∑K+1
i=1 πi + xi + 2τ

)
Γ(πK + xK + τ)Γ(πK+1 + xK+1 + τ) ∏K+1

i=1
i 6=K,K+1

Γ(πi + xi)

pπ1+x1−1
1 . . . pπK+xK+τ−1

K pπK+1+xK+1+τ−1
K+1

(
1−

k

∑
i=1

pi

)πK+1+xK+1−1

dp1 . . . dpK+1

]

+ β11
Γ(π1)

Γ(π1 + 2τ)

Γ(π1 + x1 + 2τ)∏K+1
i=1

i 6=1
Γ(πi + xi)

Γ
(

∑K+1
i=1 πi + xi + 2τ

)
×

[∫
· · ·

∫
A

Γ
(

∑K+1
i=1 πi + xi + τ

)
Γ(π1 + x1 + 2τ)∏K+1

i=1
i 6=1

Γ(πi + xi)

pπ1+x1+2τ−1
1 pπ2+x2−1

2 . . . pπk+xk−1
k

(
1−

k

∑
i=1

pi

)πK+1+xK+1−1

dp1 . . . dpK+1

]
+ . . .

+ βK+1,K+1
Γ(πK+1)

Γ(πK+1 + 2τ)

Γ(πK+1 + xK+1 + 2τ)∏K+1
i=1

i 6=K+1
Γ(πi + xi)

Γ
(

∑K+1
i=1 πi + xi + 2τ

)
×

[∫
· · ·

∫
A

Γ
(

∑K+1
i=1 πi + xi + τ

)
Γ(πK+1 + xK+1 + 2τ)∏K+1

i=1
i 6=1

Γ(πi + xi)

pπ1+x1−1
1 pπ2+x2−1

2 . . . pπk+xk−1
k

(
1−

k

∑
i=1

pi

)πK+1+xK+1+2τ−1

dp1 . . . dK+1

]

Each integral is equal to 1, since it corresponds to the total probability of a Dirichlet
distribution, hence the denominator will simplify to the following form:

∫
· · ·

∫
A

f (x|p)h(p)dp =
n!

∏K
i=1 xi !

(
n−∑K

i=1 xi

)
!

Γ
(

∑K+1
i=1 πi + 2τ

)
∏K+1

i=1 Γ(πi)

×
[

K+1

∑
r=1

K+1

∑
h=1

r 6=h

βrh
Γ(πr)Γ(πh)

Γ(πr + τ)Γ(πh + τ)

∏K+1
i=1 Γ(πi + xi + τ(er + eh))

Γ(∑K+1
i=1 πi + xi + 2τ)

+
K+1

∑
r=1

βrr
Γ(πr)

Γ(πr + 2τ)

∏K+1
i=1 Γ(πi + xi + 2τer)

Γ(∑K+1
i=1 πi + xi + 2τ)

]
. (23)

Combining (21) and (23) the results follow.

Subsequently an expression for E
(

pk1
1 pk2

2 . . . pkK+1
K+1

)
will be derived.
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Theorem 8. Suppose that p|x follows a double flexible Dirichlet posterior distribution with pdf
given in (20). Then the complete product moment is given by

E
(

pk1
1 pk2

2 . . . pkK+1
K+1

)
=

A
B

(24)

where

A =

[
K+1

∑
r=1

K+1

∑
s=1

r 6=s

βrs
Γ(πr)Γ(πs)

Γ(πr + τ)Γ(πs + τ)

[
∏K+1

i=1 Γ(πi + xi + ki + τ(er + es))

Γ(∑K+1
i=1 πi + xi + ki + 2τ)

]

+
K+1

∑
r=1

βrr
Γ(πr)

Γ(πr + 2τ)

[
∏K+1

i=1 Γ(πi + xi + ki + 2τ(er))

Γ(∑K+1
i=1 πi + xi + ki + 2τ)

]]

and

B =

[
K+1

∑
r=1

K+1

∑
s=1

r 6=s

βrh
Γ(πr)Γ(πs)

Γ(πr + τ)Γ(πs + τ)

∏K+1
i=1 Γ(πi + xi + τ(er + es))

Γ(∑K+1
i=1 πi + xi + 2τ)

+
K+1

∑
r=1

βrr
Γ(πr)

Γ(πr + 2τ)

∏K+1
i=1 Γ(πi + xi + 2τer)

Γ(∑K+1
i=1 πi + xi + 2τ)

]

Proof. From (10) and (20) it follows

E
(

pk1
1 pk2

2 . . . pkK+1
K+1

)
=

∫
· · ·

∫
A

K+1

∏
i=1

pki
i f (p|x)dp1 . . . dpK+1

=
1
C

β12
Γ(π1)Γ(π2)

Γ(π1 + τ)Γ(π2 + τ)

[∫
· · ·

∫
A

pπ1+x1+k1+τ−1
1 pπ2+x2+k2+τ−1

2 . . .

(
1−

k

∑
i=1

pi

)πK+1+xK+1+kK+1−1

dp1 . . . dpK+1

]
+ . . .

+
1
C

βK,K+1
Γ(πK)Γ(πK+1)

Γ(πK + τ)Γ(πK+1 + τ)

[∫
· · ·

∫
A

pπ1+x1+k1−1
1 . . . pπK+xK+kK+τ−1

K

(
1−

k

∑
i=1

pi

)πK+1+xK+1+kK+1+τ−1

dp1 . . . dpK+1

]

+
1
C

β11
Γ(π1)

Γ(π1 + 2τ)

[∫
· · ·

∫
A

pπ1+x1+k1+2τ−1
1 pπ2+x2+k2−1

2 . . .

(
1−

k

∑
i=1

pi

)πK+1+xK+1+kK+1−1

dp1 . . . dpK+1

]
+ . . .

+
1
C

βK+1,K+1
Γ(πK+1)

Γ(πK+1 + 2τ)

[∫
· · ·

∫
A

pπ1+x1+k1−1
1 pπ2+x2+k2−1

2 . . .

(
1−

k

∑
i=1

pi

)πK+1+xK+1+kK+1+2τ−1

dp1 . . . dpK+1

]
.

We identify that each integral in the above expression is of the form of the Dirichlet
kernel. Using the definition of total probability, the result follows.
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Using the complete product moments derived in (24), the Bayesian estimator for the
power sum (4) can be derived by setting ki = α with i = 1, . . . , K + 1 and k 6=i = 0.

Theorem 9. The Bayesian estimator for the power sum functional under the double flexible Dirichlet
posterior (20) is given by:

F̂α(p) =
K+1

∑
j∗=1

E(pα
j∗)

=
K+1

∑
j∗=1

[
A
B

]
(25)

where

A =
K+1

∑
r=1

K+1

∑
s=1

r 6=s

βrsΓ(πr)Γ(πs)

Γ(πr + τ)Γ(πs + τ)

×
[

Γ(πj∗ + xj∗ + α + τ(er + es))∏K+1
i 6=j∗ Γ(πi + xi + τ(er + es))

Γ(∑K+1
i=1 πi + xi + α + 2τ)

]

+
K+1

∑
r=1

βrrΓ(πr)

Γ(πr + 2τ)

[
Γ(πj∗ + xj∗ + α + 2τ(er))∏K+1

i 6=j∗ Γ(πi + xi + 2τ(er))

Γ(∑K+1
i=1 πi + xi + α + 2τ)

]

and

B =

[
K+1

∑
r=1

K+1

∑
s=1

r 6=h

βrs
Γ(πr)Γ(πs)

Γ(πr + τ)Γ(πs + τ)

∏K+1
i=1 Γ(πi + xi + τ(er + eh))

Γ(∑K+1
i=1 πi + xi + 2τ)

+
K+1

∑
r=1

βrr
Γ(πr)

Γ(πr + 2τ)

∏K+1
i=1 Γ(πi + xi + 2τer)

Γ(∑K+1
i=1 πi + xi + 2τ)

]
.

4. Evaluation and Discussion

The following is the exploratory approach to determining potential estimates from
the posteriors (9), (13), and (20) by incorporating sample information via the correlation.
The following steps [10] were used to determine the optimal values of the parameters of the
various priors considered for the multinomial model, in conjunction with the data available
and expert judgement. This exploratory approach serves to gain insight into parameter
estimation in this Bayes context by utilising sample information via the correlation (which
could be positive due to the inclusion of the double flexible Dirichlet distribution as prior).

1. Using shape analysis (as in Figure 2, 4 and 5) and visual investigations (trial and
error), determine the bands of possible ranges for each of the parameters which need
to be estimated.

2. Create a grid by specifying all possible values for each parameter within the range
specified in step 1. The grid will contain all possible combinations of these parame-
ter options.

3. For each step in the grid search calculate the entropy measures (12), (19), and (25)
using the Bayesian estimate of the power sum functional.

4. For each step in the grid search, calculate the correlation for each parameter combination.
5. When selecting the parameters of the prior distribution, choose them such that the

parameters ensure a pre-determine range of entropy values. The entropy range can
be selected when taking into consideration that lower entropy values are associated
with less uncertainty and therefore higher concentrated distributions.
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6. Ensure that the resultant correlation for the range of possible estimates are in range of
what is obtained from the data.

7. Visually inspect the selected parameters to ensure a good fit.

The dataset that was considered, obtained from [15], was collected through household
budget surveys aimed at studying consumer demand. This dataset was also used in
studies such as [8] and reports the household expenditures (in Hong Kong Dollars) on
two commodity groups of a sample of 40 individuals. The variables considered are the
proportions spent on housing (including fuel and lights) (p1), consumables (including
alcohol and tobacco) (p2), and the rest classified as services and other goods (including
transport and vehicles, clothing, footwear, and durable goods). The results obtained are
reported for α = 0.5 for Tsallis, Generalized Mathai and Abe (see Table 1) and visually
displayed to illustrate the fitted results.

Figure 7 shows how well the estimates, obtained using the Dirichlet prior (5), fitted
the dataset.

Figure 7. Dirichlet Prior (5) estimated parameters and standard errors.

For equal weight β was chosen as (β1 = 0.3; β2 = 0.34 and β3 = 0.36). Figure 8 shows
how well the flexible Dirichlet prior (6) isolates the three modes visible within the data.

Figure 8. Flexible Dirichlet Prior (6) estimated parameters and standard errors.

Figure 9 shows how the double flexible Dirichlet prior (8) fit the dataset with pre-
determined weight for the β (β11 = 0.15; β22 = 0.05; β33 = 0.1; β12 = 0.2; β13 = 0.14;
β21 = 0.2; β23 = 0.01; β31 = 0.14; β32 = 0.01).
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Figure 9. Double flexible Dirichlet Prior (8) estimated parameters and standard errors.

The parameters of these different posterior distributions resulted in distributions
which compared well to the observed data (some better than others) and also provided
similar correlations than those found in the data. As it is known that the prior distribution
plays a vital role in Bayesian analysis it is important to be able to quantify the impact of
each prior in order to choose between one or more priors [7]. In order to measure the impact
of the different priors, the WIM [7] was considered and reported in Table 2. These results
were calculated by considering the estimated parameters as reported in Figure 7–9 for each
of the entropy measures investigated. The posterior distributions were then compared by
calculating the WIM using the wasserstein1d function in R (statistical software).

It can be seen that when comparing the WIM for each pair of posteriors considered,
the measures resulting from the flexible and double flexible Dirichlet priors yielded large
differences when compared to the Dirichlet distribution but almost no difference when
comparing the two flexible distributions with each other. From the visual inspections and
the WIM results is can be seen that there is value in considering generalizations of the
Dirichlet distributions, in particular the considered mixtures of Dirichlet distributions. This
may further benefit the practitioner in possible cases of clustering, then multimodal data
may be present which the flexible Dirichlet- as well as the double flexible Dirichlet would
be able to capture meaningfully.

Table 2. Wasserstein Impact Measure results for each set of parameters estimated.

Priors Being Compared WIM (Tsallis) WIM (Mathai) WIM (Abe)

Dirichlet vs. flexible Dirichlet 15.60 12.67 13.26

Dirichlet vs. double flexible Dirichlet 16.29 13.38 13.86

Flexible Dirichlet vs. double flexible Dirichlet 1.00 0.99 0.73

5. Concluding Remarks

This paper considers key generalized entropy forms via the power sum functional
of the posterior distribution, when subject to mixtures of Dirichlet distributions as a prior
for the popular multinomial likelihood with K distinct classes. Here, the double flexible
Dirichlet distribution offers the potential of positive prior correlation when this might be
necessitated by prior information or expert opinion. Bayesian estimators were constructed
for generalised entropy functions via this power sum functional, emanating from the
product moment of each consider mixture of Dirichlet distribution’s prior, and implemented
for parameter estimation when fitting posterior distributions to real economic data. Using
the Bayesian estimates of these entropy measures proved to be a useful aid in selecting the
prior distribution by consideration of the WIM, however, it is essential to evaluate each
scenario separately. A possible further step of action may be to investigate possible other
values of α on the estimation. Further work include the potential probability representation
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of quantum states that can be characterised by the priors considered in this paper [16],
as well as future interest in dimension-free estimation of entropy in relevant settings [17].
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