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Abstract: The study of symmetry is a major tool in the nonlinear analysis. The symmetricity of
distance function in a metric space plays important role in proving the existence of a fixed point for
a self mapping. In this work, we approximate a fixed point of noncyclic relatively nonexpansive
mappings by using a three-step Thakur iterative scheme in uniformly convex Banach spaces. We
also provide a numerical example where the Thakur iterative scheme is faster than some well known
iterative schemes such as Picard, Mann, and Ishikawa iteration. Finally, we provide a stronger version
of our proposed theorem via von Neumann sequences.

Keywords: von Neumann sequences; relatively nonexpansive mappings; best proximity point; fixed
point

1. Introduction

Approximating fixed points for different kinds of mappings is an important tool to
solve many problems in the theory of nonlinear analysis. In this view, Picard iteration is an
important starting point for the development of other new iterative schemes. However,
Picard iteration does not converge to a fixed point for a large class of mappings, for
example, the class of nonexpansive mappings. This was proved by Krasnoselskii [1].
Let K be a nonempty subset of a Banach space X. The map F:K → K is nonexpansive
if ‖Fw − Fz‖ ≤ ‖w − z‖ for all w, z ∈ K. In 1967, Browder [2] introduced the iterative
process to fixed points of nonexpansive self maps on closed and convex subsets of a Hilbert
space. Mann [3] constructed the iterative process to approximate the fixed points of a
nonexpansive mapping, it is defined by the following method: for a starting point w0 ∈ K,

wn+1 = (1− ηn)wn + ηnFwn, (1)

where {ηn} is a sequence in [0, 1].
Later, the Ishikawa [4] iteration is a two step iterative process that helps to approximate

fixed points of nonexpansive mappings; for a starting point w0 ∈ K, this iterative scheme is
defined by: {

wn+1 = (1− ηn)wn + ηnFun,
un = (1− γn)wn + γnFwn,

(2)

where {ηn} and {γn} are sequences in [0, 1].
Agarwal et al. [5] introduced a two step iterative process in 2007: for an arbitrary

w0 ∈ K, define: {
wn+1 = (1− ηn)Fwn + ηnFun,
un = (1− γn)wn + γnFwn,

(3)
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where {ηn} and {γn} are sequences in [0, 1].
In 2000, Noor [6] introduced the following iteration scheme: starting with w0 ∈ K,

define {wn} iteratively by: 
wn+1 = (1− ηn)wn + ηnFvn,
vn = (1− δn)wn + δnFun,
un = (1− γn)wn + γnFwn,

(4)

where {ηn}, {δn} and {γn} are sequences in [0, 1].
In the sequel, we will consider the following iterative process defined by Thakur et al.

in [7]: for an arbitrary chosen element w0 ∈ K, the sequence {wn} is generated by:
wn+1 = (1− ηn)Fun + ηnFvn,
vn = (1− δn)un + δnFun,
un = (1− γn)wn + γnFwn,

(5)

where {ηn}, {δn} and {γn} are sequences in [0, 1] satisfying one of the following conditions:

(Q) 0 < ε ≤ ηn ≤ 1, 0 < ε ≤ δn(1− δn) and γn → 0 as n→ ∞,
(R) 0 < ε ≤ γn(1− γn).

Recently, Anthony Eldred et al. [8] approximated fixed points in uniformly convex
Banach space using the Mann iterative process wn+1 = (1− ηn)wn + ηnFwn, ηn ∈ (ε, 1− ε),
where ε ∈ (0, 1/2) to a relatively nonexpansive map of the type F : M∪N → M∪N, which
satisfies (i) F(M) ⊆ M and F(N) ⊆ N and (ii) ‖Fw− Fz‖ ≤ ‖w− z‖, ∀w ∈ M, z ∈ N.
One can note that relatively nonexpansive mappings need not be continuous in general.
Gopi et al. [9] also approximated the common fixed point via Ishikawa iterative process.
Pragadeeswarar et al. [10] approximated the common best proximity point for a pair
of mean nonexpansive mappings. In 2020, Gabeleh et al. [11] introduced a geometric
notion of proximal Opial’s condition on a nonempty, closed and convex pair of subsets of
strictly convex Banach spaces and proved the strong and weak convergence of the Ishikawa
iterative scheme for noncyclic relatively nonexpansive mappings in uniformly convex
Banach spaces.

In 2019, Gabriela et al. [12] proved the convergence of Thakur et al.’s iteration method
for Suzuki-type nonexpansive mappings. This class of mappings properly contains the class
of nonexpansive mappings. At this moment, it is natural to think that one can approximate
a fixed point for relatively nonexpansive mappings using the Thakur iterative process.

Motivated by the work of Gabeleh et al. and Gabriela et al., we approximate a fixed
point for noncyclic relatively nonexpansive mappings in uniformly convex Banach space
through the Thakur iterative process. We also provide a strong convergence result of the
Thakur iterative process and we compare the Thakur iterative process to some well known
iterations. Finally, we propose a numerical example to show that the Thakur iterative
process converges more effectively than the Picard iterative process, Mann iterative process
and Ishikawa iterative process.

2. Preliminaries

Let M and N be nonempty subsets of a Banach space X. The following notations are
used subsequently:

d(w, N) = inf{‖w− z‖ : z ∈ N};
d(M, N) = inf{‖w− z‖ : w ∈ M, z ∈ N};
PM(w) = {z ∈ M : ‖w− z‖ = d(w, M)};
M0 = {w ∈ M :

∥∥w− z′
∥∥ = d(M, N) for some z′ ∈ N};

N0 = {z ∈ N :
∥∥w′ − z

∥∥ = d(M, N) for some w′ ∈ M}.
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If M is a convex, closed subset of a reflexive and strictly convex space, then PM(w)
contains one element and if M and N are convex, closed subsets of a reflexive space, with
either M or N being bounded, then M0 6= ∅. It can be pointed out that the relevance of
the subsequent study to symmetry is obvious since distances between points and between
sets are symmetry. For instance, in the above equations, d(M, N) = d(N, M) is a symmetry
property for the distance between the sets M and N.

The following definitions and theorems are very useful to our results:

Definition 1. Let M and N be nonempty subsets of a metric space (X, d). An element w ∈ M is
said to be a best proximity point of the nonself-mapping F : M→ N if it satisfies the condition that:

d(w, Fw) = d(M, N).

Definition 2. Let M and N be nonempty subsets of a Banach space X. A mapping F:M ∪ N →
M ∪ N is relatively nonexpansive if:

‖Fw− Fz‖ ≤ ‖w− z‖, for all w ∈ M, z ∈ N.

Theorem 1 ([13]). Let M and N be nonempty closed bounded convex subsets of a uniformly convex
Banach space. Let F : M ∪ N → M ∪ N satisfy:

1. F(M) ⊆ N and F(N) ⊆ M; and
2. ‖Fw− Fz‖ ≤ ‖w− z‖ for w ∈ M, z ∈ N.

Then there exist (w, z) ∈ M× N such that ‖w− Fw‖ = ‖z− Fz‖ = d(M, N).

Theorem 2 ([13]). Let M and N be nonempty closed bounded convex subsets of a uniformly convex
Banach space. Let F : M ∪ N → M ∪ N satisfy:

1. F(M) ⊆ M and F(N) ⊆ N; and
2. ‖Fw− Fz‖ ≤ ‖w− z‖ for w ∈ M, z ∈ N.

Then there exist w0 ∈ M and z0 ∈ N such that Fw0 = w0, Fz0 = z0, and ‖w0 − z0‖ =
d(M, N).

Theorem 3 ([14]). Let X be a uniformly convex Banach space, and F be a nonexpansive mapping
of the closed convex bounded subset K of X into K. Then F has a fixed point in K.

Proposition 1 ([15]). If X is a uniformly convex space and η ∈ (0, 1) and ε > 0, then for any
d > 0, if w, z ∈ X are such that ‖w‖ ≤ d, ‖z‖ ≤ d, ‖w− z‖ ≥ ε, then there exists δ = δ( ε

d ) > 0

such that ‖ηw + (1− η)z‖ ≤
(

1− 2δ( ε
d )min(η, 1− η)

)
d.

Definition 3 ([16]). Let C be a nonempty subset of a Banach space X and T be a selfmap on C. T
is said to satisfy condition (C) if ‖Tx− Ty‖ ≤ ‖x− y‖, whenever 1

2‖x− Tx‖ ≤ ‖x− y‖ for all
x, y ∈ C. Such mappings are often called generalized nonexpansive mappings or Suzuki mappings.

Theorem 4 ([12]). Let C be a nonempty, closed and convex subset of a uniformly convex Banach
space X, and let T : C → C be a mapping satisfying condition (C). For an arbitrarily chosen x0 ∈ C,
let the sequence {xn} be generated by (1) for all n ≥ 0, where {αn}, {βn}, {γn} ∈ (0, 1), {γn}
bounded away from 0 and 1. Then F(T) = {x ∈ C : T(x) = x} 6= ∅ if and only if {xn} is
bounded and limn→∞ ‖Txn − xn‖ = 0.

Theorem 5 ([12]). Let C be a nonempty, compact and convex subset of a uniformly convex Banach
space X and let T and {xn} be as in Theorem 4. Then {xn} converges strongly to a fixed point of T.

Let M be a convex closed subset of a Hilbert Space X. Then for w ∈ X, we know that
PM(w) is the nearest to w and unique point of M. PM is nonexpansive and distinguished
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by the Kolmogorov’s criterion:
〈w− PMw, PMw− a〉 ≥ 0, for all w ∈ X and a ∈ M.

Let M and N be two convex closed subsets of X. Define:

P(w) = PM(PN(w)) for each w ∈ X.

Then, {Pn(w)} ⊂ M and {PN(Pn(w))} ⊂ N. When M and N are closed, the con-
vergence of these sequences in norm were proved by von Neumann [17]. The sequences
{Pn(w)} and {PN(Pn(w))} are called von Neumann sequences or the alternating projection
algorithm for two sets.

Theorem 6 ([8]). Let M and N be nonempty bounded closed convex subsets of a uniformly convex
Banach space and suppose that F : M ∪ N → M ∪ N satisfies:

1. F(M) ⊆ M and F(N) ⊆ N; and
2. ‖ Fw− Fz ‖≤‖ w− z ‖ for w ∈ M, z ∈ N.

Let w0 ∈ M, and define wn+1 = Pn((1− ηn)wn + ηnFwn
)
, ηn ∈ (ε, 1− ε), where ε ∈

(0, 1/2) and n = 0, 1, 2, . . . Then limn→∞ ‖ wn − Fwn ‖= 0. Moreover, if F(M) lies in a compact
set, then {wn} converges to a fixed point of F.

Definition 4 ([18]). Let M and N be nonempty closed convex subsets of a Hilbert space X. We
say that (M, N) is boundedly regular if for each bounded subset S of X and for each ε > 0 there
exists δ > 0 such that:

max{d(w, M), d(w, N − v)} ≤ δ⇒ d(w, N) ≤ ε, ∀w ∈ X, (6)

where v = PN−M(0) is the displacement vector from M to N. (v is the unique vector satisfying
‖ v ‖= d(M, N)).

Theorem 7 ([18]). If (M, N) is boundedly regular, then the von Neumann sequences converges
in norm.

Theorem 8 ([18]). If M or N is boundedly compact, then (M, N) is boundedly regular.

Lemma 1 ([19]). Let M be a nonempty closed and convex subset and N be a nonempty closed
subset of a uniformly convex Banach space. Let {wn} and {an} be sequences in M and {zn} be a
sequence in N satisfying:

1. ‖ wn − zn ‖→ d(M, N),
2. ‖ an − zn ‖→ d(M, N).

Then ‖ wn − an ‖ converges to zero.

Corollary 1 ([19]). Let M be a nonempty closed convex subset and N be a nonempty closed
subset of uniformly convex Banach space. Let {wn} be a sequence in M and z0 ∈ N such that
‖ wn − z0 ‖→ d(M, N). Then {wn} converges to PM(z0).

Proposition 2 ([13]). Let M and N be two closed and convex subsets of a Hilbert space X. Then
PN(M) ⊆ N, PM(N) ⊆ M, and ‖ PNw− PMz ‖≤‖ w− z ‖ for w ∈ M and z ∈ N.

Lemma 2 ([8]). Let M and N be two closed and convex subsets of a Hilbert space X. For each
w ∈ X,

‖ Pn+1(w)− a ‖≤‖ Pn(w)− a ‖, for each a ∈ M0 ∪ N0.
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Lemma 3 ([20]). Let (M, N) be a nonempty, bounded, closed and convex pair in a reflexive and
strictly convex Banach space X. Define P : M0 ∪ N0 → M0 ∪ N0 as:

P(x) =

{
PM0(x) if x ∈ N0,
PN0(x) if x ∈ M0.

(7)

Then the following statements hold.

1. ‖x−Px‖ = d(M, N) for any x ∈ M0 ∪ N0 and P(M0) ⊆ N0, P(N0) ⊆ M0.
2. P is an isometry, that is, ‖Px−Py‖ = ‖x− y‖ for all (x, y) ∈ M0 × N0.
3. P is affine.

Definition 5 ([21]). If M0 6= ∅ then the pair (M, N) is said to have P-property if for any
u1, u2 ∈ M0 and v1, v2 ∈ N0{

d(u1, v1) = d(M, N)

d(u2, v2) = d(M, N)
⇒ d(u1, u2) = d(v1, v2).

Lemma 4 ([22]). Every, nonempty, bounded, closed and convex pair in a uniformly convex Banach
space X has the P-property.

Lemma 5 ([23]). Let (M, N) be a nonempty, closed and convex pair in a uniformly convex Banach
space X. Then for the projection mapping P : M0 ∪ N0 → M0 ∪ N0 defined in (7) we have
both P|M0 and P|N0 are continuous. For more results on approximation for fixed points, one can
refer [24–32].

3. Main Results

Theorem 9. Let M and N be nonempty bounded closed convex subsets of a uniformly convex
Banach space and suppose that F : M ∪ N → M ∪ N satisfies:

1. F(M) ⊆ M and F(N) ⊆ N; and
2. ‖ Fw− Fz ‖≤‖ w− z ‖ for w ∈ M, z ∈ N.

For an arbitrary chosen w0 ∈ M, let the sequence {wn} be generated by (5) where ηn, δn, γn ∈
(ε, 1− ε), where ε ∈ (0, 1/2) and n = 0, 1, 2, . . . Suppose d(wn, M0) → 0, then limn→∞ ‖
wn − Fwn ‖= 0. Moreover, if F(M) lies in a compact set then {wn} converges to a fixed point of F.

Proof. If d(M, N) = 0, then M0 = N0 = M ∩ N and by Theorems 4 and 5 we can prove the
result from the truth that F : M ∩ N → M ∩ N is nonexpansive. Therefore let us take that
d(M, N) > 0. By Theorem 2, there exists z ∈ N0 such that Fz = z. Now, from (5), we have:

‖un − z‖ = ‖(1− γn)wn + γnFwn − z‖
= ‖(1− γn)(wn − z) + γn(Fwn − z)‖
≤ (1− γn)‖wn − z‖+ γn‖Fwn − z‖
≤ (1− γn)‖wn − z‖+ γn‖wn − z‖
= ‖wn − z‖. (8)

In the same way, we can obtain:

‖vn − z‖ = ‖(1− δn)un + δnFun − z‖
= ‖(1− δn)(un − z) + δn(Fun − z)‖
≤ (1− δn)‖un − z‖+ δn‖Fun − z‖
≤ (1− δn)‖un − z‖+ δn‖un − z‖
= ‖un − z‖.
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Now, using inequality (8), one gets:

‖vn − z‖ ≤ ‖wn − z‖. (9)

Therefore, by (8) and (9), we obtain:

‖ wn+1 − z ‖ = ‖ (1− ηn)Fun + ηnFvn − z ‖
= ‖(1− ηn)(Fun − z) + ηn(Fvn − z)‖
≤ (1− ηn)‖un − z‖+ ηn‖vn − z‖
≤ (1− ηn)‖wn − z‖+ ηn‖wn − z‖
= ‖wn − z‖.

This implies that the sequence {‖ wn − z ‖} is non increasing. Then we can find d > 0
such that limn→∞ ‖ wn − z ‖= d.

Suppose there exists a subsequence {wnk} of {wn} and an ε > 0 such that ‖ wnk −
Fwnk ‖≥ ε > 0 for all k.

Since the modulus of convexity of δ of X is continuous and increasing function we

choose ξ > 0 as small that
(

1− cδ
(

ε
d+ξ

))
(d + ξ) < d, where c > 0.

Now we choose k, such that ‖ wnk − z ‖≤ d + ξ. Now we have:

‖ z− wnk+1 ‖ = ‖ z−
(
(1− ηnk )Funk + ηnk Fvnk

)
‖

= ‖ (1− ηnk )z + ηnk z−
(
(1− ηnk )F

(
(1− γnk )wnk + γnk Fwnk

)
+ ηnk Fvnk

)
‖

≤ (1− ηnk ) ‖ z− F
(
(1− γnk )wnk + γnk Fwnk

)
‖ +ηnk ‖ Fz− Fvnk ‖

≤ (1− ηnk ) ‖ z−
(
(1− γnk )wnk + γnk Fwnk

)
‖ +ηnk ‖ z− vnk ‖ . (10)

Now, by Proposition 1, we can obtain:

‖ z−
(
(1− γnk )wnk + γnk Fwnk

)
‖ = ‖ (1− γnk )(z− wnk ) + γnk (z− Fwnk ) ‖

≤
(

1− 2δ
( ε

d + ξ

)
min{γnk , 1− γnk}

)
(d + ξ). (11)

Additionally, using (11), we get:

‖ z− vnk ‖ = ‖ z−
(
(1− δnk )unk + δnk Funk

)
‖

= ‖ (1− δnk )(z− unk ) + δnk (z− Funk ) ‖
≤ (1− δnk ) ‖ z− unk ‖ +δnk ‖ z− Funk ‖
≤ (1− δnk ) ‖ z− unk ‖ +δnk ‖ z− unk ‖
= ‖ z− unk ‖

≤
(

1− 2δ
( ε

d + ξ

)
min{γnk , 1− γnk}

)
(d + ξ).

Therefore, the Equation (10) becomes:

‖ z− wnk+1 ‖ ≤
(

1− 2δ
( ε

d + ξ

)
min{γnk , 1− γnk}

)
(d + ξ).

Since there exists l > 0 such that 2 min{γnk , 1− γnk} ≥ l,(
1− 2δ

( ε

d + ξ

)
min{γnk , 1− γnk}

)
(d + ξ) ≤

(
1− lδ

( ε

d + ξ

))
(d + ξ).

Suppose that we choose very small ξ > 0, we have
(

1− lδ
(

ε
d+ξ

))
(d + ξ) < d, which

is a contradiction. This implies that limn→∞ ‖ wn − Fwn ‖= 0. Since F(M) is contained in a
compact set, {Fwn} has a subsequence {Fwnk} that converges to a point a ∈ M. Also {wnk}
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converges to a. Since d(wn, M0) → 0, there exists {an} ⊆ M0 such that ‖ wn − an ‖→ 0.
Therefore, ank → a, which gives that a ∈ M0.

Let D = d(M, N) and choose b ∈ N0 such that ‖ a− b ‖= D.
We have ‖ wnk − b ‖→‖ a− b ‖= D, and ‖ wnk − b ‖≥‖ Fwnk − Fb ‖→‖ a− Fb ‖. So

‖ a− Fb ‖= D. By strict convexity of the norm, Fb = b. It follows that Fa = a.
Let x ∈ M0. Then we have

‖Fx− FPx‖ ≤ ‖x−Px‖ = d(M, N).

Therefore, ‖Fx− FPx‖ = d(M, N) = ‖Fx−PFx‖. By Lemma 4, we get FPx = PFx.
In particular, FPa = PFa. So F(Pa) = Pa. Since Pa ∈ N0, we can obtain that limn→∞ ‖
wn −Pa ‖ exists. Therefore,

lim
n→∞

‖wn −Pa‖ = lim
k→∞
‖wnk −Pa‖ = ‖a−Pa‖ = d(M, N).

This implies wn → a.

Corollary 2. Let M and N be nonempty bounded closed convex subsets of a uniformly convex
Banach space and suppose that F : M ∪ N → M ∪ N satisfies:

1. F(M) ⊆ M and F(N) ⊆ N; and
2. ‖ Fw− Fz ‖≤‖ w− z ‖ for w ∈ M, z ∈ N.

For an arbitrary chosen w0 ∈ M0, let the sequence {wn} be generated by (5), where
ηn, δn, γn ∈ (ε, 1− ε), where ε ∈ (0, 1/2) and n = 0, 1, 2, . . . , then limn→∞ ‖ wn − Fwn ‖= 0.
Moreover, if F(M) lies in a compact set then {wn} converges to a fixed point of F.

Corollary 3. Let M and N be nonempty bounded closed convex subsets of a Hilbert space and let
F be as in Theorem 2. Let w0 ∈ M0, and define wn+1 = Pn((1− ηn)Fun + ηnFvn

)
, where vn =

(1− δn)un + δnFun, un = (1− γn)wn + γnFwn, ηn, δn, γn ∈ (ε, 1− ε), where ε ∈ (0, 1/2)
and n = 0, 1, 2, . . . then limn→∞ ‖ wn − Fwn ‖= 0. Moreover, if F(M) is mapped into a compact
subset of N then {wn} converges to a fixed point of F.

Proof. One can note that Pn((1− ηn)Fun + ηnFvn
)
= (1− ηn)Fun + ηnFvn. By Theorem 9,

the result follows.

Example 1. Let X = R3,

M = {(w, x, y) : −4 ≤ w ≤ −3,−1 ≤ x ≤ 1,−1 ≤ y ≤ 1} and

N = {(w, x, y) : 3 ≤ w ≤ 4,−1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.

Define

F : M→ M by F(w, x, y) =
(w− 3

2
, x, y

)
,

F : N → N by F(w, x, y) =
(w + 3

2
, x, y

)
.

Let (w, x, y) ∈ M, (w′, x, y) ∈ N. Then,

‖ F(w, x, y)− F(w′, x, y) ‖ = ‖
(w− 3

2
, x, y

)
−
(w′ + 3

2
, x, y

)
‖

= ‖
(w− w′ − 6

2
, 0, 0

)
‖

=

√(w− w′ − 6
2

)2
+ 0

≤
√
(w− w′)2.
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Hence F is a relatively nonexpansive mapping.
Let (w0, x0, y0) = (−3.5, 1,−1). First the Thakur et al. iteration method becomes with

ηn = δn = γn = 0.999:

(un, 1,−1) = (1− 0.999)(wn, 1,−1) + 0.999
(wn − 3

2
, 1,−1

)
= 0.001(wn, 1,−1) + (0.4995wn − 1.4985, 0.999,−0.999)

= (0.5005wn − 1.4985, 1,−1),

and

(vn, 1,−1) = 0.001(0.5005wn − 1.4985, 1,−1) + 0.999F(un, 1,−1)

= (0.0005005wn − 0.0014985, 0.001, 0.001) + 0.999F(un, 1,−1).

Now, we derive:

F(un, 1,−1) =
(un − 3

2
, 1,−1

)
=

(0.5005wn − 1.4985− 3
2

, 1,−1
)

= (0.25025wn − 2.24925, 1,−1).

So,

(vn, 1,−1) = (0.0005005wn − 0.0014985, 0.001, 0.001) + 0.999(0.25025wn − 2.24925, 1,−1)

= (0.25050025wn − 2.24849925, 1,−1)

Therefore,

F(vn, 1,−1) =
(vn − 3

2
, 1,−1

)
=

(0.25050025wn − 2.24849925− 3
2

, 1,−1
)

= (0.125250125wn − 2.624249625, 1,−1).

Finally, we can obtain:

(wn+1, 1,−1) = (0.125375124875wn − 2.623874625375, 1,−1).

For the Ishikawa iteration, set (wn+1, 1,−1) = (1 − ηn)(wn, 1,−1) + ηnF
(
(1 − δn)

(wn, 1,−1) + δnF(wn, 1,−1)
)

with ηn = δn = 0.999. We have F(w, 1,−1) =
(

w−3
2 , 1,−1

)
.

Then,

(wn+1, 1,−1) = (1− 0.999)(wn, 1,−1) + 0.999F
(
(1− 0.999)(wn, 1,−1) + 0.999

(wn − 3
2

, 1,−1
))

= 0.001(wn, 1,−1) + 0.999F
(
0.001(wn, 1,−1) + (0.4995wn − 1.4985, 0.999, 0.999)

)
= 0.001(wn, 1,−1) + 0.999F(0.5005wn − 1.4985, 1,−1)

= 0.001(wn, 1,−1) + 0.999
(0.5005wn − 1.4985− 3

2
, 1,−1

)
= (0.001wn, 0.001, 0.001) + (0.24999975wn − 2.24700075, 0.999, 0.999)

= (0.25099975wn − 2.24700075, 1,−1).
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In Picard iteration we have (wn+1, 1,−1) = F(wn, 1,−1) =
(

wn−3
2 , 1,−1

)
, and Mann

with ηn = 0.999 or Krasnoselskij iteration, we have:

(wn+1, 1,−1) = (1− ηn)(wn, 1,−1) + ηnF(wn, 1,−1)

= (1− 0.999)(wn, 1,−1) + 0.999
(wn − 3

2
, 1,−1

)
= (0.001wn, 0.001, 0.001) + (0.4995wn − 1.4985, 0.999, 0.999)

= (0.5005wn − 1.4985, 1,−1).

Using Matlab coding we give the comparison table for approaching a fixed point in these four
iteration processes.

The Table 1 shows that the Thakur iteration attains the fixed point at the fifteenth iterative
step. However, the other iterations take more than fifteen iterative steps to reach the fixed point. This
reveals that the Thakur iteration is faster than the other iterative processes.

The Figure 1 shows a comparison of Thakur et al.’s iteration method with Picard,
Mann and Ishikawa iterations by using the continuous data points from −3.5 to −3.

Table 1. Comparison result of Thakur et al.’s iteration method with Picard, Mann and Ishikawa
iterations via Matlab coding.

n Picard Iteration Mann Iteration Ishikawa Iteration Thakur et al. Iteration
Method

12 (−3.0001220703125,1,−1) (−3.000123543239806,1,−1) (−3.000000031264355,1,−1) (−3.000000000007542,1,−1)
13 (−3.00006103515625,1,−1) (−3.000061833391523,1,−1) (−3.000000007847345,1,−1) (−3.000000000000945,1,−1)
14 (−3.000030517578125,1,−1) (−3.000030947612457,1,−1) (−3.000000001969682,1,−1) (−3.000000000000119,1,−1)
15 (−3.000015258789062,1,−1) (−3.000015489280035,1,−1) (−3.00000000049439,1,−1) (−3.000000000000000,1,−1)
...

...
...

...
...

20 (−3.000000476837158,1,−1) (−3.000000486465046,1,−1) (−3.000000000000493,1,−1)
21 (−3.000000238418579,1,−1) (−3.000000243475755,1,−1) (−3.000000000000124,1,−1)
22 (−3.00000011920929,1,−1) (−3.000000121859615,1,−1) (−3.000000000000000,1,−1)
...

...
...

...
...

41 (−3.000000000000227,1,−1) (−3.000000000000236,1,−1)
42 (−3.000000000000114,1,−1) (−3.000000000000118,1,−1)
43 (−3.000000000000000,1,−1) (−3.000000000000000,1,−1)

-3.5 -3.45 -3.4 -3.35 -3.3 -3.25 -3.2 -3.15 -3.1 -3.05 -3

-3.3

-3.25

-3.2

-3.15

-3.1

-3.05

-3
Comparison by plot

Thakur

Ishikawa

Mann

Picard

Figure 1. Comparison by plot.
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Now we relax the assumptions on constants {ηn}, {δn}, {γn} and d(wn, M0)→ 0 in
the above theorem and we prove the following theorem by using the conditions (Q) or (R)
on constants {ηn}, {δn} and {γn}.

Lemma 6 ([11]). A Banach space X is uniformly convex if and only if for each fixed number r > 0,
there exists a continuous strictly increasing function φ : [0, ∞) → [0, ∞), φ(t) = 0 iff t = 0,
such that

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)φ(‖x− y‖),

for all λ ∈ [0, 1] and all x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r.

Lemma 7 ([11]). Consider a strictly increasing function φ : [0, ∞)→ [0, ∞) with φ(0) = 0. If a
sequence {rn} in [0, ∞) satisfies limn→∞ φ(rn) = 0, then limn→∞ rn = 0.

Lemma 8 ([11]). Let (A, B) be a nonempty and closed pair in a uniformly convex Banach space
X such that A is convex. Let {xn} and {zn} be sequences in A and {yn} be a sequence in
B such that limn→∞ ‖xn − yn‖ = d(A, B) and limn→∞ ‖zn − yn‖ = d(A, B); then we have
limn→∞ ‖xn − zn‖ = 0.

Theorem 10. Let M and N be nonempty bounded closed convex subsets of a uniformly convex
Banach space and suppose that F : M ∪ N → M ∪ N satisfies:

1. F(M) ⊆ M and F(N) ⊆ N; and
2. ‖ Fw− Fz ‖≤‖ w− z ‖ for w ∈ M, z ∈ N.

For an arbitrarily chosen w0 ∈ M0, let the sequence {wn} be generated by (5) where
{ηn}, {δn}, {γn} satisfy either (Q) or (R) and n = 0, 1, 2, . . . Then limn→∞ ‖ wn − Fwn ‖= 0.
Moreover, if F(M) lies in a compact set then {wn} converges to a fixed point of F.

Proof. By Theorem 2, we can find z ∈ N0 such that Fz = z. Then from Lemma 6 there
exists a continuous strictly increasing function φ : [0, ∞)→ [0, ∞) such that:

‖wn+1 − z‖2 = ‖(1− ηn)Fun + ηnFvn − z‖2

= ‖ηn(Fvn − z) + (1− ηn)(Fun − z)‖2

≤ ηn‖Fvn − z‖2 + (1− ηn)‖Fun − z‖2 − ηn(1− ηn)φ(‖Fvn − Fun‖)
≤ ηn‖vn − z‖2 + (1− ηn)‖un − z‖2

= ηn‖(1− δn)un + δnFun − z‖2 + (1− ηn)‖(1− γn)wn + γnFwn − z‖2

= ηn‖δn(Fun − z) + (1− δn)(un − z)‖2

+(1− ηn)‖γn(Fwn − z) + (1− γn)(wn − z)‖2

≤ ηnδn‖Fun − z‖2 + ηn(1− δn)‖un − z‖2 − ηnδn(1− δn)φ(‖Fun − un‖)
+(1− ηn)γn‖Fwn − z‖+ (1− ηn)(1− γn)‖wn − z‖2

−(1− ηn)γn(1− γn)φ(‖Fwn − wn‖)
≤ ηnδn‖un − z‖2 + ηn(1− δn)‖un − z‖2 − ηnδn(1− δn)φ(‖Fun − un‖)

+(1− ηn)γn‖wn − z‖+ (1− ηn)(1− γn)‖wn − z‖2

−(1− ηn)γn(1− γn)φ(‖Fwn − wn‖)
≤ ηn‖un − z‖2 − ηnδn(1− δn)φ(‖Fun − un‖) + (1− ηn)‖wn − z‖2

−(1− ηn)γn(1− γn)φ(‖Fwn − wn‖)
= ηn‖(1− γn)wn + γnFwn − z‖2 − ηnδn(1− δn)φ(‖Fun − un‖)

+(1− ηn)‖wn − z‖2 − (1− ηn)γn(1− γn)φ(‖Fwn − wn‖)
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= ηn‖γn(Fwn − z) + (1− γn)(wn − z)‖2 − ηnδn(1− δn)φ(‖Fun − un‖)
+(1− ηn)‖wn − z‖2 − (1− ηn)γn(1− γn)φ(‖Fwn − wn‖)

≤ ηnγn‖Fwn − z‖+ ηn(1− γn)‖wn − z‖2 − ηnγn(1− γn)φ(‖Fwn − wn‖)
−ηnδn(1− δn)φ(‖Fun − un‖) + (1− ηn)‖wn − z‖2

−(1− ηn)γn(1− γn)φ(‖Fwn − wn‖)
≤ ‖wn − z‖2 − ηnδn(1− δn)φ(‖Fun − un‖)− γn(1− γn)φ(‖Fwn − wn‖).

Therefore, we can deduce the following inequalities:

ηnδn(1− δn)φ(‖Fun − un‖) ≤ ‖wn − z‖2 − ‖wn+1 − z‖2, (12)

γn(1− γn)φ(‖Fwn − wn‖) ≤ ‖wn − z‖2 − ‖wn+1 − z‖2. (13)

Now, we proceed the following two cases:

Case 1: Suppose that {ηn}, {δn} and {γn} satisfy (Q). From (12), we get

m

∑
n=1

ηnδn(1− δn)φ(‖Fun − un‖) ≤ ‖w1 − z‖2 − ‖wm+1 − z‖2.

As m → ∞, we get ∑∞
n=1 ηnδn(1− δn)φ(‖Fun − un‖) < ∞. Since ηnδn(1− δn) ≥ ε2,

implies φ(‖Fun − un‖) → 0, so ‖Fun − un‖ → 0. Since P is affine and isometry and
PF = FP on M0 ∪ N0,

‖Fwn −Pwn‖ ≤ ‖Fwn −PFun‖+ ‖PFun −Pwn‖
= ‖Fwn − FPun‖+ ‖Fun − wn‖
≤ ‖wn −Pun‖+ ‖Fun − un‖+ ‖un − wn‖
= ‖wn −Pun‖+ ‖Fun − un‖+ γn‖Fwn − wn‖. (14)

Now,

‖wn −Pun‖ = ‖wn −P{(1− γn)wn + γnFwn}‖
= ‖wn −Pwn + γn(Pwn −PFwn)‖
≤ ‖wn −Pwn‖+ γn‖Pwn −PFwn‖
= ‖wn −Pwn‖+ γn‖wn − Fwn‖.

Therefore, the inequality reduces to

‖Fwn −Pwn‖ ≤ ‖wn −Pwn‖+ γn‖wn − Fwn‖+ ‖Fun − un‖+ γn‖Fwn − wn‖.

Letting n→ ∞, we obtain limn→∞ ‖Fwn −Pwn‖ ≤ limn→∞ ‖wn −Pwn‖ = d(M, N).
Therefore, by Lemma 8, it is implied that ‖Fwn − wn‖ → 0.

Case 2: Suppose that {ηn}, {δn} and {γn} satisfy (R). From (13), we get

m

∑
n=1

γn(1− γn)φ(‖Fwn − wn‖) ≤ ‖w1 − z‖2 − ‖wm+1 − z‖2.

As m → ∞, we get ∑∞
n=1 γn(1− γn)φ(‖Fwn − wn‖) < ∞. In view of the fact that

γn(1− γn) ≥ ε, it implies φ(‖Fwn − wn‖)→ 0, so ‖Fwn − wn‖ → 0.
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Therefore, ‖Fwn−wn‖ → 0 in both the cases. Now, since F(M) lies in a compact subset
then {Fwn} has a convergent subsequence {Fwnk}, converging to some point u ∈ M0. We
also have wnk → u. Additionally, from F(Pu) = P(Fu), we have

‖Fwnk −P(Fu)‖ = ‖Fwnk − F(Pu)‖ ≤ ‖wnk −Pu‖ → d(M, N).

So one can obtain, by Lemma 8, Fwnk → Fu. By uniqueness of limit, Fu = u. So
F(Pu) = P(Fu) = Pu. Therefore, we get that limn→∞ ‖wn −Pu‖ exists. So

lim
n→∞

‖wn −Pu‖ = lim
k→∞
‖wnk −Pu‖ = ‖u−Pu‖ = d(M, N),

which gives wn → u.

In the next result, we provide a stronger version to iterate the fixed point via von
Neumann sequences.

Theorem 11. Let M and N be nonempty bounded closed convex subsets of a Hilbert space and
suppose that F : M ∪ N → M ∪ N satisfies

1. F(M) ⊆ M and F(N) ⊆ N; and
2. ‖ Fw− Fz ‖≤‖ w− z ‖ for w ∈ M, z ∈ N.

Let w0 ∈ M, and define wn+1 = Pn((1− ηn)Fun + ηnFvn
)
, where vn = (1− δn)un +

δnFun, un = (1 − γn)wn + γnFwn, ηn, δn, γn ∈ (ε, 1 − ε), where ε ∈ (0, 1/2) and n =
0, 1, 2, . . ., then limn→∞ ‖ wn − Fwn ‖= 0. Moreover, if F(M) lies in a compact set and ‖
un − Fun ‖→ 0, ‖ vn − Fvn ‖→ 0 then {wn} converges to a fixed point of F.

Proof. If d(M, N) = 0, then M0 = N0 = M ∩ N and F : M ∩ N → M ∩ N is nonexpansive
with wn+1 = Pn((1− ηn)Fun + ηnFvn

)
= (1− ηn)Fun + ηnFvn, the usual Thakur et al.

iteration method. So let us take that d(M, N) > 0. By Theorem 2, we can find z ∈ N0 such
that Fz = z. Now, by (8) and (9), we obtain:

‖ wn+1 − z ‖ = ‖ Pn((1− ηn)Fun + ηnFvn
)
− z ‖

≤ ‖ (1− ηn)Fun + ηnFvn − z ‖
= ‖(1− ηn)(Fun − z) + ηn(Fvn − z)‖
≤ (1− ηn)‖un − z‖+ ηn‖vn − z‖
≤ (1− ηn)‖wn − z‖+ ηn‖wn − z‖
= ‖wn − z‖.

This implies that the sequence {‖ wn − z ‖} is non increasing. Then we can find d > 0
such that limn→∞ ‖ wn − z ‖= d.

Suppose there exists a subsequence {wnk} of {wn} and an ε > 0 such that
‖ wnk − Fwnk ‖≥ ε > 0 for all k.

Since the modulus of convexity of δ of X is a continuous and increasing function we

choose ξ > 0 to be small such that
(

1− cδ
(

ε
d+ξ

))
(d + ξ) < d, where c > 0.

Now we choose k, such that ‖ wnk − z ‖≤ d + ξ. Now we have:

‖ z− wnk+1 ‖ = ‖ z− Pnk
(
(1− ηnk )Funk + ηnk Fvnk

)
‖

≤ ‖ z−
(
(1− ηnk )Funk + ηnk Fvnk

)
‖

= ‖ (1− ηnk )z + ηnk z−
(
(1− ηnk )F

(
(1− γnk )wnk + γnk Fwnk

)
+ ηnk Fvnk

)
‖

≤ (1− ηnk ) ‖ z− F
(
(1− γnk )wnk + γnk Fwnk

)
‖ +ηnk ‖ Fz− Fvnk ‖

≤ (1− ηnk ) ‖ z−
(
(1− γnk )wnk + γnk Fwnk

)
‖ +ηnk ‖ z− vnk ‖ . (15)
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Now,

‖ z−
(
(1− γnk )wnk + γnk Fwnk

)
‖ = ‖ (1− γnk )(z− wnk ) + γnk (z− Fwnk ) ‖

≤
(

1− 2δ
( ε

d + ξ

)
min{γnk , 1− γnk}

)
(d + ξ). (16)

Additionally, using (16), we get:

‖ z− vnk ‖ = ‖ z−
(
(1− δnk )unk + δnk Funk

)
‖

= ‖ (1− δnk )(z− unk ) + δnk (z− Funk ) ‖
≤ (1− δnk ) ‖ z− unk ‖ +δnk ‖ z− Funk ‖
≤ (1− δnk ) ‖ z− unk ‖ +δnk ‖ z− unk ‖
= ‖ z− unk ‖

≤
(

1− 2δ
( ε

d + ξ

)
min{γnk , 1− γnk}

)
(d + ξ).

Therefore, the Equation (15) becomes:

‖ z− wnk+1 ‖ ≤
(

1− 2δ
( ε

d + ξ

)
min{γnk , 1− γnk}

)
(d + ξ).

Since there exists l > 0 such that 2 min{γnk , 1− γnk} ≥ l,(
1− 2δ

( ε

d + ξ

)
min{γnk , 1− γnk}

)
(d + ξ) ≤

(
1− lδ

( ε

d + ξ

))
(d + ξ).

Suppose that we choose very small ξ > 0, we have
(

1 − lδ
(

ε
d+ξ

))
(d + ξ) < d,

which is a contradiction. This implies that limn→∞ ‖ wn − Fwn ‖= 0. Now we prove
that ‖wn+1 − wn ‖→ 0. From the Thakur et al. iteration method, we get ‖un − wn‖ =
γn‖Fwn − wn‖. Since limn→∞ ‖ wn − Fwn ‖= 0 we obtain ‖un − wn‖ → 0.

Since F(M) is contained in a compact set, {Fwn} has a subsequence {Fwnk} that
converges to a point v0 ∈ M. {wnk} also converges to v0. From the given sequence,
we obtain:

‖ wnk+1 − wnk ‖ = ‖ Pnk
(
(1− ηnk )Funk + ηnk Fvnk

)
− wnk ‖

≤ ‖ (1− ηnk )Funk + ηnk Fvnk − wnk ‖
= ‖Funk − wnk‖+ ηnk ‖ Funk − Fvnk ‖
≤ ‖Funk − unk‖+ ‖unk − wnk‖

+ηnk

(
‖ Funk − unk ‖ + ‖ unk − vnk ‖ + ‖ vnk − Fvnk ‖

)
.

Since ‖ Funk − unk ‖→ 0 implies ‖ unk − vnk ‖→ 0. Then ‖ wnk+1 − wnk ‖→ 0.
Therefore, wnk+1 → v0, which implies that wn → v0. We also have Fznk → v0 as k→ ∞.

Now, ‖ Fwnk − F(PN(v0)) ‖≤‖ wnk − PN(v0) ‖, which gives that ‖ v0− F(PN(v0)) ‖≤‖
v0 − PN(v0) ‖ . Therefore, F(PN(v0)) = PN(v0).

Additionally, ‖ F(P(v0))− PN(v0) ‖=‖ F(P(v0))− F(PN(v0)) ‖≤‖ P(v0)− PN(v0) ‖.
So F(P(v0)) = P(v0).

Now, ‖ FPN(P(v0))− P(v0) ‖=‖ FPN(P(v0))− F(P(v0)) ‖≤‖ PN(P(v0))− P(v0) ‖.
Thus FPN(P(v0)) = PN(P(v0)).
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For any n, F(Pn(v0)) = Pn(v0) and FPN(Pn(v0)) = PN(Pn(v0)). By Theorem 7, for
each x ∈ M the sequence {Pn(x)} converges to some u(x) ∈ M0. Now,

‖ F(u(v0))− PN(u(v0)) ‖ ≤ lim
n→∞

‖ F(u(v0))− PN(Pn(v0)) ‖

= lim
n→∞

‖ F(u(v0))− F(PN(Pn(v0))) ‖

≤ lim
n→∞

‖ u(v0)− PN(Pn(v0)) ‖

= ‖ u(v0)− PN(u(v0)) ‖ .

So ‖ F(u(v0))− PN(u(v0)) ‖≤‖ u(v0)− PN(u(v0)) ‖. Therefore, F(u(v0)) = u(v0)
and similarly FPN(u(v0)) = PN(u(v0)).

Now we define gn : M → R by gn(x) =‖ Pn(x)− u(x) ‖. Since ‖ u(x)− u(y) ‖=
limn→∞ ‖ Pn(x)− Pn(y) ‖≤‖ x− y ‖, we conclude that u is continuous. Therefore, gn(w)
is continuous and converges pointwise to zero. Since u(x) ∈ M0, by Lemma 2, we obtain
gn+1 ≤ gn. Therefore gn converges uniformly on the compact set

S = {(1− ηnk )Funk + ηnk Fvnk} ∪ {v0}.

Therefore
lim
k→∞

‖ Pnk ((1− ηnk )Funk + ηnk Fvnk )− u((1− ηnk )Funk + ηnk Fvnk ) ‖= 0.

Since u((1− ηnk )Funk + ηnk Fvnk )→ u(v0), we get wnk+1 → u(v0), which gives that u(v0) =
v0.

Therefore Fv0 = F(u(v0)) = u(v0) = v0, which completes the proof.

Suppose X is a Hilbert space and let F be as in Theorem 1. Consider PMF : M → M
and PN F : N → N. From Proposition 2, ‖ PMF(w) − PN F(z) ‖≤‖ w − z ‖ for w ∈ M
and z ∈ N; by Theorems 9 and 11 we give the following results on convergence of best
proximity points.

Corollary 4. Let M and N be nonempty, closed, bounded and convex subsets of a Hilbert space
X. Let F be as in Theorem 1. If M is mapped into a compact subset of N, then for any w0 ∈
M0 the sequence defined by wn+1 = (1− ηn)PMFun + ηnPMFvn, where vn = (1− δn)un +
δnPMFun, un = (1 − γn)wn + γnPMFwn, converges to w in M0 such that ‖ w − Fw ‖=
d(M, N).

Corollary 5. Let M and N be nonempty, closed, bounded and convex subsets of a Hilbert
space X. Let F be as in Theorem 1. If M is mapped into a compact subset of N, then for
any w0 ∈ M the sequence is defined by wn+1 = (1 − ηn)PMFun + ηnPMvn, where vn =
(1 − δn)un + δnPMFun, un = (1 − γn)wn + γnPMFwn converges to w in M0 such that ‖
w− Fw ‖= d(M, N), provided d(wn, M0)→ 0.

Corollary 6. Let M and N be nonempty, closed, bounded and convex subsets of a Hilbert space
X. Let F be as in Theorem 1. If M is mapped into a compact subset of N, then for any w0 ∈
M0 the sequence is defined by wn+1 = Pn((1 − ηn)PMFun + ηnPMFvn

)
, where vn = (1 −

δn)un + δnPMFun, un = (1− γn)wn + γnPMFwn converges to w in M0 such that ‖ w− Fw ‖=
d(M, N).

Proof. The result follows from Corollary 4.

Corollary 7. Let M and N be nonempty, closed, bounded and convex subsets of a Hilbert space
X. Let F be as in Theorem 1. Let w0 ∈ M, and define wn+1 = Pn((1− ηn)PMFun + ηnPMFvn

)
,

where vn = (1− δn)un + δnPMFun, un = (1− δn)wn + δnPMFwn, ηn, δn ∈ (ε, 1− ε), where
ε ∈ (0, 1/2) and n = 0, 1, 2, . . .. If M is mapped into a compact subset of N and ‖ un −
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PMFun ‖→ 0, ‖ vn − PMFvn ‖→ 0, then {wn} converges to w in M0 such that ‖ w− Fw ‖=
d(M, N).

Proof. The result follows from Theorem 11.

4. Conclusions

The fixed point theorems help to provide sufficient conditions to ensure the existence
of a solution for many nonlinear problems. On the other hand, the fixed point theorems give
the solution of equations of the form Tx = x, where T is self mapping. In the literature, there
is a large number of research works dealing with the existence of fixed points and also the
convergence results for fixed points of different kinds of mappings via some basic iterative
procedures. Here, we approximate a fixed point of noncyclic relatively nonexpansive
mappings by using a three-step Thakur iterative scheme in uniformly convex Banach spaces.
We also provide a numerical example where the Thakur iterative scheme is faster than
some well known iterative schemes such as Picard, Mann, and Ishikawa iterations. Finally,
we provide a stronger version of our proposed theorem via von Neumann sequences.
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