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Abstract: Sometimes, the same categorical variable is studied over different time periods or across
different cohorts at the same time. One may consider, for example, a study of voting behaviour of
different age groups across different elections, or the study of the same variable exposed to a child
and a parent. For such studies, it is interesting to investigate how similar, or different, the variable is
between the two time points or cohorts and so a study of the departure from symmetry of the variable
is important. In this paper, we present a method of visualising any departures from symmetry using
correspondence analysis. Typically, correspondence analysis uses Pearson’s chi-squared statistic as
the foundation for all of its numerical and visual features. In the case of studying the symmetry of
a variable, Bowker’s chi-squared statistic, presented in 1948, provides a simple numerical means
of assessing symmetry. Therefore, this paper shall discuss how a correspondence analysis can be
performed to study the symmetry (or lack thereof) of a categorical variable when Bowker’s statistic
is considered. The technique presented here provides an extension to the approach developed by
Michael Greenacre in 2000.

Keywords: correspondence analysis; Bowker’s chi-squared statistic; singular value decomposition;
skew-symmetric matrix

1. Introduction

Studying the departure from symmetry between categorical variables that are cross-
classified to form a contingency table has been a topic of much discussion over the past few
decades. There is wealth of literature that is now available that examines the measuring,
modelling and application of symmetric categorical variables including, but not confined
to, the contributions of Agresti [1] (Section 10.4), Anderson [2] (Section 10.2), Bove [3],
De Falguerolles and van der Heijden [4], Iki, Yamamoto and Tomizawa [5], Tomizawa [6],
Yamamoto [7] and Yamamoto, Shimada and Tomizawa [8]. Most recently, Arellano-Valle,
Contreras-Reyes and Stehlik [9] and Nishisato [10] provides a wide ranging discussion on
symmetry from the perspective of quantification theory. Such techniques are generally
applied to an S× S contingency table, denoted here by N, where a categorical variable may
be examined over, for example, two time periods or between two cohorts. When interest is
on assessing departures from complete or perfect symmetry in N, further information on the
symmetric (or lack thereof) nature of the variables may be gained by partitioning N so that

N = Y + K =
1
2

(
N + NT

)
+

1
2

(
N−NT

)
(1)

where Y is the matrix reflecting the symmetric part of N while K is the skew-symmetric
part of the matrix. This partition was considered by Bove [3], Constantine and Gower [11]
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(Section 3), Gower [12] and Greenacre [13] for visualising row and column categories
that deviate from the null hypothesis of perfect symmetry. Greenacre [13] shows how (1)
can be used when performing a correspondence analysis on N. His approach yields two
visual summaries—one reflecting the symmetric structure (by performing a correspondence
analysis on Y) and another that visualises that part of the structure that is not symmetric
(through a correspondence analysis of K).

In this paper, we also consider how one may perform a correspondence analysis
on a contingency table formed from the cross-classification of symmetric variables. Our
strategy is different, but not completely independent, to that of Greenacre’s [13] method.
The similarities of our approach and those of Greenacre [13] include basing our analysis on
a weighted version of K that yields pairs of equivalent principal inertia values. However,
the key difference of our technique when compared with Greenacre’s [13] is that we show
how the approach outlined below can be performed when the underlying measure of the
departure from perfect symmetry is Bowker’s [14] chi-squared statistic. By doing so, we
show, for example, that there exists a link between the principal coordinates and singular
values that are obtained and Bowker’s statistic.

For our discussion, this paper consists of seven further sections. Section 2 provides
an overview of correspondence analysis which is typically used for visually exploring
departures from complete independence between the categorical variables. In this section,
we describe the application of singular value decomposition (SVD) to a transformation
of a standard two-way contingency table, we define the principal coordinates needed to
construct the visual summary and describe other key features. We then turn our attention
to presenting an overview of the test of symmetry between the two categorical variables
and the role that Bowker’s chi-squared statistic plays in such a test; see Section 3. Section 4
then shows how Bowker’s statistic can be used as the core global measure for assessing the
variable’s departure from symmetry when providing a visual summary of such sources of
departure using correspondence analysis. Section 5 illustrates some features of correspon-
dence analysis when applied to Bowker’s statistic. Two examples are then presented that
demonstrate the applicability of the technique. Section 6 applies this method of correspon-
dence analysis to an artificially constructed 4× 4 contingency table that exhibits perfect
symmetry when a constant C = 0 is added to the (2, 1)th cell frequency. Changes in C then
provide a means of visualising the extent to which the rows and columns deviate from what
is expected when the two variables are perfectly symmetric. Our second example, studied
in Section 7, considers the data presented in Grover and Srinivasan [15], which looks at
differences in the purchase of five brands of decaffeinated coffee across two time periods.
Section 8 provides some final comments on the technique, including possible extensions
and emendations that may be considered for future research. Three appendices are also
included. The first two appendices derive the singular values for a contingency table of
size 2× 2 and 3× 3 (both of which always yields an optimal display that consists of two
dimensions). The third appendix provides a description of the R function bowkerca.exe()
that performs the necessary calculations of the approach described in this paper.

2. On the Classical Approach

Before we outline our approach to the correspondence analysis of a contingency
table using Bowker’s chi-squared statistic it is worth providing a broad overview of the
classical technique; one may also consider, for example, Beh and Lombardo [16] for a
detailed historical, methodological, practical and computational discussion of a range
of correspondence analysis methods. To do so, we consider a contingency table, N of
size I × J so that there are I row categories and J column categories. The (i, j)th cell
frequency of N is denoted by nij so that the total sample size is n = ∑I

i=1 ∑J
j=1 nij. Denote

the matrix of relative proportions by P where the (i, j)th value is pij = nij/n so that the
sum of these proportions across all I J cells of the table is 1. We also define the ith row
marginal proportion by pi• = ∑J

j=1 pij so that it is the ith element of the vector r and the
(i, i)th element of the diagonal matrix DR. Similarly, the jth column marginal proportion
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is denoted by p•j = ∑I
i=1 pij, so that it is the jth element of the vector c and the (j, j)th

element of the diagonal matrix DC.
To test whether the observed set of proportions, pij, differs from what is expected

under some model with an expected value of p̂ij, then Pearson’s chi-squared statistic for
such a test takes the form

X2 = n
S

∑
i=1

S

∑
j=1

(
pij − p̂ij

)2

p̂ij
. (2)

For example, under the hypothesis of complete independence p̂ij = pi•p•j so that (2) becomes

X2
I = n

I

∑
i=1

J

∑
j=1

r2
ij (3)

where
rij =

pij − pi•p•j
√pi•p•j

is the (i, j)th standardised (Pearson) residual and X2
I is a chi-squared random variable with

(I − 1)(J − 1) degrees of freedom. If there is a statistically significant association between
the row and column variables this association can be visualised using correspondence
analysis. This is achieved by first performing a SVD on the matrix of standardised residuals,
such that

D−1/2
R

(
P− rcT

)
D−1/2

C = ADλBT .

Here, A and B are the column matrices containing the left and right singular vectors, respec-
tively, and are constrained such that ATA = IM and BTB = IM, where
M = min(I, J)− 1; here IM is an M × M identity matrix. The (m, m)th element of the
diagonal matrix Dλ is the mth singular value and these values arranged in descending
order so that 1 > λ1 > . . . > λM > 0.

A visual depiction of the association between the row and column variables can
be made by simultaneously projecting the row principal coordinates and the column
principal coordinates onto the same low-dimensional space which optimally consists of M
dimensions; such a display is commonly referred to as a correspondence plot and typically
consists of the first two dimensions (for ease of visualisation). The matrix of row and
column principal coordinates are defined by

F = D−1/2
R ADλ

G = D−1/2
C BDλ

respectively.
Since (3) shows that Pearson’s chi-squared statistic is linearly related to the sample

size, n, correspondence analysis uses X2/n as the measure of association which is termed
the total inertia of the contingency table. This measure is directly related to the principal
coordinates and singular values, such that

X2

n
= trace

(
D2

λ

)
= trace

(
FTDRF

)
= trace

(
GTDCG

)
.

Therefore, points located at a great distance from the origin provide a visual indication of
the importance that a category plays in the association structure of the variables, while the
origin is the position of all of the row and column principal coordinates if there is complete
independence between the variables.
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We shall not provide a comprehensive account of all of the features, and related
methods, of correspondence analysis. Instead, the interested reader is directed to Beh and
Lombardo [16], for example, for more information.

3. On Studying the Symmetry of a Categorical Variable

Suppose we now wish to study the departure from complete symmetry of two cate-
gorical variables that share a similar structure. Let S be the number of categories contained
in this variable so that the contingency table is now of size S× S. Then, a test of symmetry
of the variable may be undertaken by defining the null hypothesis by

H0 : pij = pji; ∀i, j .

Sometimes, a study of symmetry in a contingency table may be undertaken by assessing
the marginal homogeneity of the table where the null hypothesis is

H0 : pi• = p•j; ∀i, j

but we shall say very little on this issue in the following sections.
When assessing whether there is any evidence of symmetry between the row and

column variable of a contingency table, the most appropriate choice of p̂ij is

p̂ij =
pij + pji

2
; (4)

see, for example, Agresti [1] (p. 424) and Anderson [2] (p. 321). Substituting (4) into (2),
and denoting the resulting statistic by X2

S, yields

X2
S =

n
2

S

∑
i=1

S

∑
j=1

(
pij − pji

)2

pij + pji
(5)

= n
S

∑
i>j

(
pij − pji

)2

pij + pji
(6)

and is the chi-squared statistic derived by Bowker [14] for testing the symmetry between a
row and column variable of a contingency table and has S(S− 1)/2 degrees of freedom.
When S = 2 (6) simplifies to McNemar’s [17] statistic for testing the symmetry of two
cross-classified dichotomous variables.

The simplicity of using (6) has gained wide appeal and was considered in the classic
texts of Agresti [1] (p. 424), Bishop, Fienberg and Holland [18] (p. 283), Lancaster [19] (p. 236)
and Plackett [20] (p. 59). However, Agresti [1] (p. 425) does point out that “it rarely fits well.
When the marginal distributions differ substantially, it fits poorly”. The concern here about
the poor fit when the margins of the contingency table differ substantially assumes that
one is also interested in testing the independence between the categories. This is because
when one assumes independence in the context of symmetry (4) becomes

p̂ij =
pi•p•j + pj•p•i

2

and requires that pi• = p•i for all i = 1, 2, . . . , S, which we need not impose for testing
symmetry. Perhaps what helps to clarify this point is that Lancaster [19] (p. 237) says that
“more difficulties arise if. . .it is desired to test the homogeneity of the margins since pij may
not be equal to pi•p•j”. Since we are not concerned with testing for marginal homogeneity
in this paper this “difficulty” is of no concern to us. We are also not greatly concerned
with the inferential aspects of the statistic since (6) is used as a numerical basis on which
correspondence analysis lies; in doing so, we are assuming, or have a priori tested and
confirmed, that there is a departure from symmetry and we wish only to visualise the
potential sources of this departure.
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One may also consider the log-likelihood ratio statistic

G2
S = 2n

I

∑
i=1

I

∑
j=1

pij ln

(
pij

p̂ij

)

= 2n ∑
i 6=j

pij ln

(
2pij

pij + pji

)

as an alternative to X2
S; see Bishop, Fienberg and Holland [18] (p. 283). We shall not discuss

how this statistic can be used for studying departures from symmetry using correspondence
analysis. However, the log-likelihood statistic, like Pearson’s statistic of (3), is a special case
of the Cressie–Read family of divergence statistics [21] and Beh and Lombardo [22] provide
an overview of how one may perform correspondence analysis using this divergence statis-
tic. Future research can certainly be undertaken to study the role of G2

S in correspondence
analysis when studying the symmetry of a categorical variable.

4. On Bowker’s Residuals and Departures from Symmetry

Let S be the matrix of the Bowker residuals where the (i, j)th element is

sij =
1√
2

pij − pji√
pij + pji

(7)

so that Bowker’s statistic, X2
S defined by (5), can be expressed as

X2
S = n

S

∑
i=1

S

∑
j=1

s2
ij

= ntrace
(

STS
)

(8)

= ntrace
(

SST
)

.

A feature of the matrix S (and K in (1)) is that it is an anti-symmetric, or skew-symmetric,
matrix so that ST = −S. Therefore, the left and right singular vectors, and the singular val-
ues, of the matrix of the Bowker residuals, S, can be obtained from the eigen-decomposition
of STS or, equivalently, of −S2. If S is odd then there will always be a zero eigen-value and
S− 1 positive eigen-values; see Ward and Gray [23] and Gower [12] (p. 113). Ward and
Gray [23] also present an algorithm that can perform the necessary eigen-decomposition
and in Appendices A and B we provide a derivation that leads to closed-form solutions
of the eigen-values of a 2× 2 and 3× 3 matrix of the Bowker residuals. Constantine and
Gower [11] note that, since STS = −S2, there will be pairs of identical eigen-values. This is
a feature that is also demonstrated in the appendices and described in Sections 6 and 7.

Suppose we denote the (i, j)th element of Y and K from (1) by yij and kij, respectively.
Then, the (i, j)th Bowker residual—see (7)—can be alternatively expressed as

sij =
1
2
(

pij − pji
)
÷
√

1
2
(

pij + pji
)
=

kij
√yij

. (9)

Therefore, Bowker’s residuals do assess for each cell of the contingency table where depar-
tures from symmetry exist but they do so relative to the amount of symmetry that exists
between the two variables. This is in contrast to Greenacre’s [13] approach which considers
a residual where kij is divided by the mean of the row and column marginal proportions;
for the ith such proportion this is (pi• + p•i)/2 for i = 1, 2, . . . , S.

In addition, since the numerator of S can be expressed in terms of K this ensures that
Bowker’s residuals are centred at zero under perfect symmetry (a property shared with
Greenacre’s [13] approach). This is important since it means that the principal coordinates
that we derive in Section 5.3 are centred at the origin of the optimal correspondence plot.
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5. Correspondence Analysis and Bowker’s Statistic
5.1. On the SVD of the Matrix of the Bowker Residuals

Visually detecting departures from symmetry can be undertaken using correspondence
analysis. This can be achieved by first applying a SVD to S such that

S = ADλBT . (10)

Here, the S × M column matrix A contains the left singular vectors of S and have the
property ATA = IM. Similarly, B is a S×M column matrix of the right singular vectors
such that BTB = IM of S. While M = min(S, S)− 1 = S− 1 for the classical approach to
correspondence analysis, this is not the case for the analysis of the matrix of the Bowker
residuals. Since S is a skew-symmetric matrix there will be S singular values when S is
even and S− 1 such values when S is odd. Therefore,

M =

{
S, if S is even
S− 1, if S is odd

.

Gower [12] showed that since S is skew-symmetric then the SVD of the matrix, (10), is
equivalent to

S = ADλJMAT (11)

so that
B = AJT

M . (12)

Here JM is a M×M block diagonal and orthogonal skew-symmetric matrix so that

JT
MJM = JMJT

M = IM (13)

where IM is an M×M identity matrix. When M = 2,

J2 =

(
0 1
−1 0

)
while

J4 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .

If S is odd then the (S, S)th element is 1 and the rest of its row/column consists of zeros
so that

JS =

(
JS−1 0T

S−1
0S−1 1

)
where 0S−1 is a zero vector of length S− 1. For example,

J3 =

 0 1 0
−1 0 0
0 0 1

 .

The M × M diagonal matrix Dλ contains the singular values of S and are arranged in
consecutive pairs of values so that 1 > λ1 = λ2 > λ3 = λ4 > . . . ≥ 0. This feature
will be discussed in the next section, but it is worth noting that the SVD presented in (11)
makes use of the Murnaghan canonical form of S; see Murnaghan and Wintner [24] and
Paardekooper [25] for further information on this decomposition.
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5.2. The Total Inertia

Quantifying the departure from symmetry can be undertaken by calculating the total
inertia of S which is just Bowker’s statistic divided by the sample size, X2

S/n. When B,
for example, is of full rank, then BBT = BTB. Thus, using (8), the total inertia can be
expressed as the sum-of-squares of the singular values such that

φ2
S =

X2
S

n

= trace
((

ADλBT
)T(

ADλBT
))

= trace
(

BD2
λBT

)
= trace

(
D2

λ

)
.

When visualising departures from symmetry, one may construct a correspondence plot
consisting of at most M dimensions where the principal inertia (or weight) of the mth
dimension is λ2

m. Therefore, expressing the total inertia in terms of the matrix D2
λ (or the

elements λ2
m) provides a means of determining, for each dimension, the percentage of the

total departure from symmetry that exists between the row and column variables. Such a
percentage is calculated by

100× λ2
m

φ2
S

.

Since λ1 = λ2 is the largest pair of singular values, the first and second dimensions visually
provide the best (and an equivalent quality) depiction of any departure from symmetry
that exists in N. For example, when S = 5, say, the first and second dimensions will always
provide the same (and most) amount of information to the visual display, while the third
and fourth dimensions will be equally weighted and display less of the departure. These
four dimensions will provide an optimal display of the departure from symmetry since the
fifth dimension will have a zero principal inertia value.

5.3. The Principal Coordinates

When calculating Bowker’s statistic, only the cell proportions pij and pji are used, not
the marginal proportions; see (5) and equivalently (6). The cloud-of-points generated for
the rows and columns can be obtained by aggregating these cell proportions across the row
and column variables, yielding two spaces that have the same metric; this metric being
D̂ =

(
DR + DT

C
)
/2. Such a property is consistent, but slightly different, to the traditional

approach to correspondence analysis which assesses departures from independence, not
symmetry, and so assumes that the row space and column space have a metric based on
the aggregation of pij across the two variables. That is, the row space has the metric DR

while the column metric is DC. Thus, the metric D̂ is the average of the row and column
spaces and is consistent with the metric adopted by Greenacre [13].

To obtain a visual depiction of the departures from symmetry one may simultaneously
plot the row and column principal coordinates which are defined in terms of the above
matrices by

F = D̂−1/2ADλ (14)

G = D̂−1/2BDλ (15)

respectively.
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5.4. On the Origin and Transition Formulae

The total inertia of the two-way contingency table can be expressed in terms of the
principal coordinates defined by (14) and (15). For example, for the row coordinates,

trace
(

FTD̂F
)

= trace
((

D̂−1/2ADλ

)T
D̂
(

D̂−1/2ADλ

))
= trace

(
DT

λATADλ

)
= trace

(
D2

λ

)
=

X2
S

n
.

This shows that the origin coincides with the location of all row coordinates when there
is perfect symmetry between variables of the contingency table. By following a similar
derivation, it can also be shown that

X2
S

n
= trace

(
GTD̂G

)
.

These expressions of the total inertia also show that points located far from the origin
identify categories that deviate from what is expected if there was perfect symmetry.

Alternative expressions of the matrices of row and column principal coordinates can
also be obtained. For example, suppose we consider (14). Then, by post-multiplying both
sides by BT and simplifying we get

F = D̂−1/2SB .

Thus, the (i, m)’th element of F is

fim =

√
2√

pi• + p•i

J

∑
j=1

sijbjm

=

√
2√

pi• + p•i

J

∑
j=1

1√
2

pij − pji√
pij + pji

bjm

=
J

∑
j=1

pij − pji√
(pi• + p•i)

(
pij + pji

) bjm .

Therefore, a principal coordinate will lie at the origin of the correspondence plot if there
is perfect symmetry between the ith row and ith column; that is, when pij = pji for all
j = 1, 2, . . . , S, thus verifying expressing the total inertia in terms of the matrix of row
principal coordinates. Any departure from symmetry of the ith row from the ith column
will result in the ith principal coordinate moving away from the origin. This implies that
the ith column category will also move away from the origin but it will do so in a different
direction from the row category. Such a feature can be verified by showing that the row
and column principal coordinates are linked through the following transition formulae.
By substituting (12) into (15) the matrix of column principal coordinates can be alternatively
expressed as

G = D̂−1/2AJT
MDλ = D̂−1/2ADλJT

M .

Thus, the matrix of column principal coordinates can be expressed in terms of the matrix of
row principal coordinates such that

G = FJT
M . (16)
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Similarly, post-multiplying both sides of (16) by JM and using (13) leads to

F = GJM . (17)

showing how the matrix of row principal coordinates can be expressed in terms of the
matrix of column principal coordinates. Thus, for the ith row and column categories,
( fi1, fi2) = (−gi2, gi1) showing that departures from symmetry between these two cate-
gories will position their principal coordinates on opposite sides of the correspondence
plot, unless there is perfect symmetry in which case both will lie at the origin.

5.5. Intra-Variable Distances

Suppose we are interested in the distance between the ith and i′th row principal
coordinates in a correspondence plot. It can be shown that the squared Euclidean distance
between fim and fi′m is

d2
I
(
i, i′
)

=
S

∑
j=1

cij

[ pij + pi′ j

2
−

pji + pji′

2

]2
(18)

=
S

∑
j=1

cij

[ pij − pji

2
+

pi′ j − pji′

2

]2
(19)

where

cij =
p•j + pj•√(

pij + pji
)(

pi′ j + pji′
)

Thus, if pij + pi′ j = pji + pji′ or, equivalently, p̂ij = p̂i′ j for all j = 1, 2, . . . , S then the
ith and i′th row principal coordinates will be located in the same position in the opti-
mal correspondence plot. Such a feature arises when the expected cell frequency (under
perfect symmetry) is the same for the ith and i′th rows. Alternatively, fim = fi′m, for all
m = 1, 2, . . . , S when pij − pji = pi′ j − pij′ . This feature does not imply that there must
be perfect symmetry between the ith and i′th row categories, but it does arise when any
departure from perfect symmetry is the same for these categories.

6. Example 1 Artificial Data
6.1. The Data

To examine how to perform a correspondence analysis on a contingency table using
Bowker’s statistic (6), suppose we consider the artificial data presented in Table 1. Here,
C ≥ 0 in the (2, 1)th cell is a non-negative integer ensuring that Table 1 maintains the
features of a contingency table. For this table, Bowker’s statistic is

X2
S =

4

∑
i>j

(
nij − nji

)2

nij + nji

=
(n21 − n12)

2

n21 + n12
+

(n31 − n13)
2

n31 + n13
+

(n41 − n14)
2

n41 + n14
(20)

+
(n32 − n23)

2

n32 + n23
+

(n42 − n24)
2

n42 + n24
+

(n43 − n34)
2

n43 + n34

=
C2

40 + C
(21)

and is a chi-squared random variable with 4× (4− 1)/2 = 6 degrees of freedom. There-
fore, (21) shows that when C = 0, Bowker’s chi-squared statistic is zero and Table 1 is
perfectly symmetric.
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Table 1. A near-symmetric artificial contingency table where C is a non-negative integer.

C1 C2 C3 C4

R1 10 20 30 40
R2 20 + C 50 60 70
R3 30 60 20 40
R4 40 70 40 80

6.2. Preliminary Examination of the Departure from Symmetry

Departures from symmetry for Table 1 can be assessed by determining the minimum
value of C so that X2

S > χ2
α(6). That is, when

C2

40 + C
> χ2

α(6) .

From this result, one may obtain the following quadratic equation (in terms of C)

C2 − χ2
α(6)× C− 40χ2

α(6) > 0

which only has one valid solution

C =
χ2

α(6) +
√
(χ2

α(6))
2 + 160χ2

α(6)

2

that ensures that C is non-negative. For example, when testing symmetry using α = 0.05,
χ2

0.05(6) = 12.59 so that C must exceed 29.59 for the departure from symmetry to be
statistically significant. For practical purposes, C must be an integer of at least 30 to ensure
that the (2, 1)th cell remains a positive integer. Hence, this cell frequency must exceed 50
for there to be a statistically significant lack of symmetry in Table 1. Thus, to demonstrate
how the correspondence analysis technique described in Section 5 can be applied to Table 1
we shall be considering the following values of C; 50, 75, 100 and 150. These values of
C give a Bowker statistic of 27.78, 48.91, 71.43 and 118.42, respectively, which all have a
p-value that is less than 0.001.

6.3. Features of Correspondence Analysis & Symmetry

Interestingly, for Table 1, closed form expressions exist for many of the features that
come from the correspondence analysis of contingency table when examining departures
from symmetry. To show this, suppose consider again the matrix of the Bowker residuals, S.
For Table 1, this matrix is

S =


0 − C√

2n(40+C)
0 0

C√
2n(40+C)

0 0 0

0 0 0 0
0 0 0 0

 .

The structure of this 4× 4 matrix is identical to a 2× 2 matrix when removing the vectors
of zeros in the last two rows and columns of S. In Appendix A we show that when S is of
size 2× 2, then applying a SVD to it yields the singular values

λ1 = λ2 =
C√

2n(40 + C)
(= s21 = −s12) (22)

thereby producing two non-trivial, and identical, singular values, and one zero singular
value. Thus, the sum-of-squares of these singular values gives, for Table 1, a total inertia of
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φ2
S = λ2

1 + λ2
2 + λ2

3 =
C2

n(40 + C)
.

Note that this is equivalent to (21) divided by the sample size n. Since n = 680 + C then
the total inertia can be expressed in terms of C by

φ2
S(C) =

C2

(680 + C)(40 + C)

so that, for Table 1, 0 ≤ φ2
S(C) < 1 for C ≥ 0.

Since there are only two, equivalent, non-trivial singular values, a two-dimensional
correspondence plot will produce an optimal display of the departure from symmetry of
Table 1 regardless of the value of C; the principal inertia of these two dimensions is λ1
each. Thus, both dimensions of the optimal display will visually describe exactly half of
the departure from symmetry which is quantified by φ2

S(C). Note that from (22) the first
two singular values of S from Table 1 can be expressed as

λ1 = λ2 =
C√

2(680 + C)(40 + C)

so that

Dλ =
C√

2(680 + C)(40 + C)

(
1 0
0 1

)
while, the first two non-trivial left and right singular vectors of S are

A =


0 −1
−1 0
0 0
0 0

 and B = AJT
2 =


−1 0
0 1
0 0
0 0

,

respectively. The matrix D̂ is

D̂ =


200+C

2(680+C) 0 0 0
0 400+C

2(680+C) 0 0
0 0 150

680+C 0
0 0 0 230

680+C


so that

D̂−1/2 =
√

680 + C



√
2

200+C 0 0 0

0
√

2
400+C 0 0

0 0 1√
150

0

0 0 0 1√
230

 .

Therefore, after some matrix manipulation, the matrix containing the row principal coordi-
nates in the optimal two-dimensional correspondence plot can be expressed in terms of C
and some constants (dependent on the cell frequencies of Table 1) such that

F =
C√

40 + C


0 −

√
1

200+C

−
√

1
400+C 0
0 0
0 0

 . (23)
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By following a similar derivation, the matrix of column principal coordinates is

G =
C√

40 + C


−
√

1
200+C 0

0
√

1
400+C

0 0
0 0

 . (24)

Thus, (23) and (24) satisfy (16) and (17). The zeros in the third and fourth rows of F and
G are because there is perfect symmetry between the third and fourth rows and columns
of Table 1. So, the position of these points in the correspondence plot lie at the origin,
irrespective of the choice of C ≥ 0. When C = 0, all principal coordinates for the row and
column categories will lie at the origin since Table 1 exhibits perfect symmetry. Therefore,
changes in C will lead to changes in the configuration depicted in the correspondence plot.
For example, suppose C = 50 so that, for Table 1, n21 = 70. Then, the key features of the
correspondence analysis when an examination of the departures from symmetry are being
made using Bowker’s statistic can be simply calculated as follows:

X2
S =

502

40 + 50
= 27.778

λ1 = λ2 =
50√

2(680 + 50)(40 + 50)
= 0.138

f12 = − 50√
(40 + 50)× (200 + 50)

= −0.333

f21 = − 50√
(40 + 50)(400 + 50)

= −0.248

g11 = − 50√
(40 + 50)(200 + 50)

= −0.333

g22 =
50√

(40 + 50)× (400 + 50)
= 0.248.

A summary of these quantities for C = 50, 75, 100 and 150 is given in Table 2.

Table 2. Select output from the correspondence analysis of Table 1 when studying departures from
symmetry; C = 50, 75, 100 and 150.

C
Output 50 75 100 150

X2
S 27.778 48.913 71.429 118.421

φS(C) 0.038 0.065 0.092 0.143
λ1 0.138 0.180 0.214 0.267
f12 −0.333 −0.422 −0.488 −0.582
f21 −0.248 −0.321 −0.378 −0.464
g11 −0.333 −0.422 −0.488 −0.582
g22 0.248 0.321 0.378 0.464

Supplementing the numerical summaries that appear in Table 2 are the two-dimensional
correspondence plots of Figures 1–4. These figures, and their accompanying numerical
features, can be obtained using the R function bowkerca.exe() that is described in Ap-
pendix C of this paper. Figure 1 shows such a plot for C = 50, Figure 2 is the correspondence
plot for C = 75, Figure 3 is the plot for C = 100 while the two-dimensional correspondence
plot of Table 1 when C = 150 is given by Figure 4. Based on the statements we made above,
it should be of no surprise to see that these four plots show that its two dimensions visually
describes exactly half of any departures from symmetry that exist between the variables of
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Table 1. Thus, each of the four correspondence plots is optimal in its visual depiction of
such depatures; since λ1 and λ2 are equivalent for all values of C. These correspondence
plots also show that C3, C4, R3 and R4 all share the same position at the origin since there
is no departure from perfect symmetry for these categories. However, the position of R1,
R2, C1 and C2 lie further from the origin as C increases since these categories increasingly
deviate from perfect symmetry as C increases.

While R1 and C2 are unaffected by changes in C, since symmetry is assessed by con-
sidering the difference between the (2, 1)th and (1, 2)th cell frequencies (or proportions),
any departure from symmetry does impact their relative position from each other in the
correspondence plot. This can be observed by noting that, along the second dimension,

f12

g22
= −

√
400 + C
200 + C

is not independent of C. For C > 0, f12 and g22 will always remain on opposite sides of the
first dimension with f12 being at most

√
2 units further away from the origin than g22; as

C → ∞ f12 → −g22.
We can gain an understanding of how the position of R1 and C1, say, in the optimal

(two-dimensional) correspondence plot compare for C > 0. Since f12 < 0 and g11 < 0, R1
will lie along the second dimension, while C1 will lie along the first dimension showing
that their relative proximity from each other increases as C increases; note that we are
not interpreting this row/column proximity in terms of a quantifiable distance measure.
However, we can quantify how the relative position of R1 and C1 change by noting the
ratio between these two coordinates is f12/g11 = 1 for all values of C. Therefore, R1 and C1
will move the same number of units away from the origin as C increases.

1 
 

 

Figure 1. Correspondence plot that visually examines the departure from symmetry for Table 1;
C = 50.
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2 

 

 Figure 2. Correspondence plot that visually examines the departure from symmetry for Table 1;
C = 75.

 

3 

 

 Figure 3. Correspondence plot that visually examines the departure from symmetry for Table 1;
C = 100.
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4 

 

Figure 4. Correspondence plot that visually examines the departure from symmetry for Table 1;
C = 150.

7. Example 2 on the Purchase of Decaffeinated Coffee

We now focus our attention on a 5 × 5 contingency table considered by
Agresti [26] (Table 8.5) whose original data came from Grover and Srinivasan [15]; see
Table 3. For these data, 541 individuals were surveyed about their choice of purchase of five
brands of decaffeinated coffee. Each of the participants were asked to record the brand they
bought on their first and subsequent purchase. If every participant of the study bought the
same brand of coffee on their first and second purchase then the contingency table would
exhibit perfect symmetry. However, this was not the case, and so one may investigate
where the departures from symmetry lie. In doing so, one can identify brands that had a
similar purchasing pattern on the first and second purchase and those that did not.

Table 3. A simple 5× 5 table where we test for symmetry using CA.

Second Purchase

First High Pt Taster’s Sanka Nescafé Brim Total

Purchase (hp) (ta) (sa) (ne) (br)

High Point (HP) 93 17 44 7 10 171
Taster’s Choice (TC) 9 46 11 0 9 75
Sanka (SA) 17 11 155 9 12 204
Nescafé 6 4 9 15 2 36
Brim 10 4 12 2 27 55

Total 135 82 231 33 60 541

A test of symmetry can be performed and doing so yields a Bowker’s statistic of 20.265.
With 5× (5− 1)/2 = 10 degrees of freedom, this statistic has a p-value of 0.027 showing
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that there are departures from symmetry present in the data. An evaluation of where
departures from symmetry lie in Table 3 can be made by observing the skew-symmetric
matrix S which is

S =


0 0.048 0.105 0.008 0.000

−0.048 0 0 −0.061 0.042
−0.105 0 0 0 0
−0.008 0.061 0 0 0

0 −0.042 0 0 0

 .

Observing the relative size of the sij values of this matrix shows that the greatest source
of departure from symmetry appears to be for the coffee brand “High Point” while “Brim”
is the coffee brand that deviates least from symmetry (although not perfectly). A visual
depiction of the departures from symmetry that are present in Table 3 can be made by
performing the correspondence analysis approach described above. Appendix C shows
how the R function bowkerca.exe() can be used to perform this analysis on Table 3. This
analysis gives the following two pairs of non-trivial singular values

λ1 = λ2 = 0.1215 and λ3 = λ4 = 0.0641

so that their sum-of-squares gives the total inertia

X2
S

n
= 0.12152 + 0.12152 + 0.06412 + 0.06412 = 0.0377 .

A visual depiction of the departure from symmetry is given by Figure 5. The quality
of this two-dimensional correspondence is excellent and accounts for

100× 0.12152 + 0.12152

0.0377
= 78.242%

of the departure from symmetry that exists in Table 3. The row and column principal
coordinates depicted in Figure 5 are

F =


0 −0.213

0.186 0.016
0.155 0
0.044 −0.140
−0.007 0.075

 G =


−0.213 0

0.016 −0.186
0 −0.155

−0.140 −0.044
0.075 0.007

 ,

respectively, and satisfy (16) and (17).
The following points can be made from the configuration in Figure 5 on departures

from symmetry in Table 3. Keeping in mind that this correspondence plot captures slightly
more than three-quarters of the departures from symmetry in Table 3

• the purchase of the five coffee brands is different across the first and second purchases
and so reflects the departure from symmetry that Bowker’s statistic shows,

• the greatest departure from symmetry is for the coffee brand “High Point” since “HP”
and “hp” lie furthest from the origin than any of the four remaining brands. Thus, it is
this brand that has undergone the greatest difference in purchasing preference over
the two time periods,

• the coffee brands are ordered as follows based on the greatest to least departure from
perfect symmetry: “High Point”, “Taster’s Choice”, ”Sanka”, “Nescafé” and “Brim”,

• therefore, “Brim” is the coffee brand that has the most similar purchasing pattern
across the two time periods when the brands were purchased.

Furthermore, Figure 5 shows that

• the purchasing preferences of the brands “Sanka” and “Taster’s Choice” are very
similar on their first purchase as well as on their second purchase. This can be seen
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because of the close proximity of “sa” and “tc” on the left of the plot, and “SA” and
“TC” on the right of the plot,

• the purchasing preferences of the brands “High Point” and “Nescafé” are similar
(although not as similar as “SA” and “TC”) within each of the two purchases.

Figure 5. Correspondence plot that visually examines the departure from symmetry for Table 1;
C = 150.

8. Discussion

When studying departures from symmetry between the categorical variables of a
two-way contingency table there are many different techniques that can be considered.
A common thread amongst many of them (especially over the past few decades) has
been to partition the contingency table into a symmetric part (Y) and an asymmetric,
or skew-symmetric, part (K) as (1) shows. While such a partition has appeared in the
correspondence analysis literature, to the best of our knowledge the above technique is the
first to formally link a meaningful measure of asymmetry when visualising departures from
symmetry. Specifically, this paper has shown how Bowker’s statistic [14] plays a pivotal
role in quantifying such departures in the context of correspondence analysis. Importantly,
we also showed that by using Bowker’s statistic, we are able to capture departures from
perfect symmetry relative to the amount of symmetry that lies between the variables.

In preparing this paper, we considered metrics that differ to those we described
above. Like Greenacre [13], we adopted a metric involving the mean row-column marginal
proportion. However, since Bowker’s statistic is independent of the row and column
marginal information, consideration was given to P̂ =

(
P + PT)/2. While using such a

metric does not lead to the exact total inertia, it does provide an excellent approximation to
it in some cases. It also provides additional features not available with the metric adopted
above and so this is an interesting avenue to pursue in the future.

There are further extensions of the technique described above that can be considered
at a later time. One such extension, and one that we raised at the end of Section 3, is to
investigate the role of the Cressie–Read family of divergence statistics [21] for visualising
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departures from perfect symmetry using correspondence analysis. Doing so then will mean
that one can consider “symmetry” (as opposed to “independence”) versions of the special
cases of this family of divergence statistics, such as G2

S, the Freeman–Tukey statistic [27] and
other association measures, as alternatives to Bowker’s X2 statistic. One can then consider
measures of accuracy such as those described by Hubert and Arabie [28] for assessing how
different members of this family compare.

Another possible avenue for future research is to extend the above technique in the
case where one categorical variable is defined as a predictor variable and the other is its
response variable. Such an approach provides a visual means of identifying departures from
perfect symmetry using non-symmetrical correspondence analysis. While the approach
described above is confined to examining departures from perfect symmetry between two
cross-classified categorical variables, another natural extension is to consider adapting the
above technique to analyse multi-way contingency tables. There is scope to investigate how
this can be achieved in the context of multiple and multi-way correspondence analysis [6].
However, this extension, and the others we described, will be left for consideration at a
later date.
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Abbreviation
The following abbreviation is used in this manuscript:

SVD Singular value decomposition

Appendix A. The Singular Values of a 2× 2 S Matrix

Suppose we have the following generic 2× 2 skew-symemtric matrix

S =

(
0 −a
a 0

)
Since S = 2, there will be two singular-values for us to determine. To derive them we

shall consider the eigen-decomposition of STS by noting that

STS =

(
0 −a
a 0

)T( 0 −a
a 0

)
=

(
0 a
−a 0

)(
0 −a
a 0

)
=

(
a2 0
0 a2

)
.

Since STS is a diagonal matrix with identical diagonal elements then it has two identical
eigen-values which are

λ2
1 = a2 and λ2

2 = a2 .
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In the context of the matrix of the Bowker residuals,

a ≡ 1√
2

p21 − p12√
p21 + p12

.

Therefore,

λ2
1 = λ2

2 =
1
2
(p21 − p12)

2

p21 + p12

and are two non-trivial, and identical, eigen-vectors of STS. Thus, the two non-trivial
singular values of S are

λ1 = λ2 =
1√
2

p21 − p12√
p21 + p12

so that the total inertia of the 2× 2 matrix containing the Bowker residuals is

φ2 = λ2
1 + λ2

2 =
(p21 − p12)

2

p21 + p12

and is equivalent to McNemar [17] statistic divided by the sample size. This shows that
when performing a correspondence analysis for assessing the departure from symmetry of
a 2× 2 contingency table, each dimension contributes equally, and to exactly half, of the
total inertia.

Appendix B. The Singular Values of a 3× 3 S Matrix

Suppose we now have the generic 3× 3 skew-symmetric matrix

S =

 0 −a −b
a 0 −c
b c 0


Since S = 3, this matrix has exactly two positive singular values and one zero singular
value. Here we derive these values in terms of the elements of S by considering the
eigen-decomposition of STS. In doing so

STS =

 0 −a −b
a 0 −c
b c 0

T 0 −a −b
a 0 −c
b c 0


=

 0 a b
−a 0 c
−b −c 0

 0 −a −b
a 0 −c
b c 0


=

 a2 + b2 bc −ac
bc a2 + c2 ab
−ac ab b2 + c2

 .

The eigen-values of STS in this case are determined by solving the characte-
ristic equation ∣∣∣STS− λ2I3

∣∣∣ = 0

where I3 is a 3× 3 identity matrix. Thus
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∣∣∣STS− λ2I3

∣∣∣ =

∣∣∣∣∣∣
a2 + b2 − λ2 bc −ac

bc a2 + c2 − λ2 ab
−ac ab b2 + c2 − λ2

∣∣∣∣∣∣
=

(
a2 + b2 − λ2

)∣∣∣∣ a2 + c2 − λ2 ab
ab b2 + c2 − λ2

∣∣∣∣
−bc

∣∣∣∣ bc ab
−ac b2 + c2 − λ2

∣∣∣∣− ac
∣∣∣∣ bc a2 + c2 − λ2

−ac ab

∣∣∣∣
=

(
a2 + b2 − λ2

)[(
a2 + c2 − λ2

)(
b2 + c2 − λ2

)
− a2b2

]
−bc

[
bc
(

b2 + c2 − λ2
)
+ a2bc

]
− ac

[
ab2c + ac

(
a2 + c2 − λ2

)]
=

(
a2 + b2 − λ2

)[(
a2 + c2

)(
b2 + c2

)
− λ2

(
a2 + c2

)
− λ2

(
b2 + c2

)
+λ4 − a2b2

]
− bc

[
b3c + bc3 − λ2bc + a2bc

]
−ac

[
ab2c + a3c + ac3 − λ2ac

]
=

(
a2 + b2 − λ2

)[
λ4 − λ2

(
a2 + b2 + 2c2

)
+
(

a2c2 + b2c2 + c4
)]

−bc
[
−λ2bc + b3c + bc3 + a2bc

]
−ac

[
−λ2ac + ab2c + a3c + ac3

]
= λ4

(
a2 + b2

)
− λ2

(
a2 + b2

)(
a2 + b2 + 2c2

)
+
(

a2 + b2
)(

a2c2 + b2c2 + c4
)

−λ6 + λ4
(

a2 + b2 + 2c2
)
− λ2

(
a2c2 + b2c2 + c4

)
+
(

λ2b2c2 − b4c2 − b2c4 − a2b2c2
)

+
(

λ2a2c2 − a2b2c2 − a4c2 − a2c4
)

= −λ6 + λ4
(

2a2 + 2b2 + 2c2
)

−λ2
((

a2 + b2
)(

a2 + b2 + 2c2
)
+
(

a2c2 + b2c2 + c4
)
− b2c2 − a2c2

)
+
[(

a2 + b2
)(

a2c2 + b2c2 + c4
)
− b4c2 − b2c4 − a2b2c2 − a2b2c2

−a4c2 − a2c4
]

= −λ6 + λ4
(

2a2 + 2b2 + 2c2
)

−λ2
(

a4 + a2b2 + 2a2c2 + a2b2 + b4 + 2b2c2 + a2c2 + b2c2 + c4

−b2c2 − a2c2
)
+ 0 .

Therefore, setting this sextic equation of λ to zero gives

λ2
[
λ4 − 2λ2

(
a2 + b2 + c2

)
+
(

a2 + b2 + c2 + 2a2b2 + 2a2c2 + 2b2c2
)]

= 0

which is a perfect square so that

λ2
[

λ4 − 2λ2
(

a2 + b2 + c2
)
+
(

a2 + b2 + c2
)2
]
= 0

or
λ2
[
λ2 −

(
a2 + b2 + c2

)]2
= 0 .

Therefore, there are two positive eigen-values and one zero eigen-value of STS (when
S = 3) and they are

λ2
1 = λ2

2 = a2 + b2 + c2 and λ2
3 = 0 .

This then confirms that the two largest eigen-values of STS, and hence singular values of S,
are identical with a zero third value. In the context of S,
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a ≡ 1√
2

p21 − p12√
p21 + p12

, b ≡ 1√
2

p31 − p13√
p31 + p13

and c ≡ 1√
2

p32 − p23√
p32 + p23

so that the principal inertia values associated with the dimensions of the optimal corre-
spondence plot are

λ2
1 = λ2

2 =
1
2

(
(p21 − p21)

2

p21 + p21
+

(p31 − p13)
2

p31 + p13
+

(p32 − p23)
2

p32 + p23

)
=

X2
s

2n

and
λ3

2 = 0 .

Thus for a 3× 3 contingency table, the optimal correspondence plot will consist of two
dimensions and each will account for exactly 50% of the total inertia. Note then that it is
not surprising that the sum of the three principal inertia values gives the total inertia since

φ2 = λ2
1 + λ2

2 + λ2
3 =

X2
s

2n
+

X2
s

2n
+ 0 =

X2
s

n
.

Appendix C. R Code

This appendix contains the R function bowkerca.exe() that performs a correspon-
dence analysis on an S× S contingency table where the depature from perfect symmetry is
assessed using Bowker’s X2 statistic—see (6). The arguments of the function are

• N—the two-way contingency table of size S× S, where S > 2,
• scaleplot—rescales the limit of the axes used to construct the two-dimensional

correspondence plot. By default, scaleplot = 1.2,
• dim1—the first dimension of the correspondence plot. By default, dim1 = 1 so that

the first dimension is depicted horizontally, and
• dim2—the second dimension of the correspondence plot. By default, dim2 = 2 so that

the second dimension is depicted vertically

bowkerca.exe <- function(N, scaleplot = 1.2, dim1 = 1, dim2 = 2){

S <- nrow(N) # Number of rows & columns of the table
Inames <- dimnames(N)[1] # Row category names
Jnames <- dimnames(N)[2] # Column category names

n <- sum(N) # Total number of classifications in the table
p <- N * (1/n) # Matrix of joint relative proportions

pidot <- apply(p, 1, sum) # Row marginal proportions
pdotj <- apply(p, 2, sum) # Column marginal proportions

dI <- diag(pidot, nrow = S, ncol = S)
dJ <- diag(pdotj, nrow = S, ncol = S)
dIJ <- 0.5*(dI + dJ)

# Constructing the matrix of Bowker residuals

s <- matrix(0, nrow = S, ncol = S)

for (i in 1:S){
for (j in 1:S){

s[i,j] <- (p[i,j]-(p[i,j]+p[j,i])/2)/sqrt((p[i,j]+p[j,i])/2)
}
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}

dimnames(s) <- list(paste(Inames[[1]]), paste(Jnames[[1]]))

# Applying a singular value decomposition (SVD) to the matrix of
# Bowker residuals

sva <- svd(s)

d <- sva$d
dmu <- diag(sva$d)

##########################################################
# #
# Principal Coordinates #
# #
##########################################################

# Row principal coordinates

f <- solve(dIJ^0.5) %*% sva$u %*% dmu
dimnames(f) <- list(paste(Inames[[1]]), paste(1:S))

# Column principal coordinates

g <- solve(dIJ^0.5) %*% sva$v %*% dmu
dimnames(g) <- list(paste(Jnames[[1]]), paste(1:S))

##########################################################
# #
# Calculating the total inertia, Bowker’s chi-squared #
# statistic, its p-value and the percentage contribution #
# of the axes to the inertia #
# #
##########################################################

Principal.Inertia <- diag(t(f) %*% dIJ %*% f)
Total.Inertia <- sum(Principal.Inertia)
Bowker.X2 <- n * Total.Inertia # Bowker’s Chi-squared statistic
Perc.Inertia <- (Principal.Inertia/Total.Inertia) * 100
Cumm.Inertia <- cumsum(Perc.Inertia)
Inertia <- cbind(Principal.Inertia, Perc.Inertia, Cumm.Inertia)
dimnames(Inertia)[1] <- list(paste("Axis", 1:S, sep = " "))
p.value <- 1 - pchisq(Bowker.X2, S * (S - 1)/2)

##########################################################
# #
# Here we construct the 2-D correspondence plot #
# #
##########################################################

par(pty = "s")
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plot(0, 0, pch = " ",
xlim = scaleplot*range(f[, dim1], f[, dim2], g[, dim1], g[, dim2]),
ylim = scaleplot*range(f[, dim1], f[, dim2], g[, dim1], g[, dim2]),
xlab = paste("Principal Axis", dim1, "(",round(Perc.Inertia[dim1],

digits = 2), "%)"),
ylab = paste("Principal Axis", dim2, "(", round(Perc.Inertia[dim2],

digits = 2), "%)")
)

points(f[, dim1], f[, dim2], pch = "+", col = "red")
text(f[, dim1], f[, dim2], labels = Inames[[1]], pos = 4, col = "red")

points(g[, dim1], g[, dim2], pch = "*", col = "blue")
text(g[, dim1], g[, dim2], labels = Jnames[[1]], pos = 2, col = "blue")

abline(h = 0, v = 0)

list(N = N,
s = round(s, digits = 3),
f = round(f, digits = 3),
g = round(g, digits = 3),
Bowker.X2 = round(Bowker.X2, digits = 3),
P.Value = round(p.value, digits = 3),
Total.Inertia = round(Total.Inertia, digits = 3),
Inertia = round(Inertia, digits = 3)

)
}

The numerical summaries that are produced from this function are

• the contingency table under investigation, N,
• the matrix of Bowker residuals, s, where the elements are defined by (7),
• the matrix of row principal coordinates, f, and column principal coordinates, g,

defined by (14) and (15), respectively,
• Bowker’s chi-squared statistic defined by (6), Bowker.X2, and its p-value, P.Value,

and
• the principal inertia value for each of the M dimensions, Principal.Inertia, the per-

centage of the total inertia accounted for by each of these dimensions, Perc.Inertia,
and the cumulative percentage of the M principal inertia values, Cumm.Inertia.

Therefore, when coffee.dat is the R object assigned to Table 3 so that

> coffee.dat <- matrix(c(93, 9, 17, 6, 10, 17, 46, 11, 4, 4, 44, 11, 155,
+ 9, 12, 7, 0, 9, 15, 2, 10, 9, 12, 2, 27), nrow = 5)
> dimnames(coffee) <- list(paste(c("HP", "TC", "SA", "NE", "BR")),
+ paste(c("hp", "tc", "sa", "ne", "br")))
>

then the function produces the correspondence plot of Figure 5 and the following numeri-
cal summaries

> bowkerca.exe(coffee)
$N

hp tc sa ne br
HP 93 17 44 7 10
TC 9 46 11 0 9
SA 17 11 155 9 12
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NE 6 4 9 15 2
BR 10 4 12 2 27

$s
hp tc sa ne br

HP 0.000 0.048 0.105 0.008 0.000
TC -0.048 0.000 0.000 -0.061 0.042
SA -0.105 0.000 0.000 0.000 0.000
NE -0.008 0.061 0.000 0.000 0.000
BR 0.000 -0.042 0.000 0.000 0.000

$f
1 2 3 4 5

HP 0.000 -0.213 0.000 0.043 0
TC 0.186 0.016 -0.135 0.023 0
SA 0.155 0.000 0.059 0.000 0
NE 0.044 -0.140 -0.020 -0.193 0
BR -0.007 0.075 0.017 0.103 0

$g
1 2 3 4 5

hp -0.213 0.000 -0.043 0.000 0
tc 0.016 -0.186 -0.023 -0.135 0
sa 0.000 -0.155 0.000 0.059 0
ne -0.140 -0.044 0.193 -0.020 0
br 0.075 0.007 -0.103 0.017 0

$Bowker.X2
[1] 20.412

$P.Value
[1] 0.026

$Total.Inertia
[1] 0.038

$Inertia
Principal.Inertia Perc.Inertia Cumm.Inertia

Axis 1 0.015 39.121 39.121
Axis 2 0.015 39.121 78.242
Axis 3 0.004 10.879 89.121
Axis 4 0.004 10.879 100.000
Axis 5 0.000 0.000 100.000

>
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