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Abstract: In this paper, we reconstruct the dynamic behavior of the ring-coupled Lorenz oscillators
system by reservoir computing. Although the reconstruction of various complex chaotic attractors
has been well studied by using various neural networks, little attention has been paid to whether
the spatio-temporal structure of some special attractors can be maintained in long-term prediction.
Reservoir computing has been shown to be effective for model-free prediction, so we want to
investigate whether reservoir computing can restore the rotational symmetry of the original ring-
coupled Lorenz system. We find that although the state prediction of the trained reservoir computer
will gradually deviate from the actual trajectory of the original system, the associated spatio-temporal
structure is maintained in the process of reconstruction. Specifically, we show that the rotational
symmetric structure of periodic rotating waves, quasi-periodic torus, and chaotic rotating waves is
well maintained.

Keywords: reservoir computing; coupled Lorenz system; rotating periodic solution; synchronous
chaos; invariant torus

1. Introduction

The synchronization of chaotic systems is a basic problem of nonlinear science, which
has attracted the extensive attention of scientists [1–8]. For example, Pecora and Carroll
in [1] found that synchronization can be achieved by connecting two chaotic systems with
a common signal. Fujisaka and Yamada in [5–8] showed that synchronization could be
achieved in symmetrically coupled identical chaotic systems. In general, previous studies
of chaos synchronization rely on the fact that the equations of chaotic systems are known.
However, it is impossible to deal with real chaotic systems using limited observational
data [9].

Recently, some model-free prediction methods have been proposed for the synchro-
nization of chaotic systems using reservoir computing methods [10–13]. The state evolution
of chaotic systems is predicted by RC [14–19]. The idea and principle of using reservoir com-
puting for model-free systems are first proposed about two decades ago [10,19]. Especially
it can be driven by the data to reconstruct the original system. Such as, Chen et al. in [13]
showed that reservoir computing can learn the topological characteristics of dynamical
systems. Lu et al. in [20] reported that reservoir computing learns similar attractors from
the original system under an appropriate choice of parameters. Zhang et al. in [21] showed
that reservoir computing could learn Hamiltonian dynamics. They suggested that reser-
voir computing could reconstruct the dynamics of the original system. It is worth noting
that these works mainly study a trained reservoir network from the respective dynamics,
while the underlying dynamic characteristics of complex networks with multiple oscillator
coupling have received little attention. Recently, the study of complex networks has always
attracted the attention of scientists because of its structural complexity, especially the ring-
coupled Lorenz oscillators. For example, Sánchez et al. in [22,23] studied the transition
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between periodic rotating waves and synchronized chaos in unidirectional coupled Lorenz
oscillators ring. Wang et al. in [24] demonstrated the existence of the rotating wave by Hopf
bifurcation of rotating periodic solutions in the coupled Lorenz systems. Horikawa et al.
in [24] showed chaotic transient rotating waves in a ring of unidirectionally coupled bistable
Lorenz systems. Therefore, it is of great significance to study the dynamic characteristics
of the complex network by using the reservoir computing method. Moreover, multiple
oscillator coupling systems usually have special spatio-temporal symmetries, which will
be the major motivation of our research.

In this paper, we focus on studying reconstruction problems on various dynamical
behaviors in unidirectional coupled Lorenz systems with the principle of synchronization
and reservoir computing. The coupled network has rich complexity, and it includes stable
point, periodic rotating wave, synchronous chaos, chaos rotating wave, and invariant
torus in [22–24]. Thus, we want to know: (1) whether the above dynamic behaviors can
be maintained in the process of reconstruction with reservoir computing technology and
(2) whether the spatio-temporal structure investigated in [24–26] can preserve during the
reconstruction process, especially whether the rotational symmetry in the spatio-temporal
structure can be maintained in the reconstruction process, (3) whether the bifurcation point
is consistent with the original system.

This paper is organized as follows: In Section 2, we briefly introduce the unidirectional
coupled Lorenz systems and the studied models. We provide the application method of
reservoir computation in Section 3. The numerical experiment will be reported in Section 4.
Discussion and a conclusion will be provided in Section 5.

2. Description of the System

The time series comes from the following equation:

dxn

dt
= σ(yn − xn),

dyn
dt

= Rxn−1 − yn − xnzn,

dzn

dt
= −βzn + xnyn(1 ≤ n ≤ N, x0 = xN).

(1)

Here, σ, R, β represent the corresponding parameters of the Lorenz system, and
xn, yn, zn represent the dynamical state of the nth oscillator. System (1) consists of a ring of
n unidirectional coupled Lorenz oscillators. For further research, in this paper, we want to
reconstruct the complex system with multiple oscillators coupling. Due to the complexity
of the spatio-temporal structure, the system can display rich, dynamic behaviors [22–24],
such as fixed point, synchronous chaos, quasi-periodic behavior, periodic rotating wave, or
a chaotic rotating wave of high-dimensional chaos. Among them, the rotational symmetry
of chaotic rotating waves and quasi-periodic and periodic rotating waves are the focus of
our research. In [24], the authors used the method of rotating periodic solutions to obtain
the periodic synchronous solution of the above system. Rotating periodic solutions as a
generalization of periodic solutions can be expressed by equations x(t + T) = Qx(t) with
some orthogonal matrix Q [27–30]. We will focus on the reconstruction of a ring of three
unidirectional coupled Lorenz oscillators. According to the results in [29], we can find the
solution of the original system in two forms of the synchronous solution by searching the
matrix Q that satisfies the condition of rotating periodic solution. We can find the following
rotating matric Q satisfying rotating periodic condition

Q1 =

 0 1 0
0 0 1
1 0 0

, Q2 =

 0 0 1
1 0 0
0 1 0

.
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All the above matrices Q1 − Q2 and identity matrix I3 form a group Γ1. Moreover,
all matrices −Qi(i = 1, 2) and −I3 also satisfy the rotating periodic condition. Since the
type of synchronous solution is only related to the difference of variable angle values
in the eigenvalues of the matrices Q and the matrices Q, −Q provide the same type of
synchronous solution, we only need the matrices in the group Γ to attain all types of
synchronous solutions [26]. What is more, all the rotating matrices corresponding to
the same type of synchronous solutions are similar. Thus, we can obtain all types of
synchronous solutions from the conjugate classes Ci(i = 1, . . . , m) of the group Γ. In fact,
after diagonalizing Q, we find that Q has only two forms, which represent the complete
synchronization of the oscillator and the synchronization with the same phase difference of
2π

n
, respectively. Since the system has multiple Hopf bifurcation points, it is possible for

the system to produce invariant torus and even chaos [22–24]. Phase space reconstruction
is a method of recovering and characterizing the original dynamic system from known
time series. In short, it is a method of recovering the original system from time series; a
typical method regards the system reconstructed in phase space as the synchronization
system of the original system. In [31], Pecora and Carroll decided that combining two
identical chaotic systems in a particular way was to take a signal from a component of
the transmitter and send it to the receiver where the receiver was missing the part of the
system. However, this missing part was retained by using the received signals. Thus, they
demonstrated that by choosing the variable x to drive the Lorenz system, then y′ and z′

subsystems will converge to y and z as the systems evolve together on identical trajectories.
The system in [31] is expressed by Equation (2), and we can see it as the driven-response
system as follows.

.
x = σ(y− x),

.
y = −xz + rx− y

.
y′ = −xz′ + rx− y′,

.
z = xy− bz

.
z′ = xy′ − bz′.

(2)

In Equation (2), the x− y− z model is the driven system, and the x− y′ − z′ model is
the response system. Using the variable x to drive the response system and observe the
relationship between the driven system and the response system.

Similarly, we provide two similar drive-response systems according to Equation (2)
that have three signals input and one signal input. Then, we can attain two different
response systems. We will use the double-layer coupled network model to simulate two
drive-response systems (see Figure 1a,b). Equation (1) is regarded as the driven system,
xi, yi, zi are the state variable of the ith oscillator of the driven system, Xi, Yi, Zi are the
state variable of the response system. Equation (3) represents the three signals driven-
response system.

dxn

dt
= σ(yn − xn),

dyn

dt
= Rxn−1 − yn − xnzn

dzn

dt
= −βzn + xnyn,

,


dYn

dt
= Rxn−1 −Yn − xnZn,

dZn

dt
= −βZn + xnYn(1 ≤ n ≤ N, x0 = xN).

(3)
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The synchronization between systems constitutes the theoretical basis of phase 
space reconstruction. It is also easy to obtain the synchronization between systems ac-
cording to the theory [1,2,31] of synchronization. Next, we will use the reservoir compu-
ting method to reconstruct system (1) of three oscillators to provide an affirmative an-
swer to the above three questions. 

  
(a) (b) 

Figure 1. (a,b) show the two types of drive-response systems. The circles and their labels represent the
dynamic variables of the systems and the connections represent couplings.A, B, C, A′, B′, C′ represent
the Lorenz oscillators and xi(i = 1, 2, 3) represent the driven signals. The double-layer coupled
networks are shown: (a) is the drive-response system of three signals input (x1, x2, x3), (b) the
drive-response system of one signal input (x1).

Equation (4) represents the one signal drive-response system.



dxn

dt
= σ(yn − xn),

dyn

dt
= Rxn−1 − yn − xnzn

dzn

dt
= −βzn + xnyn,

,



dY1

dt
= RX3 −Y1 − x1Z1,

dZ1

dt
= −βZ1 + x1Y1,

dX2

dt
= σ(Y2 − X2),

dY2

dt
= Rx1 −Y2 − X2Z2,

dZ2

dt
= −βZ2 + X2Y2,

dX3

dt
= σ(Y3 − X3),

dY3

dt
= RX2 −Y3 − X3Z3,

dZ3

dt
= −βZ3 + X3Y3.

(4)

The synchronization between systems constitutes the theoretical basis of phase space
reconstruction. It is also easy to obtain the synchronization between systems according to
the theory [1,2,31] of synchronization. Next, we will use the reservoir computing method
to reconstruct system (1) of three oscillators to provide an affirmative answer to the above
three questions.

3. Reservoir Computing of Method

We adopt the scheme of RC to learn the dynamics of the coupled Lorenz systems.
Model-free prediction methods represented by reservoir computing can also contribute
to data-driven control techniques and improved control performance, such as [32,33].
Typically, its architecture consists of a linear input layer, a reservoir network having Dr
dynamical reservoir nodes, and a linear output layer. Here u(t) ∈ RDin is the input vector
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to the reservoir network through the input weighted matrix Win ∈ RDr×Din . We assume
that it receives input at discrete t and that its input Winu(t) is combined with the reservoir
state r(t) to produce its output r(t + ∆t). The states of the nodes in the reservoir network
are updated according to the equation following Jaegers’ design [10],

r(t + ∆t) = (1− α)r(t) + αtanh(Mr(t) + Win

[
bin

u(t)

]
). (5)

In Equation (5), where r(t) represents the scalar states ri(t) of the Dr network reservoir
nodes, r = (r1, r2, . . . , rDr )

T and for a vector q = (q1, q2, . . .)T the quantity tanh(q) is the
vector (tanh(q1), tanh(q2), . . .)T , and M is the adjacency matrix of the reservoir network,
and Din is the dimension of u. The reservoir parameters α, M and Win are pre-defined before
training. Each reservoir is trained with the same Lorenz trajectory and with regularization
parameter 1× 10−6, and r(t) is the state vector of the reservoir network at time t that
records the weight information of each node in the reservoir. The parameter α ∈ (0, 1] is
leakage, which is mainly used to control the updating speed of weight and bin = 1. The
adjacency matrix M ∈ RDr×Dr is chosen randomly with sparse Erdös–Renyi connectivity
and spectral radius p; specifically, each element is chosen independently to be nonzero
with a probability of d. Here, we set nonzero elements chosen uniformly between −1 and
1. In the training phase, the entire system will receive the input data and optimize the
output matrix Wout ∈ RDout×Dr to the predicted value that matches the true value. It is in
open-loop mode.

The output vector v(t) ∈ RDout of the reservoir network can be used as a linear function
of the reservoir state and the input vector. The equation is as follows

v(t + ∆t) = Woutr(t + ∆t). (6)

In Equation (6), Wout maps the Dr dimensional vector r to the output v. Here Wout is
the solely adjustable matrix in the training phase. The purpose of the training is to find a
suitable Wout so that the output vector v(t + ∆t) is as close as possible to the input vector
u(t + ∆t) for t = ((τ + 1)∆t, . . . (τ + L)∆t), with T0 = τ∆t the transient period to avoid
the impact of the initial states of the reservoir and L the length of the training time series.
Wout [12,15] can be adjusted through Equation (7) in the training process

Wout = YXT(XXT + λE)
−1

. (7)

Here E is an identity matrix, and λ is a ridge regression parameter to avoid overfitting,
and X ∈ RDr×L is the state matrix whose kth column is r[(τ + k)∆t] and Y ∈ RDin×L is the
output sequence matrix whose kth column is u[(τ + k)∆t]. For convenience, we set in the
present work Din = Dout for the input and output vectors. After training, the elements in
the matrix Wout are fixed, and the RC starts predicting. In the predicting phase, we set the
parameters σ and β of the system (1) unchanged while varying the parameter value R of
the system (1); thus, the system will generate different motions and then we evolve the
RC by taking the output vector v(t) as the next input vector u(t) in closed-loop mode. We
will show that the well-trained RC is able to not only predict the short-term evolution of
systems but also replicate the ergodic properties of systems, especially with the change of
parameter R, the spatio-temporal structure of the original system can be well maintained
in the reservoir computer. Meanwhile, the dynamic behaviors near the bifurcation points
can also be well maintained in the reservoir computer.

4. Numerical Experiment Results

In [22], we will fix the parameters σ = 20 and β = 3, increase the parameter R from 29
to 38, which can produce different motion states and multiple bifurcation points. When R is
greater than 29.00, the coupled Lorenz system will present a fixed-point motion state. With
the increase in R, when R is greater than 30.48, the system will transition to synchronous
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chaos. When R is greater than 32.98, the system presents chaotic rotating waves. When R is
greater than 35.09, the system presents periodic rotating waves and when R is greater than
35.09 and less than 35.29, it presents the invariant torus. For convenience, we mark the
reconstruction system with three signals input as TSI and the reconstruction system with
one signal input as OSI. In all experimental settings, by solving Equation (1) numerically,
we record u(t) = (x1(t), y1(t), z1(t), x2(t), y2(t), z2(t), x3(t), y3(t), z3(t))

T of 1× 104 of time
points with time step ∆t = 0.02. We use the length T1 as the initial length to eliminate
transient states by the method of data augmentation technique, the length T2 is used to
train the output matrix Wout, and length T3 is used as the prediction data. The reservoir
parameters are chosen according to Table 1. For convenience, we choose the less prediction
length to study the reconstruction between systems and the spatio-temporal structure of
the reconstructed system. The RMS appearing in Figures 2–5 represents the root mean
square to show the reconstruction effect.

RMS =

√
[
x2

1 + x2
2 + · · ·+ x2

n
n

]

Table 1. A listing of the parameters for training the fixed point (FP), synchronous chaos (SC), chaotic
rotating wave (CRW), periodic rotating wave (PRW), and quasi-periodicity (T2 ).

Attractor M(TSI) M(OSI) Tinitial Ttrain(TSI) Ttrain(OSI) Tpredict

FP 2000 2000 2000 2100 2100 4500
SC 1000 1000 2000 2500 2500 4500

CRW 1200 1600 2000 3300 3300 4500
PRW 400 400 2000 2100 2100 4500

T2 2000 2000 2000 2100 2100 4500

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

  
(a) (b) 

Figure 2. (a) The time evolution of TSI and the original system. (b) The time evolution of OSI and 
the original system. Prediction starts at 6t = . The following settings are the same. Results ob-
tained by the original system are colored in red and predicted by RC are colored in blue. 

4.2. Synchronous Chaos 

With the increase in R , the ring coupled Lorenz oscillator system will transition to 
chaotic synchronization motion at 30.49. Setting 31.0R = , following the same proce-
dure as CRW, in Figure 3a,b, we first choose the predicted value 1y  generated by TSI 
and OSI with a length of 500 to observe the reconstruction effect between the original 
system and the reconstructed system. We find that the predicted trajectory obtained from 
TSI and OSI is consistent with the trajectory of the original system after 6t = , and cor-
responding the RMS are 54.93 10−×  and 41.64 10−× , respectively. The results of RMS 
clearly show that the reconstruction effect of OSI is better than TSI. 

We next demonstrate the replication of the system climate in the ring-coupled Lo-
renz oscillators system, as depicted in Figure 3c,d. We chose the predicted variables 1y  

and 1z  generated by TSI and OSI with a length of 5000 to show the chaos. To confirm 
further the replication of the system climate, we calculate the largest Lyapunov expo-
nent (LE) of the original system and TSI and OSI, respectively, by the numerical method 
proposed in [34]. The LE for system (1) is 1.77, and the LE for TSI and OSI is 1.87 and 
1.62, respectively. This shows that the trained RC not only accurately predicts the 
short-term evolution of the system (1) but also properly replicates the coupled Lorenz 
system climate. 

Here, we want to demonstrate that the spatio-temporal structure can also maintain 
in the reconstruction process. We choose the predicted variables ( 1, 2,3)ix i =  gener-
ated by TSI and OSI with a length of 500 to show the motion state between oscillators, as 
shown in Figure 3e,f. We find that there is no phase difference between the motion tra-
jectories represented by variable ( 1, 2,3)ix i =  of the two reconstructed systems, which 
shows that the spatio-temporal structure is still maintained in the reconstruction process. 
Similarly, when R  is greater than 30.48 and less than 32.99, the motion state of the 
synchronous chaos can be maintained well in the reservoir computer. Moreover, the 
dynamic behavior of the TSI and OSI near the bifurcation point can also be well pre-
served in the reconstruction process. It shows that the reconstructed system has the 
same bifurcation point 30.49R =  as the original system. 

Figure 2. (a) The time evolution of TSI and the original system. (b) The time evolution of OSI and the
original system. Prediction starts at t = 6. The following settings are the same. Results obtained by
the original system are colored in red and predicted by RC are colored in blue.



Symmetry 2022, 14, 1084 7 of 14

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

  
(a) (b) 

  
(c) (d) 

 
 

(e) (f) 

Figure 3. (a) The time evolution of TSI and the original system. (b) The time evolution of OSI and 
the original system. (c) The phase diagram of TSI. (d) The phase diagram of OSI. (e) The Phase 
difference diagram of variables ( 1, 2,3)ix i =  from TSI. (f) The Phase difference diagram of 

variables ( 1, 2,3)ix i =  from OSI. Results obtained by the original system are colored in red and 
predicted by RC are colored in blue. 

4.3. Chaotic Rotating Wave 
The chaotic rotating wave motion occurs at 32.99. It means that chaotic motion ex-

ists at the same time as an oscillation with a phase difference of 2
n
π  between adjacent 

units. This corresponds to 
1 2Q Q−  satisfying the rotating periodic condition. 

The trained reservoir system can infer the trajectory of the ring-coupled Lorenz os-
cillators system accurately. For the TSI, where we show the 1y  variable with a length of 

100 as an example, see Figure 4a. Then we use the 1x , 2x  and 3x  component of the 
ring coupled Lorenz oscillators system as the driving signal for which the input vector 

Figure 3. (a) The time evolution of TSI and the original system. (b) The time evolution of OSI and
the original system. (c) The phase diagram of TSI. (d) The phase diagram of OSI. (e) The Phase
difference diagram of variables xi(i = 1, 2, 3) from TSI. (f) The Phase difference diagram of variables
xi(i = 1, 2, 3) from OSI. Results obtained by the original system are colored in red and predicted by
RC are colored in blue.
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original system. Results obtained by the original system are colored in red and predicted by RC are
colored in blue.



Symmetry 2022, 14, 1084 9 of 14
Symmetry 2022, 14, x FOR PEER REVIEW 13 of 16 
 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 5. (a) The time evolution of the TSI and the original system. (b) The time evolution of the 
OSI and the original system. (c) The Phase difference diagram of variables ( 1, 2,3)ix i =  from 
TSI. (d) The Phase diagram of TSI single oscillator structure. (e) The Phase difference diagram of 
variables ( 1, 2,3)ix i =  from OSI. (f) The Phase diagram of OSI single oscillator structure. (g) 

The Phase difference diagram of variables ( 1, 2,3)ix i =  from the original system. (h) The Phase 

Figure 5. (a) The time evolution of the TSI and the original system. (b) The time evolution of the
OSI and the original system. (c) The Phase difference diagram of variables xi(i = 1, 2, 3) from TSI.
(d) The Phase diagram of TSI single oscillator structure. (e) The Phase difference diagram of variables
xi(i = 1, 2, 3) from OSI. (f) The Phase diagram of OSI single oscillator structure. (g) The Phase
difference diagram of variables xi(i = 1, 2, 3) from the original system. (h) The Phase diagram of the
original system single oscillator structure. Results obtained by the original system are colored in red
and predicted by RC are colored in blue.
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4.1. Fixed Point

We first show the capability of the trained RC in predicting and replicating the dy-
namics of the ring-coupled Lorenz oscillators system. Setting R = 30, the Lorenz oscillator
system presents the fixed point motion. Following the same procedure as CRW, the reser-
voir is evolving in a closed-loop mode according to Equations (5) and (6) by replacing u(t)
with v(t). Choosing the predicted value y1 generated by TSI and OSI with a length of 200 to
observe the reconstruction effect between the original system and the reconstructed system.
To prove that the reservoir computer is well-trained, we choose to input the predicted value
y1 generated by TSI and OSI when t = 6 as shown in Figure 2a,b. We find that the predicted
trajectory is consistent with the original system after t = 6. The RMS results show that the
reconstruction effects of the two response systems are very good, and corresponding the
RMS are 8.88× 10−5 and 4.00× 10−6 respectively, and the reconstruction effect of OSI is
better than TSI. Similarly, when R is greater than 29 and less than 30.48, the motion state of
the fixed point can be maintained well in the reservoir computer. Moreover, the dynamic
behavior of the TSI and OSI near the bifurcation point can also be well preserved in the
reconstruction process. It shows that the reconstructed system has the same bifurcation
point R = 29.00 as the original system.

4.2. Synchronous Chaos

With the increase in R, the ring coupled Lorenz oscillator system will transition to
chaotic synchronization motion at 30.49. Setting R = 31.0, following the same procedure
as CRW, in Figure 3a,b, we first choose the predicted value y1 generated by TSI and OSI
with a length of 500 to observe the reconstruction effect between the original system and
the reconstructed system. We find that the predicted trajectory obtained from TSI and OSI
is consistent with the trajectory of the original system after t = 6, and corresponding the
RMS are 4.93× 10−5 and 1.64× 10−4, respectively. The results of RMS clearly show that
the reconstruction effect of OSI is better than TSI.

We next demonstrate the replication of the system climate in the ring-coupled Lorenz
oscillators system, as depicted in Figure 3c,d. We chose the predicted variables y1 and z1
generated by TSI and OSI with a length of 5000 to show the chaos. To confirm further the
replication of the system climate, we calculate the largest Lyapunov exponent (LE) of the
original system and TSI and OSI, respectively, by the numerical method proposed in [34].
The LE for system (1) is 1.77, and the LE for TSI and OSI is 1.87 and 1.62, respectively. This
shows that the trained RC not only accurately predicts the short-term evolution of the
system (1) but also properly replicates the coupled Lorenz system climate.

Here, we want to demonstrate that the spatio-temporal structure can also maintain in
the reconstruction process. We choose the predicted variables xi(i = 1, 2, 3) generated by
TSI and OSI with a length of 500 to show the motion state between oscillators, as shown
in Figure 3e,f. We find that there is no phase difference between the motion trajectories
represented by variable xi(i = 1, 2, 3) of the two reconstructed systems, which shows that
the spatio-temporal structure is still maintained in the reconstruction process. Similarly,
when R is greater than 30.48 and less than 32.99, the motion state of the synchronous chaos
can be maintained well in the reservoir computer. Moreover, the dynamic behavior of the
TSI and OSI near the bifurcation point can also be well preserved in the reconstruction
process. It shows that the reconstructed system has the same bifurcation point R = 30.49 as
the original system.

4.3. Chaotic Rotating Wave

The chaotic rotating wave motion occurs at 32.99. It means that chaotic motion exists

at the same time as an oscillation with a phase difference of
2π

n
between adjacent units.

This corresponds to Q1 −Q2 satisfying the rotating periodic condition.
The trained reservoir system can infer the trajectory of the ring-coupled Lorenz oscilla-

tors system accurately. For the TSI, where we show the y1 variable with a length of 100 as an
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example, see Figure 4a. Then we use the x1, x2 and x3 component of the ring coupled Lorenz
oscillators system as the driving signal for which the input vector fed into the training
reservoir computer becomes u(t) = (x1, y′1, z′1, x2, y′2, z′2, x3, y′3, z′3)

T , where the initial values
of y′1(0), z′1(0), y′2(0),z

′
2(0), y′3(0), z′3(0) are chosen randomly. Based on Equations (5) and (6),

we can generate the subsequent values x1, y′1, z′1, x2, y′2, z′2, x3, y′3, z′3 autonomously for which
the output vector v(t) = (x′1(t), y′1(t), z′1(t), x′2(t), y′2(t), z′2(t), x′3(t), y′3(t), z′3(t))

T of the
reservoir computer is used as the next input vector u(t+ 1) = (x1(t), y′1(t), z′1(t), x2(t), y′2(t),
z′2(t), x3(t), y′3(t), z′3(t))

T with the x′1(t), x′2(t) and x′3(t) replaced by the driving signals
x1(t), x2(t) x3(t). For the OSI, where we show the y1 variable with a length of 100 as
an example, see Figure 4b. Then we use the x1 component of the ring-coupled Lorenz
oscillators system as the driving signal for which the input vector fed into the training
reservoir computer becomes u(t) = (x1, y′1, z′1, x′2, y′2, z′2, x′3, y′3, z′3)

T , where the initial val-
ues of y′1(0), z′1(0), x′2(0), y′2(0), z′2(0), x′3(0), y′3(0), z′3(0) are chosen randomly. Based on
Equations (5) and (6), we can generate the subsequent values x1, y′1, z′1, x′2, y′2, z′2, x′3, y′3, z′3
autonomously for which the output vector v(t) = (x′1(t), y′1(t), z′1(t), x′2(t), y′2(t), z′2(t),
x′3(t), y′3(t), z′3(t))

T of the reservoir computer is used as the next input vector u(t + 1) =
(x1(t), y′1(t), z′1(t), x′2(t), y′2(t), z′2(t), x′3(t), y′3(t), z′3(t))

T with x′1(t) replaced by the driving
signal x1(t). Interestingly, we find the predicted trajectory obtained from TSI and OSI
is consistent with the trajectory of the original system after t = 6. It shows that the TSI
and OSI provided by the trained reservoir system will synchronize with a driving system
provided by the coupled Lorenz system and correspond to the RMS are 5.46× 10−4 and
2.72× 10−6 respectively. The results of RMS clearly show that the reconstruction effect of
OSI is better than TSI. The same procedure is followed in other experiments.

Meanwhile, we want to demonstrate that the rotational symmetric structure of CRW can
also maintain in the reconstruction process. We choose the predicted variables xi(i = 1, 2, 3)
generated by TSI and OSI with a length of 500 to show the motion state between oscillators,
as depicted in Figure 4c,d. We can see when t ≤ 8, the trajectories of the original system and
reconstructed systems’ trajectories are the same. When t � 8, the trajectories of the original
system and the reconstructed system begin to be inconsistent. Although the reconstructed
system is inconsistent with the original system, we find that the phase difference between
the oscillators in the reconstructed system remains the same, which indicates that the
spatio-temporal structure of TSI and OSI can be consistent with the original system. To
confirm further the replication of the system climate, we calculate the LE of TSI and OSI that
correspond to 1.51 and 1.60, respectively. The LE for the system (1) is 1.82. This shows that
even though the reservoir computer is well-trained, it cannot make long-term predictions.
However, it can replicate the couple Lorenz system climate. Similarly, when R is greater
than 32.99 and less than 35.08, the motion state and spatio-temporal structure of chaotic
rotating waves are well maintained in the reconstruction process. Moreover, the dynamic
behavior of the TSI and OSI near the bifurcation point can also be well preserved in the
reconstruction process. It shows that the reconstructed system has the same bifurcation
point R = 32.99 as the original system.

4.4. Periodic Rotating Wave

The periodic rotating wave motion occurs at 35.09. This state is characterized by a
fast periodic motion of the oscillators of the array and phase differences of 2π

3 between
adjacent oscillators. In Figure 5a,b, we show the variable y1 with the length of 100 of
the reconstructed and original systems to observe the reconstruction effect. Interestingly,
if we set the system to evolve in a closed loop after t = 6, we find that the predicted
trajectory obtained from TSI and OSI is consistent with the trajectory of the original system
immediately. This shows that reconstruction of TSI and OSI and the ring-coupled Lorenz
system can be achieved. Meanwhile, corresponding to the root mean square is 1.59× 10−8

and 3.14× 10−8, respectively. The results of RMS more clearly show that the reconstruction
effect of OSI is better than TSI.



Symmetry 2022, 14, 1084 12 of 14

In Figure 5c,e, we choose the predicted variables xi(i = 1, 2, 3) generated by TSI and
OSI with a length of 100 to show the motion state between oscillators. Compared with
Figure 5g, we find that the phase difference between the Lorenz oscillators in TSI and OSI
is 2π

3 which is consistent with the original system. This shows that the spatio-temporal
structure of the TSI and OSI can be maintained in the reconstruction process. Then we
chose the predicted variables y1 and z1 generated by TSI and OSI with a length of 1× 104 to
reconstruct the phase diagram of the original system, as depicted in Figure 5d,f. Compared
with the phase diagram of the original system, we find that it can maintain the periodic
behavior of the system (1). Similarly, when R is greater than 35.09 and less than 38.00, the
motion state of the periodic rotating wave can be maintained well in the reconstruction
process. Moreover, the motion state and spatio-temporal structure of PRW of the TSI and
OSI near the bifurcation point can also be well preserved in the reconstruction process.
It shows that the reconstructed system has the same bifurcation point R = 35.09 as the
original system.

4.5. Quasi-Periodicity

The two Hopf bifurcation points are so close that the second Hopf bifurcation leads to
quasi-periodicity. The invariant torus is shown in Figure 6 when R = 35.26.
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Figure 6. (a) The quasi-periodic invariant torus of TSI. (b) The Phase difference diagram of variables
xi(i = 1, 2, 3) from TSI. (c) The quasi-periodic invariant torus of OSI. (d) The Phase difference diagram
of variables xi(i = 1, 2, 3) from OSI. (e) The quasi-periodic invariant torus of the original system.
(f) The Phase difference diagram of variables xi(i = 1, 2, 3) from the original system.
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In Figure 6b,d, we choose the predicted variables xi(i = 1, 2, 3) generated by TSI and
OSI with a length of 100 to show the motion state between oscillators. Compared with
Figure 6f, we find that the phase difference between TSI and OSI is consistent with the
original system. In Figure 6a,c, we used the predicted values x1, x2, and y1 with a length of
1× 104 obtained from TSI and OSI to show the spatio-temporal structure. This shows that
the spatio-temporal structure of the TSI and OSI can be maintained in the reconstruction
process. Similarly, when R is greater than 35.09 and less than 35.29, the motion state of the
quasi-periodicity wave can be maintained well in the reconstruction process. Moreover, the
motion state and spatio-temporal structure of quasi-periodicity of the TSI and OSI near the
bifurcation point can also be well preserved in the reconstruction process. It shows that the
reconstructed system has the same bifurcation point of 38.00 as the original system.

5. Discussion

In this paper, we focus on the principle of synchronization between systems and
the idea of reservoir computing to study reconstruction problems on various dynamical
behaviors in unidirectional coupled Lorenz systems, including a stable point, periodic
rotating wave, synchronous chaos, chaos rotating wave, and invariant torus. In the nu-
merical experiment, we take the three oscillator systems as an example to prove that the
symmetrical double-layer coupling network can well learn the above dynamic behaviors
by sharing only the information of one Lorenz oscillator of the original system, and the
results of RMS clearly show that the reconstruction effect of OSI is better than that of
TSI for all the above attractors. Similarly, the original system can be reconstructed well
by sharing a small amount of information in complex networks connected by multiple
oscillators. We also show that the well-trained reservoir computer cannot make long-term
predictions in the process of coupled oscillator system reconstruction, but it can replicate
the ergodicity of the system in the process of reconstruction. Meanwhile, the motion near
the bifurcation point of the transition between attractors can also be well preserved. Most
importantly, we also confirmed that the spatio-temporal structure of the above attractors
could be well maintained in the reconstruction process, especially the rotational symmetry
of CRW, quasi-periodic torus, and PRW.

These findings reveal that although the prediction data in the long-term will deviate
from the original system, the underlying spatio-temporal structure is preserved in the
trained reservoir computer. The original reservoir computing cannot deal with the change
of parameter value. Therefore, the reconstruction of different attractors of the same system
needs to be studied and predicted many times. This also lays a foundation for selecting
an appropriate reservoir computer to reconstruct the above dynamics in the future. For
example, we can reconstruct the above dynamic behavior by constructing a parameter-
aware RC with high precision by tuning a control parameter externally.
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