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Abstract: Unmanned aerial vehicles have large prospects for organizing territory monitoring. To
integrate them into this sphere, it is necessary to improve their high functionality and safety. Com-
puter vision is one of the vital monitoring aspects. In this paper, we developed and validated a
methodology for terrain classification. The overall classification procedure consists of the follow-
ing steps: (1) pre-processing, (2) feature extraction, and (3) classification. For the pre-processing
stage, a clustering method based on particle swarm optimization was elaborated, which helps to
extract object patterns from the image. Feature extraction is conducted via Gray-Level Co-Occurrence
Matrix calculation, and the output of the matrix is turned into the input for a feed-forward neural
network classification stage. The developed computer vision system showed 88.7% accuracy on the
selected test set. These results can provide high quality territory monitoring; prospectively, we plan
to establish a self-positioning system based on computer vision.

Keywords: computer vision; particle swarm optimization; unmanned aerial vehicle; Gray-Level
Co-Occurrence Matrix; classification; image analysis

1. Introduction

With the development of Industry 4.0, a tendency to automate time and resource-
intensive routine processes has been noticed. Production, transportation, cloud compu-
tations, and monitoring can be classified as such categories of processes. Industry 4.0
intends to integrate the cyber–physical concept into the different spheres of life, which
means that with automation, people can focus on more complicated tasks, such as planning,
engineering, and programming.

This paper studies the task of area monitoring. Under monitoring, we consider a
regular observation of a given territory with the aim of finding anomalies. To organize
monitoring, UAVs can be used.

Monitoring by dint of UAVs has become a more relevant aspect, as UAVs’ abilities
exceed human physical possibilities to collect and process information; UAVs can operate in
critical situations and can collect quantitative and qualitative data with sensors. Examples
of successful applications can include simple domestic tasks [1], border control [2], and
coast patrol [3], among several other examples that could be mentioned. In addition, UAVs
can work in conditions unsuitable for a human, such as emergencies [4]. Thus, drones are
more effective and require fewer resources in the context of territory monitoring.

This paper is an extension of the work [5]. It contains an extended formalization of the
developed computer vision algorithm. In addition, a combination of computer vision and
map projection is presented, which is a good foundation for the vision-based geolocation
system development in the sphere of geographic information systems.
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In order to report about any non-standard situation, the UAV requires to have knowl-
edge about its own location. However, the GPS does not guarantee geolocation accuracy
due to the fact that it is not always available [6]. Taking into account possible GPS sig-
nal interruptions, the authors elaborated the system of computer vision that determines
the terrain type based on UAV downwash. Prospectively, it is possible to project the
classified terrain onto the map and by this define the UAV’s coordinates. This paper
contains information about hardware and software elaborated by the authors for territory-
monitoring purposes.

The remaining paper is organized as follows: Section 2 describes the existing imple-
mentations of UAVs and computer vision systems in the process of monitoring; Section 3
provides information about the designed UAV system. Section 4 describes the obtained
terrain classification results, and Section 5 illustrates the projection of the classification
results on the map. Finally, Section 6 concludes the paper by assessing the performed work
and planning the next research steps.

2. Related Work
2.1. Monitoring with UAVs

UAVs have been already implemented in some countries or are under discussion
in terms of their applicability [7–13]. For example, the authors of [14] considered the
issue of using UAVs in the context of soil-erosion monitoring in Morocco. The UAV flight
was to cover landscapes of different scales. The assessment of soil erosion risk was con-
ducted according to Digital Terrain Models that were provided by dint of photogrammetric
image processing.

Another implementation of photogrammetry was realized in Portugal [15]. It was
embedded in UAVs to monitor the Portuguese northwest coast. The monitoring process
was conducted to assess the impact of natural and anthropogenic factors on the state of
coastal areas.

Monitoring by UAVs can be effectively used in the context of the detection and pre-
vention of emergencies. For example, in the work [16], the authors described UAV groups
as a good option to organize monitoring for emergency response, as emergency zones are
usually inaccessible to humans. In addition, UAVs allow one to communicate and react in
real-time mode, which is relevant in the context of negative consequences’ prevention.

UAVs have been successfully implemented in the case of natural-disaster monitoring.
In the work [17], a system for landslide risk assessment was proposed, consisting of Ground-
based Interferometric Synthetic Aperture Radar (GB-InSAR), Terrestrial Laser Scanning
(TLS), and a UAV.

UAV systems have been adapted for forest-fire condition monitoring. The authors
of the paper [18] elaborated a monitoring system consisting of a UAV equipped with
cameras, sensors, and communication modules to provide real-time data collection and
data transmission.

2.2. Computer Vision and Pattern Recognition

In the process of monitoring, one of the most important parts of UAVs is the com-
puter vision system, as visual information contains a lot of useful data for detecting and
preventing emergency situations. That is why it is essential to provide high accuracy of
pattern recognition. The work [19] proposed a system for the fault detection and correction
of board cameras.

Visual information processing can be divided into three main stages:

• Image preprocessing—the procedure of removing visible drawbacks of the input
image (noise, blur) [20];

• Image preparation for pattern-recognition process—procedure of extracting image
features (texture, patterns, contours) [21];

• Pattern recognition—detection and classification of particular objects [22].
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2.2.1. Image Preprocessing

This stage is focused on image-quality improvement. Issues such as noise, blur, and
uneven contrast are resolved. The aspect of image preprocessing was also discussed in the
context of UAV monitoring. In the work [23], a method for image deblurring was described.

Relative to UAVs in agriculture, a pattern-recognition process was described in [24].
In order to prevent diseases and pests in rice sprouts, a system consisting of preprocessing,
segmentation, and classification was designed. For the first stage, histogram equalization
was used for gray-scale conversion.

The preprocessing stage is relevant in other practical implementations, and its methods
can be useful in the field of UAV monitoring, for instance, for illumination issues. In the
work [25], a method for the minimization of illumination variance was represented in the
field of face recognition. It contributes to brightness equalization and to the increase in
pattern-recognition accuracy.

Another preprocessing method proposed for face recognition based on local binary
patterns was proposed in the paper [26]. This method was also intended to resolve the
issue of illumination variance and to extract the image texture.

The authors consider as a current task of preprocessing during UAV monitoring the
following points:

• Denoising;
• Deblurring;
• Brightness equalization.

2.2.2. Image Preparation for Pattern-Recognition Process

During the second stage of visual information processing, one of the ways to increase
classification accuracy is image segmentation. This field was thoroughly investigated in
the work [27].

Segmentation is the process of dividing a digital image into a set of its constituent regions
in order to select objects and their boundaries. There is a variety of elaborated segmentation
methods, and each of them can be suitable for particular image categories [28–30].

The article [31] provides an overview of segmentation techniques:

• Pixel-based methods;
• Edge-based methods;
• Region-based methods.

One of the segmentation methods is clustering. Image clustering consists of a division
of pixels into several non-intersecting groups in such a way that pixels from the same
group have similar features; meanwhile, the features of pixels from different groups vary
significantly from each other. Until the current moment, plenty of different clustering
methods have been elaborated [32].

One of the most widespread clustering methods is k-means [33]. Its main idea consists
in minimizing the distance between the objects in the clusters. The algorithm stops running
when further minimization becomes impossible.

The other well-known clustering method is fuzzy C-means [34]. The method is based
on fuzzy logic, i.e., on the assumption that each object from the given set, to some extent,
belongs to a particular cluster from the given set of clusters.

3. System Description
3.1. Hardware

In this section, we explain the hardware used in this paper. One UAV was used in the
experiments, known as HEIFU.

The HEIFU is a custom-made solution, aimed at the agricultural sector, developed
by a collaboration between BEV and PDMFC. The HEIFU is equipped with an onboard
computer running on Ubuntu and a ROS. This is an open platform that allows different
inputs to be integrated and is used to run multiple tasks, such as image processing, data
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relaying, remote control of a drone, and more. The HEIFU can be used with different
communication systems, such as a mobile network or Wi-Fi connection. The HEIFU is
a hexacopter, as it can be seen in Figure 1, with a dimension of 1.4 m in the diagonal
wheelbase. The drone’s weight is around 6.2 kg, including battery, and the hovering time is
around 38 min with a battery of 16 Ah.

Figure 1. UAV used in this work.

Some of the HEIFU specifications are:

• Ardupilot (Pixhawk) hardware is used to control low-level operation. This hardware
contains an IMU and a GPS to know the UAV’s position and orientation; in addition,
the Pixhawk connects to the Jetson nano embedded system via MAVlink protocol
and the UAV’s battery; lastly, to control the UAV’s motors, it is connected to a UHF
receiver;

• A Jetson nano is used to control high-level operation. It receives data from the distance
sensor (depth cameras) and the RGB camera, and it communicates with external
devices via Wi-Fi link;

• An RGB camera with a gimbal stabilizer is installed to capture onboard images at a
resolution of 640 × 480 pixels;

• The camera and lens specifications are known, allowing the field of view (FOV) and
the pixel size in meters to be computed.

For a better understanding of the communications between various system layers, in
Figure 2, the communication layers are represented.

3.2. Data Gathering

Different terrains have singular texture patterns that can be used in their identification.
In this paper, for terrain classification, the importance of static features such as color and
texture is studied. As can be seen in Figure 3, in this paper, four different terrain types
(water, vegetation, asphalt, and sand) are studied.
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Figure 2. High-level communication layers.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Examples of terrain types: water (a,b); vegetation (c,d); asphalt (e); sand (f).
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3.3. Pattern-Recognition Methods
3.3.1. Image Preparation

During monitoring, unexpected situations can occur, and in order not to misclassify
them, it is necessary to take into account all the possible predictors. We consider the RGB
part of the image as an important component, which is why we decided not to convert the
image to gray-scale.

To make the objects on the image insensitive to the light changes and to remove the
noise level, normalization was used. It works according to Equation (1):

(r′, g′, b′) =

(
r√

r2 + g2 + b2
,

g√
r2 + g2 + b2

,
b√

r2 + g2 + b2

)
, (1)

where r, g, and b are the initial values of a pixel’s RGB vector; r’, g’, and b’ are the normalized
values of a pixel’s RGB vector.

3.3.2. Particle Swarm Optimization

The existing clustering methods have the following drawbacks:

• Sensitivity to outliers;
• Need to specify clustering parameters beforehand;
• Uncertainty of actions with objects that possess the properties of two different clusters

simultaneously.

All the shortcomings were taken into account, and the authors elaborated a clustering
method based on a combination of k-means and PSO [35]. The role of PSO consists in auto-
mated centroid determination and pixel allocation, i.e., exclusion of human participation
from the clustering process.

The general functionality of PSO consists of the following steps:

1. There is a swarm of particles, and each of them has coordinate xi ∈ Rn and velocity vi;
f is the function that needs to be minimized; pi—the best-known ith particle position;
g—the best-known state of the entire swarm;

2. For each particle si ∈ S, it is necessary to:

• Generate an initial position;
• Assign to the best-known position of particle pi its initial value xi;
• In the case where f (pi) < f (g), there is a necessity to update the value from g

to p;
• Generate a particle velocity.

3. Until the stopping criterion is reached, the following points should be fulfilled for
each particle:

• Generate random vectors rp and rs, which have a range of values between 0
and 1;

• Update the particle velocity as in Equation (2):

vi = w ∗ vi + φp ∗ rp × (pi − xi) + φg ∗ rg × (g− xi), (2)

where × is a vector product operation, and w, φp, and φg are the parameters
specified by the user;

• The particle position should be changed according to Equation (3):

xi = xi + vi (3)

• Compare the values of f (xi) and f (pi); if the first value is less than the second one,
the best-known position of particle pi should be replaced by xi; if f (pi) < f (g),
the value of parameter g is to be changed to the value of pi.

4. In the end, parameter g contains the best solution.
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The algorithm of the elaborated clustering method [36] is as follows:

1. Image unification: The rounding of W ′ pixels horizontally and H′ pixels vertically
to the nearest values of W and H, respectively, which are multiples of 10, in the
normalized image;

2. Initial cluster distribution: The sequential selection of 10-by-10 regions in the image;
3. Automated initial centroid allocation: The choosing of the pixel with maximum

average intensity; average intensity is calculated as in Equation (4):

Iav =
r′ + g′ + b′

3
, (4)

where r′, g′, and b′ are the normalized values of a pixel’s RGB vector;
4. Cluster merging: The comparison of the rounded average intensity values for cen-

troids from neighboring regions; the comparison is conducted vertically and horizon-
tally relatively to each cluster. If the rounded average intensity values are equal to
each other, two neighboring clusters are combined into one. In the merged cluster, the
centroid is the pixel with the maximum average intensity value; this step needs to be
repeated until there are M clusters cj, j ∈ [1, M] with the pairwise distinct rounded
average intensity values of the centroids. In terms of PSO, the stopping criteria is a
situation whereby further cluster merging is impossible, and all the rounded average
intensity values are different;

5. For each pixel, the distance function d and color function f need to be calculated; they
are shown in Equation (5) and Equation (6), respectively:

d(xi, cj) =
√
(xiw − cjw)

2 + (xih − cjh)
2, (5)

where xiw and xih are the coordinates of the given pixel per width and height of the
image, and cjw and cjh are the coordinates of the centroid per image width and height;

f (xi, cj) =
√
(r′xi
− r′cj

)2 + (g′xi
− g′cj

)2 + (b′xi
− b′cj

)2, (6)

where r′xi
, g′xi

, and b′xi
are the normalized values of the RGB vector of pixel xi; cj is the

centroid of the cluster Cj; and r′cj
, g′cj

, and b′cj
are the normalized values of the RGB

vector of centroid cj;
6. For each pixel xi, it is necessary to find a center of mass ca, relative to which the

distance function value is minimum, and a centroid cb, relative to which the value of
the color function is minimum (a, b ∈ [1, M]);

7. The following differences need to be calculated as expressed in
Equations (7) and (8):

ddi f f = |d(xi, ca)− d(xi, cb)| (7)

fdi f f = | f (xi, ca)− f (xi, cb)| (8)

8. The function with the least difference should be chosen as a priority function (in case
ddi f f equals to fdi f f , the distance function obtains priority because pixels that are
closer to each other are more likely to belong to the same object than the ones that
have similar colors);

9. The allocation of pixels to clusters is realized according to the priority function, e.g.,
pixel xi is assigned to a cluster if the priority function value between this pixel and
this cluster’s centroid is minimum. Thus, the objective function of the elaborated
clustering method can be expressed by Equation (9):{

∑M
k=1 ∑N

i=1 d(xi, ck)→ min

∑M
k=1 ∑N

i=1 f (xi, ck)→ min
(9)
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10. Denoising by the non-local means method [37]: The non-local means algorithm was
chosen due to its ability to preserve the image texture details [38]. This method is
illustrated by Equation (10):

u(p) =
1

C(p)

∫
Ω

v(q) f (p, q)dq, (10)

where u(p) is a filtered intensity value of pixel color component at point p; v(q) is an
unfiltered intensity value of pixel color component at point q; f (p, q)—weighting func-
tion; C(p)—normalizing factor. A Gaussian function is used as the weight function,
and it is represented in Equation (11):

f (p, q) = e
−|B(q)−B(P)|2

h2 , (11)

where h is the filter parameter (for RGB images, h equals 3); B(p) is a local average
intensity value of pixel color components around point p; and B(q) is a local average
intensity value of pixel color components around point q. Normalizing factor C(p) is
calculated as in Equation (12):

C(p) =
∫

Ω
f (p, q)dq (12)

3.3.3. Gray-Level Co-Occurrence Matrix

As explained in Section 2, previous research works have described different terrain
classification approaches mainly using static features from RGB images taken onboard of
UAVs. This section illustrated the design of a computer vision system to classify terrain
types that extracts features from the UAV’s downwash effect known as GLCM. Thus, two
main steps were considered:

1. GLCM mask design;
2. Calculation of 27 features.

As a first step, it was necessary to create the GLCM N × N matrix. In this paper, the
matrix dimensions were 256 × 256 because the input images were defined between 0 and
255 levels (256 gray levels).

In this paper, we chose d = 100 (offset), θ = 0, and a symmetric matrix in order to have
a trade-off between noise and system speed. These values were obtained by trial and error.

As it can be seen in Algorithm 1, the initial GLCM matrix was created. For the
development of the second stage of the matrix, the transpose matrix MT was developed
using Algorithm 2.

Algorithm 1 GLCM mask design.

sizeGlcmMask← 256
glcmArray[sizeGlcmMask][sizeGlcmMask]
rows← y f
cols← x f
pixelPtrRead← imageGray.data
for y = yi to rows do

for x = xi to cols− glcmO f f set do
i← pixelPtrRead(y, x)
j← pixelPtrRead(y, x + glcmO f f set)
glcmArray[i][j] += 1

end for
end for
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Algorithm 2 GLCM transpose mask design.

sizeGlcmMask← 256
glcmTranspose[sizeGlcmMask][sizeGlcmMask]
for y = 0 to sizeGlcmMask− 1 do

for x = 0 to sizeGlcmMask− 1 do
glcmTranspose[x][y] += glcmArray[y][x]

end for
end for

For the last step in creating the presented algorithm, the symmetric matrix was devel-
oped, as shown in Equation (13):

MF = M + MT (13)

Thus, Algorithm 3 was designed in order to present the final GLCM matrix.

Algorithm 3 GLCM transpose mask design.

for y = 0 to sizeGlcmMask− 1 do
for x = 0 to sizeGlcmMask− 1 do

glcmArray[y][x] += glcmTranspose[y][x]
end for

end for

Figure 4 shows an example of water terrain results using the GLCM algorithm.
With the GLCM matrix defined, 26 textural features and 1 intensity color were extracted

to classify the terrain. The calculations were conducted according to Equations (14)–(22):

pi−j,k =
N−1

∑
i=0

N−1

∑
j=0

p(i, j) i f k = |i− j| k = 0, ..., N − 1 (14)

pi−j,k =
N−1

∑
i=0

N−1

∑
j=0

p(i, j) i f k = i + j k = 2, ..., 2N (15)

px(i) =
N

∑
j=1

p(i, j) (16)

py(j) =
N

∑
i=1

p(i, j) (17)

HX = −
N

∑
i=1

px(i) · log2(px(i)) (18)

HY = −
N

∑
j=1

py(j) · log2(py(j)) (19)

HXY = −
N

∑
i=1

N

∑
j=1

p(i, j) · log2(p(i, j)) (20)

HXY1 = −
N

∑
i=1

N

∑
j=1

p(i, j) · log2(px(i) · py(j)) (21)

HXY2 = −
N

∑
i=1

N

∑
j=1

px(i) · py(j) · log2(px(i) · py(j)) (22)
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where p(i, j) = (i, j)th is the entry in a GLCM normalized matrix, and N is the maximum
gray intensity level (in this paper, 255). Thus, Table 1 shows the total texture and color
features used in this section to classify the terrain under study.

GLCM Matrix with d=10 and theta=0 - Pool terrain

50 100 150 200 250

Number of gray levels pairs

50

100

150

200

250

G
ra

y
L

e
ve

l

(a)

(b)

Figure 4. GLCM—result from pool (water) terrain type; (b) is a zoom of (a).
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Table 1. Calculation of 26 textural features.

Feature Computation

Auto-correlation ∑N−1
i=0 ∑N−1

j=0 ij p(i, j)

Cluster Prominence ∑N−1
i=0 ∑N−1

j=0 ((i− µ) + (j− µ))4 p(i, j)

Cluster Shade ∑N−1
i=0 ∑N−1

j=0 ((i− µ) + (j− µ))3 p(i, j)

Cluster Tendency ∑N−1
i=0 ∑N−1

j=0 ((i− µ) + (j− µ))2 p(i, j)

Contrast ∑N−1
i=0 ∑N−1

j=0 |i− j|2 · p(i, j)

Correlation ∑N−1
i=0 ∑N−1

j=0
(i−µx)(j−µy)·p(i,j)

σx ·σy

Difference Average ∑N−1
k=0 k · pi−j,k

Difference Entropy −∑N−1
k=0 pi−j,k · log2(pi−j,k)

Difference Variance ∑N−1
k=0 (k− Di f f erenceAverage)2 · pi−j,k

Energy ∑N−1
i=0 ∑N−1

j=0 p(i, j)2

Entropy −∑N−1
i=0 ∑N−1

j=0 p(i, j) · log2(p(i, j))

Homogeneity ∑N−1
i=0 ∑N−1

j=0
p(i,j)

1+|i−j|

Homogeneity Moment ∑N−1
i=0 ∑N−1

j=0
p(i,j)

1+|i−j|2

Homogeneity Moment Normalized ∑N−1
i=0 ∑N−1

j=0
p(i,j)

1+ |i−j|2
N2

Homogeneity Normalized ∑N−1
i=0 ∑N−1

j=0
p(i,j)

1+ |i−j|
N

Inverse Variance ∑N−1
i=0 ∑N−1

j=0
p(i,j)

1+|i−j|2 , i 6= j

Informational Measure of Correlation 1 HXY−HXY1
max(HX,HY)

Informational Measure of Correlation 2
√

1− e−2·(HXY2−HXY)

Joint Average ∑N−1
i=0 ∑N−1

j=0 i p(i, j)

Joint Maximum max(p(i, j))

Kurtosis
1
N ·∑

N−1
i=0 (xi−µx)4(

1
N ·∑

N−1
i=0 (xi−µx)2

)2

Skewness ∑N−1
i=0 (xi−µx)3

N·σ3
x

Sum Average ∑2N
k=2 k · pi+j,k

Sum Entropy −∑2N
k=2 pi+j,k · log2(pi+j,k)

Sum Variance ∑2N
k=2 (k− SumAverage)2 · pi+j,k

Variance ∑N−1
i=0 ∑N−1

j=0 (i− µ)2 · p(i, j)

where the following apply:

• Auto-correlation: A measure of the magnitude of the fineness and coarseness of texture;
• Joint Average: The gray-level weighted sum of joint probabilities;
• Cluster Prominence: It measures the GLCM asymmetry; higher values indicate more

asymmetry, whereas lower values indicate the peak of the distribution centered
around the mean;

• Cluster Shade: It measures the skewness of the GLCM matrix; a higher value
indicates asymmetry;

• Cluster Tendency: It measures the heterogeneity that places higher weights on neigh-
boring intensity level pairs that deviate more from the mean;
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• Contrast: It is used to return the intensity level between a pixel and its neighbor
throughout the entire image;

• Correlation: This method is important to define how a pixel is correlated with its
neighbor throughout the entire image;

• Difference Average: It measures the mean of the gray-level difference distribution of
the current frame;

• Difference Entropy: It measures the disorder related to the gray-level difference
distribution of the current frame;

• Entropy: This feature measures the randomness of the intensity distribution. The
greater the information’s heterogeneity in an image, the greater the entropy value is;
however, when homogeneity increases, the entropy tends to 0;

• Homogeneity: Known as Inverse Difference Moment, this equation returns 1 when
the GLCM is uniform (diagonal matrix);

• Homogeneity Moment: It measures the local homogeneity of an image; the result is a
low Homogeneity Moment value for heterogeneous images and a relatively higher
value for homogeneous images;

• Homogeneity Moment Normalized: It has the same goal as the Homogeneity Mo-
ment, but the neighboring intensity values are normalized by the highest intensity
value with a power of 2;

• Homogeneity Normalized: It has the same goal as the Homogeneity Moment but the
neighboring intensity values are normalized by the highest intensity value;

• Sum Average: It measures the mean of the intensity level sum distribution of the
current frame;

• Sum Entropy: It measures the disorder related to the intensity value sum distribution
of the current frame;

• Sum Variance: It measures the dispersion of the intensity number sum distribution of
the current frame;

• Variance: It represents the measure of the dispersion of the values around the mean.

To provide more information to the system about the terrain color under study, the HSV
method was used, and it is explained in this section.

Figure 5 shows one way to represent this color model. The Hue component represents
a distinct color, represented by an angle and thus with values between 0 and 360 (values
in degrees; the range can also be represented in radians [0, 2π] or values in the range
[0, 1] if the RGB channels are divided by 255 (max byte value)). The Saturation and Value
components usually correspond to the range [0, 255] or [0, 1]. The lower the saturation
value is, the grayer the image becomes. Regarding Value, the higher its value is, the brighter
the image is.

Figure 5. HSV color model.

Thus, for RGB-to-HSV conversion images, the following Equations (23)–(25) were used,
where R, G, and B correspond to the red, green, and blue (respectively) pixel components;
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Min is the minimum of the three channels (Min(R,G,B)); and Max is also the maximum
value of the three channels (Max(R,G,B)):

Hue =



0 i f Max = Min

60 · G− B
Max−Min

i f Max = R & G ≥ B

60 · G− B
Max−Min

+ 360 i f Max = R & G < B

60 · B− R
Max−Min

+ 120 i f Max = G

60 · R− G
Max−Min

+ 120 i f Max = B

(23)

Saturarion =
Max−Min

Max
(24)

Value = Max (25)

3.4. System Architecture

Thus, after explaining the features used in this section, in order to explain how
the GLCM and PSO algorithms were applied in this paper, the proposed system model for
terrain classification is presented in Figure 6.

Start

Raw Image

Rectified image

GLCM

Frames > n

Classification

Output (Terrain)

Stop

no

yes

Figure 6. GLCM proposed system model.

From the proposed system model in Figure 6, it is possible to visualize five main
processes identified in the architecture, namely:

• Raw Image: The images obtained by the RGB camera have a resolution of 640 by 480
pixels; after obtaining these images, the RGB information is sent to the next layer;

• Rectified Image: To work with all RGB cameras with the same proposed algorithm,
it is necessary to calibrate the cameras; Section 3.5 explains how to calibrate these
RGB cameras;

• Swarm Optimization: This layer is responsible for segmenting the terrain type cap-
tured by the RGB camera to be sent to the next layer (GLCM);

• Gray-Level Co-Occurrence Matrix: When receiving the segmented images from
the PSO layer, this layer is responsible for transforming a segmented image into
a GLCM matrix, where the features in Section 3.3.3 are calculated;
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• Classification: The outputs generated by the GLCM phases are turned into inputs
for a neural network (NN), which classifies the terrain. In this section, a Multilayer
Perceptron (MLP) architecture is used. The neural network inputs are the output
values from GLCM phase. The neural network model consists of three layers: the
hidden layer contains 10 neurons, whereas the third layer corresponds to the system
output and has the number of possible terrain outputs under study in this paper.
Each neuron is activated by a sigmoidal function; they present a fully connected
feed-forward neural network. During the training stage, 70% of the total data are used
for training, 15% for testing, and 15% for validation.

Given the system model explanation, in this section, four different terrain types (rock,
vegetation, sand, water, and asphalt) are analyzed. The following six figures (Figures 7–12)
show the results of the PSO of each terrain under study in this work. Figures (a) show the
raw images and Figures (b) present the clustering results.

(a) (b)

Figure 7. (a,b) Rock terrain—Segmented data and PSO result.

(a) (b)

Figure 8. (a,b) Vegetation terrain—Segmented data and PSO result.

(a) (b)

Figure 9. (a,b) Sand terrain—Segmented data and PSO result.
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(a) (b)

Figure 10. (a,b) Water terrain A—Segmented data and PSO result.

(a) (b)

Figure 11. (a,b) Water terrain B—Segmented data and PSO result.

(a) (b)

Figure 12. (a,b) Asphalt terrain—Segmented data and PSO result.

3.5. Camera Calibration

An RGB camera can be used to obtain various data from a given environment, such as
length, distance, size, and others. Data may need more than one sensor to be collected. For
this, it is necessary to know the camera’s calibration parameters [39].

As seen in Figure 13, the camera used had a distortion known as fish-eye. Such
distortion allows a greater opening to be obtained; however, the size of the objects is not
coherent. Therefore, the camera was subjected to a calibration process (http://wiki.ros.
org/camera_calibration (accessed on 13 March 2022)) using a tool available in ROS.

http://wiki.ros.org/camera_calibration
http://wiki.ros.org/camera_calibration
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Figure 13. Raw data—fish-eye effect.

The calibration uses a table according to the method proposed in [40], where planar
chessboard patterns with known dimensions are presented. The planar chessboard is
presented at different angles and positions for computing the relationship among the
distances between each point, as can be seen in Figure 14.

Figure 14. Camera calibration using method in [40] .

After calibration, a file is generated containing the camera parameters, which can be
used to remove distortion and compute the images to obtain scene data. The image without
fish-eye distortion through the collected parameters can be seen in Figure 15.

Figure 15. Camera calibration result.
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4. Empirical Part and Discussion of Results

To test the combination of PSO and GLCM, the 27 features studied in Section 3.3.3
were calculated and computed; then, they were applied to each dataset image (see Table 1).
The results of the whole set of studied frames were analyzed, and a combination of 12
of 27 features was selected by the authors. The selected combination of features was:
1—Variance with IMC1; 2—Correlation with Joint Average; 3—Variance with Difference
Entropy; 4—Homogeneity with Variance; 5—Entropy with Variance; 6—Variance with
IMC2; 7—Sum Average with Difference Entropy; 8—Sum Average with IMC1; 9—Sum
Average with IMC2; 10—Auto-Correlation with IMC1; 11—Auto-Correlation with IMC2;
12—Joint Average with IMC2.

As can be seen from the selected feature enumeration, it is possible to conclude that
the impact of the features was the following:

• Variance—41.67% of impact;
• IMC2—33.33% of impact;
• IMC1—25.00% of impact;
• Sum Average—25.00% of impact;
• Joint Average—16.67% of impact;
• Difference Entropy—16.67% of impact;
• Auto-Correlation—16.67% of impact;
• Correlation—8.33% of impact;
• Entropy—8.33% of impact;
• Homogeneity—8.33% of impact.

Since the Variance feature was used in more than 41% of cases, Figures 16–20 show
the results obtained from comparing Variance to IMC1, IMC2, Entropy, Difference Entropy,
Correlation and Homogeneity, for the whole dataset.
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Figure 16. PSO results for IMC1 with respect to Variance: (a) five terrain types; (b) water vs. non-water.
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Figure 17. PSO results for IMC2 with respect to Variance: (a) five terrain types; (b) water vs. non-water.



Symmetry 2022, 14, 1080 18 of 28

0 2 4 6 8 10 12 14
Entropy

0.5

1

1.5

2

2.5

3

Va
ria
nc
e

104 GLCM:Entropy-Variance

Pool
Lake
Vegetation
Sand
Asphalt

(a)

0 2 4 6 8 10 12 14
Entropy

0.5

1

1.5

2

2.5

3

Va
ria
nc
e

104 GLCM:Entropy-Variance

Water
Non-Water

(b)
Figure 18. PSO results for Variance with respect to Entropy: (a) five terrain types; (b) water vs.
non-water.
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Figure 19. PSO results for Difference Entropy with respect to Variance: (a) five terrain types; (b) water
vs. non-water.
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Figure 20. PSO results for Variance with respect to Homogeneity: (a) five terrain types; (b) water vs.
non-water.

In Figures (a), the water terrain type is represented by black (pool) and blue (lake);
green represents the vegetation-type terrain; sand-type terrain is represented by pink; red
represents the asphalt-type terrain. In Figures (b), the water-type terrain is represented by
blue (pool and lake), and black represents the non-water-type terrain.

Using the downwash effect caused by the UAV, the output results are more compact
(as it makes the system much more stable), as can be observed in Figure 21. Using the
proposed dataset and training the NN, we obtained 87.4% accuracy on the training set and
88.7% on the test dataset.
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Figure 21. PSO and GLCM algorithms: (a,c) without downwash effect; (b,d) with downwash effect.

Since the processing time is an important factor in terrain classification, the authors of
this paper also studied the GPU capabilities in the GLCM matrix design using the CUDA
framework. To build the GLCM matrix, the pixel values are used as the coordinates of the
matrix itself. Therefore, if one or more threads try to write in the same coordinates of the
GLCM matrix, an undefined result occurs. To solve this, atomic operations are needed to
serialize operations and ensure that the latest value is read. Hence, whenever there is more
than one thread writing in the same position in the GLCM matrix, priority is given to the
first thread, etc. This solution has an advantage and a disadvantage:

• Advantage—The atomic operation ensures that there are no undefined values and the
final result is correct;

• Disadvantage—The disadvantage centers on the fact that parallelism gets lost in these
situations of having to write in the same memory; in this way, the processing time is
reduced.

To verify this effect in detail (several threads writing in the same memory at the same
time), the CUDA algorithm ran on two images, as shown in Figure 22, and the GLCM
matrix processing time in both figures was registered. With the same image dimensions
(width = 640 and height = 480) and the same number of blocks and threads in each block,
the two following statements were drawn: The processing using CUDA programming in
Figure 22a was 0.230 ms, while in Figure 22b, it was 0.195 ms; therefore, in Figure 22b,
the processing time was 1.18 times faster than in Figure 22a. These results are due to
the fact that in water-type terrains, the pixel values are closer to each other (being a
much more homogeneous image) than in vegetation-type terrains, where there is a greater
diversity of pixel colors. There is a greater probability that the threads write in the same
memory position when studying water-type terrains and, consequently, suffer from poorer
processing-time performance.
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(a) (b)

Figure 22. Images for CUDA test: (a) water; (b) vegetation.

The difference in processing time when programmed in the CPU and GPU concerning
the GLCM matrix was also studied in detail. Figure 22a was used as a case study, and the
difference was analyzed for different resolutions, maintaining the same number of threads
in each block and a ratio of grid blocks of Width/threads in X and Height/thread in Y.
Table 2 and Figure 23 show the results obtained.

(a) (b)

Figure 23. Performance comparison for CPU and GPU: (a) processing time in relation to resolution;
(b) FPS in relation to resolution.

From Table 2 and Figure 23a,b it is possible to conclude that using the capacities of
the GPU always resulted in a better processing time regardless of the image size and the
distance parameter (distance between pixels to form GLCM matrix cell) for the developed
GLCM matrix.

As illustrated in Figure 23a,b, it is possible to make some important observations.
Regarding resolution, as it increased, the processing time also increased when programming
using the CPU and GPU, mainly at the 16,384 × 16,384 resolution, where the processing
time using the CPU was approximately 1 s and 0.190 s using the GPU (with the distance
parameter equal to 1). It is also possible to observe that as the resolution of the image
increased, the processing time increased exponentially both in the CPU and GPU. It is also
known that, generally, the higher the resolution of the image is, the greater the accuracy of
terrain classification is (it is possible to obtain many more data in the same image). It is
necessary to have a trade-off between system accuracy and algorithm processing time. In
terms of the choice between CPU and GPU, the GPU is preferred because of its ability to
process the video stream in real-time, which is vital in the context of UAV monitoring.
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Table 2. Processing time for different resolutions and GLCM distance parameters.

Width Height Distance CPU Working
Time (ms)

GPU Working
Time (ms) Acceleration

640 480
1 2.491 0.240 10.379

100 1.944 0.230 8.452

1024 1024
1 5.408 0.488 11.082

100 5.067 0.418 12.122

4096 4096
1 69.617 8.194 8.496

100 67.392 7.965 8.461

8192 8192
1 271.039 40.576 6.680

100 269.634 36.995 7.288

16,384 16,384
1 1092.070 190.093 5.745

100 1078.060 145.195 7.425

Based on the obtained accuracy results, the authors conducted a comparison with the
existing methods of terrain classification. Table 3 shows the general overview of terrain
recognition accuracy for the existing methods and the authors’ algorithm.

Some of the works researched used the optical flow concept to classify terrains [41–43].
Until now, without counting the articles published by the authors of this paper, only one
recent publication [41] used this concept for terrain classification. The work [41] used
the optical flow concept to extract the dynamic part of an image using the Lucas–Kanade
method [44] from an onboard RGB camera, as can be seen in Figure 24.

(a) (b)

Figure 24. (a,b) Optical flow using the Lucas–Kanade algorithm with the downwash effect.
Courtesy of [41].

As can be seen from Figure 25, the authors stated that the downwash effect caused by
UAVs on water-type terrains gives rise to a circular motion in which the flows detected by
the optical flow start from the center and point outwards.

However, the algorithm proposed by the authors in [41] has two crucial points:

1. Robustness of the algorithm—Since in water-type terrains movement is circular, it is
natural that there is a dispersion at all angles of the captured image; however, if the
center of the downwash is not in the center of the image, this dispersion may not occur
at all angles in a water-type terrain. In this way, the authors may erroneously conclude
that they are not on water-type terrain when, apparently, they are; consequently, the
drone would land and damage its hardware;

2. Processing time—The significantly long algorithm processing time is an issue, since it
needs at least four seconds to classify whether the terrain under study is water-type or
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not, which means that the UAV needs to stand still for at least four seconds to classify
which type of terrain it is flying over.

Figure 25. Optical flow using the Lucas–Kanade algorithm with the downwash effect.
Courtesy of [41].

Table 3. Terrain classification—accuracy comparison.

Method Terrain Recognition Accuracy (%)

GLCM [45] 81.90

GLCM [46] 86.60

LBP [46] 90.48

Depth Texture Features [47] 92.30

LiDAR [48] 75.55

Multispectral Camera [49] 80.00

Hyperspectral Camera [50] 81.18

Normalized Color [51] 67.00

HOG [52] 86.54

Voronoi [53] 82.30

LBP [54] 96.90

LTP [54] 98.10

LATP [54] 97.20

Gabor [55] 96.11

Optical Flow [41] 87.00

CNNs [56] 86.25

RNN [57] 83.49

PSO + GLCM 88.70

The developed terrain recognition system showed a higher recognition accuracy
than the majority of the reviewed methods. One of the key features of the elaborated
method is the focus on the image-quality improvement—PSO denoises the raw image
and at the same time stores the main texture features. This is vital in the field of UAV
monitoring, as the image quality can be impacted by bad weather conditions, illumination
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issues, etc. In addition, the use of downwash forms more significant features for further
terrain-type recognition.

In addition to the visible band (RGB), there are also bands with other frequencies
that are used in terrain classification [58,59]. The cameras that use these bands are usually
thermal (flir cameras) and multispectral cameras (for example, Micasense RedEdge), as
shown in Figure 26.

From the images obtained by the cameras presented in Figure 26, the authors, after
aligning the lenses from the red band, used five multispectral indices (NDVI, ENDVI
RDVI, MSAVI, and SR) to classify four different terrain types: water, vegetation, sand,
and rocks [59]. However, despite the good accuracy of the system proposed by the authors,
detecting various types of terrain when the height is higher than 60 m can mean a loss
of resolution when classified. Another disadvantage is that shadows can be confused
with water-type terrains, due to the fact that water has low values in the NIR and Red-
Edge bands.

(a) (b)

Figure 26. Multispectral cameras: (a) RedEdge-M and (b) FLIR Duo Pro R.

5. Mapping

After the classification of terrain types (water and non-water), it is necessary to georef-
erence the results obtained by the NN. Using the ROS framework, it is possible to build
a dynamic map where all the information obtained by the neural network is allocated.
Therefore, in order to validate the dynamic mapping algorithm, a flight test was carried out
in Parque da Paz, Portugal. In this test, the UAV performed a mission where it flew over
water-type terrain (lake) and non-water-type terrain (vegetation), as shown in Figure 27.

As the UAV flew over different types of terrain, it sent the images via Wi-Fi (using
the ROS framework) to the machine responsible for running the algorithms for terrain
classification. When the result of each classification was generated, a dynamic map was
created as follows:

1. Black: It represents the water-type terrain;
2. White: It represents the non-water-type terrain;
3. Gray: It represents the unknown-type terrain.

Figure 28 shows the georeferenced map results. It is possible to conclude that the
proposed algorithm was able to correctly georeference the outputs generated from each
image from the UAV. It should be noted that there were different sizes in the generated
output due to the different altitudes at which the UAV flew during the mission. It should
also be noted that there were certain gaps in each generated output due to the lower UAV
GPS resolution.



Symmetry 2022, 14, 1080 24 of 28

Figure 27. Mission test in Parque da Paz, Portugal.

.
Figure 28. Georeferenced dynamic map results in Parque da Paz, Portugal.

6. Conclusions
6.1. Results

A computer vision system for classifying terrain types was elaborated. It includes
preprocessing by means of PSO, GLCM feature extraction, and a feed-forward neural
network.

PSO provides an opportunity for denoising and unifying the images regardless of
shooting and weather conditions. An algorithm was developed that consists of preprocess-
ing, feature extraction, and classification. It is capable of recognizing the following different
terrain types based on UAV downwash: water, vegetation, asphalt, and sand.

The key features of the developed method are:

• Focus on the preprocessing stage via PSO, which contributes to the recognition-
accuracy improvement and can be useful for the systems that are used in a dynamic
environment and operate in changing conditions;
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• The downwash effect is taken as a base in terrain-type recognition that forms signifi-
cant features to provide high classification accuracy.

Prospectively, the opportunity of terrain-type classification can contribute to the
geolocation determination and self-positioning that could be useful in different spheres of
life: monitoring, production, construction, transportation, etc.

6.2. Future Work

Despite the high recognition accuracy obtained, there are several areas in which
improvements are foreseen. We plan to further investigate the following topics:

• Perform a more in-depth study on changing the environment colors and improving the
robustness of the algorithm. One of the method’s limitations is that a color variation
could influence the results with false positives/negatives; although the dynamic
texture does not suffer much from these changes, due to the similarity in the way the
terrain moves, this could highly affect the static texture;

• Since the algorithm was designed for a UAV flying at an altitude of between one and
two meters, it is likely that at this altitude, the UAV may collide with objects in the
environment. One of the authors of this paper developed an algorithm [60] to avoid
obstacles from images taken from a depth camera; however, currently, it only works
with static objects. An improved version of this algorithm could be used to support
the autonomous navigation of the proposed system;

• It is also important to conduct a more in-depth study into different camera resolutions
in order to improve the robustness of the proposed system; however, the system
performance may be affected by higher resolutions.
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The following abbreviations are used in this manuscript:

GLCM Gray-Level Co-Occurrence Matrix
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PSO particle swarm optimization
ROS Robot Operating System
HEIFU Hexa Exterior Intelligent Flying Unit
BEV Beyond Vision
PDMFC Projeto Desenvolvimento Manutenção Formação e Consultadoria
UAV unmanned aerial vehicle
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