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1. Introduction

Let A be the class consisting of the functions of the form

f (z) = z +
∞

∑
k=2

akzk , (1)

which are analytic in the open symmetric unit disc U = {z ∈ C : |z| < 1}. A function
f ∈ A is said to be strongly starlike of order δ and type γ, denoted by S∗(δ, γ), if it satisfies∣∣∣∣∣arg

(
z f
′
(z)

f (z)
− γ

)∣∣∣∣∣ < δπ

2
, 0 ≤ γ < 1 and 0 < δ ≤ 1. (2)

On the other hand, a function f ∈ A is said to be strongly convex of order δ and type
γ, denoted by K(δ, γ),if it satisfies∣∣∣∣∣arg

(
1 +

z f
′′
(z)

f ′(z)
− γ

)∣∣∣∣∣ < δπ

2
, 0 ≤ γ < 1 and 0 < δ ≤ 1. (3)

In (2) and (3) , if γ = 0, then f belongs to the class of strongly starlike and con-
vex functions of order δ, respectively, which have been studied by Mocanu [1] and
Nunokawa [2], while if δ = 1, then f ∈ S∗(γ) and f ∈ K(γ), where S∗(γ) and K(γ) are
the classes of starlike and convex functions of order γ, respectively, which were introduced
by Robertson [3]. In particular, if γ = 0 and δ = 1, then the functions f ∈ S∗(0) ≡ S∗
and f ∈ K(0) ≡ K, where S∗ and K are the classes of starlike and convex functions,

Symmetry 2022, 14, 1079. https://doi.org/10.3390/sym14061079 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14061079
https://doi.org/10.3390/sym14061079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-0694-4358
https://orcid.org/0000-0001-7498-2228
https://orcid.org/0000-0003-1708-2228
https://doi.org/10.3390/sym14061079
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14061079?type=check_update&version=1


Symmetry 2022, 14, 1079 2 of 20

respectively. For 0 ≤ γ, α < 1 and 0 < δ, β ≤ 1, let B(δ, γ, β, α) be the class of functions
f ∈ A satisfying the condition ∣∣∣∣∣arg

(
z f
′
(z)

k(z)
− γ

)∣∣∣∣∣ < δπ

2
, (4)

for some k ∈ S∗(β, α). In (4), if δ = β = 1, then the function f ∈ B(γ, α), where B(γ, α)
is the class of close-to-convex functions of order γ and type α, which has been studied
by Libera [4], while if γ = α = 0 and β = 1, then f belongs to the class of strongly
close-to-convex functions of order δ, which has been studied by Reade [5].

If f , g ∈ A such that f is given by (1) and g is given by g(z) = z +
∞
∑

k=2
bkzk, then the

Hadamard product ( f ∗ g)(z) is defined by

( f ∗ g)(z) = z +
∞

∑
k=2

akbkzk.

It is well -known that

z( f ∗ g)′ = f ∗ zg′ = g ∗ z f ′. (5)

Many real-life phenomena can be described and modelled using distributions of ran-
dom variables, which have an important role in statistics and probability. Some of these
distributions are commonly used and have been specified by special names to empha-
size their significance, such as the Binomial, Poisson, and Pascal (or Negative Binomial)
distribution. The Pascal distribution has been widely used in many fields such as com-
munications, health, climatology, demographics, and engineering (see [6]). Recently, in
geometric function theory, there has been a growing interest in studying the geometric
properties of analytic functions associated with the Pascal distribution (see [7–13]).

A variable x is said to be a Pascal (or Negative Binomial) distribution if it takes the
values 0, 1, 2, 3, . . . with probabilities

(1− q)m,
qm(1− q)m

1!
,

q2m(m + 1)(1− q)m

2!
,

q3m(m + 1)(m + 2)(1− q)m

3!
, ...,

respectively, where m and q are called the parameters, and thus

P(x = n) =
(

n + m− 1
m− 1

)
qn(1− q)m, n = 0, 1, 2, ....

This distribution is based on the binomial theorem with a negative exponent and it
describes the probability of m success and n failure in (n + m− 1) trials, and success on
(n + m)th trials where (1− q) is the probability of success.

Recently, a power series whose coefficients are probabilities of the Pascal distribution
was introduced by El-Deeb et al. [14] as follows

Θm
q (z) = (1− q)mz +

∞

∑
k=2

(
k + m− 2

m− 1

)
qk−1(1− q)mzk (z ∈ U),

where m ∈ Z+, 0 ≤ q ≤ 1. By the ratio test, we can note that the radius of convergence of
the series above is infinity. For m ∈ Z+, 0 ≤ q < 1,we consider the Pascal operator

Λm
q : A → A ,
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which is defined as follows

Λm
q f (z) = fq,m(z) ∗ f (z),

= z +
∞

∑
k=2

(
k + m− 2

m− 1

)
qk−1akzk (z ∈ U),

where

fq,m(z) =
Θm

q (z)

(1− q)m = z +
∞

∑
k=2

(
k + m− 2

m− 1

)
qk−1zk (z ∈ U).

Now, we define the operator Lm
q : A → A which is analogous to the Pascal operator

Λm
q , as follows

Lm
q f (z) = f (−1)

q,m (z) ∗ f (z) (z ∈ U), (6)

where
fq,m(z) ∗ f (−1)

q,m (z) =
z

1− z
(z ∈ U). (7)

We define and investigate the properties of the following new classes of analytic
functions by using the two operators Λm

q and Lm
q . Let

S∗Λ,m,q(δ, γ) =
{

f ∈ A : Λm
q ( f ) ∈ S∗(δ, γ), 0 ≤ γ < 1,0 < δ ≤ 1, z ∈ U

}
, (8)

S∗L,m,q(δ, γ) =
{

f ∈ A : Lm
q ( f ) ∈ S∗(δ, γ), 0 ≤ γ < 1,0 < δ ≤ 1, z ∈ U

}
, (9)

KΛ,m,q(δ, γ) =
{

f ∈ A : Λm
q ( f ) ∈ K(δ, γ), 0 ≤ γ < 1,0 < δ ≤ 1, z ∈ U

}
, (10)

KL,m,q(δ, γ) =
{

f ∈ A : Lm
q ( f ) ∈ K(δ, γ), 0 ≤ γ < 1,0 < δ ≤ 1, z ∈ U

}
, (11)

BΛ,m,q(δ, γ, β, α) =
{

f ∈ A : Λm
q ( f ) ∈ B(δ, γ, β, α), 0 ≤ γ, α < 1

and 0 < δ, β ≤ 1, z ∈ U}, (12)

and

BL,m,q(δ, γ, β, α) =
{

f ∈ A : Lm
q ( f ) ∈ B(δ, γ, β, α), 0 ≤ γ, α < 1

and 0 < δ, β ≤ 1, z ∈ U}. (13)

In 1975, Ruscheweyh [15] introduced his famous differential operator of normalized
analytic functions in the open symmetric unit disc U. This operator has an important role in
geometric function theory. In this paper, motivated by the significant work of Ruschewey,
we obtained some argument properties and inclusion relations of the classes S∗Λ,m,q(δ, γ),
S∗L,m,q(δ, γ), KΛ,m,q(δ, γ), KL,m,q(δ, γ), BΛ,m,q(δ, γ, β, α), and BL,m,q(δ, γ, β, α). Additionally,
we derive the integral preserving properties of these classes.

2. Inclusion Relations

In proving our main results, we need the following lemmas.

Lemma 1. [16] (Alexander’s Theorem). Let f ∈ A. Then f ∈ K ⇐⇒ z f
′ ∈ S∗.

Lemma 2. [2] Let l(z) = 1 + c1z + c2z2 + ... be analytic function in U and suppose that there
exists a point z0 ∈ U such that

|arg l(z)| < δπ

2
(|z| < |zo|),
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and
|arg l(zo)| =

δπ

2
,

where 0 < δ ≤ 1. Then we have
zol
′
(zo)

l(zo)
= ibδ,

where

b ≥ 1
2

(
d +

1
d

)
when arg l(zo) =

δπ

2
,

and

b ≤ −1
2

(
d +

1
d

)
when arg l(zo) = −

δπ

2
,

where (l(zo))
1/δ = ±id, d > 0.

Proposition 1. z
(

Λm
q f (z)

)′
= mΛm+1

q f (z)− (m− 1)Λm
q f (z).

Proof. Since

Λm+1
q f (z) = z +

∞

∑
k=2

(
k + m− 1

m

)
qk−1akzk,

then

Λm+1
q f (z) = z +

∞

∑
k=2

(k + m− 1)(k + m− 2)!
m(m− 1)!(k− 1)!

qk−1akzk,

= z +
1
m

∞

∑
k=2

k
(

k + m− 2
m− 1

)
qk−1akzk +

m− 1
m

∞

∑
k=2

(
k + m− 2

m− 1

)
qk−1akzk,

=
1
m

{
z +

∞

∑
k=2

k
(

k + m− 2
m− 1

)
qk−1akzk

}

+
m− 1

m

{
z +

∞

∑
k=2

(
k + m− 2

m− 1

)
qk−1akzk

}
,

=
1
m

z
(

Λm
q f (z)

)′
+

m− 1
m

Λm
q f (z),

which is equivalent to

mΛm+1
q f (z) = z

(
Λm

q f (z)
)′

+ (m− 1)Λm
q f (z).

This completes the proof of Proposition 1.

By using (5)–(7) and Proposition 1, we get the following identity

z
(
Lm+1

q f (z)
)′

= m
(
Lm

q f (z)
)
− (m− 1)

(
Lm+1

q f (z)
)

. (14)

In the following theorems, we will prove several inclusion relationships for analytic
function classes, which are associated with Λm

q and Lm
q .

Theorem 1. S∗Λ,m+1,q(δ, γ) ⊂ S∗Λ,m,q(δ, γ), 0 ≤ γ < 1 and 0 < δ ≤ 1.
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Proof. Let f ∈ S∗Λ,m+1,q(δ, γ). We need to show that∣∣∣∣∣∣∣arg

 z
(

Λm
q f (z)

)′
Λm

q f (z)
− γ


∣∣∣∣∣∣∣ <

δπ

2
, 0 ≤ γ < 1, 0 < δ ≤ 1.

Set
z
(

Λm
q f (z)

)′
Λm

q f (z)
= γ + (1− γ)l(z), (15)

where l(z) = 1 + c1z + c2z2 + .... By using Proposition 1 and (15), we get

Λm+1
q f (z)

Λm
q f (z)

=
1
m
[γ + m− 1 + (1− γ)l(z)]. (16)

Differentiating both sides of (16) logarithmically, we obtain

z
(

Λm+1
q f (z)

)′
Λm+1

q f (z)
− γ = (1− γ)

[
l(z) +

zl′(z)
γ + m− 1 + (1− γ)l(z)

]
. (17)

Suppose that there exists a point z0 ∈ U such that

|arg l(z)| < δπ

2
(|z| < |zo|),

and
|arg l(zo)| =

δπ

2
,

where 0 < δ ≤ 1. By applying Lemma 2, we get

zol
′
(zo)

l(zo)
= ibδ,

where

b ≥ 1
2

(
d +

1
d

)
when arg l(zo) =

δπ

2
,

and

b ≤ −1
2

(
d +

1
d

)
when arg l(zo) = −

δπ

2
,

where
(l(zo))

1/δ = ±id, d > 0.
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At first, if arg l(zo) =
δπ
2 , then

arg

 z0

(
Λm+1

q f (z0)
)′

Λm+1
q f (z0)

− γ

 = arg

(1− γ)l(zo)

1 +
z0l′(z0)

l(zo)

γ + m− 1 + (1− γ)l(z0)

,

= arg
[
(1− γ)dδeiδπ/2

(
1 +

ibδ

γ + m− 1 + (1− γ)dδeiδπ/2

)]
,

=
δπ

2
+ arg

[
1 +

ibδ

γ + m− 1 + (1− γ)dδeiδπ/2

]
,

=
δπ

2

+ tan−1

 bδ
[
s + tdδ cos

(
δπ
2

)]
s2 + 2stdδ cos

(
δπ
2

)
+ t2d2δ + bδtdδ sin

(
δπ
2

)
,

where s = γ + m− 1 and t = 1− γ. Then

arg

 z0

(
Λm+1

q f (z0)
)′

Λm+1
q f (z0)

− γ

 ≥ δπ

2
,

which obviously contradicts the assumption f ∈ S∗Λ,m+1,q(δ, γ). Similarly, if arg l(zo) = − δπ
2 ,

then we get that

arg

 z0

(
Λm+1

q f (z0)
)′

Λm+1
q f (z0)

− γ

 ≤ − δπ

2
,

which also contradicts the same assumption f ∈ S∗Λ,m+1,q(δ, γ). Therefore, the function l(z)

should satisfy that |arg l(z)| < δπ
2 (z ∈ U). This shows that∣∣∣∣∣∣∣arg

 z
(

Λm
q f (z)

)′
Λm

q f (z)
− γ


∣∣∣∣∣∣∣ <

δπ

2
⇔ f ∈ S∗Λ,m,q(δ, γ).

Hence, the proof is completed.

Theorem 2. S∗L,m,q(δ, γ) ⊂ S∗L,m+1,q(δ, γ), 0 ≤ γ < 1 and 0 < δ ≤ 1.

Proof. Let f ∈ S∗L,m,q(δ, γ). We need to show that∣∣∣∣∣∣∣arg

 z
(
Lm+1

q f (z)
)′

Lm+1
q f (z)

− γ


∣∣∣∣∣∣∣ <

δπ

2
, 0 ≤ γ < 1, 0 < δ ≤ 1.

Set
z
(
Lm+1

q f (z)
)′

Lm+1
q f (z)

= γ + (1− γ)l(z), (18)

where l(z) = 1 + c1z + c2z2 + .... By using (14) and (18), we get

Lm
q f (z)

Lm+1
q f (z)

=
1
m
[γ + m− 1 + (1− γ)l(z)]. (19)
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Using logarithmic differentiation for (19), we obtain

z
(
Lm

q f (z)
)′

Lm
q f (z)

− γ = (1− γ)

[
l(z) +

zl′(z)
γ + m− 1 + (1− γ)l(z)

]
. (20)

The proof is completed similarly to Theorem 1.

Theorem 3. KΛ,m+1,q(δ, γ) ⊂ KΛ,m,q(δ, γ), 0 ≤ γ < 1 and 0 < δ ≤ 1.

Proof. Let f ∈ KΛ,m+1,q(δ, γ). From (10), we have

Λm+1
q ( f ) ∈ K(δ, γ).

Applying Lemma 1, we obtain

z
(

Λm+1
q ( f )

)′
∈ S∗(δ, γ).

From (5), we have
Λm+1

q

(
z f
′) ∈ S∗(δ, γ),

which is equivalent to
z f
′ ∈ S∗Λ,m+1,q(δ, γ).

By using Theorem 1, we get

z f
′ ∈ S∗Λ,m,q(δ, γ),

which is equivelant to

Λm
q

(
z f
′) ∈ S∗(δ, γ).

From (5) and Lemma 1, we obtain

z
(

Λm
q ( f )

)′
∈ S∗(δ, γ)⇔ Λm

q ( f ) ∈ K(δ, γ),

which means f ∈ KΛ,m,q(δ, γ). Hence, the proof is completed.

Theorem 4. KL,m,q(δ, γ) ⊂ KL,m+1,q(δ, γ), 0 ≤ γ < 1 and 0 < δ ≤ 1.

Proof. Let f ∈ KL,m,q(δ, γ). From (11), we have

Lm
q ( f ) ∈ K(δ, γ).

Applying Lemma 1, we obtain

z
(
Lm

q ( f )
)′
∈ S∗(δ, γ).

From (5), we have
Lm

q

(
z f
′) ∈ S∗(δ, γ),

which is equivalent to
z f
′ ∈ S∗L,m,q(δ, γ).

By using Theorem 2, we get

z f
′ ∈ S∗L,m+1,q(δ, γ),
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which is equivelant to
Lm+1

q

(
z f
′) ∈ S∗(δ, γ).

From (5) and Lemma 1, we obtain

z
(
Lm+1

q ( f )
)′
∈ S∗(δ, γ)⇔ Lm+1

q ( f ) ∈ K(δ, γ),

which means f ∈ KL,m+1,q(δ, γ). Hence, the proof is completed.

Theorem 5. BΛ,m+1,q(δ, γ, β, α) ⊂ BΛ,m,q(δ, γ, β, α), 0 ≤ γ, α < 1 and 0 < δ, β ≤ 1.

Proof. Let f ∈ BΛ,m+1,q(δ, γ, β, α) which is equivalent to

Λm+1
q ( f ) ∈ B(δ, γ, β, α).

Then there exists a function k ∈ S∗(β, α) such that∣∣∣∣∣∣∣arg

 z
(

Λm+1
q f (z)

)′
k(z)

− γ


∣∣∣∣∣∣∣ <

δπ

2
, 0 ≤ γ, α < 1, 0 < δ, β ≤ 1.

Letting k(z) = Λm+1
q g(z), we have g ∈ S∗Λ,m+1,q(β, α) and∣∣∣∣∣∣∣arg

 z
(

Λm+1
q f (z)

)′
Λm+1

q g(z)
− γ


∣∣∣∣∣∣∣ <

δπ

2
.

Now, we set

z
(

Λm
q f (z)

)′
Λm

q g(z)
= γ + (1− γ)l(z), (21)

where l(z) = 1 + c1z + c2z2 + .... By using Proposition 1 and (21), we get

mΛm+1
q f (z)− (m− 1)Λm

q f (z) = Λm
q g(z)[γ + (1− γ)l(z)]. (22)

Now, differentiating (22), we obtain

mz
(

Λm+1
q f (z)

)′
= z

(
Λm

q g(z)
)′
[γ + (1− γ)l(z)] +

(
Λm

q g(z)
)
(1− γ)zl

′
(z)

+(m− 1)z
(

Λm
q f (z)

)′
. (23)

If we apply Proposition 1 for the function g(z), then (23) gives

z
(

Λm+1
q f (z)

)′
Λm+1

q g(z)
=

[
1− m− 1

m
Λm

q g(z)

Λm+1
q g(z)

]
[γ + (1− γ)l(z)]

+
Λm

q g(z)

Λm+1
q g(z)

(1− γ)zl
′
(z)

m

+
m− 1

m

z
(

Λm
q f (z)

)′
Λm+1

q g(z)
.
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By using Proposition 1 and (22), we have

z
(

Λm+1
q f (z)

)′
Λm+1

q g(z)
= γ + (1− γ)l(z) +

Λm
q g(z)

Λm+1
q g(z)

(1− γ)zl
′
(z)

m
. (24)

Since k = Λm+1
q (g) ∈ S∗(β, α), an application of Theorem 1, we have∣∣∣∣∣∣∣arg

 z
(

Λm
q g(z)

)′
Λm

q g(z)
− α


∣∣∣∣∣∣∣ <

βπ

2
.

Now, let

z
(

Λm
q g(z)

)′
Λm

q g(z)
= α + (1− α)L(z), (25)

where L(z) = |L(z)|ei arg L(z), |arg(L(z))| < βπ
2 . Therefore, we can rewrite (24) as

z
(

Λm+1
q f (z)

)′
Λm+1

q g(z)
− γ = (1− γ)

[
l(z) +

zl
′
(z)

α + m− 1 + (1− α)L(z)

]
. (26)

Suppose that there exists a point z0 ∈ U such that

|arg l(z)| < δπ

2
(|z| < |zo|),

and
|arg l(zo)| =

δπ

2
,

where 0 < δ ≤ 1. By applying Lemma 2, we get

zol
′
(zo)

l(zo)
= ibδ,

where

b ≥ 1
2

(
d +

1
d

)
when arg l(zo) =

δπ

2
,

and

b ≤ −1
2

(
d +

1
d

)
when arg l(zo) = −

δπ

2
,

where
(l(zo))

1/δ = ±id, d > 0.
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Let α + m− 1 + (1− α)L(z0) = ρei θπ
2 where α + m− 1 < ρ < ∞ and −β ≤ θ ≤ β. At

first, if arg l(zo) =
δπ
2 , then

arg

 z0

(
Λm+1

q f (z0)
)′

Λm+1
q g(z0)

− γ

 = arg

(1− γ)l(zo)

1 +
z0l′(z0)

l(zo)

α + m− 1 + (1− α)L(z0)

,

= arg
[
(1− γ)dδeiδπ/2

(
1 +

ibδ

ρeiθπ/2

)]
,

=
δπ

2
+ arg

[
1 +

bδ

ρ
ei π

2 (1−θ)

]
,

=
δπ

2
+ tan−1 H(θ),

where

H(θ) =
bδ cos θπ

2

ρ + bδ sin θπ
2

,

=
n1 cos θπ

2

1 + n1 sin θπ
2

,

−1 ≤ θ ≤ 1 and 0 < n1 = bδ
ρ < 1. We note that H(θ) is a decreasing function in[

2
π sin−1(−n1), 1

]
and an increasing function in

[
−1, 2

π sin−1(−n1)
]
. Therefore, H(θ) ≥ 0

on [−1, 1] and

arg

 z0

(
Λm+1

q f (z0)
)′

Λm+1
q g(z0)

− γ

 ≥ δπ

2
,

which obviously contradicts the assumption f ∈ BΛ,m+1,q(δ, γ, β, α). Similarly, if
arg l(zo) = − δπ

2 , we get

arg

 z0

(
Λm+1

q f (z0)
)′

Λm+1
q g(z0)

− γ

 = − δπ

2
+ tan−1 H(θ),

where

H(θ) =
bδ cos θπ

2

ρ + bδ sin θπ
2

,

=
n2 cos θπ

2

1 + n2 sin θπ
2

,

−1 ≤ θ ≤ 1 and −1 < n2 = bδ
ρ < 0. We note that H(θ) is an increasing function in[

2
π sin−1(−n2), 1

]
and a decreasing function in

[
−1, 2

π sin−1(−n2)
]
. Therefore, H(θ) ≤ 0

on [−1, 1] and

arg

 z0

(
Λm+1

q f (z0)
)′

Λm+1
q g(z0)

− γ

 ≤ − δπ

2
,



Symmetry 2022, 14, 1079 11 of 20

which also contradicts the same assumption f ∈ BΛ,m+1,q(δ, γ, β, α). Therefore, the function
l(z) should satisfy that |arg l(z)| < δπ

2 (z ∈ U). This shows that∣∣∣∣∣∣∣arg

 z
(

Λm
q f (z)

)′
Λm

q g(z)
− γ


∣∣∣∣∣∣∣ <

δπ

2
⇔ f ∈ BΛ,m,q(δ, γ, β, α).

Hence, the proof is completed.

Theorem 6. BL,m,q(δ, γ, β, α) ⊂ BL,m+1,q(δ, γ, β, α), 0 ≤ γ, α < 1 and 0 < δ, β ≤ 1.

Proof. Let f ∈ BL,m,q(δ, γ, β, α) which is equivalent to

Lm
q ( f ) ∈ B(δ, γ, β, α).

Then there exists a function k ∈ S∗(β, α) such that∣∣∣∣∣∣∣arg

 z
(
Lm

q f (z)
)′

k(z)
− γ


∣∣∣∣∣∣∣ <

δπ

2
, 0 ≤ γ, α < 1, 0 < δ, β ≤ 1.

Letting k(z) = Lm
q g(z), we have g ∈ S∗L,m,q(β, α) and∣∣∣∣∣∣∣arg

 z
(
Lm

q f (z)
)′

Lm
q g(z)

− γ


∣∣∣∣∣∣∣ <

δπ

2
.

Now,we set

z
(
Lm+1

q f (z)
)′

Lm+1
q g(z)

= γ + (1− γ)l(z), (27)

where l(z) = 1 + c1z + c2z2 + .... By using (14) and (27), we get

mLm
q f (z)− (m− 1)Lm+1

q f (z) = Lm+1
q g(z)[γ + (1− γ)l(z)]. (28)

Now, differentiating (28), we obtain

mz
(
Lm

q f (z)
)′

= z
(
Lm+1

q g(z)
)′
[γ + (1− γ)l(z)] +

(
Lm+1

q g(z)
)
(1− β)zl

′
(z)

+(m− 1)z
(
Lm+1

q f (z)
)′

. (29)

If we apply (14) for the function g(z), then (29) gives

z
(
Lm

q f (z)
)′

Lm
q g(z)

=

[
1− (m− 1)

m
Lm+1

q g(z)
Lm

q g(z)

]
[γ + (1− γ)l(z)]

+
Lm+1

q g(z)
Lm

q g(z)
(1− γ)zl

′
(z)

m

+
m− 1

m

z
(
Lm+1

q f (z)
)′

Lm
q g(z)

.
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By using (14) and (28), we have

z
(
Lm

q f (z)
)′

Lm
q g(z)

= γ + (1− γ)l(z) +
(1− γ)zl

′
(z)

m
Lm+1

q g(z)
Lm

q g(z)
. (30)

Since k = Lm
q (g) ∈ S∗(β, α) and by Theorem 2, we get∣∣∣∣∣∣∣arg

 z
(
Lm+1

q g(z)
)′

Lm+1
q g(z)

− α


∣∣∣∣∣∣∣ <

βπ

2
.

Now, let

z
(
Lm+1

q g(z)
)′

Lm+1
q g(z)

= α + (1− α)L(z), (31)

where L(z) = |L(z)|ei arg L(z), |arg(L(z))| < βπ
2 . Therefore, (30) can be written as

z
(
Lm

q f (z)
)′

Lm
q g(z)

− γ = (1− γ)

[
l(z) +

zl
′
(z)

α + m− 1 + (1− α)L(z)

]
. (32)

The rest of the proof is the same as in Theorem 5. Then we obtain that∣∣∣∣∣∣∣arg

 z
(
Lm+1

q f (z)
)′

Lm+1
q g(z)

− γ


∣∣∣∣∣∣∣ <

δπ

2
⇔ f ∈ BL,m+1,q(δ, γ, β, α).

Hence, the proof is completed.

3. Integral Operator

In this section, we will prove several integral-preserving properties of analytic function
classes which are introduced above.

Suppose that f ∈ A and c > −1. For z ∈ U, the Bernardi operator [17] is defined as

Jc( f (z)) =
c + 1

z

∫ z

0
tc−1 f (t)dt. (33)

when c = 1; the integral operator J1 was introduced by Libera [18]. From (33), we can easily
get that

z
(

Λm
q Jc( f (z))

)′
= (c + 1)Λm

q f (z)− cΛm
q Jc( f (z)), (34)

and
z
(
Lm

q Jc( f (z))
)′

= (c + 1)Lm
q f (z)− cLm

q Jc( f (z)). (35)

Theorem 7. For c > γ, let 0 ≤ γ < 1 and 0 < δ ≤ 1. If f ∈ S∗Λ,m,q(δ, γ), then Jc( f ) ∈
S∗Λ,m,q(δ, γ).

Proof. Let f ∈ S∗Λ,m,q(δ, γ). We need to show that∣∣∣∣∣∣∣arg

 z
(

Λm
q Jc( f (z))

)′
Λm

q Jc( f (z))
− γ


∣∣∣∣∣∣∣ <

δπ

2
, 0 ≤ γ < 1, 0 < δ ≤ 1 and c > γ.
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Set
z
(

Λm
q Jc( f (z))

)′
Λm

q Jc( f (z))
= γ + (1− γ)l(z), (36)

where l(z) = 1 + c1z + c2z2 + .... By using (34) and (36), we get

Λm
q f (z)

Λm
q Jc( f (z))

=
1

c + 1
[(c + γ) + (1− γ)l(z)]. (37)

Differentiating both sides of (37) logarithmically, we obtain

z
(

Λm
q f (z)

)′
Λm

q f (z)
− γ = (1− γ)

[
l(z) +

zl′(z)
c + γ + (1− γ)l(z)

]
. (38)

Suppose that there exists a point z0 ∈ U such that

|arg l(z)| < δπ

2
(|z| < |zo|),

and
|arg l(zo)| =

δπ

2
,

where 0 < δ ≤ 1. By applying Lemma 2, we get

zol
′
(zo)

l(zo)
= ibδ,

where

b ≥ 1
2

(
d +

1
d

)
when arg l(zo) =

δπ

2
,

and

b ≤ −1
2

(
d +

1
d

)
when arg l(zo) = −

δπ

2
,

where
(l(zo))

1/δ = ±id, d > 0.

At first, if arg l(zo) =
δπ
2 , then

arg

 z0

(
Λm

q f (z0)
)′

Λm
q f (z0)

− γ

 = arg

(1− γ)l(zo)

1 +
z0l′(z0)

l(zo)

c + γ + (1− γ)l(z0)

,

= arg
[
(1− γ)dδeiδπ/2

(
1 +

ibδ

c + γ + (1− γ)dδeiδπ/2

)]
,

=
δπ

2
+ arg

[
1 +

ibδ

c + γ + (1− γ)dδeiδπ/2

]
,

=
δπ

2

+ tan−1

 bδ
[
k + tdδ cos

(
δπ
2

)]
k2 + 2ktdδ cos

(
δπ
2

)
+ t2d2δ + bδtdδ sin

(
δπ
2

)
.
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where k = c + γ and t = 1− γ. Then

arg

 z0

(
Λm

q f (z0)
)′

Λm
q f (z0)

− γ

 ≥ δπ

2
,

which obviously contradicts the assumption f ∈ S∗Λ,m,q(δ, γ). Similarly, if arg l(zo) = − δπ
2 ,

then we get that

arg

 z0

(
Λm

q f (z0)
)′

Λm
q f (z0)

− γ

 ≤ − δπ

2
,

which also contradicts the same assumption f ∈ S∗Λ,m,q(δ, γ). Therefore, the function l(z)

should satisfy that |arg l(z)| < δπ
2 (z ∈ U). This shows that∣∣∣∣∣∣∣arg

 z
(

Λm
q Jc( f (z))

)′
Λm

q Jc( f (z))
− γ


∣∣∣∣∣∣∣ <

δπ

2
⇔ Jc( f ) ∈ S∗Λ,m,q(δ, γ).

Hence, the proof is completed.

Theorem 8. For c > γ, let 0 ≤ γ < 1 and 0 < δ ≤ 1. If f ∈ S∗L,m,q(δ, γ), then
Jc( f ) ∈ S∗L,m,q(δ, γ).

Proof. Let f ∈ S∗L,m,q(δ, γ). We need to show that∣∣∣∣∣∣∣arg

 z
(
Lm

q Jc( f (z))
)′

Lm
q Jc( f (z))

− γ


∣∣∣∣∣∣∣ <

δπ

2
, 0 ≤ γ < 1, 0 < δ ≤ 1 and c > γ.

Set
z
(
Lm

q Jc( f (z))
)′

Lm
q Jc( f (z))

= γ + (1− γ)l(z), (39)

where l(z) = 1 + c1z + c2z2 + .... By using (35) and (39), we get

Lm
q f (z)

Lm
q Jc( f (z))

=
1

c + 1
{(c + γ) + (1− γ)l(z)}. (40)

Using logarithmic differentiation for (40), we get

z
(
Lm

q f (z)
)′

Lm
q f (z)

− γ = (1− γ)

[
l(z) +

zl′(z)
c + γ + (1− γ)l(z)

]
. (41)

The rest of the proof is the same as in Theorem 7. Then we obtain that∣∣∣∣∣∣∣arg

 z
(
Lm

q Jc( f (z))
)′

Lm
q Jc( f (z))

− γ


∣∣∣∣∣∣∣ <

δπ

2
⇔ Jc( f ) ∈ S∗L,m,q(δ, γ).

Hence, the proof is completed.

Theorem 9. For c > γ, let 0 ≤ γ < 1 and 0 < δ ≤ 1. If f ∈ KΛ,m,q(δ, γ), then
Jc( f ) ∈ KΛ,m,q(δ, γ).
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Proof. Let f ∈ KΛ,m,q(δ, γ). From (10), we have

Λm
q ( f ) ∈ K(δ, γ).

Applying Lemma 1, we obtain

z
(

Λm
q ( f )

)′
∈ S∗(δ, γ).

(5) gives
Λm

q

(
z f
′) ∈ S∗(δ, γ),

which is equivalent to
z f
′ ∈ S∗Λ,m,q(δ, γ).

An application of Theorem 7 yields

Jc

(
z f
′) ∈ S∗Λ,m,q(δ, γ),

or
z(Jc( f ))′ ∈ S∗Λ,m,q(δ, γ).

Applying again Lemma 1, we obtain

Jc( f ) ∈ KΛ,m,q(δ, γ).

Hence, the proof is completed.

Theorem 10. For c > γ, let 0 ≤ γ < 1 and 0 < δ ≤ 1. If f ∈ KL,m,q(δ, γ), then Jc( f ) ∈
KL,m,q(δ, γ).

Proof. Let f ∈ KL,m,q(δ, γ). From (11), we have

Lm
q ( f ) ∈ K(δ, γ).

Applying Lemma 1, we obtain

z
(
Lm

q ( f )
)′
∈ S∗(δ, γ).

(5) gives
Lm

q

(
z f
′) ∈ S∗(δ, γ),

which is equivalent to
z f
′ ∈ S∗L,m,q(δ, γ).

An application of Theorem 8 yields

Jc

(
z f
′) ∈ S∗L,m,q(δ, γ),

or
z(Jc( f ))

′
∈ S∗L,m,q(δ, γ).

Applying again Lemma 1, we obtain

Jc( f )εKL,m,q(δ, γ).

Hence, the proof is completed.
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Theorem 11. For c > α, let 0 ≤ γ, α < 1 and 0 < δ, β ≤ 1. If f ∈ BΛ,m,q(δ, γ, β, α), then
Jc( f ) ∈ BΛ,m,q(δ, γ, β, α).

Proof. Let f ∈ BΛ,m,q(δ, γ, β, α) which is equivalent to

Λm
q ( f ) ∈ B(δ, γ, β, α).

Then there exists a function k ∈ S∗(β, α) such that∣∣∣∣∣∣∣arg

 z
(

Λm
q f (z)

)′
k(z)

− γ


∣∣∣∣∣∣∣ <

δπ

2
, 0 ≤ γ, α < 1, 0 < δ, β ≤ 1.

Letting k(z) = Λm
q g(z) where the function g ∈ S∗Λ,m,q(β, α) and∣∣∣∣∣∣∣arg

 z
(

Λm
q f (z)

)′
Λm

q g(z)
− γ


∣∣∣∣∣∣∣ <

δπ

2
.

Now, put

z
(

Λm
q Jc( f (z))

)′
Λm

q Jc(g(z))
= γ + (1− γ)l(z), (42)

where l(z) = 1 + c1z + c2z2 + .... By using (34) and (42), we get

(c + 1)Λm
q f (z)− cΛm

q Jc( f (z)) = Λm
q Jc(g(z))[γ + (1− γ)l(z)]. (43)

By differentiating (43), we obtain

(c + 1)z
(

Λm
q f (z)

)′
= z

(
Λm

q Jc(g(z))
)′
[γ + (1− γ)l(z)]

+
(

Λm
q Jc(g(z))

)
(1− γ)zl

′
(z)

+cz
(

Λm
q Jc( f (z))

)′
. (44)

If we apply (34) for the function g(z), then (44) gives

z
(

Λm
q f (z)

)′
Λm

q g(z)
=

[
1− c

c + 1

Λm
q Jc(g(z))
Λm

q g(z)

]
[γ + (1− γ)l(z)]

+
Λm

q Jc(g(z))
Λm

q g(z)
(1− γ)zl

′
(z)

c + 1

+
c

c + 1

z
(

Λm
q Jc( f (z))

)′
Λm

q g(z)
.

By using (34) and (43), we have

z
(

Λm
q f (z)

)′
Λm

q g(z)
= γ + (1− γ)l(z) +

Λm
q Jc(g(z))
Λm

q g(z)
(1− γ)zl

′
(z)

c + 1
. (45)

Since k = Λm
q (g) ∈ S∗(β, α), by applying Theorem 7, we have

Jc(g) ∈ S∗Λ,m,q(β, α).
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If we let
z
(

Λm
q Jc(g(z))

)′
Λm

q Jc(g(z))
= α + (1− α)L(z), (46)

where L(z) = |L(z)|ei arg L(z), |arg(L(z))| < βπ
2 , then we can rewrite (45) as

z
(

Λm
q f (z)

)′
Λm

q g(z)
− γ = (1− γ)

[
l(z) +

zl
′
(z)

c + α + (1− α)L(z)

]
. (47)

Suppose that there exists a point z0 ∈ U such that

|arg l(z)| < δπ

2
(|z| < |zo|),

and
|arg l(zo)| =

δπ

2
,

where 0 < δ ≤ 1. By applying Lemma 2, we get

zol
′
(zo)

l(zo)
= ibδ,

where

b ≥ 1
2

(
d +

1
d

)
when arg l(zo) =

δπ

2
,

and

b ≤ −1
2

(
d +

1
d

)
when arg l(zo) = −

δπ

2
,

where
(l(zo))

1/δ = ±id, d > 0.

Let c + α + (1− α)L(z0) = ρe
iθπ/2

where c + α < ρ < ∞ and −β ≤ θ ≤ β. The rest of
the proof is the same as in Theorem 5. Then we obtain that∣∣∣∣∣∣∣arg

 z
(

Λm
q Jc( f (z))

)′
Λm

q Jc(g(z))
− γ


∣∣∣∣∣∣∣ <

δπ

2
⇔ Jc( f ) ∈ BΛ,m,q(δ, γ, β, α).

Hence, the proof is completed.

Theorem 12. For c > α, let 0 ≤ γ, α < 1 and 0 < δ, β ≤ 1. If f ∈ BL,m,q(δ, γ, β, α), then
Jc( f ) ∈ BL,m,q(δ, γ, β, α).

Proof. Let f ∈ BL,m,q(δ, γ, β, α) which is equivalent to

Lm
q ( f ) ∈ B(δ, γ, β, α).

Then there exists a function k ∈ S∗(β, α) such that∣∣∣∣∣∣∣arg

 z
(
Lm

q f (z)
)′

k(z)
− γ


∣∣∣∣∣∣∣ <

δπ

2
, 0 ≤ γ, α < 1, 0 < δ, β ≤ 1.
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Letting k(z) = Lm
q g(z) where the function g ∈ S∗L,m,q(β, α) and∣∣∣∣∣∣∣arg

 z
(
Lm

q f (z)
)′

Lm
q g(z)

− γ


∣∣∣∣∣∣∣ <

δπ

2
.

Now, put

z
(
Lm

q Jc( f (z))
)′

Lm
q Jc(g(z))

= γ + (1− γ)l(z), (48)

where l(z) = 1 + c1z + c2z2 + .... By using (35) and (48), we get

(c + 1)Lm
q f (z)− cLm

q Jc( f (z)) = Lm
q Jc(g(z))[γ + (1− γ)l(z)]. (49)

By differentiating (49), we obtain

(c + 1)z
(
Lm

q f (z)
)′

= z
(
Lm

q Jc(g(z))
)′
[γ + (1− γ)l(z)]

+
(
Lm

q Jc(g(z))
)
(1− γ)zl

′
(z)

+cz
(
Lm

q Jc( f (z))
)′

. (50)

If we apply (35) for the function g(z), then (50) gives

z
(
Lm

q f (z)
)′

Lm
q g(z)

=

[
1− c

c + 1

Lm
q Jc(g(z))
Lm

q g(z)

]
[γ + (1− γ)l(z)]

+
Lm

q Jc(g(z))
Lm

q g(z)
(1− γ)zl

′
(z)

c + 1

+
c

c + 1

z
(
Lm

q Jc( f (z))
)′

Lm
q g(z)

.

By using (35) and (49), we have

z
(
Lm

q f (z)
)′

Lm
q g(z)

= γ + (1− γ)l(z) +
Lm

q Jc(g(z))
Lm

q g(z)
(1− γ)zl

′
(z)

c + 1
. (51)

Since k = Lm
q (g) ∈ S∗(β, α), by applying Theorem 7, we have

Jc(g) ∈ S∗L,m,q(β, α).

If we let
z
(
Lm

q Jc(g(z))
)′

Lm
q Jc(g(z))

= α + (1− α)L(z), (52)

where L(z) = |L(z)|ei arg L(z), |arg(L(z))| < βπ
2 , then we can rewrite (51) as

z
(
Lm

q f (z)
)′

Lm
q g(z)

− γ = (1− γ)

[
l(z) +

zl
′
(z)

c + α + (1− α)L(z)

]
. (53)
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The rest of the proof is the same as in Theorem 5. Then we obtain that∣∣∣∣∣∣∣arg

 z
(
Lm

q Jc( f (z))
)′

Lm
q Jc(g(z))

− γ


∣∣∣∣∣∣∣ <

δπ

2
⇔ Jc( f ) ∈ BL,m,q(δ, γ, β, α).

Hence, the proof is completed.

4. Conclusions

Recently, the Pascal distribution has attracted the attention of many researchers in
the field of geometric function theory. This distribution was used by various authors;
see [8–13] to consider the properties of some famous subclasses of analytic functions. In the
present paper, using the normalized Pascal operator Λm

q and its dual Lm
q , we introduced

new subclasses of analytic functions. Due to the earlier works on different operators such as
the Ruscheweyh diffrential operator [15] and Noor integral operator [19], we find inclusion
relations of certain new subclasses of analytic functions in the open symmetric unit disc
U that are associated with the Pascal distribution. Furthermore, we studied the integral-
preserving properties for these subclasses. Making use of the definition of Pascal operators
could inspire researchers to create new different subclasses of analytic functions.
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