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Abstract: When focusing on changes in political party support, it is crucial to determine whether
or not there has been a change in the aggregate. From this perspective, various types of marginal
homogeneity models have been proposed. We propose local marginal homogeneity models, which
indicate that there are symmetric structures of probabilities for only one pair of symmetric marginal
probabilities or cumulative probabilities. In addition, we propose two measures, one for nominal
categories and one for ordered categories, to express the degree of departure from local marginal
homogeneity models. We also apply the measures to data and confirm that the measures help
compare the degree of departure from the model in several tables.

Keywords: harmonic mean; marginal homogeneity; nominal category; ordered category; square
contingency table

1. Introduction

Let us consider r× r contingency tables with the same row and column classifications.
In such contingency tables, the test of independence is meaningless because the observations
are concentrated on the main diagonal cell. Therefore, we perform an analysis with respect
to the symmetry of the contingency table. Let pij denote the probability that an observation
will fall in the (i, j)th cell of the table (i = 1, . . . , r; j = 1, . . . , r). For nominal contingency tables,
several symmetry models with respect to the main diagonal are considered. The symmetry (S)
model (Bowker [1] and Bishop et al. [2]) is defined as

pij = pji for all (i, j; i 6= j).

The partial symmetry (PS) model (Saigusa et al. [3]) is defined as

pij = pji for at least one (i, j; i 6= j).

The local symmetry (LS) model (Saigusa et al. [4]) is defined as

pij = pji for only one (i, j; i 6= j).

The LS model indicates that the cell probability that an observation falls in the ith row
category and the jth (>i) column category is equal to the probability that the observation
falls in the jth row category and the ith column category, for only one (i, j). Because of the
strong constraints of the S model, various models using marginal probabilities have been
proposed to loosen the constraints. The marginal homogeneity (MH) model (Stuart [5]) is
defined as

pi· = p·i for all i = 1, . . . , r,
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where pi· = ∑r
t=1 pit, and p·i = ∑r

s=1 psi. The partial marginal homogeneity (PMH) model
(Saigusa et al. [6]) is defined as

pi· = p·i for at least one i = 1, . . . , r.

In addition to these, other symmetry (e.g., quasi symmetry [7]) models or asymmetry
(e.g., conditional symmetry [8], diagonal-parameter symmetry [9], and linear diagonals-
parameter symmetry [10]) models are proposed.

Some symmetry models are also proposed for square contingency tables with ordered
categories, including cumulative probabilities from the upper-right and lower-left corners
of the table. Let us denote the row and column variables by X and Y, respectively. The
cumulative probability is defined as

Cij =


P(X ≤ i, Y ≥ j) =

i

∑
s=1

r

∑
t=j

pst when i < j,

P(X ≥ i, Y ≤ j) =
r

∑
s=i

j

∑
t=1

pst when i > j.

Then, the S model can also be expressed as

Cij = Cji for all (i, j; i 6= j).

The cumulative partial symmetry (CPS) model (Saigusa et al. [11]) is defined as

Cij = Cji for at least one (i, j; i 6= j).

The cumulative local symmetry (CLS) model (Saigusa et al. [12]) is defined as

Cij = Cji for only one (i, j; i 6= j).

The CLS model describes the probability that an observation falls in the ith row
category or below and the jth (>i) column category or above (upper-right corner) is equiva-
lent to the probability that the observation falls in the jth row category or above and the
ith column category or below (lower-left corner), for only one (i, j). Also proposed are
some marginal homogeneity models that have cumulative probabilities. The cumulative
probability is defined as

G1(i) = P(X ≤ i, Y ≥ i + 1) =
i

∑
s=1

r

∑
t=i+1

pst,

G2(i) = P(X ≥ i + 1, Y ≤ i) =
r

∑
s=i+1

i

∑
t=1

pst.

Then, the MH model is expressed as

G1(i) = G2(i) for all i = 1, . . . , r− 1.

The cumulative partial marginal homogeneity (CPMH) model (Nakagawa et al. [13])
is defined as

G1(i) = G2(i) for at least one i = 1, . . . , r− 1.

Some statistics for testing the goodness of fit of the MH model are provided by, for
example, Stuart [5], Bhapkar [14], Fleiss and Everitt [15], Bishop et al. [2] and Agresti [16].
Let us now consider several square tables. When there is no structure of MH in any of these
tables, we are interested in measuring and comparing the degrees of departure from MH in
the tables. The test statistic can be used for testing the goodness-of-fit of the MH model,
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but the test statistic is not suitable for comparing the degrees of departure from the MH
model in several square tables. See Tomizawa et al. [17] for details.

We mention that statistics cannot measure the degree of departure from the model for
some contingency tables that do not fit the model. Therefore, measures have been proposed
to measure the degree of departure from the model. In the analysis of two-way contingency
tables, the degree of departure from independence is assessed by using measures of associ-
ation between the row and column variables. Measures of association include, for example,
Yule’s coefficients of association and colligation [18,19], Cramér’s coefficient [20], and
Goodman and Kruskal’s coefficient [21]. For contingency tables with nominal categories,
measures to represent the degree of departure from the S, PS, and LS models have been de-
veloped (Tomizawa et al. [22], Saigusa et al. [3], and Saigusa et al. [4]). These measures are
given by Patil and Taillie as forms of weighted arithmetic, geometric, and harmonic means
of a diversity index consisting of cell probabilities [23]. In the sense that the values of these
measures do not depend on the order of the categories, these measures may not be suitable
for ordered contingency tables. For square contingency tables with ordered categories,
several measures of the structure of cumulative probability are proposed that incorporate
information about the order of the categories. The measures for the S, CPS, and CLS models
are given as weighted arithmetic, geometric, and harmonic means of the diversity index
consisting of the cumulative probabilities Cij (Tomizawa et al. [24], Saigusa et al. [11], and
Saigusa et al. [12]). Similarly, measures to represent the degree of departure from several
MH models are proposed. For square contingency tables with nominal categories, the
measures for the MH and PMH models are given as weighted arithmetic and geometric
means of the diversity index consisting of marginal probabilities (Tomizawa and Makii [25],
Altun and Aktaş [26], and Saigusa et al. [6]). The values of these measures do not depend
on the order of the categories. For square contingency tables with ordered categories, the
measures for the MH and CPMH models are given as weighted arithmetic and geometric
means of the diversity index consisting of the cumulative probabilities G1(i) and G2(i)
(Tomizawa et al. [17] and Nakagawa et al. [13]).

On the other hand, the Rand index [27] is proposed as a correspondence measure between
different partitions. Hubert and Arabie [28] introduce an extension of the Rand index and its
application to the rows and columns of contingency tables. The application to contingency
tables is based on dividing the entire sample with respect to row and column categories to
form a contingency table. Therefore, the symmetry-related measures and Rand index have
different objectives. In addition, the Rand index is calculated based on the number of samples
in each contingency table cell, while the measures proposed in prior studies and this paper
are not.

This paper aims to propose local marginal homogeneity models for marginal prob-
abilities and cumulative probabilities. Moreover, we propose weighted harmonic mean
measures for the proposed models. Section 2 proposes new measures for the local ho-
mogeneity of marginal probabilities pi· and p·i with nominal categories and cumulative
probabilities G1(i) and G2(i) with ordered categories. Section 3 provides an approximate
confidence interval of the measures. Section 4 denotes the properties of the measures using
artificial data sets. Section 6 shows examples that apply to the measures.

2. New Models and Measures

In Section 2.1, we propose a new model that has the structure of local marginal
homogeneity for a square contingency table with nominal categories; we also propose
its measure, which expresses the degree of departure from the model. In Section 2.2, we
define another model with cumulative local marginal homogeneity structure for a square
contingency table with ordered categories; we also provide its measure.
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2.1. For the Nominal Category

For square contingency tables with nominal categories, we propose a local marginal
homogeneity (LMH) model defined by

pi· = p·i for only one i (i = 1, . . . , r).

The LMH model describes that the probability that an observation falls in the ith row
category is equal to that of the observation falling in the ith column category, for only one i.

Let us assume that pi· + p·i 6= 0 (i = 1, . . . , r) and pi· 6= p·i for any i except for only
one a. We propose the following measure:

ψ
(λ)
MH(H)

=

r

∏
s=1

ψ
(λ)
s

r

∑
i=1

πi

r

∏
s=1
s 6=i

ψ
(λ)
s


(λ > −1),

where πi = (pi· + p·i)/2, p1(i) = pi·/(pi· + p·i), p2(i) = p·i/(pi· + p·i),

ψ
(λ)
i = 1− λ2λ

2λ − 1
I(λ)i ,

I(λ)i =
1
λ

{
1−

(
p1(i)

)λ+1
−
(

p2(i)

)λ+1
}

.

For λ = 0, we define that ψ
(0)
MH(H)

= limλ→0 ψ
(λ)
MH(H)

. Note that λ is a real value chosen

by users. The index I(λ)i is a diversity index of degree-λ for {p1(i), p2(i)}. We note that
the diversity index includes the Shanon entropy (when λ = 0) and the Gini concentration
(when λ = 1) in special cases. For more details of this diversity index, see Patio and
Taillie [23]. We can rewrite submeasure ψ

(λ)
i as follows:

ψλ
i =

λ(λ− 1)
2λ − 1

D(λ)
i

(
{pk(i)};

{
1
2

})
,

D(λ)
i

(
{pk(i)};

{
1
2

})
=

1
λ(λ + 1)

[
p1(i)

{( p1(i)

1/2

)λ

− 1

}
+ p2(i)

{( p2(i)

1/2

)λ

− 1

}]
.

D(λ)
i is a power divergence between two distributions: {p1(i), p2(i)} and {1/2, 1/2}.

We note that the power divergence includes the Kullback–Leibler (KL) information (when λ = 0)
and the Pearson chi-squared type discrepancy (when λ = 1) in special cases. For more
details of the power divergence, see Cressie and Read [29] and Read and Cressie [30].
For any λ > −1, the ψ

(λ)
MH(H)

has the following characteristics:

1. the measure ψ
(λ)
MH(H)

must lie between 0 and 1.

2. ψ
(λ)
MH(H)

= 0 if and only if the LMH model holds.

3. ψ
(λ)
MH(H)

= 1 if and only if the degree of departure from LMH is the maximum, in the
sense that pi· = 0 (then p·i > 0) or p·i = 0 (then pi· > 0) for all i = 1, . . . , r.

When the LMH model does not hold, it is easy to see that

ψ
(λ)
MH(H)

=

(
r

∑
i=1

πi

ψ
(λ)
i

)−1

.
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Namely, the measure is expressed as the weighted harmonic mean of {ψ(λ)
i }.

The measure ψ
(λ)
MH(H)

is appropriate for analyzing data on a nominal scale because the

value of ψ
(λ)
MH(H)

is invariant under the same arbitrary permutation of the row and column
categories.

2.2. For the Ordered Category

For square contingency tables with ordered categories, we propose the cumulative
local marginal homogeneity (CLMH) model defined by

G1(i) = G2(i) for only one i (i = 1, . . . , r− 1).

The CLMH model describes that the probability that an observation falls in the ith
row category or below and the i + 1th column category or above is equal to the probability
that the observation falls in the i + 1th row category or above and the ith column category
or below, for only one i.

Assume that G1(i) + G2(i) 6= 0 (i = 1, . . . , r− 1) and G1(i) 6= G2(i) for any i except for
only one a. We propose the following measure:

τ
(λ)
MH(H)

=

r−1

∏
s=1

ω
(λ)
s

r−1

∑
i=1


(

G∗1(i) + G∗2(i)
) r−1

∏
s=1
s 6=i

ω
(λ)
s


(λ > −1),

where G∗s(i) = Gs(i)/∆ (∆ = ∑r−1
i=1 (G1(i) + G2(i))), Gc

s(i) = Gs(i)/(G1(i) + G2(i)),

ω
(λ)
i = 1− λ2λ

2λ − 1
H(λ)

i ,

H(λ)
i =

1
λ

{
1−

(
Gc

1(i)

)λ+1
−
(

Gc
2(i)

)λ+1
}

.

For λ = 0, we define that τ
(0)
MH(H)

= limλ→0 τ
(λ)
MH(H)

. The measure holds the following
properties, which are the same as the measure of the LMH model in Section 2.1. For any
λ > −1:

1. the measure τ
(λ)
MH(H)

must lie between 0 and 1.

2. τ
(λ)
MH(H)

= 0 if and only if the probability table has the structure of CLMH.

3. τ
(λ)
MH(H)

= 1 if and only if the probability table has the structure of complete marginal
inhomogeneity in the sense that G1(i) = 0 (then G2(i) 6= 0) or G2(i) = 0 (then G1(i) 6= 0)
for all i = 1, . . . , r− 1.

It should be noted that the measure τ
(λ)
MH(H)

is expressed as the weighted harmonic

mean of {ω(λ)
s }.

3. Approximate Confidence Interval of the Measures

In this section, we construct an approximate confidence interval for ψ
(λ)
MH(H)

and τ
(λ)
MH(H)

.

As seen in Section 2, the measures ψ
(λ)
MH(H)

and τ
(λ)
MH(H)

are the functions of pij. For the sake of

general discussion, we first consider Φ(λ) as a function of pij and construct an approximate
confidence interval for it. Then, we obtain the approximate confidence intervals of the measures
ψ
(λ)
MH(H)

and τ
(λ)
MH(H)

by replacing Φ(λ)
MH(H)

with ψ
(λ)
MH(H)

and τ
(λ)
MH(H)

. Let nij denote the
observed frequency in the (i, j)th cell of the table (i = 1, . . . , r; j = 1, . . . , r). Assuming that a
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multinomial distribution applies to the r× r table, we consider the approximate standard error
and the large-sample confidence interval of the measure Φ(λ) using the delta method, the
description of which is given by, for example, Bishop et al. [2] and Agresti [31]. The sample
version of Φ(λ), i.e., Φ̂(λ), is given by Φ(λ) with {pij} replaced by {p̂ij}, where p̂ij = nij/N and

N = ∑r
i=1 ∑r

j=1 nij. Using the delta method,
√

N
(

Φ̂(λ) −Φ(λ)
)

asymptotically (as N → ∞)

has a normal distribution with a mean of zero and a variance of σ2, where

σ2 =
r

∑
i=1

r

∑
j=1

pij

(
∂Φ(λ)

∂pij

)2

−
(

r

∑
i=1

r

∑
j=1

pij
∂Φ(λ)

∂pij

)2

(λ > −1).

Let σ̂2 denote σ2 with {pij} replaced by { p̂ij}. Then, σ̂/
√

N is an estimated approxi-
mate standard error for Φ̂(λ), and Φ̂(λ) ± zα/2σ̂/

√
N is the approximate (1− α) confidence

limit for Φ(λ), where zα/2 is the upper α/2 point of the standard normal distribution.

The confidence interval of the measure ψ
(λ)
MH(H)

is given by ∂Φ(λ)/∂pij replaced by

γ
(λ)
ij , where

γ
(λ)
ij = −

(
ψ
(λ)
MH(H)

)2

 1(
ψ
(λ)
i

)2 A12(i) +
1(

ψ
(λ)
j

)2 A21(j)

 (λ 6= 0),

with

A12(i) =
ψ
(λ)
i
2
− 2λ−1(λ + 1)

2λ − 1
p2(i)

{(
p1(i)

)λ
−
(

p2(i)

)λ
}

,

A21(i) =
ψ
(λ)
i
2

+
2λ−1(λ + 1)

2λ − 1
p1(i)

{(
p1(i)

)λ
−
(

p2(i)

)λ
}

,

and the confidence interval of the measure τ
(λ)
MH(H)

is also given by ∂Φ(λ)/∂pij replaced by

β
(λ)
ij , where

β
(λ)
ij =



(
τ
(λ)
MH(H)

)2

∆

j−1

∑
k=i

B12(k) + (j− i)
τ
(λ)
MH(H)

∆
(i < j),

(
τ
(λ)
MH(H)

)2

∆

i−1

∑
k=t

B21(k) + (i− j)
τ
(λ)
MH(H)

∆
(i > j),

with

B12(k) =
2λ(λ + 1)Gc

2(k)

(2λ − 1)(ω(λ)
k )2

{(
Gc

1(k)

)λ
−
(

Gc
2(k)

)λ
}
− 1

ω
(λ)
k

,

B21(k) =
2λ(λ + 1)Gc

1(k)

(2λ − 1)(ω(λ)
k )2

{(
Gc

2(k)

)λ
−
(

Gc
1(k)

)λ
}
− 1

ω
(λ)
k

,

and γ
(0)
ij = limλ→0 γ

(λ)
ij , β

(0)
ij = limλ→0 β

(λ)
ij .
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4. Properties of Measures

In this section, we check the properties of the measures given in this paper and their
relationship to the measures proposed in previous studies using artificial data. Firstly,
we show that the proposed measures are the smallest in each of the nominal contingency
tables and ordered contingency tables. Let us denote the measures for MH and PMH for
nominal contingency tables ψMH(A) and ψMH(G), respectively (see Appendix A). Since the
arithmetic mean is larger than the geometric mean, it holds that

ψ
(λ)
MH(H)

≤ ψ
(λ)
MH(G)

≤ ψ
(λ)
MH(A)

(1)

and the equal signs can be used only when

ψ
(λ)
1 = ψ

(λ)
2 = · · · = ψ

(λ)
r .

This means that, from the formula ψ
(λ)
i , the ratio of p1(i) and p2(i) is equal for all i.

Let us denote the measure for MH and CPMH for ordered contingency tables τMH(A)

and τMH(G), respectively (see Appendix A). In the same manner as in the discussion above,
it holds that

τ
(λ)
MH(H)

≤ τ
(λ)
MH(G)

≤ τ
(λ)
MH(A)

(2)

and equal signs can be used only when

ω
(λ)
1 = ω

(λ)
2 = · · · = ω

(λ)
r−1.

From the formula ω
(λ)
i , the ratio of Gc

1(i) and Gc
2(i) is also equal for all i.

Now, we check the above properties by using artificial data, as seen in Tables 1 and 2.
As we can see from a glance at Table 2, properties (1) and (2) are satisfied. Table 1a is
a table with p1· = p·1 and G1(1) = G2(1). From Table 2a(a),b(a), it can be confirmed

that ψ
(λ)
MH(H)

= τ
(λ)
MH(H)

= 0. In Table 1c,d, as we can see from the actual calculation,

Gc
1(i)/Gc

2(i) is equivalent to 1/2 or 2, ω
(λ)
1 = ω

(λ)
2 = ω

(λ)
3 and p1(i)/p2(i) are equal to

1/3 or 3, ψ
(λ)
1 = ψ

(λ)
2 = ψ

(λ)
3 = ψ

(λ)
4 , respectively. Therefore, it can be confirmed that

ψ
(λ)
MH(H)

= ψ
(λ)
MH(G)

= ψ
(λ)
MH(A)

and τ
(λ)
MH(H)

= τ
(λ)
MH(G)

= τ
(λ)
MH(A)

from Table 2a(c,d). Table

1b,c has numbers (1) and (4) interchanged. ψ
(λ)
MH(H)

is invariant from Table 2a(b,c), but

τ
(λ)
MH(H)

has changed from Table 2b(b,c). Therefore, it can be confirmed that τ
(λ)
MH(H)

is the
measure that takes order into account. Table 1e,f provides examples of contingency tables
that have the structures with the greatest departures from CLMH and LMH, respectively.
They do not necessarily have the same structure.
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Table 1. Artificial data.

(a) (d)

(1) (2) (3) (4) Total (1) (2) (3) (4) Total

(1) 0.12 0.09 0.07 0.02 0.30 (1) 0.02 0.09 0.12 0.04 0.27
(2) 0.08 0.09 0.12 0.02 0.31 (2) 0.02 0.03 0.03 0.02 0.10
(3) 0.06 0.03 0.06 0.05 0.20 (3) 0.02 0.01 0.08 0.04 0.15
(4) 0.04 0.01 0.08 0.06 0.19 (4) 0.03 0.17 0.22 0.06 0.48

Total 0.30 0.22 0.33 0.15 1.00 Total 0.09 0.30 0.45 0.16 1.00

(b) (e)

(1) (2) (3) (4) Total (1) (2) (3) (4) Total

(1) 0.16 0.12 0.05 0.03 0.36 (1) 0.00 0.20 0.00 0.10 0.30
(2) 0.02 0.10 0.03 0.02 0.17 (2) 0.00 0.00 0.30 0.05 0.35
(3) 0.04 0.01 0.14 0.02 0.21 (3) 0.00 0.00 0.00 0.35 0.35
(4) 0.04 0.10 0.00 0.12 0.26 (4) 0.00 0.00 0.00 0.00 0.00

Total 0.26 0.33 0.22 0.19 1.00 Total 0.00 0.20 0.30 0.50 1.00

(c) (f)

(1) (2) (3) (4) Total (1) (2) (3) (4) Total

(1) 0.12 0.10 0.00 0.04 0.26 (1) 0.00 0.20 0.00 0.45 0.65
(2) 0.02 0.10 0.03 0.02 0.17 (2) 0.00 0.00 0.00 0.00 0.00
(3) 0.02 0.01 0.14 0.04 0.21 (3) 0.00 0.05 0.00 0.30 0.35
(4) 0.03 0.12 0.05 0.16 0.36 (4) 0.00 0.00 0.00 0.00 0.00

Total 0.19 0.33 0.22 0.26 1.00 Total 0.00 0.25 0.00 0.75 1.00

Table 2. Values of six measures for Table 1 that are related to various Marginal Homogeneity models.

(a) Measures of nominal categories

Applied tables
(a) (b) (c) (d) (e) (f)

ψ̂
(λ)
MH(A)

λ
0.00 0.019 0.029 0.029 0.189 0.416 1.000
0.50 0.024 0.036 0.036 0.230 0.420 1.000
1.00 0.026 0.039 0.039 0.250 0.422 1.000

ψ̂
(λ)
MH(G)

λ
0.00 0.000 0.011 0.011 0.189 0.076 1.000
0.50 0.000 0.014 0.014 0.230 0.087 1.000
1.00 0.000 0.016 0.016 0.250 0.092 1.000

ψ̂
(λ)
MH(H)

λ
0.00 0.000 0.002 0.002 0.189 0.012 1.000
0.50 0.000 0.002 0.002 0.230 0.015 1.000
1.00 0.000 0.002 0.002 0.250 0.017 1.000

(b) Measures of ordered categories

Applied tables
(a) (b) (c) (d) (e) (f)

τ̂
(λ)
MH(A)

λ
0.00 0.022 0.060 0.082 0.180 1.000 0.877
0.50 0.028 0.075 0.101 0.217 1.000 0.897
1.00 0.031 0.082 0.111 0.234 1.000 0.905

τ̂
(λ)
MH(G)

λ
0.00 0.000 0.052 0.082 0.046 1.000 0.847
0.50 0.000 0.065 0.101 0.056 1.000 0.878
1.00 0.000 0.071 0.111 0.060 1.000 0.889

τ̂
(λ)
MH(H)

λ
0.00 0.000 0.044 0.082 0.004 1.000 0.811
0.50 0.000 0.055 0.101 0.005 1.000 0.855
1.00 0.000 0.061 0.111 0.006 1.000 0.871

5. Simulation

This section simulates the probability of coverage of the confidence intervals for the
LMH and CLMH model measures.
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Simulations were performed on 4× 4 randomly generated contingency tables. Tables
with sample sizes of 200, 500, and 1000 were generated 1000 times according to the probability
structure of the contingency tables. Confidence intervals for the LMH and CLMH measures
were calculated with eight lambda values (−0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0) to determine
the probability of the actual measures falling within the 95% confidence interval.

The confidence interval is sufficiently reliable since it exceeds 90% in most of the cells
in Table 3. The probability of an actual measure falling in the confidence interval increases
as the sample size increases, but this is not the case for some cells, e.g., the sample size
1000 for λ = 0.0 in Table 3a. This may be because when the sample size is large, the
simulation completes without problems even when the scale takes extreme values.

Table 3. Simulation results for LMH and CLMH.

(a) Results for LMH (b) Results for CLMH

λ
Sample Size

λ
Sample Size

200 500 1000 200 500 1000

−0.5 0.941 0.955 0.949 −0.5 0.874 0.885 0.940
0.0 0.939 0.929 0.897 0.0 0.946 0.951 0.954
0.5 0.874 0.890 0.918 0.5 0.906 0.948 0.885
1.0 0.949 0.941 0.965 1.0 0.942 0.940 0.947
1.5 0.940 0.956 0.910 1.5 0.937 0.950 0.952
2.0 0.962 0.940 0.951 2.0 0.934 0.962 0.917
2.5 0.939 0.851 0.923 2.5 0.939 0.934 0.948
3.0 0.934 0.948 0.943 3.0 0.936 0.927 0.875

6. Example

In this section, we show examples of the adaptation of each measure for nominal or
ordered contingency tables.

The first set of data provides an example of a contingency table with nominal categories
taken from Upton [32], showing the changes in choice of voting party for the three parties
(Conservative, Labour, and Liberal) and abstentions in 1964, 1966, and 1970. Table 4a shows
the results of estimating the measure ψ

(λ)
MH(H)

for the change in voting party from 1964 to
1966, and Table 4b estimates the measure for the difference in voting party from 1966 to
1970 to see the degree of departure from the LMH model. Table 4a shows that the changes
in 1964 and 1966 fit the LMH model well. Table 4b shows that the degree of departure from
the LMH model is more significant for the changes in voting party between 1966 and 1970
than between 1964 and 1966.

The second set of data provides an example of a contingency table with ordered
categories and is taken from Tominaga [33]; the data show the cross-classifications of
occupational statuses for Japanese fathers and their sons in 1955 and 1975. Although it
may appear bizarre to think of occupational classes in modern society, we treat them as
an ordered category according to the references. The statuses of the category numbers
are as follows: (1) professional and managers; (2) clerical and sales; (3) skilled manual,
semiskilled manual, and unskilled manual; and (4) farmers. Table 5a shows the results
of estimating the measure τ

(λ)
MH(H)

for the occupation class of a father and son as of 1955,
and Table 5b estimates the measure for the occupational class of a father and son as of
1975 to see the degree of departure from the CLMH model. From Table 5, the values in
the confidence interval of τ

(λ)
MH(H)

are greater for Table 5b than for Table 5a. Therefore, the
degree of departure from the CLMH model for father and son pairs is estimated to be larger
in 1975 than in 1955.
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Table 4. The estimated measures, estimated approximate standard errors, and approximate 95%

confidence interval for ψ
(λ)
MH(H)

, applied to voting changes in the 1964, 1966, and 1970 British elections;
taken from Upton [32].

(a) Result of voting changes between the 1966 and 1964 British elections

λ Estimated measure Standard error Confidence interval

−0.5 0.0000 0.0005 (−0.0009, 0.0010)
0.0 0.0001 0.0008 (−0.0015, 0.0016)
0.5 0.0001 0.0010 (−0.0019, 0.0021)
1.0 0.0001 0.0011 (−0.0021, 0.0023)
1.5 0.0001 0.0011 (−0.0021, 0.0023)
2.0 0.0001 0.0011 (−0.0021, 0.0023)
2.5 0.0001 0.0010 (−0.0019, 0.0021)
3.0 0.0001 0.0009 (−0.0018, 0.0020)

(b) Result of voting changes between the 1966 and 1970 British elections

λ Estimated measure Standard error Confidence interval

−0.5 0.0079 0.0033 (0.0014, 0.0144)
0.0 0.0133 0.0056 (0.0024, 0.0243)
0.5 0.0167 0.0070 (0.0030, 0.0304)
1.0 0.0184 0.0077 (0.0033, 0.0335)
1.5 0.0188 0.0079 (0.0034, 0.0343)
2.0 0.0184 0.0077 (0.0033, 0.0335)
2.5 0.0173 0.0072 (0.0031, 0.0315)
3.0 0.0158 0.0066 (0.0028, 0.0288)

Table 5. The estimated measures, estimated approximate standard errors, and approximate 95%

confidence interval for τ
(λ)
MH(H)

, applied to cross-classifications of the occupational statuses of Japanese
fathers and sons in 1955 and 1975 (Tominaga [33]).

(a) Result in 1955

λ Estimated measure Standard error Confidence interval

−0.5 0.0032 0.0094 (−0.0151, 0.0216)
0.0 0.0055 0.0158 (−0.0255, 0.0364)
0.5 0.0068 0.0198 (−0.0319, 0.0456)
1.0 0.0076 0.0218 (−0.0352, 0.0504)
1.5 0.0078 0.0224 (−0.0361, 0.0516)
2.0 0.0076 0.0218 (−0.0352, 0.0504)
2.5 0.0071 0.0205 (−0.0331, 0.0474)
3.0 0.0065 0.0188 (−0.0303, 0.0433)

(b) Result in 1975

λ Estimated measure Standard error Confidence interval

−0.5 0.0713 0.0196 (0.0328, 0.1098)
0.0 0.1172 0.0314 (0.0556, 0.1788)
0.5 0.1443 0.0379 (0.0700, 0.2187)
1.0 0.1576 0.0410 (0.0773, 0.2379)
1.5 0.1611 0.0417 (0.0793, 0.2428)
2.0 0.1576 0.0410 (0.0773, 0.2379)
2.5 0.1495 0.0392 (0.0726, 0.2265)
3.0 0.1385 0.0369 (0.0662, 0.2109)

7. Concluding Remarks

For r× r square contingency tables, we proposed an LMH model for nominal cate-
gories and a CLMH model for ordered categories. In addition, we proposed harmonic
mean-type measures of departure from these models. As shown in the example in Section 6,
there are two types of categories, namely, nominal and ordered. If we applied an ordered
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measure to a nominal contingency table, we would introduce extra information; if we used
a nominal measure for an ordered contingency table, information about the order would
be lost. Therefore, to analyze a contingency table, it is necessary to consider whether the
elements of the categories are ordered or not.

As described in Section 1, the measures of MH, PMH, and LMH models are constructed
using arithmetic, geometric, and harmonic means, respectively. We seek to express these
three measures in a single formula.

Author Contributions: All authors contributed to the writing and reviewing of the paper. Additionally, K.S.
and N.T. implemented the method, contributed the original draft, and co-wrote and revised the paper.
A.I. and T.N. contributed to the validation and co-wrote the original and revised versions of the paper.
S.T. defined and reviewed the methodology and supervised the whole study and the writing of the paper.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in [32,33].

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Measures Proposed in Previous Studies

The measures for the MH and PMH models for nominal contingency tables and
the MH and CPMH models for ordered contingency tables are shown. Assuming that
pi· + p·i 6= 0, Tomizawa and Makii [25] proposed a measure to represent the degree of
departure from the MH model as follows:

ψ
(λ)
MH(A)

=
r

∑
i=1

πiψ
(λ)
i for λ > −1

where
πi =

pi· + p·i
2

, p1(i) =
pi·

pi· + p·i
, p2(i) =

p·i
pi· + p·i

,

ψ
(λ)
i =


1− λ2λ

2λ − 1
I(λ)i for λ 6= 0,

1− 1
log 2

I(0)i for λ = 0,

I(λ)i =


1
λ

{
1−

(
p1(i)

)λ+1
−
(

p2(i)

)λ+1
}

for λ 6= 0,

−p1(i) log p1(i) − p2(i) log p2(i) for λ 6= 0.

Saigusa et al. [6] proposed a measure for the PMH model defined by

ψ
(λ)
MH(G)

=
r

∏
i=1

(
ψ
(λ)
i

)πi
for λ > −1.

Assuming that G1(i) + G2(i) 6= 0, Tomizawa et al. [17] proposed a measure to represent
the degree of departure from the MH model as follows:

τ
(λ)
MH(A)

=
r−1

∑
i=1

(
G∗1(i) + G∗2(i)

)
ω
(λ)
i for λ > −1
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where

G∗s(i) =
Gs(i)

∆
, ∆ =

r−1

∑
i=1

(
G1(i) + G2(i)

)
, Gc

s(i) =
Gs(i)

G1(i) + G2(i)
(s = 1 or 2),

ω
(λ)
i =


1− λ2λ

2λ − 1
H(λ)

i for λ 6= 0,

1− 1
log 2

H(0)
i for λ = 0,

H(λ)
i =


1
λ

{
1−

(
Gc

1(i)

)λ+1
−
(

Gc
2(i)

)λ+1
}

for λ 6= 0,

−Gc
1(i) log Gc

1(i) − Gc
2(i) log Gc

2(i) for λ 6= 0.

Nakagawa et al. [13] proposed a measure for the CPMH model defined by

τ
(λ)
MH(G)

=
r−1

∏
i=1

(
ω
(λ)
i

)(G∗1(i)+G∗2(i)
)

for λ > −1.

It can be seen that the measure ψ
(λ)
MH(A)

and τ
(λ)
MH(A)

are weighted arithmetic means

of the submeasure ψ
(λ)
i and ω

(λ)
i , respectively. ψ

(λ)
MH(G)

and τ
(λ)
MH(G)

are also weighted

geometric means of the submeasure ψ
(λ)
i and ω

(λ)
i , respectively.

Appendix B. Differentiation of the Proposed Measures

Appendix B.1. Measure of LMH

Consider pij(i = 1, . . . , r, j = 1, . . . , r). Differentiating ψ
(λ)
MH(H)

by pij, we obtain

∂

∂pij
(ψ

(λ)
MH(H)

) =

 r

∑
i=1

πi

r

∏
s=1
s 6=i

ψ
(λ)
s



−1

· ∂

∂pij

{
r

∏
s=1

ψ
(λ)
s

}

+
r

∏
s=1

ψ
(λ)
s · ∂

∂pij

 r

∑
i=1

πi

r−1

∏
s=1
s 6=i

ψ
(λ)
s



−1

=
(

ψ
(λ)
MH(H)

)2

 πi

(ψ
(λ)
i )2

·
∂ψ

(λ)
i

∂pij
+

πj

(ψ
(λ)
j )2

·
∂ψ

(λ)
j

∂pij


−
(

ψ
(λ)
MH(H)

)2

 1

ψ
(λ)
i

· ∂πi
∂pij

+
1

ψ
(λ)
j

·
∂πj

∂pij

.

Considering the derivative of ψ
(λ)
i and ψ

(λ)
j , we obtain

∂ψi
∂pij

=
2λ−1(λ + 1)

2λ − 1

p2(i)

πi

{(
p1(i)

)λ
−
(

p2(i)

)λ
}

,

∂ψj

∂pij
= −2λ−1(λ + 1)

2λ − 1

p1(j)

πj

{(
p1(j)

)λ
−
(

p2(j)

)λ
}

.
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Because ∂πi/∂pij and ∂πj/∂pij is equal to 1/2, we obtain

∂

∂pij
(ψ

(λ)
MH(H)

) =
(

ψ
(λ)
MH(H)

)2

 πi

(ψ
(λ)
i )2

·
∂ψ

(λ)
i

∂pij
+

πj

(ψ
(λ)
j )2

·
∂ψ

(λ)
j

∂pij


−
(

ψ
(λ)
MH(H)

)2

 1

ψ
(λ)
i

· ∂πi
∂pij

+
1

ψ
(λ)
j

·
∂πj

∂pij


= −

(
ψ
(λ)
MH(H)

)2
[

1

2ψ
(λ)
i

− 2λ−1(λ + 1)
2λ − 1

p2(i)

(ψ
(λ)
i )2

{(
p1(i)

)λ
−
(

p2(i)

)λ
}]

−
(

ψ
(λ)
MH(H)

)2
 1

2ψ
(λ)
j

+
2λ−1(λ + 1)

2λ − 1

p2(j)

(ψ
(λ)
j )2

{(
p1(j)

)λ
−
(

p2(j)

)λ
}.

Appendix B.2. Measure of CLMH

Consider pst(s < t)(s = 1, . . . , r, t = 1, . . . , r). Differentiating τ
(λ)
MH(H)

by pst, we obtain

∂

∂pst
(τ

(λ)
MH(H)

) =

r−1

∑
i=1

(G∗1(i) + G∗2(i))
r−1

∏
s=1
s 6=i

ω
(λ)
s



−1

· ∂

∂pst

{
r−1

∏
s=1

ω
(λ)
s

}

+
r−1

∏
s=1

ω
(λ)
s · ∂

∂pst

r−1

∑
i=1

(G∗1(i) + G∗2(i))
r−1

∏
s=1
s 6=i

ω
(λ)
s



−1

=
(

τ
(λ)
MH(H)

)2

G∗1(s) + G∗2(s)

(ω
(λ)
s )2

· ∂ω
(λ)
s

∂pst
+ · · ·+

G∗1(t−1) + G∗2(t−1)

(ω
(λ)
t−1)

2
·

∂ω
(λ)
t−1

∂pst


−
(

τ
(λ)
MH(H)

)2
{

1

ω
(λ)
1

·
∂(G∗1(1) + G∗2(1))

∂pst
+ · · ·+ 1

ω
(λ)
r

·
∂(G∗1(r) + G∗2(r))

∂pst

}
.

Considering the derivative of ω
(λ)
s , we obtain

∂ω
(λ)
s

∂pst
=

2λ(λ + 1)Gc
2(s)

(2λ − 1)(G1(s) + G2(s))
((Gc

1(s))
λ − (Gc

2(s))
λ).

Consider with respect to the derivative of G∗1(i) + G∗2(i). Assume that G∗1(n) contains pst

and G∗1(m) does not contain pst, we have

∂(G∗1(n) + G∗2(n))

∂pst
=

1
∆
{1− (t− s)(G∗1(n) + G∗2(n))},

∂(G∗1(m) + G∗2(m))

∂pst
= −(t− s)

(
1
∆

)
(G∗1(n) + G∗2(n)).
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Substituting these derivatives into the derivative of τ
(λ)
MH(H)

, we obtain

∂

∂pst
(τ

(λ)
MH(H)

) = (τ
(λ)
MH(H)

)2

G∗1(s) + G∗2(s)

(ω
(λ)
s )2

· ∂ω
(λ)
s

∂pst
+ · · ·+

G∗1(t−1) + G∗2(t−1)

(ω
(λ)
t−1)

2
·

∂ω
(λ)
t−1

∂pst


− (τ

(λ)
MH(H)

)2

{
1

ω
(λ)
1

·
∂(G∗1(1) + G∗2(1))

∂pst
+ · · ·+ 1

ω
(λ)
r

·
∂(G∗1(r) + G∗2(r))

∂pst

}

=
(τ

(λ)
MH(H)

)2

∆

t−1

∑
k=s

(
2λ(λ + 1)Gc

2(k)

(2λ − 1)(ω(λ)
k )2

((Gc
1(k))

λ − (Gc
2ks))

λ)− 1

ω
(λ)
k

)

+ (t− s)
τ
(λ)
MH(H)

∆
.

Similarly consider pst(s > t)(s = 1, . . . , r, t = 1, . . . , r). Noting that the derivative of
ω
(λ)
s is

∂ω
(λ)
s

∂pst
=

2λ(λ + 1)Gc
1(s)

(2λ − 1)(G1(s) + G2(s))
((Gc

2(s))
λ − (Gc

1(s))
λ),

the derivative of τ
(λ)
MH(H)

is

∂

∂pst
(τ

(λ)
MH(H)

) = (τ
(λ)
MH(H)

)2

G∗1(t) + G∗2(t)

(ω
(λ)
t )2

· ∂ω
(λ)
t

∂pst
+ · · ·+

G∗1(s−1) + G∗2(s−1)

(ω
(λ)
s−1)

2
·

∂ω
(λ)
s−1

∂pst


− (τ

(λ)
MH(H)

)2

{
1

ω
(λ)
1

·
∂(G∗1(1) + G∗2(1))

∂pst
+ · · ·+ 1

ω
(λ)
r

·
∂(G∗1(r) + G∗2(r))

∂pst

}

=
(τ

(λ)
MH(H)

)2

∆

s−1

∑
k=t

(
2λ(λ + 1)Gc

1(k)

(2λ − 1)(ω(λ)
k )2

((Gc
2(k))

λ − (Gc
1(k))

λ)− 1

ω
(λ)
k

)

+ (s− t)
(τ

(λ)
MH(H)

)

∆
.
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