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Abstract: Electroosmotic force has been used extensively to manipulate fluid flow in a microfluidic
system with various channel shapes, especially an elliptic cylinder. However, developing a computa-
tional domain and simulating fluid flow for a system involving an elliptic channel consumes a large
amount of time. Moreover, the mathematical expression for the fluid velocity of electroosmotic flow in
an elliptic channel may be given in the form of the Mathieu functions that have difficulty in achieving
the numerical result. In addition, there is clear scientific evidence that confirms the slippage of fluid
at the solid-fluid interface in a microscale system. In this study, we present the mathematical model of
combined pressure-driven and electroosmotic flow through elliptic microchannels under the slip-fluid
condition. From the practical point of view in fluidics, the effect of the eccentricity of the channel
cross-section is investigated on the volumetric flow rate to overcome the difficulty. The results show
that the substitution of the equivalent circular channel for an elliptic channel provides a valid flow
rate under the situation that the areas of both channel cross-sections are equal and the eccentricity of
the elliptic cross-section is less than 0.5. Additionally, the flow rate obtained from the substitution
is more accurate when the slip length increases or the pressure-gradient-to-external-electric-field
ratio decreases.

Keywords: electroosmotic flow; slip flow; elliptic microchannel; eccentricity

1. Introduction

Microfluidics is the study of fluid manipulation through a small-scale channel (mi-
crochannel) involving various fields of science such as engineering, biology, and chemistry.
The research interest in microfluidics has been increasing over the past 10 years [1–8] in
order to develop and create many microscale tools; for example, organs-on-a-chip [9,10],
labs-on-a-chips [11], 3D printing [12,13], and RNA-delivery devices [14]. Some primary
advantages of these technologies [15] are: (i) reducing the consumption of sample and
reagent quantities, (ii) saving cost and time in operation and manufacturing products,
and (iii) performing detection and separation of molecules at high resolution and sensitivity.
An important role in driving fluid in a microchannel is played by electroosmosis.

Electroosmosis is the process of the transportation of fluid through a narrow channel
under an electric field. This process occurs due to the effect of ionic charges at the fluid
and solid interface of the wall channel [16]. A charged surface develops two parallel layers
of ions known as the electrical double layers (EDL) as shown in Figure 1. The first layer
contains the ions that are absorbed onto the inner wall surface by the chemical reactions.
The second layer is the counterions, which are free ions, in the fluid that are attached to the
channel wall due to the electrokinetic force from the ions in the first layer. As a result, the
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greater the distance of the wall surface, the less the counterion concentration. Therefore,
the net charge density and the potential distribution decrease with a rise in the distance
of the channel wall and reduce to zero at the bulk fluid. Moreover, the ion and potential
distribution can be expressed by the Poisson–Boltzmann equation. An applied external
electric field will lead to the movement of the ions in the second layer and result in the
flow of the fluid. This type of fluid movement is also known as electroosmotic flow (EOF).
In order to investigate the EOF’s behavior in microfluidic devices, many researchers have
carried out numerous works [17–23] by both experimental and theoretical methods.

(a) (b)

Figure 1. Electroosmotic flow and the electrical double layer (red highlighted area) in an elliptic
cross-sectional channel: (a) cross-section view and (b) view along the channel length.

Various types of cross-sectional shapes were considered in the study of EOF, such
as circles [24,25], ellipses [26,27], and rectangles [28,29]. One of the most important cross-
sections of a microchannel existing in natural systems and microfluidic fabrication is in
an elliptic shape. However, developing a computational domain for a system involving
an elliptic channel consumes a large amount of time. Moreover, due to a lack of circular
symmetry, a simulation in an elliptic channel entails a high computational cost compared to
that in a circular channel. Additionally, in a theoretical study using a mathematical model,
the velocity of EOF through an elliptic channel may be derived in the form of the special
functions called the Mathieu and modified Mathieu functions. These special functions
rely on the infinite series of the trigonometric or the hyperbolic function with coefficients.
For example, the Mathieu function ce2m(z; q) is expressed by

ce2m(z; q) =
∞

∑
r=0

A(2m)
2r cos 2rz, (1)

where A(2m)
2r denote the coefficients depending on the parameter aq, which is a function

of the parameter q. When the value of q is not quite small, a little error of aq yields

a large error of A(2m)
2r , especially when m and r are large. Therefore, the Mathieu and

modified Mathieu functions may have difficulty in achieving the numerical result due to
their stability issue [30]. To overcome this complication, the validation of using the circular
channel instead has been proposed. In 2015, Liu et al. [31] investigated the influence
of eccentricity on fully developed pure EOF through elliptic channels. The force by the
pressure gradient was omitted. By fixing the perimeter of the channel cross-section, the fluid
velocities in elliptic channels having different values of the eccentricity were evaluated.
They concluded that considering the circular channel with the same perimeter instead
of an elliptic channel is inappropriate. In 2021, Numpanviwat et al. [32] proposed the
mathematical model of transient combined pressure-driven and electroosmotic flow in
an elliptic microchannel under the no-slip condition. The effect of the eccentricity of the
channel cross-section was studied in two situations by fixing either the area or the perimeter
of the cross-section. The result is well consistent with Liu’s work when fixing the perimeter.
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Nonetheless, the result showed that the use of the cylindrical channel by fixing the area of
the cross-section is validated compared with the result from the elliptic channel.

In a macroscale system, fluid flow problems are usually considered under the no-slip
boundary condition on solid surfaces, which means that the velocity of the fluid at the
surface will be zero. However, over the past few decades, there is much evidence indicating
that the fluid slips at the wall surfaces [33–36]. Since the surface-area-to-volume ratio
of the microscale system is very large, the slippage of fluid will significantly affect the
interaction between the wall surface and the fluid during the fluid transport process. As a
consequence, the slip-fluid condition will play a crucial role in fluid flow under a microscale
or a smaller system.

Motivated by the aforementioned arguments, we present the mathematical model
of combined pressure-driven and electroosmotic flow through elliptic cross-sectional mi-
crochannels under the slip fluid condition in order to examine the influence of the ec-
centricity of the elliptic-channel cross-section. The force by the EDL potential is derived
from the Debye-Hückel approximation by employing the Mathieu and modified Mathieu
functions. Then, the fluid velocity is obtained by solving the Navier–Stokes equations
coupled with the continuity equation. Since a volumetric flow rate plays a more significant
role in the microfluidic aspect [37], the effect of the eccentricity on the volumetric flow rate
is investigated instead of the velocity. The investigations are performed in two situations:
(i) the area of the elliptic cross-section of the channel is fixed and (ii) the perimeter of the
elliptic cross-section of the channel is fixed. With regard to the slip flow phenomenon,
the comparison of the effect of the eccentricity on various slip lengths is also carried out.
To validate the consideration of the equivalent circular microchannel instead of the elliptic
microchannel, the relative error of the flow rate with various eccentricities is demonstrated.
Further, since the fluid velocity is expressed relating to the pressure gradient and the
external electric field, it is important to consider the influence of the eccentricity relating to
the ratio of the pressure gradient and the external electric field.

The rest of this paper is organized as follows. Section 2 provides background knowl-
edge of the elliptic coordinate system and the Mathieu and modified Mathieu functions.
The mathematical modeling for combined pressure-driven and electroosmotic flow is estab-
lished in Section 3. Section 4 shows the boundary conditions used in this study. Section 5
presents the mathematical methodology for solving the boundary value problem. The nu-
merical results are illustrated and discussed in Section 6. Finally, the conclusions are given
in Section 7.

2. Preliminaries on the Elliptic Coordinate System
2.1. Elliptic Coordinates

According to an ellipse having two foci at (c, 0) and (−c, 0) in the 2-dimensional
Cartesian coordinates, the elliptic coordinate system, as shown in Figure 2, is defined by

x = c cosh ξ cos η, (2)

y = c sinh ξ sin η, (3)

where ξ ∈ [0, ∞) denotes the confocal ellipses and η ∈ [0, 2π) denotes the asymptotic angle
of the confocal hyperbolas.

The elongation of an ellipse along the major axis called the eccentricity e is measured
by the ratio

e =
c
a

, 0 < e < 1, (4)

where c denotes the focal length of an ellipse and a denotes the longest distance between
the center and perimeter of an ellipse known as the semi-major axis.

The scale factors, also known as the basic vectors, for the elliptic coordinates (ξ, η) can
be derived as follows:

hξ = hη = c
√

cosh2 ξ − cos2 η. (5)
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As a consequence, the 2-dimensional Laplace operator in the elliptic coordinates (ξ, η)
are scaled to

∇2 =
1

hξ hη

(
∂2

∂ξ2 +
∂2

∂η2

)
=

1
c2(cosh2 ξ − cos2 η)

(
∂2

∂ξ2 +
∂2

∂η2

)
. (6)

Figure 2. Elliptic coordinates (ξ, η).

2.2. Mathieu and Modified Mathieu Functions

The solution of the 2-dimensional wave equation in the elliptic coordinates (ξ, η),

1
c2(cosh2 ξ − cos2 η)

(
∂2w
∂ξ2 +

∂2w
∂η2

)
+ k2w = 0, (7)

can be obtained by employing the separation of variables method w(ξ, η) = X(ξ)Y(η).
The separation yields the two ordinary differential equations of second order, namely the
Mathieu and modified Mathieu equations that are expressed as

d2Y
dη2 + (aq − 2q cos 2η)Y = 0, (8)

d2X
dξ2 − (aq − 2q cosh 2ξ)X = 0, (9)

respectively. The parameter aq denotes the separation constant which varies on the pa-
rameter q = k2c2/4. With regard to the elliptic channel, the appropriate solutions of
Equations (8) and (9) have to satisfy the symmetric properties of the major and minor axes
of the ellipse. Hence, the solution of the 2-dimensional wave Equation (7) in the elliptic
channel is

w(ξ, η) =
∞

∑
m=0

D2m Ce2m(ξ; q) ce2m(η; q), (10)

where ce2m(η; q) denotes the periodic Mathieu functions of integral order with period π and
Ce2m(ξ; q) denotes the periodic modified Mathieu functions corresponding to ce2m(η; q).

3. Mathematical Modeling

In this section, the governing equations for combined pressure-driven electroosmotic
slip flow through an elliptic microchannel are constructed. Deriving from the Cauchy
momentum equation and the mass conservation law, the motion of an incompressible fluid
can be described by the Navier–Stokes equations coupled with the continuity equation:
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ρ

(
∂~v
∂t

+ (~v · ∇)~v
)
= −∇p + µ∇2~v + ~fEOF, (11)

∇ ·~v = 0, (12)

where ~v denotes the 3-dimensional vector of the fluid velocity, ρ denotes the fluid density,
p denotes the pressure, µ denotes the fluid viscosity, and ~fEOF denotes the electroosmotic
body force. In the electrostatic theory, the relationship between the ionic charge density of
the fluid ρe, and the EDL potential inside the channel ψ is defined in the form of the Poisson
equation as ∇2ψ = −ρe/ε. Thus, the electroosmotic body force can be described by

~fEOF = ρe~E = −ε
(
∇2ψ

)
~E, (13)

where ~E denotes the vector of external electric field and ε denotes the fluid permittivity.
Considering that the elliptic channel is placed along the z-axis direction and the fluid

flow through the channel is fully developed, we then have the fluid velocity, the external
electric field, and the pressure gradient not depending on time and existing only in the
z-direction; that is, ~v = (0, 0, u), ~E = (0, 0, E), and ∇p = (0, 0, pz). Therefore, combining
Equations (11)–(13) yields the governing equation as follows:

1
c2(cosh2 ξ − cos2 η)

(
∂2u
∂ξ2 +

∂2u
∂η2

)
=

pz

µ
+

εE
µc2(cosh2 ξ − cos2 η)

(
∂2ψ

∂ξ2 +
∂2ψ

∂η2

)
, (14)

where E and pz are constant and (ξ, η) denotes the elliptic coordinate system. Additionally,
the continuity Equation (12) is now reduced to ∂u/∂z = 0, and hence the z-axis velocity u
depends only on ξ and η. Moreover, suppose that the gradient of the EDL potential exists
only in the direction perpendicular to the channel surface; then ∂ψ/∂z = 0, which gives
rise to ψ, is also the function only of ξ and η.

4. Boundary Conditions

Since the governing equation for combined pressure-driven electroosmotic slip flow
through an elliptic microchannel was derived, in this section, we state the boundary
conditions used in the study.

In regard to the symmetry of an elliptic channel, the fluid flow and the EDL potential
distribution are considered to be symmetric about the x- and y-axes, i.e.,

∂u
∂ξ

(0, η) =
∂ψ

∂ξ
(0, η) = 0, 0 ≤ η ≤ 2π, (15a)

∂u
∂η

(ξ, 0) =
∂ψ

∂η
(ξ, 0) = 0, 0 ≤ ξ ≤ ξ0, (15b)

∂u
∂η

(ξ,
π

2
) =

∂ψ

∂η
(ξ,

π

2
) = 0, 0 ≤ ξ ≤ ξ0. (15c)

According to the appearance of slip flow in the microscale system, the Navier slip
condition is employed to the fluid on the channel boundary as

u(ξ0, η) +
l

c
√

cosh2ξ0 − cos2η

∂u
∂ξ

(ξ0, η) = 0, (15d)

where l denotes the Navier slip length (see Figure 3), and ξ0 = ln
(
(1 +

√
1− e2)e−1)

denotes the boundary interface of the channel. For the EDL potential on the surface of
the channel, we suppose that the charge on the surface of the channel is uniform with a
constant zeta potential ζ. Hence,

ψ(ξ0, η) = ζ. (15e)
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Figure 3. Navier slip length.

All equations relating to the boundary conditions and the governing Equation (14) form
the boundary value problem that will be used to find the solution for fluid velocity.

5. Solutions of the Boundary Value Problem

To find fluid velocity in an elliptic microchannel, we solve the boundary value problem
consisting of the partial differential Equation (14) and the boundary conditions (15). By us-
ing the identities cosh2 ξ = (1 + cosh 2ξ)/2 and cos2 η = (1 + cos 2η)/2, the governing
Equation (14) can be rewritten as

2
c2(cosh 2ξ − cos 2η)

(
∂2u
∂ξ2 +

∂2u
∂η2

)
=

pz

µ
+

2εE
µc2(cosh 2ξ − cos 2η)

(
∂2ψ

∂ξ2 +
∂2ψ

∂η2

)
. (16)

The non-homogeneous Equation (16) can be transformed into a homogeneous equation
by employing the change of variable technique. Let

u(ξ, η) = w(ξ, η) +
εE
µ

ψ(ξ, η) +
c2 pz

8µ
(cosh 2ξ + cos 2η). (17)

Then Equation (14) is homogenized to

2
c2(cosh 2ξ − cos 2η)

(
∂2w
∂ξ2 +

∂2w
∂η2

)
= 0. (18)

The boundary conditions for the function w(ξ, η) can be derived from
Equations (15a)–(15c) as

∂w
∂ξ

(0, η) = 0,
∂w
∂η

(ξ, 0) = 0, and
∂w
∂η

(ξ,
π

2
) = 0. (19)

Since Equation (18) is homogeneous, we can apply the method of separation of vari-
ables to find the solution by letting w(ξ, η) = X(ξ)Y(η), where X(ξ) denotes a function
depending solely on ξ and Y(η) denotes a function depending solely on η. As a result,
the solution that satisfies Equation (18) and the boundary conditions (19) is

w(ξ, η) =
∞

∑
m=0

C2m cosh 2mξ cos 2mη, (20)
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where C2m are constant. Thus, we obtain the solution to the boundary value problem
as follows:

u(ξ, η) =
∞

∑
m=0

C2m cosh 2mξ cos 2mη +
εE
µ

ψ(ξ, η) +
c2 pz

8µ
(cosh 2ξ + cos 2η). (21)

The coefficients C2m can be calculated by substituting the velocity function u expressed
in Equation (21) into the Navier slip condition (15d) and using the zeta potential condi-
tion (15e) to arrive at

0 =
∞

∑
m=0

C2m
(
cosh 2mξ0 + 2mg(η, l) sinh 2mξ0

)
cos 2mη

+ h(η, l) +
c2 pz

8µ
(cosh 2ξ0 + cos 2η + 2g(η, l) sinh 2ξ0),

(22)

where

h(η, l) =
εE
µ

(
ζ + g(η, l)

∂ψ

∂ξ
(ξ0, η)

)
, (23)

and

g(η, l) =
l

c
√

cosh2 ξ0 − cos2 η
. (24)

For l = 0, we have g(η, l) = 0, and the Navier slip condition is reduced to the no-
slip condition, i.e., u(0, η) = 0. Then the coefficients C2m can be derived by using the
orthogonality of the function cos 2mη on an interval [0, 2π] as

C2m = −
∫ 2π

0

(
εEζµ−1 + c2 pz(8µ)−1(cosh 2ξ0 + cos 2η)

)
cos 2mη dη∫ 2π

0 cosh 2mξ0 cos2 2mη dη
. (25)

For l > 0, let k be a non-negative integer. Multiplying cos 2kη into Equation (22) and
integrating from 0 to 2π with respect to η yields

∞

∑
m=0

Ak,mC2m = Bk, k = 0, 1, 2, . . . , (26)

where

Ak,m =
∫ 2π

0
(cosh 2mξ0 + 2mg(η, l) sinh 2mξ0) cos 2mη cos 2kη dη, (27)

Bk = −
∫ 2π

0

(
h(η, l) + c2 pz(8µ)−1(cosh 2ξ0 + cos 2η + 2g(η, l) sinh 2ξ0)

)
cos 2kη dη. (28)

To find the coefficients C2m, the fluid velocity u is approximated by

u(ξ, η) =
M

∑
m=0

C2m cosh 2mξ cos 2mη +
εE
µ

ψ(ξ, η) +
c2 pz

8µ
(cosh 2ξ + cos 2η), (29)

for a suitable fixed positive integer M. Hence, the infinite system (26) is reduced to the
system with finite equations as

M

∑
m=0

Ak,mC2m = Bk, k = 0, 1, 2, . . . , M, (30)
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and the coefficients C2m are given by solving the reduced finite system (30).
The solution u(ξ, η) in Equation (21) still contains the unknown EDL potential function

ψ. To find ψ, we assume the fluid is the symmetric electrolyte. By omitting the convection
from the fluid, the distribution of the ionic charge density ρe inside the channel can be
described by the Boltzmann equation:

ρe = −2n0 p+zν sinh
p+zν

kBT
ψ, (31)

where n0 denotes the concentration of ions at the bulk, p+ denotes the elementary proton
charge, zν denotes the valence of the ions, kB denotes the Boltzmann constant, and T
denotes the fluid absolute temperature. Substituting ρe from the Boltzmann equation (31)
into the Poisson equation ∇2ψ = −ρe/ε yields the Poisson–Boltzmann equation:

∇2ψ(ξ, η) = −ρe

ε
=

2n0 p+zν

ε
sinh

p+zν

kBT
ψ. (32)

Suppose that zeta potential is low (|p+zνψ| < kBT) [38]; we can approximate

sinh
p+zν

kBT
ψ ≈ p+zν

kBT
ψ. (33)

Therefore, the Poisson–Boltzmann Equation (32) is reduced to the Debye–Hückel
approximation in elliptic coordinates (ξ, η):

1
c2(cosh2 ξ − cos2 η)

(
∂2ψ

∂ξ2 +
∂2ψ

∂η2

)
− κ2ψ = 0, (34)

where κ = (2n0 p+
2
z2

ν/εkBT)1/2, which is known as the reciprocal of the EDL thickness.
Since Equation (34) is the 2-dimensional wave equation in the elliptic coordinate

system, the solution that satisfies the boundary conditions (15a)–(15c) can be derived in the
form of the Mathieu functions [30] as

ψ(ξ, η) =
∞

∑
m=0

D2m Ce2m(ξ;−q) ce2m(η;−q), (35)

where D2m is constant, Ce2m(ξ;−q) denotes the periodic Mathieu functions with q = κ2c2/4,
and ce2m(η;−q) denotes the modified Mathieu functions corresponding to Ce2m(ξ;−q).
Substituting the function ψ into the boundary condition (15e), then we can use the or-
thogonality of the Mathieu functions ce2m(η;−q) on the interval [0, 2π] to determine the
coefficients D2m as follows:

D2m =

∫ 2π
0 ζ · ce2m(η;−q) dη∫ 2π

0 Ce2m(ξ0;−q) ce2
2m(η;−q) dη

. (36)

To non-dimensionalize Equations (29) and (35), we define the non-dimensional
variables

u∗ =
u

−εζEµ−1 , ψ∗ =
ψ

ζ
, p∗z =

pz

8εζ2c−3 , E∗ =
E

ζc−1 . (37)

Thus, the dimensionless velocity profile u∗ is expressed in the form of

u∗(ξ, η) =
M

∑
m=0

C∗2m cosh 2mξ cos 2mη − ψ∗(ξ, η)− p∗z
E∗

(cosh 2ξ + cos 2η), (38)

where C∗2m = C2m/(−εζEµ−1) are given for l = 0 by
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C∗2m =

∫ 2π
0

(
1 + p∗z (E∗)−1(cosh 2ξ0 + cos 2η)

)
cos 2mη dη∫ 2π

0 cosh 2mξ0 cos2 2mη dη
, (39)

and are obtained for l > 0 by solving the system

M

∑
m=0

Ak,mC∗2m = B∗k , k = 0, 1, 2, . . . , M, (40)

where

B∗k =
∫ 2π

0

(
p∗z (E∗)−1(cosh 2ξ0 + cos 2η + 2g(η, l) sinh 2η0) + h∗(η, l)

)
cos 2kη dη, (41)

h∗(η, l) = 1 + g(η, l)
∂ψ∗

∂ξ
(ξ0, η). (42)

The non-dimensional EDL potential ψ∗ can be derived as

ψ∗(ξ, η) =
∞

∑
m=0

D∗2m Ce2m(ξ;−q) ce2m(η;−q), (43)

where

D∗2m =

∫ 2π
0 ce2m(η;−q) dη∫ 2π

0 Ce2m(ξ0;−q) ce2
2m(η;−q) dη

. (44)

6. Effect of the Eccentricity on Slip Flow

From a fluidic aspect, a volumetric flow rate instead of velocity plays a more crucial
role in flow manipulation [37]. As a consequence, to investigate the effect of the eccentricity,
we consider the volumetric flow rate Q per unit area of the channel cross-section defined by

Q =
1
A

2π∫
0

ξ0∫
0

c2(cosh2 ξ − cos2 η)u(ξ, η) dξ dη, (45)

where A denotes the area of the cross-section and u is calculated via Equation (29) for the ap-
propriate number M = 6. Using the non-dimensional velocity u∗ defined in Equation (37),
the dimensionless flow rate Q∗ can be calculated by the following equation:

Q∗ =
Q

εζEµ−1 =
c2

A

2π∫
0

ξ0∫
0

(cosh2 ξ − cos2 η)u∗(ξ, η) dξ dη. (46)

The effect of the eccentricity is investigated in two aspects of the channel geometry:
(i) the area of the elliptic cross-section of the channel is fixed and (ii) the perimeter of the
elliptic cross-section of the channel is fixed. When the area of the cross-section is fixed,
the focal length of the ellipse can be derived relating to the eccentricity e by

c = e

√
A

π
√

1− e2
. (47)

On the other hand, the focal length can be calculated for each eccentricity by fixing the
channel perimeter as follows:

c =
eP

4
∫ π/2

0

√
1− e2 sin η dη

, (48)
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where P denotes the perimeter of the elliptic cross-section. The properties of the fluid [38]
and the other parameters used in the investigation are presented in Table 1 unless stated
specifically otherwise.

Table 1. Table of parameters used in the investigation.

Name Symbol Value SI Unit

Fluid viscosity µ 9.00× 10−4 Pa s
Fluid permittivity ε 6.95× 10−10 F m−1

Pressure gradient in z-axis pz −2.00 Pa m−1

Reciprocal of EDL thickness κ 8.00× 104 m−1

Zeta potential ζ −2.49× 10−4 V
External electric field E 5.00× 102 V m−1

Figure 4a presents the comparison of the dimensionless volumetric flow rates Q∗

through the elliptic channel with various eccentricities when the area of the cross-section is
fixed to 4.5π× 103 µm2. The slip flow at the channel wall is considered with the slip length
l = 0, 10, 100, and 1000 µm. The result shows that when l = 0, which is the no-slip wall, no
significant difference in Q∗ exists in the channel with the eccentricity less than 0.5. However,
when the eccentricity is greater than 0.5, we can see a considerable decrease in Q∗ as a
rise in the eccentricity. When e increases, the shortest distance between the channel center
and the perimeter (known as the semi-minor axis) of an ellipse decreases (see Figure 5a).
The reduction of this distance results in the velocity profile of fluid. In particular, the less
the distance, the lower the maximum velocity through the channel (see Figure 6). Hence,
an increase in the eccentricity yields a lower volumetric flow rate. This result is well
consistent with Numpanviwat’s work [32]. When the slip flow phenomenon is applied,
i.e., l 6= 0, Q∗ increases as an increase in the slip length. In spite of that, for each slip length,
there is no crucial difference in Q∗ among the channel with e < 0.5, but Q∗ dramatically
drops as an increase in the eccentricity when e > 0.5. This result resembles that of the
no-slip flow.

(a) Fixed area (b) Fixed perimeter

Figure 4. Variation of the dimensionless flow rates Q∗ with four different values of the slip length
l = 0 (red dotted line), 10 (blue solid line), 100 (green dashed line), and 1000 (black dot-dashed
line) µm on various eccentricities when (a) the area of the channel cross-sections is fixed and (b) the
perimeter of the channel cross-sections is fixed.
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(a) Fixed area (b) Fixed perimeter

Figure 5. Elliptic cross-sections with three different eccentricities e = 0 (red dotted line), 0.6 (blue
solid line), and 0.9 (black dot-dashed line) when (a) the area of the channel cross-sections is fixed and
(b) the perimeter of the channel cross-sections is fixed.

(a) (b)

Figure 6. Velocity profile along the y-axis in the elliptic channel with three different eccentricities
e = 0 (red dotted line), 0.6 (blue solid line), and 0.9 (black dot-dashed line) when the area of the
channel cross-sections is fixed: (a) l = 0 µm and (b) l = 10 µm.

To investigate the effect of the eccentricity on slip flow when the perimeter is fixed,
the variation of the non-dimensional flow rates Q∗ in the elliptic cross-sectional channel
where the cross-section perimeter is fixed to 4.127× 102 µm is demonstrated in Figure 4b.
The eccentricities and the slip lengths used in this investigation are the same as in the
former comparison when the area of the cross-sections is fixed. The result shows that if
the slip length increases, then so does Q∗. However, Q∗ fluctuates significantly when the
eccentricity increases. Additionally, the flow rate increases gradually when 0 < e < 0.6,
and the flow rate decreases sharply when e > 0.6. When the perimeter of an ellipse is fixed,
the variation of the dimensionless flow rate Q∗ on the eccentricity e should be similar to
when the area of the elliptic cross-section is fixed because the semi-minor axis also decreases
as an increase in e (see Figure 5b). However, with a fixed perimeter, the area of an ellipse
rises when 0 < e < 0.6, as shown in Figure 7. Therefore, it yields a higher flow rate. On the
other hand, when e > 0.6, the area of the ellipse sharply drops as an increase in e. As a
consequence, the flow rate decreases significantly.
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Figure 7. Area of the elliptic cross-section when the perimeter is fixed to 4.127× 102 µm.

In order to overcome the complexity of calculating the numerical result, one may treat
an elliptic cross-sectional channel as a cylindrical channel. Consequently, it is worth exam-
ining here how the eccentricity affects the flow rate in the relative error aspect compared
with the flow rate in the equivalent cylindrical channel. Figure 8 illustrates the comparison
of the relative error of the non-dimensional flow rate in the elliptic channel with various
eccentricities compared with the non-dimensional flow rate in the circular channel when
either the area or the perimeter of the cross-sections is fixed. The relative error δ of the flow
rate is defined by

δi =

∣∣∣∣Q∗0 −Q∗i
Q∗i

∣∣∣∣× 100, (49)

where Q∗0 denotes the dimensionless flow rate in the circular channel and Q∗i denotes the
dimensionless flow rate in the elliptic channel with eccentricity equal to i. The result in
Figure 8a shows that, when the area is fixed, the relative errors of the no-slip flow in the
channel with e < 0.5 are less than 1%. When the slip length increases, the fluid velocity
increases, but the velocity profile is still in the same pattern, as shown in Figure 6. Hence,
the change in the volumetric flow rate on an increase in the eccentricity is practically
identical among the channel with different slip lengths. This phenomenon can be observed
in Figure 4a as the pattern of the reductions in Q∗ of the channel with four different
slip lengths as e increases are strongly resembled. As a consequence, there is no crucial
difference in the absolute error of the flow rate defined by |Q∗0 −Q∗i | between the channels
having any two different slip lengths. Since the relative error is defined by

δi =

∣∣∣∣Q∗0 −Q∗i
Q∗i

∣∣∣∣× 100 =
absolute error

|Q∗i |
× 100, (50)

a rise in slip length leads to a higher flow rate. However, there is no significant difference
that occurs in the absolute error as the aforementioned argument. Thus, the relative error
reduces when the slip length increases.

On the other hand, when the perimeter is fixed, Figure 8b demonstrates that the
relative errors of the no-slip flow are notably high in the elliptic channel having e > 0.2.
The relative error is well consistent with the fluctuation of the volumetric flow rate due to
the change in the cross-sectional area.

Therefore, when the slip flow is considered, the relative error decreases with an
increase in the slip length. As a result, the simplification by using the equivalent circular
channel for the elliptic channel can be done under the condition that the area of the cross-
sections is fixed and the eccentricity is less than 0.5.
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(a) Fixed area. (b) Fixed perimeter.

Figure 8. Variation of the relative errors of the flow rate with four different values of the slip length
l = 0 (red dotted line), 10 (blue solid line), 100 (green dashed line), and 1000 (black dot-dashed
line) µm on various eccentricities when (a) the area of the channel cross-sections is fixed and (b) the
perimeter of the channel cross-sections is fixed.

Furthermore, we investigate the relative error of the flow rate with various ratios of the
non-dimensional pressure gradient p∗z and the non-dimensional external electric field E∗.
According to the aforementioned result, we consider only the relative error when the area
of the cross-sections is fixed. Figure 9 demonstrates the comparison of the relative errors of
the flow rate with the ratio p∗z /E∗ equal to 1/5, 1/2.5, 2.5, and 5 times that ratio used in
the investigation in Figure 8. The results show that the relative errors enlarge when p∗z /E∗

increases in all the channels with different values of the eccentricity. This phenomenon can
be described as relating to the slip flow. When the ratio p∗z /E∗ increases, the flow is more
dominated by the pressure-gradient force compared to the EOF. It means, on the other
hand, the EOF is less dominant in the flow. Since the EOF is acting on the EDL, which is
the area adjacent to the wall, the weaker EOF will result similar to the smaller slip length.
As a consequence, the relative error of the flow rate increases with an increase in the ratio
p∗z /E∗ in the same manner as a decrease in the slip length. Moreover, the effect of the ratio
p∗z /E∗ vanishes when the slip length is very large, i.e., l > 100 µm.

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. Variation of the relative errors of the flow rate on various eccentricities when the ratios
p∗z /E∗ are 1/5 times (red dotted line), 1/2.5 times (blue solid line), 1 times (green dashed line),
2.5 times (purple long dashed line), and 5 times (black dot-dashed line) of the ratio used in the
investigation in Figure 8 with four different values of the slip length: (a) l = 0 µm; (b) l = 10 µm;
(c) l = 100 µm; and (d) l = 1000 µm.

7. Conclusions

We present the solution for the fluid velocity of slip flow driven by both pressure-
gradient force and EOF through an elliptic cylindrical microchannel. The EOF is obtained
by solving the Debye–Hückel approximation, and the fluid velocity is derived based on
the Navier–Stokes and the continuity equations under the Navier slip condition. The volu-
metric flow rate is calculated numerically to investigate validation of the consideration of
the elliptic cylindrical microchannel to be the equivalent circular cylindrical microchannel.
The results show that the consideration of the equivalent circular channel provides a valid
result of the flow rate under the condition that the area of the channel cross-section is fixed
and the eccentricity is less than 0.5. Additionally, the consideration yields a more accurate
flow rate in slip electroosmotic flow driven by an external electric field.
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tion, P.C. and N.N.; Methodology, P.C. and N.N.; Validation, P.C. and N.N.; Visualization, P.C. and
N.N.; Writing—original draft, P.C. and N.N.; Writing—review & editing, P.C. and N.N. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A area of channel cross-section
a semi-major axis of an ellipse
aq separation constant of 2-dimensional wave equation in elliptic coordinates
c focal length of an ellipse
Ce2m periodic modified Methieu function corresponding to ce2m
ce2m periodic Methieu function of integral order
E external electric field in z-direction
E∗ dimensionless external electric field in z-direction
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~E vector of external electric field
e eccentricity of an ellipse
~fEOF vector of electroosmotic body force
hξ , hη scalar factors/basic vectors for the elliptic coordinates
kB Boltzmann constant
l Navier slip length
n0 concentration of ions at bulk
P perimeter of the elliptic cross-section
p pressure
pz pressure gradient in z-direction
p∗z dimensionless pressure gradient in z-direction
p+ elementary proton charge
Q volumetric flow rate per unit area of the channel cross-section
Q∗ dimensionless volumetric flow rate per unit area
Q∗i dimensionless flow rate in the elliptic channel with the eccentricity equal to i
Q∗0 dimensionless flow rate in the circular channel
T fluid absolute temperature
u fluid velocity in z-direction
u∗ dimensionless fluid velocity in z-direction
~v vector of fluid velocity
(x, y) Cartesian coordinates
zv valence of ion
δ relative error of Q∗

ε fluid permittivity
ζ zeta potential
κ reciprocal of EDL thickness
µ fluid viscosity
(ξ, η) elliptic coordinate system
ξ0 boundary interface of the channel
ρ fluid density
ρe ionic charge density of fluid
ψ EDL potential
ψ∗ dimensionless EDL potential
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