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Abstract: Our paper presents three new classes of models: SIR-PH, SIR-PH-FA, and SIR-PH-IA, and
states two problems we would like to solve about them. Recall that deterministic mathematical
epidemiology has one basic general law, the “R0 alternative” of Van den Driessche and Watmough,
which states that the local stability condition of the disease-free equilibrium may be expressed as
R0 < 1, where R0 is the famous basic reproduction number, which also plays a major role in the
theory of branching processes. The literature suggests that it is impossible to find general laws
concerning the endemic points. However, it is quite common that 1. When R0 > 1, there exists a
unique fixed endemic point, and 2. the endemic point is locally stable whenR0 > 1. One would like
to establish these properties for a large class of realistic epidemic models (and we do not include here
epidemics without casualties). We have introduced recently a “simple” but broad class of “SIR-PH
models” with varying populations, with the express purpose of establishing for these processes the
two properties above. Since that seemed still hard, we have introduced a further class of “SIR-PH-FA”
models, which may be interpreted as approximations for the SIR-PH models, and which include
simpler models typically studied in the literature (with constant population, without loss of immunity,
etc.). For this class, the first “endemic law” above is “almost established”, as explicit formulas for
a unique endemic point are available, independently of the number of infectious compartments,
and it only remains to check its belonging to the invariant domain. This may yet turn out to be
always verified, but we have not been able to establish that. However, the second property, the
sufficiency ofR0 > 1 for the local stability of an endemic point, remains open even for SIR-PH-FA
models, despite the numerous particular cases in which it was checked to hold (via Routh–Hurwitz
time-onerous computations, or Lyapunov functions). The goal of our paper is to draw attention to
the two open problems above, for the SIR-PH and SIR-PH-FA, and also for a second, more refined
“intermediate approximation” SIR-PH-IA. We illustrate the current status-quo by presenting new
results on a generalization of the SAIRS epidemic model.

Keywords: epidemic models; varying population models; SIR-PH models; stability; next-generation
matrix approach; basic reproduction number; vaccination; loss of immunity; endemic equilibria;
Routh–Hurwitz conditions

1. Introduction

Motivation. One of the hardest challenges facing epidemic models is dealing with
models within which death is possible, in which the total population N varies, and in
which the infection rates depend on N (as is the case in reality, except for a short period of
time at the start of an epidemic). As these features confront the researcher with challenging
behaviors (the first being that the uniqueness of the fixed endemic point may stop holding),
sometimes hard to explain epidemiologically, it seems natural to attempt to identify the
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simplest class of realistic models for which a theory may be developed. The natural choice
is “standard incidence rates”—see (1), since models with nonlinear infection rates are quite
complex—see for example [1–5] for the very complex dynamical behaviors which may
arise otherwise.

The next issue is choosing the type of birth function b(N) to work with. The easiest
case is when b(N) is constant, but this corresponds to immigration rather than birth, and so
our favorite are linear birth rates b(N) = ΛN. A bonus for this choice, as well known, is that
normalization by the total population leads to a model with constant parameters, which
looks similar to classic constant population models, but involves some extra nonlinear
terms—see (2). The well-studied classic models may then be recovered via a heuristic “first
approximation” (FA) of ignoring the extra terms. This approximation, which deserves to be
investigated rigorously via slow-fast/singular perturbation/homogenization techniques,
has the merit of putting under one umbrella constant and varying population models with
linear birth rates.

At this point, let us mention that we believe that epidemic models should be ideally
parameterized by the two matrices F, V, which intervene in the next generation matrix
approach, which has been called disease-carrying and state evolution matrices [6,7]. A
foundational paper in this direction is [8], Arino shows that further simplifications arise
for models having only one susceptible class and disease-carrying matrix of rank one. The
first fundamental question, the uniqueness of the endemic point when R0 > 1, may be
resolved explicitly for the “FA approximation” (and hence also for “small perturbations”,
numerically). This has motivated us to propose [9,10] to develop the theory of this class of
models, which we call “Arino” or “SIR–PH” models.

Contributions and contents. The goal of our paper is to draw attention to two in-
teresting open problems, for the SIR-PH, SIR-PH-FA, and also for a second, more refined
“intermediate approximation” SIR-PH-IA. We illustrate the current status-quo by presenting
new results on a generalization of the SAIRS epidemic model of [11,12].

The SAIRS model (2) is presented in Section 2. The history of the problem and some
oversights and errors in the literature are recalled in Section 2.1. The basic reproduction
numberR0 and the weakR0 alternative for the DFE equilibrium are established via the
next generation matrix approach in Section 2.2. The local stability of the endemic point
when the basic reproduction number satisfies R0 > 1 for the FA model is established in
Section 2.3.

A review of the theory of SIR-PH models is provided in Section 3, and some new
results in Section 4.

The scaled SAIRS model is revisited in the Section 5, where some previous results in
the literature are corrected and completed.

2. The SAIRS Model with Linear Birth Rate

In this paper, we consider a ten parameters SAIR (also called SEIR in the classic
literature [13]) epidemic model inspired by [12,14–20], which we call SAIR/V+S (or SAIR
for short) as it groups together immunized people in an R/V compartment. The letter
A (from asymptomatic) stands for the fact that the individuals in this compartment may
infect the susceptibles. This important feature, already present in [13], was further studied
in [11,12,21]. The model studied in [12] is the most complete in the sense that it misses
only one of the parameters of interest, namely the important extra death rate due to the
disease—see for example [22]. The explanation for this omission in [12] lies probably in the
fact that this paper follows the tradition of the “short term constant population epidemics”,
in which the total population N is assumed constant, and the endemic point is unique
and easy to find explicitly. Our paper investigates, for the model of [12], the topic of the
first six papers cited, i.e., we attempt to deal with the variation of N(t) during epidemics
that may last for a long time and which may never be totally eradicated. We generalize
the uniqueness of the endemic point and the local stability results of these six papers and,
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at the same time, draw attention to certain unnecessary assumptions and mistakes. The
hardest issue of global stability is only illustrated via some numerical simulations.

SAIR Model. Letting S(t), E(t), I(t), R(t), D(t) and De(t) represent Susceptible
individuals, Exposed individuals, Infective individuals, Recovered individuals, naturally
Dead individuals and Dead individuals due to the disease, respectively, the model we
consider is:

S′(t) = ΛN(t)− S(t)
(

βi
N(t)

I(t) +
βe

N(t)
E(t) + γs + µ

)
+ γrR(t),

E′(t) = S(t)
(

βi
N(t)

I(t) +
βe

N(t)
E(t)

)
− (γe + µ)E(t), γe = ei + er

I′(t) = eiE(t)− I(t)(γ + µ + δ), (1)

R′(t) = γsS(t) + erE(t) + γI(t)− (γr + µ)R(t),

D′(t) = µ(S(t) + E(t) + I(t) + R(t)) := µN(t),

D′e(t) = δI(t),

N(t) = S(t) + E(t) + I(t) + R(t) =⇒ N′(t) = (Λ− µ)N(t)− δI(t).

Epidemiologic meaning of the parameters:

1. Λ ∈ R≥0 and µ ∈ R≥0 denote the average birth and death rates in the population (in
the absence of the disease), respectively.

2. The parameters βi ∈ R≥0 and βe ∈ R≥0 denote the infection rates for infective and
exposed individuals, respectively;

3. γs ∈ R≥0 is the vaccination rate, γe ∈ R≥0 is the rate at which the exposed individuals
become infected or recovered, γr ∈ R≥0 denotes the rate at which immune individuals
lose immunity (this is the reciprocal of the expected duration of immunity), γ ∈ R>0
is the rate at which infected individuals recover from the disease.

4. ei ∈ R≥0, er ∈ R≥0, are rates of transfer from E to I and R, respectively.
5. δ ∈ R≥0 is the extra death rate in the infected compartment due to the disease.

Some particular cases.

1. If βe = er = 0, we obtain a SEIRS type model. If furthermore γr = γs = 0, we arrive to
the model masterly studied in [15]; if only one of these parameters is zero, we arrive
to the models studied in [16–19].

2. If βi = γr = γs = 0 = δ, we obtain the SIQR model [23,24].

Remark 1. Note the notation scheme employed above, which could be applied to any compartmental
model. A linear rate of transfer from compartment m to compartment c is denoted by mc, and the
total linear rate out of m is denoted by γm, which implies ∑c mc = γm, for example γe = ei + er.
Extra death rates due to the epidemics in a department c are denoted by δc. An exception is made
though for the infectious compartment i, where we simply use the classic notations γ, δ, instead of
γi, δi. Our scheme would simplify a lot, if adopted, perusing the rather random notations used in
the literature.

The scaled model. It is convenient to reformulate (1) in terms of the normalized
fractions s = S

N , e = E
N , i = I

N , r = R
N . Using N′(t) = (Λ− µ)N(t)− δI(t), this yields the

following nine parameters SEIRS epidemic model (the common death rate µ simplifies,
and an extra δi c appears in the equation of each compartment c–see for example [25] for
similar computations).

s′(t) = Λ− s(t)(βii(t) + βe e(t) + γs + Λ) + γrr(t) + δs(t)i(t)(
e′(t)
i′(t)

)
=

[
s(t)

(
βe βi

0 0

)
+

(
−(γe + Λ) 0

ei −(Λ + γ + δ)

)
+ δit Id

](
e(t)
i(t)

)
r′(t) = γss(t) + er e(t) + γi(t)− (γr + Λ)r(t) + δi(t)r(t)

. (2)
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Remark 2. Note that we have written the “infectious” middle equations to emphasize first the
factorized form, similar to that encountered for Lotka-Volterra networks—see for example [26].
Secondly, for the factor appearing in these equations, we have emphasized the form

F−V + δiI2 := sB−V + δiI2. (3)

Note that the matrices F, V are featured in the famous the (Next Generation Matrix) approach [13],
that some authors refer to them as “new infections” and “transmission matrices”, that [7] call
them the disease-carrying and state evolution matrices, and that ([27], Ch 5) gives a way to define
an associated stochastic birth and death model associated to these matrices. The matrix B is fur-
ther useful in defining and studying more general SIR-PH models—see [9,10] and below, and see
also [28], ([29], (2.1)), [6] for related works.

Since the computations will become soon very cumbersome, we will start using from now on
the following notations: 

v0 = Λ + γr + γs,
v1 = Λ + γe,
v2 = Λ + γ + δ.

(4)

Note that vz, with z = {1, 2}, are the diagonal elements of V, and that v0 appears as denomi-
nator in the DFE (9).

Figure 1 compares the qualitative behavior and equilibrium points of the (s, i) coordi-
nates of the three variants of a SIR-type example (discussed in detail in [25]).

0.2 0.3 0.4 0.5 0.6 0.7 0.8
s

0.1

0.2

0.3

0.4

i

SP
EEFOA

EESc

EEIn

Scaled epidemic model

Intermediate approximation

First order approximation

Figure 1. Parametric (s, i) plots of the scaled epidemic and its FA and intermediate approximations
for a SIR-type model with one infectious class, starting from a starting point SP with i0 = 10−6,
with R0 = 3.21, β = 5, γ = 1/2, Λ = µ = 1/10, γr = 1/6, γs = 0.01, δi = 0.9,
δr = 0. EESc, EEIn, EEFOA are the stable endemic points of the scaled model, intermediate
model, and the FA model, respectively. The green vertical line denotes the immunity threshold
1/R = sEEFOA = sEEIn. Note that the epidemic will spend at first a long time (since births and deaths
have slow rates as compared to the disease) in the vicinity of the manifold i(t) = 0, where the three
processes are indistinguishable, before turning towards the endemic equilibrium point(s).

We restrict our study to the biological feasible region

D4 =
{
(s, e, i, r) ∈ R4

+, s+ e+ i+ r = 1
}

.

Its invariance is ensured by the fact that

(s+ e+ i+ r)′ = (δi−Λ− γr)(s+ e+ i+ r− 1), (5)

hence s0 + e0 + i0 + r0 = 1 implies s+ e+ i+ r = 1, for all t > 0.
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We will work in three dimensions by eliminating r = 1− s− e− i. The first equation
of (2) changes then, and the system becomes

s′(t) = Λ + γr − γr( e(t) + i(t))− s(t)[Λ + γr + γs + (βi − δ)i(t) + βe e(t)],(
e′(t)
i′(t)

)
=

[(
βes(t)− v1 βis(t)

ei −v2

)
+ δi(t)I2

](
e(t)
i(t)

)
(s, e, i) ∈ D3 := {(s, e, i) ∈ R3

+, s+ e+ i ≤ 1}

. (6)

Concerning fixed points, we note first, following ([15], (4.2)), ([17], (13)), the following
necessary condition at a fixed endemic point:

s′ + e′ + i′ = 0⇔ e(γe − ei) + γi + sγs = γrr + Λr− δir

⇔ (1− (e + i + s))(Λ + γr − δi) = e(γe − ei) + γi + sγs =⇒ i < ic := min[1, (Λ + γr)/δ],
(7)

where the last implications follows since the right hand side of the last equation in (7) is
positive, due to er = γe − ei ≥ 0.

Thus, the search for fixed points may be reduced to the domain

D f := D3 ∩ {i : i < ic = min[1, (Λ + γr)/δ]}. (8)

As a quick preview of the next generation matrix “factorization” idea, we note now
that the disease free equation s′ = Λ − s(Λ + γs) + γr(1 − s) (defined by e = i = 0,
r = 1− s) has fixed point

sd f e =
Λ + γr

Λ + γr + γs
=⇒ rd f e = 1− sd f e =

γs

Λ + γr + γs
, (9)

whenever Λ+γr +γs 6= 0, which will be assumed from now on. Note this formula contains
only three of the parameters.

The other 6 parameters γ, δ, βi, βe, ei, γe intervene in the “infection equations” for e, i,
and will determine the basic reproduction number (12)

R0 =
sd f e

Λ + γe

[
βe +

βiei
Λ + γ + δ

]
:= sd f eR,

whereR is precisely theR0 which would be obtained in the absence of vaccination.
When δ = 0, our model (6) reduces to the eight parameters constant population model

studied in [12], which has a unique endemic point, with coordinates expressible in terms
of R0; for example see =

sd f e
R0

:= 1
R . Its global stability is, however, hard to prove ([12],

Conjecture 15), and the authors resolve only the case βe < γ.

2.1. Some History of the SEIRS and SAIRS Varying Population Models

A first important paper on the varying population SEIRS model (recall that both
notations SEIRS and SAIRS have been used already for the same model) is [14], where
βe = er = 0 and where a proportion q of vaccines is allocated to the newborn. We took for
simplicity q = 0, as this parameter does not modify in an essential way the mathematics
involved. Note that δ, Λ, γe, γs and γr are denoted in [14] by α, r, σ, p and ε, respectively.

Besides the typical weakR0 alternative, ([14], Thm 2.3(i)) establishes also global asymp-
totic stability (GAS) of disease free equilibrium whenR0 < 1 and when either (I) βiγe

Λ+γe
≤ δ,

(II) γs = 0, or a certain non-explicit condition holds. A second result ([14], Thm 2.3(ii))
establishes the uniqueness of the endemic point whenR0 > 1, and , γr ≤ min[γe, γ].

Stimulated by the many open cases left above, in [15], the authors considered the particular
case βe = er = γr = γs = 0.As the authors explain, the difficulties met, especially in the
global stability problem, forced them to devise new ingenious methods. (12) becomes now
R0 = βiγe

(γe+Λ)(Λ+γ+δ)
(note that β, γe, Λ, δ and R0 are denoted in [15] by λ, ε, b, α and σ,
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respectively, and that sd f e = 1). Building on previous results in the limiting cases δ = 0 for SEIR
models with constant population [30] and γe → ∞ for SIR models with varying populations [31],
they establish the uniqueness and global stability of the endemic point ([15], Cor. 6.2, Thm6.5)
whenR0 > 1.

Note that the Corollary is under the assumption of non-existence of non-constant
periodic solutions and the Theorem requires the additional assumption δ < γe; thus, the
complementary case was left open.

Next, the reference [16] studied the case of waning immunity, leaving again open many cases.
Note that the so-called “geometric approach to stability” method, initiated in [15,16,32], was used
many times afterward —see for example [19].

Eleven years later, the authors in [17] re-attacked the [14] problem with βe = er =
γr = 0 and vaccination γs ≥ 0 (denoted by aσ). We note, by adding the two infection
rates in ([17], Figure 1), which yields λ(1 − aσ), that the model depends only on aσ,
and so introducing two parameters for γs unnecessarily complicates the mathematics.
Furthermore, the infection rate λ(1− aσ) might as well be denoted by one parameter, and
we chose the classical β. Finally, one can relate their results to ours by substituting β with
γ and setting σ = 1 (i.e., giving up the second source of infections), and λ = β/(1− γs).
Then, ([17], (8))

R0 = sd f e
βiγe

(Λ + γe)(Λ + γ + δ)
:= Rsd f e, (10)

where
R =

βiγe

(Λ + γe)(Λ + γ + δ)
and sd f e =

Λ
Λ + γs

.

See also (12).

Remark 3. Let us note two open problems left in [17].

1. ([17], Thm 2.1) proves the global stability of the DFE when

R ≤ 1

(by using the Lyapunov function γee + (γe + Λ)i, which is different from the Lyapunov
function used in [33], e(γ + Λ + δ) + γei. This leaves open the caseR0 < 1 < R, when the
DFE is locally, but perhaps not globally stable, and also the question of choosing the “most
performant” Lyapunov function.

2. ([17], Thm 2.1) establishes global stability of a unique endemic point in certain cases and
suggests that outside those cases, “there may exist stable periodic solutions”.

Seven years later, the reference [18] revisited the [16] problem with γs = 0 and waning
immunity γr ≥ 0 (denoted by ρ). The authors remark that in this particular case, there are
still open questions: “We have not proved, but we strongly believe that ifR0 > 1, then the
system (2) has one and only one endemic equilibrium and that this equilibrium is globally
asymptotically stable”. The [16] problem was revisited then in [19], who claims to have
also removed the restriction δ < γe of [15]; however, their crucial equation ([19], (3.28))
is wrong, see Section 5. The fact that the papers [17,19] contain unnecessary conditions,
mistakes, and wrong conjectures suggests that for complicated epidemic models with
infection rates depending on N, ingenuity stops being enough, and it must be accompanied
by verifications via symbolic software, rendered public, as is the case with our paper (in
line with the so-called “reproducible research” [34]).

Finally, the authors in [12] apply the geometric approach to global stability, taking
into account vaccination and loss of immunity, and also the possibility that the exposed, or
rather the asymptomatic, are infectious, but for a simplified constant population model
with δ = 0, Λ ≥ 0. The basic reproduction number (12) becomes now ([12], (5))

R0 =

[
βe +

βiei
Λ + γ

]
sd f e

γe + Λ
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(with the correspondence Λ→ µ, βe → βA, ei → α, er → δA, γ→ δI , γr → γ, γs → δ). The
global stability is proven only in the case βe < γ.

These multiple but only partially successful attempts at solving the [14] problem
motivated us to revisit it. (Yet another motivation was the literature on bifurcation analysis
of SIR and SEIR-type models [1,3,5,35–37], and [2,20] which contains yet another plethora
of open problems.)

2.2. Warm-Up: The WeakR0 Alternative for the DFE Equilibrium

Note that the DFE (9) is a stable point for the disease-free equation

s′(t) = Λ + γr − s(t)(Λ + γr + γs).

Then, we may check that the quadratic—linear decomposition of(
e′(t)
i′(t)

)
=

(
βes(t) + δi(t)− (γe + Λ) βis(t)

ei δi(t)− v2

)(
e(t)
i(t)

)
= F ( e, i)− V( e, i),

where

F ( e, i) =
(

βes e+ βisi+ δ ei
δi2

)
, V( e, i) =

(
(Λ + γe) e
−ei e+ iv2

)
satisfies the splitting assumptions of the NGM (Next Generation Matrix) method [13].

The partial derivatives at the DFE of F ( e, i),V( e, i) are

F = sd f e

(
βe βi
0 0

)
, V =

(
v1 0
−ei v2

)
, (11)

and

FV−1 =

(
βesd f e βisd f e

0 0

)( 1
v1

0
ei

v1v2
1
v2

)
=

(
sd f e

[
βe
v1

+ βiei
v1v2

]
sd f e βi

v2

0 0

)
.

We may conclude then by the well-known next generation matrix result of [13] that:

Proposition 1. The SAIR/V+S basic reproductive number is

R0 := sd f e
βt

v1v2
, (12)

where vi were defined in (4) and where

βt := βiei + βev2. (13)

Furthermore, the weak R0 alternative (The strong R0 alternative [33] also covers he case
R0 = 1.) holds, i.e.,

1. IfR0 < 1⇔ (Λ+γr)βt < v0v1v2 then the disease-free equilibrium is locally asymptotically
stable.

2. IfR0 > 1⇔ (Λ + γr)βt > v0v1v2, the disease-free equilibrium is unstable.

Remark 4. The formula for R0 follows also from the [8] formula for SIR-PH models with new
infection matrix of rank one F = sα~β—see [9,10], and below, for the definition of this class. This
formula becomes, after including demography parameters Λ,~δ,

R0 = ~β V−1α, V = −A + Diag(~δ + Λ~1),
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In the particular SAIRS case, this formula may be applied with the parameters defining the
model, which are

~β =
(

βe, βi
)
, α =

(
1
0

)
, A =

(
−γe 0

ei −γ

)
,~δ =

(
0, δ

)
.

Finally, we will write

~a :=~1(−A) =
(
γe − ei, γ

)
in this example,

for a quantity which will appear often below.—See for example (24) where we used the standard
notation in the theory of phase-type distributions.

A direct proof of Proposition (1) is also easy here. Indeed, after reducing (2) to a three
order system by r = 1− s− e− i, the Jacobian matrix is

J =

 −~βi + δi−Λ− γr − γs −sβe − γr s(δ− βi)− γr
~βi sβe + iδ− v1 eδ + βis
0 ei −γ + (2i− 1)δ−Λ

,

(where ~βi = βee + βii), and

JDFE =

−v0 −βesd f e − γr (δ− βi)sd f e − γr
0 βesd f e − v1 βisd f e
0 ei −v2

.

Note the evident block structure {s}, {e, i} (which is the driving idea behind the next
generation matrix method), with one negative eigenvalue −v0.

Now the “infectious” determinant v1v2 − sd f eβt is positive iff

v1v2(1− sd f e
βt

v1v2
) = v1v2(1−R0) > 0⇔ R0 < 1.

This is also the stability condition, since it may be shown that sd f eβt < v1v2 implies
also the trace condition βesd f e − v1 − v2 < 0, and so theR0 alternative holds.

Remark 5. As usual, it is useful to introduce critical vaccination and critical “total contact” (recall
βt = βiei + βev2) parameters, as the unique solutions of R0 = 1 with respect to γs and βt. The
critical values are

γ∗s = (Λ + γr)

[
βt

v1v2
− 1
]

:= (Λ + γr)[R− 1], β∗t =
v0v1v2

Λ + γr
=

v1v2

sd f e
. (14)

These are particular cases of the SIR-PH Formulas (29).

2.3. The Endemic Point for the FA Approximation, and the Determinant Formula

We consider now the following “first approximation” (FA) of the SIR-PH-FA varying
population dynamics

i′(t) = [s(t) B−V]i(t)
s′(t) = Λ− s(t) ~βi(t)− (Λ + γs)s(t) + γrr(t)
r′(t) =~ai(t) + s(t)γs − r(t)(γr + Λ)

(s(t), i(t), r(t)) ∈ R4
+

, (15)
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where i(t) :=
(

e(t)
i(t)

)
,~β and ~a are defined in Remarks 4, and V in (11). Here the extra

deaths δ due to the disease in state i are kept, but the quadratic interaction terms involving
δi were neglected. Under this approximation, the endemic point and the determinant of
the Jacobian have elegant formulas in terms of R0, some already discovered and others
hidden in the particular cases of [11,12].

Remark 6. For this approximation, the sum of the variables is constant only if δ = 0; therefore, r
may not be eliminated, and we must work in four dimensions.

Lemma 1. (a) For the SAIR model (15) with extra deaths δ, put iee =

(
eee
iee

)
and


v0 := Λ + γr + γs,
v1 := Λ + γe,
v2 := Λ + γ + δ,
v3 := (v1 + γr)v2 + γrei.

Then, the following formulas hold at the endemic point:

see =
sd f e

R0
= 1
R ,(

eee

iee

)
= Λ+γr

Λv3+γrδei
(1− 1

R0
)

(
v2

ei

)
,

~βiee = βt
Λ+γr

Λv3+γrδei
(1− 1

R0
) = Λ(R0−1)v0v1v2

Λv3+γrδei
=: EI,

~aiee =
Λ+γr

Λv3+γrδei
(1− 1

R0
) [γeγ + (Λ + δ)er],

ree =

(
γs

(
Λ + v2 + ei(Λ + δ)

)
+ Λ(R− 1)(v2er + γei)

)
× 1
R(Λv3+γrδei)

.

(16)

(b) All the coordinates are positive iffR0 > 1.
(c) The vector iee checks the general SIR-PH normalization Formula (36).

Proof. (a) One can do a direct computation or apply ([10], Prop. 2), a particular case of
which is included for completeness as Proposition 3, Section 3. That result is expressed in
terms of the Perron Frobenius eigenvector of the matrix M = 1

RB−V (for the 0 eigenvalue);

in our case, this is
(

v2
ei

)
, see second equation in (16).

(b) Is obvious.
(c) May be easily checked, combining the last two rows in (16).

Remark 7. Several particular cases of this problem have been studied in the literature. The case
δ = 0 is studied in [12], and the reference [38] considered the case βe = γr = er = 0, δ > 0, where

α =

(
1
0

)
, A =

(
−γe 0
γe −γ

)
,~at := (−A)t1 =

(
0
γ

)
,~β =

(
0 βi

)
,~δ =

(
0 δ

)
.

The normalization Formula (36) reduces in this case to

~βi = Λ

[
R− 1

sd f e

]
= Λ

(
βiγe

(Λ + γ + δ)(γe + Λ)
− 1
)
− γs.

Lemma 2. The following remarkable identity holds

Det(Jee) = Λv0v1v2(1−R0) = −Det(Jd f e), (17)
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where vi are defined in (4).

Proof. See the proof of Proposition 3.

Remark 8. We conjecture that the endemic point is always locally stable when 1 < R0. We
have attempted to apply the classic Routh–Hurwitz–Lienard–Chipart–Schur–Cohn–Jury (RH)
methods [39–41], which are formulated in terms of the coefficients of the characteristic polynomial
Det(J− zIn) = (−z)n + a1zn−1 + ...+ an, and of certain Hurwitz determinants Hi ([39], (15.22)).
At order four, Det(J − zI3) = z4 − Tr(J)z3 + z2M2(J)− zM3(J) + Det(J), where M2, M3 are
the sums of the second and third order principal leading minors of J, and one ends up with ([39],
pg. 137) {

Tr(J) < 0, M2 > 0, M3 < 0, Det(J) > 0,
0 < Tr(J)(M2M3 − Tr(J)Det(J))−M2

3
.

Now in our example the determinant is positive when R0 > 1 by Lemma 2, and the trace,
given by

−γrei(γs + Λ)(Λ + δ) + Λv2(v1(R(Λ + γr) + Λ) + γr(Λ + γs))

eiγr(Λ + δ) + Λv2(γr + v1)
− v2 − (Λ + γr)−

eiβi
Rv2

is negative. However, the check of the sum of the second and third-order principal leading minors of
the Jacobian at EE and the additional Hurwitz criterion seemed to exceed our machine power. (At

order three, RH becomes

{
Tr(J) < 0,
Tr(J)M(J) < Det(J) < 0,

where M is the sum of the second-order

principal leading minors of J, which is considerably simpler.)

3. A Review of Arino and Rank-One SIR-PH Models
3.1. SIR-PH Models with Demography, Loss of Immunity, Vaccination and One Susceptible and
One Removed Classes

The fundamental concept of basic reproduction number R0 can be only defined (as
the spectral radius of the next generation matrix) for epidemic models to which the next
generation matrix assumptions apply. It seems more practical, therefore, to restrict to
“Arino models” whereR0 may be explicitly expressed in terms of the matrices that define
the model [8,42–44].

The idea behind these models is to further divide the noninfected compartments into
(Susceptible) (or input) classes, defined by producing “new non-linear infections”, and
output R classes (like D, De in our first example), which are fully determined by the rest
and may, therefore, be omitted from the dynamics. Furthermore, it is convenient to restrict
to epidemic models with the linear force of infection as it is known that non-linear forces of
infection may lead to very complex dynamics [1,2,5,36,45,46], which are not always easy
to interpret epidemiologically. This is in contrast with the Arino models, where typically
one may establish the absence of periodic solutions (closed orbits, homoclinic loops, and
oriented phase polygons) [47,48].

It is convenient to restrict even further to the case of one removed class (w.l.o.g. ) and
only one susceptible class (a significant simplification).

Definition 1. A “SIR-PH epidemic” of type n, with demography parameters (Λ, µ) (scalars), loss
of immunity and vaccination parameters γr, γs, is characterized by two matrices A, B of dimensions
n× n and a column vector of extra death rates ~δ. This model contains one susceptible class S, one
removed state R (healthy, vaccinated, etc), and a n-dimensional vector of “disease” states I (which
may contain latent/exposed, infective, asymptomatic, etc). The dynamics are:
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S′(t) = ΛN − S(t)
N

~βI(t)− (γs + µ)S(t) + R(t)γr, ~β =~1B,

I′(t) =
[

S(t)
N

B + A− Diag(~δ + µ~1)
]

I(t),

R′(t) =~aI(t) + γsS(t)− R(t)(γr + µ), ~a =~1(−A) (18)

N′(t) = S′(t) +~1I′(t) + R′(t) = (Λ− µ)N − I(t)~δ,

D′(t) = µ(S(t) +~1I(t) + R(t)),

D′e(t) = I(t)~δ.

Here,

1. I(t) ∈ Rn is a row vector whose components model a set of disease states (or classes).
2. R(t) accounts for individuals who recovered from the infection.
3. B is a n× n matrix, where each entry Bi,j represents the force of infection of the disease

class i onto class j. We will denote by ~β the vector containing the sum of the entries in
each row of B, namely, ~β =~1B.

4. A is a n× n Markovian sub-generator matrix (i.e., a Markovian generator matrix for
which the sum of at least one row is strictly negative), where each off-diagonal entry
Ai,j, i 6= j, satisfies Ai,j ≥ 0 and describes the rate of transition from disease class i to
disease class j; while each diagonal entry Ai,i satisfies Ai,i ≤ 0 and describes the rate
at which individuals in the disease class i leave towards non-infectious compartments.
Alternatively, −A is a non-singular M-matrix [8,49]. (Recall that an M-matrix is a
real matrix V with vij ≤ 0, ∀i 6= j, and having eigenvalues whose real parts are
nonnegative [50].)

5. ~δ ∈ Rn is a row vector describing the death rates in the disease compartments, which
are caused by the epidemic.

6. γr is the rate at which individuals lose immunity (i.e., transition from recovered states
to the susceptible state).

7. γs is the rate at which individuals are vaccinated (immunized).

Remark 9.

1. Note that~at := (−A)t1 is a vector with a well-known probabilistic interpretation in the theory
of phase-type distributions: it is the column vector that completes a matrix with negative row
sums to a matrix with zero row sums.

2. A particular but revealing case is that when the matrix B has rank 1 and is necessarily hence
of the form B = α~β, where α ∈ Rn is a probability column vector whose components αj
represent the fractions of susceptibles entering into the diseased compartment j when infection
occurs. We call this case “rank one SIR-PH”, following Riano [49], who emphasized its
probabilistic interpretation—see also [51], and see [52] for an early appearance of such models.

It is convenient to reformulate (18) in terms of the fractions normalized by the
total population

s =
S
N

, i =
1
N

I, r =
1
N

R, N = s+~1i + r. (19)

The reader may check that the following equations hold for the scaled variables:
s′(t) = Λ− (Λ + γs)s(t) + r(t)γr − s(t)

(
~β−~δ

)
i(t)

i′(t) =
[
s(t) B + A− Diag

(
~δ + Λ~1

)
+~δi(t)In

]
i(t)

r′(t) = s(t)γs +~ai(t)− r(t)(γr + Λ) + r(t)~δi(t)
s(t) +~1i(t) + r(t) = 1

, (20)
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and the Jacobian, using ∇~δi(t)i(t) = i(t)~δ +~δi(t)In, is

J =

−~βi− (Λ + γs) −s
(
~β−~δ

)
γr

Bi sB−V + i~δ 0
γs ~a + r~δ −(γr + Λ)

+~δiIn+2. (21)

By letting n := s+~1i + r, we have

n′(t) = (Λ−~δi(t))(1− n(t)) = 0;

The above equation guarantees that if s(t0) + i(t0) + r(t0) = 1 for some t0 ∈ R≥0, then
s(t) + i(t) + r(t) = 1 for all t ≥ t0. Accordingly, in what follows we will always assume
that n(t0) = 1, which guarantees that n(t) = 1, ∀t.

The following definition puts in a common framework the dynamics for the scaled
process and two interesting approximations.

Definition 2. Let Φs, Φi, Φr ∈ {0, 1} and let

s′(t) = Λ− (Λ + γs)s(t) + r(t)γr − s(t)i(t)~β + Φss(t)~δi(t),

i′(t) =
[
s(t) B + A− Diag

(
~δ + Λ~1

))
+ Φi~δi(t)

]
i(t),

r′(t) = s(t)γs +~ai(t)− r(t)Diag
(

γr + Λ~1
)
+ Φrr(t)~δi(t),

s(t) +~1i(t) + r(t) = 1. (22)

1. The model (22) with Φs = Φi = Φr = 1 will be called scaled model (SM).
2. The model (22) with Φs = Φi = Φr = 0 will be called first approximation (FA).
3. The model (22) with Φs = Φr = 1, Φi = 0 will be called intermediate approximation (IA).

Example 1. The classic SEIRS model
s′(t) = Λ− s(t)(βii(t) + γs + Λ) + γrr(t)(

e′(t)
i′(t)

)
=

(
−(γe + Λ) βis(t)

γe −(γ + Λ + δ)

)(
e(t)
i(t)

)
r′(t) = γss(t) + γi(t)− r(t)(γr + Λ)

. (23)

is a particular case of SIR-PH-FA model obtained when{
α =

(
1
0

)
, A =

(
−γe 0
γe −γ

)
,~a =~1(−A) =

(
0 γ

)
,~β =

(
0 βi

)
, so B =

(
0 βi

0 0

)
,~δ =

(
0 δ

)
.

The SAIR is obtained by modifying the parameters to{
α =

(
1
0

)
, A =

(
−γe 0

ei −γ

)
,~a =~1(−A) =

(
er γ

)
,~β =

(
βe βi

)
, so B =

(
βe βi

0 0

)
,~δ =

(
0 δ

)
. (24)

3.2. The Eigenstructure of the Jacobian for the SIR-PH Scaled Model

For the scaled model, we can eliminate r. Then, the system becomes then n + 1 dimensional:
s′(t) = Λ + γr − (Λ + γr + γs)s(t)− γr~1i(t)− s(t)

(
~β−~δ

)
i(t)

i′(t) =
[
s(t) B + A− Diag

(
~δ + Λ~1

)
+~δi(t)In

]
i(t)

s(t) +~1i(t) ≤ 1

. (25)
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The Jacobian matrix of the scaled model is given by

J =

(
−(Λ + γr + γs)−

(
~β−~δ

)
i −γr~1− s

(
~β−~δ

)
Bi sB + A− Diag(~δ + Λ~1) +~δi +~δiIn

)

:=

(
−(Λ + γr + γs)−

(
~β−~δ

)
i −γr~1− s

(
~β−~δ

)
Bi sB−V +~δi +~δiIn

)
, (26)

and

Jd f e =

(
−v0 −γr~1− s

(
~β−~δ

)
0 sd f eB−V

)
,

where V := Diag(~δ + Λ~1)− A.

Remark 10. Note the block structure (which suggested probably the next generation matrix ap-
proach), and that

Det(Jd f e) = −v0 Det(sd f eB−V).

We highlight next a simple but important consequence of the fact that V = Diag(~δ +
Λ~1)− A is an invertible matrix, especially when B is assumed to have rank 1.

Lemma 3. (a) When B = α ~β is of rank 1, the matrix BV−1 has precisely one non-zero eigenvalue.
(b) The remaining eigenvalue equals the trace

Tr(BV−1) = ~β V−1α := R

Hence, the Perron-Frobenius eigenvalue of BV−1 is

λPF

(
BV−1

)
= R.

Proof. (a) Since B = α~β has rank 1, the same holds for BV−1, and the ”rank-nullity theorem”
rank(BV−1) + nullity(BV−1) = n [53] implies that (n − 1) of the eigenvalues of BV−1

are zero.
(b) Using the invariance of the trace under cyclic permutations, we conclude that the

trace of α~β V−1 equals ~β V−1α. Since V−1 has only nonnegative entries, this value must be
positive and hence the Perron-Frobenius eigenvalue.

3.3. The Basic Reproduction Number for SIR-PH, via the Next Generation Matrix Method

We follow up here on a remark preceding ([8], Thm 2.1), and via the next generation
matrix method [54,55], and show in the following proposition that their simplified formula
for the basic reproduction number still holds when the loss of immunity and vaccination
are allowed, provided that B = α~β has rank one.

Proposition 2. Consider a SIR-PH model (20), with parameters

(A, B, Λ,~δ, γs, γr).

1. The unique disease-free equilibrium is (sd f e,~0, rd f e) =
(

Λ+γr
Λ+γr+γs

,~0, γs
Λ+γr+γs

)
.

2. The DFE is locally asymptotically stable ifR0 < 1 and is unstable ifR0 > 1, where

R0 = λPF(FV−1), (27)
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where F = sd f eB, V = Diag(~δ+Λ~1)− A (see (26)), and λPF denotes the (dominant) Perron
Frobenius eigenvalue.

3. For B := α~β of rank one, we further have

(a)
R0 = sd f e R, whereR = α V−1 ~β. (28)

(b) The critical vaccination defined by solvingR0 = 1 with respect to γs is given by

γ∗s := (Λ + γr)
(

αV−1b− 1
)
= (Λ + γr)(R− 1). (29)

Proof. 1. The disease free system (with i = 0, r = 1− s) reduces to

s′(t) = Λ− (γs + Λ)s(t) + (γrs(t))(1− s(t)). (30)

2. It is enough to show that the conditions of ([13], Thm 2) hold.
The DFE and its local stability for the disease-free system have already been checked

in the SAIR/V+S example.
We provide now a splitting for the infectious equations:

i′(t) =
[
s(t)B +~δi(t)In

]
i(t)−

[
Diag(~δ + Λ~1)− A

]
i(t) := F (s, i)− V(i)

(where r = 1− s− i1). The corresponding gradients at the DFE i = 0 are
F =

[
∂F (X(DFE))

∂i

]
= sB

V =

[
∂V(X(DFE))

∂i

]
= Diag(~δ + Λ~1)− A.

(31)

We note that F has non-negative elements and that V is an M-matrix, and, therefore,
V−1 exists and has non-negative elements, ∀Λ,~δ. We may check that the next generation
matrix conditions [13] are satisfied.

For example, the last non-negativity condition

i(t)
[

Diag(~δ + Λ~1)− A
]
1 ≥ 0, ∀i ∈ D, (32)

is a consequence of −A being a M-matrix, which implies −A1 ≥ 0, componentwise.
3. (a) Using Lemma 3 and the obvious linearity in s, we may conclude that

R0 = λPF(FV−1) = sd f eλPF(BV−1) = sd f eR.

3. (b) May be easily verified

3.4. The Endemic Point of the SIR-PH-FA Model

In this section, we give more explicit results for the endemic equilibrium of the
following approximate model, referred to as SIR-PH-FA

i′(t) = [s(t)B−V]i(t)
s′(t) = Λ− s(t) ~βi(t)− (Λ + γs)s(t) + γrr

r′(t) =~ai(t) + s(t)γs − r(t)(γr + Λ)

(s(t), i(t), r(t)) ∈ Rn+2
+

. (33)

Remark 11. For this approximation, the sum of the variables is constant only if δ = 0; therefore, r
may not be eliminated.
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If R0 > 1, then (33) may have a second fixed point within its forward-invariant set.
This endemic fixed point must be such that the quasi-positive matrix see B−V is singular,
and that i is a Perron-Frobenius positive eigenvector.

Let i0 denote an arbitrary positive solution of

(see B−V)i0 := Mi0 = 0, (34)

and let

i =
Λ
[

1
see
− 1

sd f e

]
(
~β− 1

see

γr
γr+Λ~a

)
i0

i0 (35)

denote the unique vector of disease components iee which satisfies also the normalization:(
~β− 1

see

γr

γr + Λ
~a
)

i = Λ

[
1
see
− 1

sd f e

]
. (36)

Proposition 3. Consider a SIR-PH-FA model (33) with parameters (Λ, A, B,~δ, γs, γr), where A
is assumed irreducible, withR0 > 1. Then:

1. There exists a unique endemic fixed point within its forward-invariant set Rn+2
+ iff(

~β−R~a γr

γr + Λ

)
i0 > 0.

This fixed point satisfies

(a) see =
1
R ,

(b) that i given by (35) is a Perron-Frobenius positive eigenvector of the quasi-positive
singular matrix see B−V,

(c) the normalization (36).

2. The determinant identity Det(Jd f e) = −Det(Jee) holds.

Proof. Recall the fixed point system
0 = (see B−V)i
0 = Λ− (Λ + γs)see + reeγr − see ~βi,
0 =~ai + seeγs − ree(γr + Λ) =⇒ ree =

1
γr+Λ (~ai + γssee)

and note that ree is positive if i, see are.
1. Let us examine the two cases which arise from factoring the disease equations. More

precisely, we will search separately in the disease free set {i =~0} and in its complement.
Then: (A) either i ∈ {i =~0} and solving{

Λ = (Λ + γs)s− rγr
~0 = sγs − r(γr + Λ)

=
(
s r

)(Λ + γs γs
−γr −(γr + Λ)

)
for s, r yields the unique DFE, or

(B) the determinant of the resulting homogeneous linear system for i 6=~0 must be 0,
which implies that s = see satisfies

det[see B−V] = 0. (37)

Using that V = Diag(~δ+Λ~1)−A is an invertible matrix, and det(UU′) = det(U)det(U′),
(37) may be written as
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Det
[
(seeB−V)V−1

]
= 0⇔ Det

[
BV−1 − 1

see
I
]
= 0. (38)

Thus:
(a) 1

see
must equal the Perron Frobenius eigenvalue R (recall Lemma 3). Note that

see < 1 follows fromR ≥ R0 > 1.
(b) i is a Perron-Frobenius eigenvector of the quasi-positive matrix see B − V, and

hence may be chosen as positive.
(c) To determine the proportionality constant, it remains to solve the second equation :(

~βsee −~a
γr

γr + Λ

)
i = Λ− (Λ + γs)see +

γr

γr + Λ
γssee ⇔

(
~β−~a Rγr

γr + Λ

)
i =

ΛR−Λ + γs

(
γr

γr + Λ
− 1
)
= ΛR−Λ− γs

(
Λ

γr + Λ

)
= Λ

(
R− γs + γr + Λ

γr + Λ

)
,

yielding (36).
2. At the DFE, the infectious equations decouple, and the triangular block structure implies

Det(Jd f e) = Λv0Det(sd f eB−V).

For the EE, we will compute the determinant of the Jacobian matrix:

J =

sB−V Bi 0
−s~β −~βi− (Λ + γs) γr
~a γs −(γr + Λ)

,

after applying simplifying row and column operations which preserve the determinant
(“Neville eliminations” [56]), to be denoted by ∝.

However, first, we will take a detour through the more explicit SAIRS-FA model (15),

where i =
(

e
i

)
,

J =


βes− v1 βis βee + βii 0

ei −v2 0 0
−βes −βis −(Λ + γs)− βii− βee γr

er γ γs −(Λ + γr)



∝


sβe − v1 βis βee + βii 0

ei −v2 0 0
−v1 0 −(Λ + γs) γr

er γ γs −(Λ + γr)


(here we added row one to row three), and Det(Jd f e) simplifies to

Det(Jd f e) = Λv0(v1v2 − sd f eβt) = Λv0v1v2(1−R0).

The Jacobian at the endemic point is

Jee =


βe
R − v1

βi
R βeeee + βiiee 0

ei −v2 0 0
−v1 0 −(Λ + γs) γr

er γ γs −(Λ + γr)


requires more work, and we will start by asking Mathematica for the LUDecomposition
J = PerLU =⇒ Det(J) = Det(Per)Det(U). The first factor Per is a permutation matrix
with determinant−1 in our case, the second, L, is lower triangular with one on the diagonal,
and the second is upper triangular
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U =


ei −v2 0 0
0 v2γe−ei(Λ+δ)

ei
γs γs − v0

0 0 Λv0v1v2(1−R0)
−γrei(Λ+δ)+v2Λ(−γr−v1)

0

0 0 0 −γrei(Λ+δ)+v2Λ(−γr−v1)
ei(Λ+δ)−γev2

,

with determinant
−Det(U) = Λv0v1v2(R0 − 1) = Det(Jee).

We provide now a second derivation based on determinant preserving transformations

Jee ∝


βe
R − v1

βi
R βeeee + βiiee 0

ei −v2 0 0
−v1 0 −v0 γr

er γ v0 −(Λ + γr)



∝


βe
R − v1

βi
R βeeee + βiiee 0

ei −v2 0 0
−v1 0 −v0 γr

er − v1 γ 0 −Λ

,

where we substracted column four from three, and then added row three to row four and
where eee and iee are defined in (16). We develop now by third column:

Det(Jee) = EI

∣∣∣∣∣∣
ei −v2 0
−v1 0 γr

er − v1 γ −Λ

∣∣∣∣∣∣+ v0

∣∣∣∣∣∣
βe
R − v1

βi
R 0

ei −v2 0
er − v1 γ −Λ

∣∣∣∣∣∣
= EI

∣∣∣∣∣∣
ei −v2 0
−v1 0 γr

er − v1 γ −Λ

∣∣∣∣∣∣− v0Λ

∣∣∣∣∣ βe
R − v1

βi
R

ei −v2

∣∣∣∣∣
= EI

∣∣∣∣∣∣
ei −v2 0

−v1 − γr 0 γr
0 −(Λ + δ) −Λ

∣∣∣∣∣∣− v0Λ

∣∣∣∣∣ βe
R − v1

βi
R

ei −v2

∣∣∣∣∣
= EI(eiγr(Λ + δ) + v2Λ(v1 + γr)) + Λv0

(
v2(

βe

R − v1)− ei
βi
R

)
= EI(Λv3 + δ eiγr)

where EI is defined in (16), and the third equality follows by substracting column three
from column one and then adding row one to row three. Then using βe =

Rv1v2−ei βi
v2

, the

last product in the equality four cancels, and recall EI = βeeee + βiiee = Λ(R0−1)v0v1v2
Λv3+γrδei

,
this yields

Det(Jee) = Λv0v1v2(R0 − 1) = −Det(Jd f e).

Or, by developing the first row, the determinant reads



Symmetry 2022, 14, 995 18 of 26

Det(Jee) = (
βe
R − v1)

∣∣∣∣∣∣
−v2 0 0

0 −(Λ + γs) γr
γ γs −(Λ + γr)

∣∣∣∣∣∣− βi
R

∣∣∣∣∣∣
ei 0 0
−v1 −(Λ + γs) γr

er γs −(Λ + γr)

∣∣∣∣∣∣
+EI

∣∣∣∣∣∣
ei −v2 0
−v1 0 γr

er γ −(Λ + γr)

∣∣∣∣∣∣
= −( βe

R − v1)Λv0v2 −
βi
RΛeiv0 + EI(−γγrei + v2(v1(Λ + γr)− erγr))

= EI(−γγrei + v2(v1(Λ + γr)− erγr)) (by using βe =
Rv1v2−ei βi

v2
)

= EI(−γγrei − v2γr(v1 −Λ− ei) + v1v2(Λ + γr))

= EI(v1v2Λ + eiγr(v2 − γ) + Λγrv2)

= EI(Λ(v1v2 + eiγr + γrv2) + eiγrδ)

= EI(Λv3 + eiγrδ),

thus, Det(Jee) = Λv0v1v2(R0 − 1) = −Det(Jd f e).

4. A Glimpse of the Intermediate Approximation for the SIR-PH Model

The intermediate approximation associated to (20) is
s′(t) = Λ− (Λ + γs)s(t) + r(t)γr − s(t)

(
~β−~δ

)
i(t)

i′(t) =
(
s(t) B−V

)
i(t)

r′(t) = s(t)γs +~ai(t)− r(t)
(

Λ + γr −~δi(t))
) ; (39)

Proposition 4.

1. The DFE points of the scaled, the intermediate approximation, and the FA are equal, given by
( Λ+γr

Λ+γr+γs
,~0, γs

Λ+γr+γs
).

2. An endemic point must satisfy that iee is a positive eigenvector of the matrix seeB−V for the
eigenvalue 0 (same as for the FA), thatsee =

1
R ,

ree =
γs
R +~aiee

Λ+γr−~δiee
> 0

,

and that

Λ(R− 1)− γs +
γsγr

Λ + γr −~δiee
=

[
(~β−~δ)−R γr

Λ + γr −~δiee
~a

]
iee. (40)

Since this equation is quadratic (see (41)), we may have a priori two, one, or zero endemic points.

Proof.

1. The equations determining the DFE for the three models coincide.

2. see =
1
R has been established in the proof of Proposition 3, and ree =

γs
R +~aiee

Λ+γr−~δiee
follows

immediately from the last equation in (39). By susbtitution of ree and see into the first
equation in (39), we obtain

Λ(R− 1)− γs +
γsγr

Λ+γr−~δiee
=
[
(~β−~δ)−R γr

Λ+γr−~δiee
~a
]
iee,

which yields the result.
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Remark 12.

1. Under the substitution ~δiee → 0, (40) reduces to Formula (36).
2. The existence of positive solutions to (40) requires studying a quadratic equation Xλ2 +Yλ +

Z. Indeed, putting iee = λi0, (40) may also be written as

⇔ (Λ + γr −~δλi0)(Λ(R− 1)− γs) + γsγr = (Λ + γr −~δλi0)(~β−~δ)λi0 −Rγr~aλi0

⇔ γsγr = (Λ + γr −~δλi0)
[
(~β−~δ)λi0 + γs −Λ(R− 1)

]
−Rγr~aλi0, (41)

and we find
X = ~δi0(~β−~δ)i0,

Y =
(
(γs −Λ(R− 1))~δ +Rγr~a + (Λ + γr)(~δ− ~β)

)
i0,

Z = γsγr + (Λ + γr)(Λ(R− 1)− γs).

Example 2. The intermediate approximation of the SAIRS model is

(
e′(t)
i′(t)

)
=

(
−(γe + Λ) + βes(t) βis(t)

ei −(γ + Λ + δ)

)(
e(t)
it

)
s′(t) = Λ− s(t)(βiit + βe e(t) + γs + Λ− δit) + γrr(t)
r′(t) = γss(t) + er e(t) + γit − r(t)(γr + Λ− δit)

. (42)

is a particular case of SIR-PH-IA model (α, A,~a,~β and ~δ were defined in (24)).

For the SAIRS model (39) with extra deaths δ, putting i(1,2)
ee =

(
e
(1,2)
ee

i
(1,2)
ee

)
, the following

formulas hold at the endemic points:

see =
sd f e

R0
= 1
R

e
(1,2)
ee =

v2ei(v0(δ−R(Λ+δ))+Λδ+ΛR(Λ+γs)+δRγs)+v2
2ΛR(−v0−v1+Λ+γs)

2δei(δei−v1v2R)

±
√

v2
2((v0ei(δ−R(Λ+δ))+δei(Λ+Rγs)+ΛRei(Λ+γs)+v2ΛR(−v0−v1+Λ+γs))2+4Λδei(Rγs−v0(R−1))(v1v2R−δei))

2δei(δei−v1v2R)

i
(1,2)
ee =

v2ei(v0(δ−R(Λ+δ))+Λδ+ΛR(Λ+γs)+δRγs)+v2
2ΛR(−v0−v1+Λ+γs)

2v2δ(δei−v1v2R)

±
√

v2
2((v0ei(δ−R(Λ+δ))+δei(Λ+Rγs)+ΛRei(Λ+γs)+v2ΛR(−v0−v1+Λ+γs))2+4Λδei(Rγs−v0(R−1))(v1v2R−δei))

2v2δ(δei−v1v2R)

(43)

Remark 13. A yet another open problem is whether the endemic point must always exist for the
FA and IA models.

5. The Scaled SAIRS Model: Existence, Uniqueness, and Local Stability of the
Endemic Point
5.1. Reduction to One Dimension and the Problem of Existence of Endemic Equilibrium

We will follow here the idea of the particular cases ([15], (4.3)), ([17], (14)) and ([19],
(3.28)), in which the authors eliminate e, s in the fixed point equations

0 = Λ + γr(1− e− i)− s[v0 + (βi − δ)i + βee],(
0
0

)
=

[(
βes− v1 βis

ei −v2

)
+ δiI2

](
e
i

)

and study a resulting polynomial equation in i. An alternative to the successive eliminations
suggested in [15,17,19] is to notice that a strictly positive endemic point must satisfy that
the determinant

∆ =

∣∣∣∣βes+ δi− v1 βis
ei δi− v2

∣∣∣∣ = 0.
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After eliminating s from the first equation, the denominator of the determinant is the
denominator of s, and the numerator of the determinant is a fifth-order polynomial in i,
with factor i.

e =
i(v2 − iδ)

ei
, s =

Λ + γr(1− e− i)
v0 + i(βi − δ) + eβe

. (44)

From the equation of s in (44), we note a typo in ([17], (15)), which should be
s = Λ

i(βi−δ)+Λ+γs
.

The next result shows that the existence of endemic points may be reduced for SAIRS
to a one-dimensional problem.

Lemma 4. An endemic point Eee satisfying 0 < iee < min[1, (Λ + γr)/δ] and

γr( eee + iee − 1) ≤ Λ (45)

will satisfy Eee ∈ De.

Proof. By (44), 0 < iee < 1 =⇒ eee > 0. Also, the numerator of see, given by Λ + (1− iee −
eee)γr, is positive by (45). Furthermore, 0 < iee < ic (recall (7)) implies that the denominator
of see is positive.

Finally, 0 < 1− see − eee − iee follows from (7) and see > 0, eee > 0, iee > 0.

The next result shows that the endemic point is unique, without the unnecessary extra
conditions assumed in [17].

Proposition 5. R0 > 1 ensures the existence and uniqueness of the endemic point for the [17]
SIR-PH-SM problem.

Proof. For the [17] problem (45) holds trivially (since γr = 0, γs ≥ 0). Thus, it only
remains to show that the third order polynomial p(i) which results from the elimination
has precisely one root in (0, ic), whenR0 > 1. (The polynomial is of fourth order in general,
with a complicated formula, but the leading coefficient is −δ3βe, and when βe = 0 and
δ = 0, the fourth order polynomial becomes of third and first order, respectively. )It turns
out that this polynomial satisfies{

p(0) = −(R0 − 1)γev1v2(Λ + γs) < 0

p(ic) =
γ2

e (βiγΛ+δ(γ+δ)γs)
δ > 0

.

This implies that whenR0 > 1, p(i) must have either one, two or three roots in (0, ic).
The last case may be ruled out using an interesting algebraic identity ([15], (4.3)),

([17], (14))

p(i) = R0 − fSH(i), fSH(i) = fLi(i) :=
(

1 +
βi − δ

γs + Λ
i
)(

1− iδ
v2

)(
1− iδ

v1

)
. (46)

This shows that solving the equation p(i) = 0 (which provides the endemic equilib-
rium values of i) is equivalent to equating toR0 a function with known roots fSH(i).

As a sanity check, note that when i = 0, this equation reduces to R0 = 1, which is
consistent with the fact that the endemic point only appears at this threshold (equivalently,
whenR0 = 1, the polynomial p(i) = R0 − fSH(i) admits only one root, namely i = 0).

Refer now to the Figure 2 which plots the function fSH(i). It may be easily checked
that the roots of fSH(i), given by i1 = v1

δ , i2 = v2
δ , i3 = Λ

βi−δ , do not belong to the range

(0, ic = min[1, Λ
δ ]) (recall that γr = 0). Indeed, i2 > 1, i1 > Λ

δ , andR0 > 1⇔ βt > β∗t =⇒
βi > δ =⇒ i3 < 0. It follows that the largest root of fSH(i) = R0 must be outside the
interval (0, Λ

δ ), ending the proof. In ([17], Thm 3.3), the authors used a slightly different
approach which leads to several unnecessary cases, as seen above.
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From the proof above, when R0 > 1, the line f = R0 has exactly one intersection
(iee, fSH(iee)) with the graph of fSH(i) that satisfies iee ∈ [0, ic],– see Figure 2.

0.5 1.0 1.5 2.0
i

-1

1

2

3

4

f

Λ/ν

{Λ/ν,fSH(Λ/ν)}

fSH(i)

R0

fSH(Λ/ν)

Figure 2. The existence and uniqueness of endemic point iee in the interval [0, ic] for the [17] problem,
([15], Figure 1), with fSH(i) as defined in (46), fSH(Λ

δ ) =
(γ+δ)γe(βiΛ+δγs)

Λδ(Λ+γ+δ)(v1)(Λ+γs)
, β = 18, βe = γr = 0,

Λ = 4
5 and δ = γ = ei = γs = γe = 1.

Figure 3a displays the bifurcation diagrams of the equilibrium value(s) of i for the [17]
problem with respect to β; we note the usual forward bifurcation diagram whenR0 reaches
its critical value 1. Figure 3b displays the bifurcation diagrams of the equilibrium value(s)
of i with respect to δ; we notice that nothing happens in the critical points identified in ([17],
Thm 3.3).

Figure 4 compares the qualitative behavior and equilibrium points of the ( s,e+i)-
coordinates of the three variants of the SEIRS scaled model discussed in [17], and note that
the endemic coordinates sEEFA = sEEIn = 1/R, which is illustrated by a vertical green line.

5 10 15 20
β

0.1

0.2

0.3

0.4

0.5

i*

β*

iee stable

eee stable

seeFA stable

see stable

sdfe
DFE stable

DFE unstable

(a)

Figure 3. Cont.
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1 2 3 4
ν

0.1

0.2

0.3

0.4

0.5

i*

ν*
ν=Λ

ν>Λ+γs
ν=Λ-γ-γe+3ν<Λ+γe

iee stable

see stable

eee stable

sdfe
DFE unstable

DFE stable

(b)

Figure 3. Bifurcation Diagrams with respect to β. (a) Forward bifurcation diagram with respect to β, DFE
stable from 0 to βSH

∗ where the coordinates of the endemic point are negative and the endemic point is
stable after the critical bifurcation parameter βSH

∗ , with βSH
∗ := (Λ+γ+δ)(v1)(Λ+γs)

Λγe
, and δ = 1. Bifurcation

Diagrams with respect to δ. Here, γr = 0, Λ = 4
5 and γ = γe = ei = γs = 1. (b) Bifurcation Diagram

with respect to δ, the endemic point is stable from 0 to δ∗ := Λ
(

βiγe
(Λ+γe)(Λ+γs)

)
− γ and the DFE is stable

when δ ≥ δ∗, with β = 18. The four points before the yellow one ensure the uniqueness of the endemic
point whenR0 > 1, see ([17], Theorem 3.3).

0.1 0.2 0.3 0.4
s

0.1

0.2

0.3

0.4

0.5

0.6

e+i

SP

EEFA

EESc

EEIn

Scaled epidemic model

Intermediate approximation

FA approximation

Figure 4. Parametric Plot of (s,e+i) of the SEIRS scaled model [17] “with
slightly modified parameters” and its FA and intermediate approximations
starting from a starting point SP=(0.0828333, 0.0015), with R0 = 3.57143,
β = 57.1429, γr = 0, δ = 2, γ = γe = γs = Λ = 1. EESc, EEIn, EEFA denote the interme-
diate points of the scaled model, interdemiate approximation, and FA approximation, respectively.
The green vertical line denotes the immunity threshold 1/R = sEEFA = sEEIn.
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5.2. Conjecture for the SEIRS Model

The uniqueness of the endemic point and its local stability when R0 > 1 was
also claimed in [19], and we conjecture that these results are true, even for SEIRS, with
βe = er = 0, γs ≥ 0, γr ≥ 0.

However, this must be viewed as an open problem even in the case βe = er = 0 = γs,
since the crucial analog of (46), the equation ([19], (3.28)) used intensively in their proof
is wrong, see figure 5.

Indeed, recall that the i equation may be written as

fLu(iee) = R0 + gLu(iee), (47)

where fLu(i) = fSH(i) (with γs replaced by 0). The equation ([19], (3.30)) states that gLu(i)
is rational, which implies that the polynomial p(i) is of fourth order, while the correct order
of p(i) is 3. In fact, ([19], (3.30)) should be replaced by the second order polynomial

gLu(i) = R0
γr − iγr

Λ
+ 1− γr(γ− iδ + Λ + δ)(γe + i(βi − δ) + Λ)

Λ(Λ + γ + δ)(v1)
(48)

0.2 0.4 0.6 0.8 1.0
i

5

10

15

f

ic

{ic,fLu(ic}

fLu(i)

gLu(i)

gLu(ic)

fLu(ic)

Figure 5. The existence and uniqueness of the endemic point iee for the [19] problem “with slightly
modified parameters", with ic = 7

12 and βi = 9, Λ = 1
6 , δ = 2, γ = 1

2 , γe = 2, γr = 1, ei = 2.

We conjecture that their result holds true, since in this case also the third order polyno-
mial resulting from the elimination whenR0 > 1 satisfies{

p(0) = −(R0 − 1)γeΛ(Λ + γ + δ)(v1) < 0,

p(ic) =
βiγγ2

e Λ
δ > 0,

and so p(i) must still have either one, two or three roots in (0, ic).

6. Conclusions and Further Work

Our paper highlighted several open problems for SIR-PH, SIR-PH-IA, and SIR-PH-FA
models. The following general directions seem worthy of further work.

1. Investigate whether the beautiful determinant Formula (17) hidden in the papers
of [11,12] (valid when δ = 0) may be extended to SIR-PH models, exploiting the
partition (26).

2. Study the case of two or more compartments susceptible to become infected (for
example the SEIT model [13,57]).

3. Study the scaled model as a perturbation of the FA model.
4. Study stability via the geometric approach of Li, Graef, Wang, Karsai, Muldoney, and

Lu [15].
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5. We hope that the use of more sophisticated and fast software will allow researchers in the
future to progress with the interesting questions raised by models with higher dimensions.
Here, exploiting symmetries may turn out helpful.
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