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Abstract: In this paper, we consider the solving of an equilibrium problem over the common fixed set
of cutter mappings in a real Hilbert space. To this end, we present a subgradient-type extrapolation
cyclic method. The proposed method is generated based on the ideas of a subgradient method and an
extrapolated cyclic cutter method. We prove a strong convergence of the method provided that some
suitable assumptions of step-size sequences are assumed. We finally show the numerical behavior of
the proposed method.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and its induced norm ‖ · ‖. In
this paper, we present an iterative method to the equilibrium problem over the intersection
of fixed-point set:

Problem 1 (BEP). Let Ti : H → H, i = 1, 2, . . . , m, be cutters with
m⋂

i=1
Fix Ti 6= ∅, and let

f : H×H → R be a bifunction satisfying f (x, x) = 0 for all x ∈ H. Then, our objective is to find

a point ū ∈
m⋂

i=1
Fix Ti such that

f (ū, y) ≥ 0 for all y ∈
m⋂

i=1

Fix Ti,

where Fix Ti := {x ∈ H : Tix = x} denotes the set of fixed points of Ti.

The equilibrium problem, which was first introduced by Fan [1], includes many prob-
lems as particular cases, for example, the fixed-point problem, the variational inequality,
the optimization problem, the saddle point problem, the Nash equilibrium problem in
non-cooperative games, and others; see, for instance, [2–5] and references therein.

The equilibrium problems over the fixed-point set have been considered in many
articles; see, for instance, [6–10] and references therein. The computational algorithms for
solving these kinds of problems have been studied and developed by using the idea of
the methods for equilibrium problems and the iterative schemes for fixed-point problems.
In particular, Iiduka and Yamada [6] considered the equilibrium problems over the fixed-
point set of a firmly nonexpansive mapping and presented a subgradient-type method
for solving the considered problems. They showed the convergence of their method and
applied the method to the Nash equilibrium problems. After that, the equilibrium problems
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over the common fixed-point of nonexpansive mappings were considered by Duc and
Muu in [7]. They proposed the splitting algorithm, which was updated based on the idea
of the classical gradient method and the Krasnosel’skii–Mann method and presented the
strong convergence of the presented algorithm. Recently, Thuy and Hai [8] considered the
bilevel equilibrium problems and proposed the projected subgradient algorithm to solve
the considered problem. They exhibited the strong convergence of the proposed method
and applied it to the equilibrium problems over the fixed-point set of a nonexpansive
mapping. We notice that the aforementioned literature is considered in the case of the
equilibrium problems over the fixed-point set of nonexpansive mappings.

Let us focus on the constrained set of BEP. Now, let Ti : H → H, i = 1, 2, . . . , m, be
cutter operators. The common fixed-point problem is to find a point

x∗ ∈
m⋂

i=1

Fix Ti 6= ∅

The well-known methods of finding a point that belongs to the intersection of fixed-
point sets are initially motivated by the cyclic projection method, which was introduced
by Kaczmarz [11]. After that, the convergence of cyclic projection-type methods are in-
vestigated in several directions and their convergence results are guaranteed under the
operators’ assumptions, such as cutters or nonexpansive operators, see [12–16] and ref-
erences therein. In particular, Bauschke and Combettes [17] proposed the cyclic cutter
method and showed a weak convergence of the proposed method. In [18], Cegielski and
Censor presented the extrapolated cyclic cutter method, which is an acceleration of the
cyclic cutter method by imposing an appropriate step-size function to the method. Indeed,

let Ti : H → H, i = 1, 2, . . . , m, be cutters with
m⋂

i=1
Fix Ti 6= ∅, we define the step-size

function σ : H → (0, ∞) as follows:

σ(x) :=


∑m

i=1〈Tx− Si−1x, Six− Si−1x〉
‖Tx− x‖2 , for x /∈

m⋂
i=1

Fix Ti,

1, otherwise,
(1)

where the operator T, S0 and Si, i = 1, 2, . . . , m are defined as

T := TmTm−1 · · · T1, S0 := Id, and Si := TiTi−1 · · · T1. (2)

It was shown that the extrapolated cyclic cutter method weakly converges provided
that the cutter operators Ti satisfied the demi-closedness principle for all i = 1, 2, . . . , m.
Note that, for some practical problem, the value of the extrapolation function may be huge,
which lead to some numerical instabilities. To keep away from these instabilities, Cegielski
and Nimana [19] proposed the modified extrapolated subgradient projection method
for solving the convex feasibility problem, which is a particular situation of common
fixed-point problem, and established the convergence of the proposed method as well as
demonstrated the performance of the method by the numerical results. After that, the
authors in [20] also utilized the idea of the extrapolated cyclic cutter method for dealing
with the variational inequality problem with common fixed-point constraints. It can be
noted that from [19,20], the iterative methods with extrapolated cyclic cutter terms achieve
not only some numerical superiorities to utilizing the classical cyclic cutter scheme but also
guarantee the boundedness of the generated sequence, see [20] for further discussions.

In this paper, we propose an iterative algorithm called the Subgradient-type extrapola-
tion cyclic method for solving the equilibrium problems over the intersection of fixed-point
sets of cutter operators. The proposed algorithm can be considered as a combination of the
subgradient iterative scheme for equilibrium problems in [8] and the extrapolated cyclic
cutter method for the intersection of fixed-point sets of cutter operators in [18]. Using the
cutter operators and assumptions, we investigate the convergence of the presented algo-
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rithm. Moreover, we also present a numerical result of our presented method to illustrate
the efficiency of the method.

This paper is organized as follows. In Section 2, we recall some definitions and tools
which are needed for our convergence work. In Section 3, we present the subgradient-type
extrapolation cyclic method for finding the solution of BEP. We subsequently present the
convergence result in this section. In Section 4, the efficacy of the subgradient-type extrap-
olation cyclic method is illustrated by numerical experiments of the solving equilibrium
problem governed by the positive definite symmetric matrices over the common fixed-point
set. Finally, we give some concluding remarks in Section 5.

2. Preliminaries

In section, we collect some basic definitions, properties, and useful tools for our work.
The readers can consult the books [16,21] for more details.

We denote by Id the identity operator on a real Hilbert space H. For a sequence
{xn}∞

n=1, the strong and weak convergences of a sequence {xn}∞
n=1 to a point x ∈ H are

defined by the expression xn → x and xn ⇀ x, respectively.
In what follows, we recall some definitions and properties of the operator that will be

referred to in our analysis.

Definition 1 ([16]). Let T : H → H be an operator having a fixed point. The operator T is called

(i) quasi-nonexpansive, if
‖Tx− z‖ ≤ ‖x− z‖,

for all x ∈ H and z ∈ Fix T,

(ii) η-strongly quasi-nonexpansive, if there exists η ≥ 0,

‖Tx− z‖2 ≤ ‖x− z‖2 − η‖Tx− x‖2,

for all x ∈ H and z ∈ Fix T,

(iii) cutter , if
〈x− Tx, z− Tx〉 ≤ 0,

for all x ∈ H and z ∈ Fix T.

Lemma 1 ([16] (Remark 2.1.31 and Theorem 2.1.39)). Let T : H → H be an operator having a
fixed point. Then the following statements are equivalent:

(i) T is cutter.
(i) 〈Tx− x, z− x〉 ≥ ‖Tx− x‖2 for all x ∈ H and for all z ∈ Fix T.
(ii) T is 1-strongly quasi-nonexpansive.

Definition 2 ([16] (Definition 3.2.6)). Let T : H → H be an operator having a fixed point. The
operator T is said to satisfy the demi-closedness (DC) principle if for every sequence {xn} ⊂ H,
xn ⇀ u ∈ H and ‖Txn − xn‖ → 0, we have u ∈ Fix T.

Definition 3 ([16] (Definition 2.1.2)). Let T : H → H be an operator and λ ∈ [0, 2] be given.
We define the relaxation of the operator T by

Tλ := (1− λ)Id + λT,

and we call λ a relaxation parameter.

Next, we recall the definition of a generalization of relaxation of an operator.
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Definition 4 ([16] (Definition 2.4.1)). Let T : H → H be an operator, λ ∈ [0, 2] and σ : H →
(0, ∞). We define the operator Tσ,λ : H → H by

Tσ,λx := x + λσ(x)(Tx− x).

This operator T is called a generalized relaxation of the operator T, the value λ is called a
relaxation parameter and the function σ is called a step-size function. The operator Tσ,λ is called an
extrapolation of Tλ if the function σ(x) ≥ 1 for every x ∈ H.

We notice that, if σ(x) = 1, for every x ∈ H, then Tσ,λ = Tλ. Note that Tσ := Tσ,1.
Then, for every x ∈ H, the following relations hold

Tσ,λx− x = λσ(x)(Tx− x) = λ(Tσx− x), (3)

and for any λ 6= 0, we have
Fix Tσ,λ = Fix Tσ = Fix T.

Next, we provide an important lemma of the step-size function for proving the con-
vergence result.

Lemma 2 ([16] (Section 4.10)). Let Ti : H → H, i = 1, 2, . . . , m, be cutters with
m⋂

i=1
Fix Ti 6= ∅

and denote the operator T, S0 and Si, i = 1, 2, . . . , m as in (2). Let the function σ : H → (0, ∞) be
given by (1). Then the following statements are true:

(i) For every x /∈ Fix T, it is true that

σ(x) ≥

1
2

m
∑

i=1
‖Six− Si−1x‖2

‖Tx− x‖2 ≥ 1
2m

.

(ii) The operator Tσ is a cutter.

Now, we recall a notion and some properties of a diagonal subdifferential which will
be used in this work.

A function h : H → R is said to be subdifferentiable at x0 ∈ H if there exists a vector
w ∈ H such that

h(x) ≥ h(x0) + 〈w, x− x0〉, ∀x ∈ H.

The vector w is called a subgradient of the function h at x0. The collection of all such
vectors constitute the subdifferential of h at x0 and is denoted by ∂h(x0).

Let f : H×H → R be a bifunction which is convex in the second argument, that is,
the function f (x, ·) : H → R is convex at x, for all x ∈ H. Then, the set of all subgradient of
f (x, ·) at x is called the diagonal subdifferential and is denoted by ∂2 f (x, x) := ∂ f (x, ·)(x).
The reader can find the notion of the diagonal subdifferential in [22], for more detail.

We end this section by recalling some technical lemmas that are important tools in
proving our convergence result.

Lemma 3 ([23] (Lemma 3.1)). Let {an}∞
n=1 and {bn}∞

n=1 be sequences of nonnegative real num-
bers such that

an+1 ≤ an + bn.

If
∞
∑

n=1
bn < ∞, then lim

n→∞
an exists.

Lemma 4 ([24] (Lemma 3.1)). Let {an}∞
n=1 be a sequence of real numbers such that there exists a

subsequence {anj}∞
j=1 of {an}∞

n=1 with anj < anj+1 for all j ∈ N. If, for all n ≥ n0, we define



Symmetry 2022, 14, 992 5 of 18

ν(n) = max{k ∈ [n0, n] : ak < ak+1},

then the following hold:

(i) {ν(n)}n≥n0 is non-decreasing.
(ii) lim

n→∞
ν(n) = ∞.

(iii) aν(n) ≤ aν(n)+1 and an ≤ aν(n)+1 for every n ≥ n0.

3. Algorithm and Its Convergence Result

In this section, we firstly propose the subgradient-type extrapolation cyclic method
for solving BEP. Subsequently, we present useful lemmas and prove the main convergence
theorem.

Remark 1. (i) When the number m = 1 and σ(xn) = 1, Algorithm 1 becomes Algorithm 2
considered in [8]. Moreover, it is worth noting that the class of operator considered in this work
is different from [8]. In fact, we consider the cutter property of Ti, whereas the nonexpansiveness
of T is assumed in [8].

(ii) If the function f (·, ·) = 0, Algorithm 1 is reduced to

xn+1 = xn − λn

ηn
σ(xn)(xn − Txn),

where ηn = max{µ, ‖dn‖} for all n ≥ 1. In the case when ηn = 1 for all n ≥ 1, this scheme
is related to the extrapolated cyclic cutter proposed by [18]. Moreover, this scheme is also
related to the work of Cegielski and Nimana [19] for solving a convex feasibility problem when
the operator Tm is omitted in their paper.

The following assumption relating to the convergence of Algorithm 1 is assumed
throughout this work.

Algorithm 1: Subgradient-type extrapolation cyclic method

Initialization: Given the positive real sequences {αn}∞
n=1 and {λn}∞

n=1. Choose
µ ∈ (0,+∞) and x1 ∈ H arbitrarily.

Step 1. For given xn ∈ H, compute the step size as

σ(xn) :=


∑m

i=1〈Txn − Si−1xn, Sixn − Si−1xn〉
‖Txn − xn‖2 , for xn /∈

m⋂
i=1

Fix Ti,

1, otherwise.

Step 2. Update the next iterate xn+1 as

dn := σ(xn)(xn − Txn) + αnwn; where wn ∈ ∂2 f (xn, xn),

ηn := max{µ, ‖dn‖},

xn+1 := xn − λn

ηn
dn.

Put n := n + 1 and go to Step 1.

Assumption 1. Assume that

(A1) The bifunction f is ρ-strongly monotone onH, that is, there exists a constant ρ > 0 satisfying

f (x, y) + f (y, x) ≤ −ρ‖x− y‖2, ∀x, y ∈ H.
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(A2) For each x ∈ H, the function f (x, ·) is convex, subdifferentiable and lower semicontinuous
onH.

(A3) The function x 7→ ∂2 f (x, x) is bounded on a bounded subset ofH.

(A4) The sequences {λn}∞
n=1 and {αn}∞

n=1 satisfy
∞
∑

n=1
λn = ∞,

∞
∑

n=1
λ2

n < ∞,
∞
∑

n=1
αnλn = ∞, and

lim
n→∞

αn = 0.

Remark 2. (i) If the whole space H is finite dimensional, the assumption that, for all x ∈ H,
the function f (x, ·) is subdifferentiable and weakly lower semicontinuous in (A2) can be
omitted. This is because, in the finite dimensional setting, the convexity implies the continuity
of a function.

(ii) The convexity of the function f (x, ·) implies that the lower semicontinuity is equivalent to the
weak lower semicontinuity of the function f (x, ·) for all x ∈ H.

(iii) If the whole space H is finite dimensional, by invoking the assumption (A2), we have the
diagonal subdifferential ∂2 f (xn, xn) := ∂ f (xn, ·)(xn) is nonempty for all n ∈ N. Moreover,
in this case, the assumption (A3) can be omitted, see [21] (Proposition 16.20).

(iv) An example of the corresponding step-size sequences in (A4) is the positive real sequences
{αn}∞

n=1 and {λn}∞
n=1 given by

αn :=
α

(n + 1)a and λn :=
λ

(n + 1)b ,

where α, λ > 0 and a, b > 0 with b > 0.5 and a + b ≤ 1. In fact, since 0 < a + b ≤ 1 and
b > 0.5, we have 0.5 < b < 1 and then ∑∞

n=1 λn = ∑∞
n=1

λ
(n+1)b > λ ∑∞

n=1
1

(n+1) = ∞.

Furthermore, since 1 < 2b < 2, we have ∑∞
n=1 λ2

n = ∑∞
n=1

λ2

(n+1)2b < ∞. We note that

∑∞
n=1 αnλn = ∑∞

n=1
α

(n+1)a
λ

(n+1)b = αλ ∑∞
n=1

1
(n+1)a+b = ∞. Moreover, we have that

lim
n→∞

αn = lim
n→∞

α
(n+1)a = 0.

The following lemma states the important relation of the generated iterates.

Lemma 5. Let {xn}∞
n=1 be the sequence generated by Algorithm 1. Then, for every n ∈ N and

u ∈ ⋂m
i=1 Fix Ti, it holds that

‖xn+1 − u‖2 ≤ ‖xn − u‖2 − λn

4mηn

m

∑
i=1
‖Sixn − Si−1xn‖2 − 2αnλn

ηn
〈xn − u, wn〉+ λ2

n.

Proof. Let n ∈ N be fixed. Now, let us note that

‖xn+1 − u‖2 =

∥∥∥∥xn − λn

ηn
dn − u

∥∥∥∥2

= ‖xn − u‖2 − 2λn

ηn
〈xn − u, dn〉+

(
λn

ηn
‖dn‖

)2

= ‖xn − u‖2 − 2λn

ηn
〈xn − u, σ(xn)(xn − Txn) + αnwn〉+

(
λn

ηn
‖dn‖

)2

= ‖xn − u‖2 − 2λn

ηn
〈xn − u, σ(xn)(xn − Txn)〉 − 2αnλn

ηn
〈xn − u, wn〉+

(
λn

ηn
‖dn‖

)2

.
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By using the properties of Tσ in (3), Lemma 1 and Lemma 2, we note that

‖xn+1 − u‖2 = ‖xn − u‖2 − 2λn

ηn
〈u− xn, Tσxn − xn〉 − 2αnλn

ηn
〈xn − u, wn〉+

(
λn

ηn
‖dn‖

)2

≤ ‖xn − u‖2 − 2λn

ηn
‖Tσxn − xn‖2 − 2αnλn

ηn
〈xn − u, wn〉+

(
λn

ηn
‖dn‖

)2

= ‖xn − u‖2 − 2λn

ηn
σ2(xn)‖Txn − xn‖2 − 2αnλn

ηn
〈xn − u, wn〉+

(
λn

ηn
‖dn‖

)2

≤ ‖xn − u‖2 − λn

2ηn

(
m
∑

i=1
‖Sixn − Si−1xn‖2

)2

‖Txn − xn‖2 − 2αnλn

ηn
〈xn − u, wn〉+

(
λn

ηn
‖dn‖

)2

≤ ‖xn − u‖2 − λn

4mηn

m

∑
i=1
‖Sixn − Si−1xn‖2 − 2αnλn

ηn
〈xn − u, wn〉+

(
λn

ηn
‖dn‖

)2

.

Finally, by utilizing the fact that ηn ≥ ‖dn‖, we obtain

‖xn+1 − u‖2 ≤ ‖xn − u‖2 − λn

4mηn

m

∑
i=1
‖Sixn − Si−1xn‖2 − 2αnλn

ηn
〈xn − u, wn〉+ λ2

n,

as desired.

The following lemma guarantees the boundedness of the constructed sequence {xn}∞
n=1.

Lemma 6. The sequence {xn}∞
n=1 generated by Algorithm 1 is bounded.

Proof. Let n ∈ N and u ∈
m⋂

i=1
Fix Ti be fixed. Let us notice that

λn

4mηn

m

∑
i=1
‖Sixn − Si−1xn‖2 ≥ 0,

which together with Lemma 5 yields

‖xn+1 − u‖2 ≤ ‖xn − u‖2 − 2αnλn

ηn
〈xn − u, wn〉+ λ2

n. (4)

Now, we set An := ‖xn − u‖2 −
n−1
∑

j=1
λ2

j for all n ∈ N. Thus, the relation (4) can be

rewritten as

An+1 − An +
2αnλn

ηn
〈xn − u, wn〉 ≤ 0. (5)

To show that the sequence {xn}∞
n=1 is bounded, we will consider the proof in two

cases:
Case I: Suppose that there exists n0 ∈ N such that the sequence {An}∞

n=1 is nonincreas-

ing for all n ≥ n0. Then, we obtain that ‖xn − u‖2 −
n−1
∑

j=1
λ2

j ≤ An0 for all n ≥ n0, which

means that the sequence {‖xn − u‖}∞
n=1 is bounded and, subsequently, {xn}∞

n=1 is also a
bounded sequence.

Case II: Suppose that there exists a subsequence {Ank}∞
k=1 of {An}∞

n=1 such that
Ank < Ank+1 for all k ∈ N, and let {ν(n)}∞

n=1 be given in Lemma 4. This yields, for every
n ≥ n0, that

Aν(n) ≤ Aν(n)+1 (6)
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and

An ≤ Aν(n)+1. (7)

Invoking the relation (6) in the inequaluty (5) and the positivity of the sequences
{αn}∞

n=1, {λn}∞
n=1 and {ηn}∞

n=1, we obtain that

〈xν(n) − u, wν(n)〉 ≤ 0. (8)

On the other hand, by using the definition of wν(n) ∈ ∂2 f (xν(n), xν(n)) and the fact that
f (xν(n), xν(n)) = 0, we get

〈u− xν(n), wν(n)〉 ≤ f (xν(n), u)− f (xν(n), xν(n)) = f (xν(n), u).

This together with the inequality (8) yields that

f (xν(n), u) ≥ 0.

Now, it follows from the ρ-strong monotonicity of f that

ρ‖xν(n) − u‖2 ≤ − f (xν(n), u)− f (u, xν(n)) ≤ − f (u, xν(n)). (9)

On the other hand, for a fixed û ∈ ∂2 f (u, u), we have

− f (u, xν(n)) ≤ 〈−û, xν(n) − u〉,

which together with the inequality (9) implies that

ρ‖xν(n) − u‖2 ≤ 〈−û, xν(n) − u〉 ≤ ‖û‖‖xν(n) − u‖,

and so

‖xν(n) − u‖ ≤ ρ−1‖û‖.

This means that the sequence {‖xν(n) − u‖}∞
n=1 is bounded. Now, since

Aν(n)+1 = ‖xν(n+1) − u‖2 −
ν(n)

∑
j=1

λ2
j ≤ ‖xν(n+1) − u‖2,

it follows that {Aν(n)+1}∞
n=1 is bounded above. Thus, by using (7), we get that {An}∞

n=1 is
bounded and hence {xn}∞

n=1 is also bounded. This completes the proof.

The following lemma provides some important boundedness properties of the se-
quences {dn}∞

n=1 and {ηn}∞
n=1.

Lemma 7. The sequences {dn}∞
n=1 and {ηn}∞

n=1 are bounded.

Proof. Let n ∈ N and u ∈
m⋂

i=1
Fix Ti be fixed. Now, let note that

‖dn‖ = ‖σ(xn)(xn − Txn) + αnwn‖
≤ ‖Tσxn − xn‖+ αn‖wn‖
≤ ‖Tσxn − u‖+ ‖xn − u‖+ αn‖wn‖
≤ 2‖xn − u‖+ αn‖wn‖,
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where the first inequality holds true by (3) and the last one holds true by the fact that Tσ is
a cutter and consequently a quasi-nonexpansive operator.

As wn ∈ ∂2 f (xn, xn), we have from Assumption (A3) and the boundedness of {xn}∞
n=1

that the sequence {wn}∞
n=1 is bounded which implies the sequence {dn}∞

n=1 is also bounded.
Consequently, from the definition of the sequence {ηn}∞

n=1, it can be seen that {ηn}∞
n=1 is

also bounded.

Now, we are in a position to present our main theorem.

Theorem 1. Let {xn}∞
n=1 be the sequence generated by Algorithm 1. Suppose that Assumption 1 is

satisfied and the operators Ti, i = 1, 2, . . . , m, satisfy the DC principle. Then the sequence {xn}∞
n=1

converges strongly to the unique solution x∗ of BEP.

Proof. Let x∗ be the unique solution of BEP. Firstly, we note from Lemma 5 with replacing
u = x∗ that

‖xn+1 − x∗‖2 +
n

∑
j=1

λj

8mηj

m

∑
i=1
‖Sixj − Si−1xj‖2 −

n

∑
j=1

λ2
j (10)

≤ ‖xn − x∗‖2 +
n−1

∑
j=1

λj

8mηj

m

∑
i=1
‖Sixj − Si−1xj‖2 −

n−1

∑
j=1

λ2
j

− λn

8mηn

m

∑
i=1
‖Sixn − Si−1xn‖2 − 2αnλn

ηn
〈xn − x∗, wn〉.

For simplicity, we denote Γn := ‖xn− x∗‖2 +
n−1
∑

j=1

λj
4mηj

m
∑

i=1
‖Sixj − Si−1xj‖2−

n−1
∑

j=1
λ2

j for

all n ≥ 2. Then the inequality (10) is nothing else than

Γn+1 ≤ Γn −
λn

8mηn

m

∑
i=1
‖Sixn − Si−1xn‖2 − 2αnλn

ηn
〈xn − x∗, wn〉. (11)

To obtain the strong convergence of the generated sequence, we investigate the proof
in two cases based on the behavior of the sequence {Γn}∞

n=1.
Case I: Suppose that there is n0 ∈ N such that Γn+1 ≤ Γn for every n ≥ n0. Thus, by

using the definition of Γn, we note that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − λn

8mηn

m

∑
i=1
‖Sixn − Si−1xn‖2 + λ2

n.

By utilizing Lemma 3 and the fact that
∞
∑

n=1
λ2

n < ∞, we obtain that the sequence

{‖xn − x∗‖}∞
n=1 is convergent and

∞

∑
n=1

λn

8mηn

m

∑
i=1
‖Sixn − Si−1xn‖2 < ∞.

Now, as
∞
∑

n=1
λn = ∞, we get that

lim
n→∞

1
ηn

m

∑
i=1
‖Sixn − Si−1xn‖2 = 0.

As the sequence {ηn}∞
n=1 is bounded, we have that, for all i = 1, 2, . . . , m,

lim
n→∞

‖Sixn − Si−1xn‖ = 0. (12)
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On the other hand, we note from Lemma 5 and the fact that λn
4mηn

m
∑

i=1
‖Sixn − Si−1xn‖2 ≥

0, for all n ∈ N, that

2αnλn

ηn
〈xn − x∗, wn〉 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + λ2

n.

By summing up this relation and the condition that
∞
∑

n=1
λ2

n < ∞, we obtain

∞

∑
n=1

2αnλn

ηn
〈xn − x∗, wn〉 < ∞. (13)

Now, since the sequence {ηn}∞
n=1 is bounded, there is a real number M ≥ 0 such that

ηn ≤ M for all n ∈ N. This together with the assumption
∞
∑

n=1
αnλn = ∞ implies that

∞

∑
n=1

αnλn

ηn
≥

∞

∑
n=1

αnλn

M
= ∞. (14)

Next, we show that lim inf
n→∞

〈xn − x∗, wn〉 ≤ 0. Suppose to the contrary that there exist

n0 ∈ N and δ > 0 such that 〈xn − x∗, wn〉 ≥ δ for all n ≥ n0. Then,

∞ = δ
∞

∑
n=n0

2αnλn

M
≤ δ

∞

∑
n=n0

2αnλn

ηn
≤

∞

∑
n=n0

2αnλn

ηn
〈xn − x∗, wn〉 < ∞,

which leads to a contradiction. Thus, we obtain

lim inf
n→∞

〈xn − x∗, wn〉 ≤ 0. (15)

From the ρ-strongly monotonicity of f , it follows that

ρ‖xn − x∗‖2 ≤ − f (xn, x∗)− f (x∗, xn) ≤ 〈xn − x∗, wn〉 − f (x∗, xn).

Then,

ρ‖xn − x∗‖2 + f (x∗, xn) ≤ 〈xn − x∗, wn〉.

By taking the inferior limit, we have

ρ lim inf
n→∞

‖xn − x∗‖2 + lim inf
n→∞

f (x∗, xn) ≤ lim inf
n→∞

(ρ‖xn − x∗‖2 + f (x∗, xn))

≤ lim inf
n→∞

〈xn − x∗, wn〉.

Combining this and the inequality (15), we have

lim inf
n→∞

‖xn − x∗‖2 ≤ −ρ−1 lim inf
n→∞

f (x∗, xn). (16)

Since the sequence {xn}∞
n=1 is bounded, there exist a weakly cluster point z ∈ H and a

subsequence {xnk}∞
k=1 of {xn}∞

n=1 such that xnk ⇀ z ∈ H. We note from (12) that

lim
k→∞
‖(T1 − Id)xnk‖ = lim

k→∞
‖S1xnk − S0xnk‖ = 0.

Thus, by using the DC principle of T1, we have that z ∈ Fix T1. Furthermore, since
xnk ⇀ z and it holds that

lim
k→∞
‖(T1xnk − T1z)− (xnk − z)‖ = 0,
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which imply that T1xnk ⇀ z. Moreover, we note that

lim
k→∞
‖(T2 − Id)T1xnk‖ = lim

k→∞
‖S2xnk − S1xnk‖ = 0.

By utilizing the DC principle of T2, we have z ∈ Fix T2.
By processing the similar argument as above, we acquire that z ∈ Fix Ti for all

i = 1, 2, . . . , m, and hence z ∈ ⋂m
i=1 Fix Ti.

In virtue of the weak lower semicontinuity of f (x∗, ·), we obtain

lim inf
n→∞

f (x∗, xn) = lim
k→∞

f (x∗, xnk ) = lim inf
k→∞

f (x∗, xnk ) ≥ f (x∗, z) ≥ 0. (17)

Combining the inequality (16) and (17), we have lim inf
n→∞

‖xn − x∗‖ = 0. From the

existence of lim
n→∞

‖xn − x∗‖, we can conclude that

lim
n→∞

‖xn − x∗‖ = 0.

Case II: Suppose that there exists a subsequence {Γnk}∞
k=1 of {Γn}∞

n=1 such that Γnk <
Γnk+1 for all k ∈ N. By Lemma 4, there exists a sequence of indices {ν(n)}∞

n=1 such that,
for all n ≥ n0,

Γν(n) ≤ Γν(n)+1, (18)

and
Γn ≤ Γν(n)+1. (19)

By using the inequalities (11) and (18), we have

0 ≤ Γν(n)+1 − Γν(n) ≤ −
λν(n)

4mην(n)

m

∑
i=1
‖Sixν(n) − Si−1xν(n)‖2 −

2αν(n)λν(n)

ην(n)
〈xν(n) − x∗, wν(n)〉.

Then,

m

∑
i=1
‖Sixν(n) − Si−1xν(n)‖2 ≤ −8mαν(n)〈xν(n) − x∗, wν(n)〉. (20)

By using the definition of wν(n) ∈ ∂2 f (xν(n), xν(n)) and the fact that f (xν(n), xν(n)) = 0,
we get

〈x∗ − xν(n), wν(n)〉 ≤ f (xν(n), x∗)− f (xν(n), xν(n)) = f (xν(n), x∗), (21)

which implies that

m

∑
i=1
‖Sixν(n) − Si−1xν(n)‖2 ≤ 8mαν(n) f (xν(n), x∗).

Now, using the ρ-strongly monotonicity of f that

f (xν(n), x∗) ≤ −ρ‖xν(n) − x∗‖2 − f (x∗, xν(n)),

and for a fixed w∗ ∈ ∂2 f (x∗, x∗) such that

− f (x∗, xν(n)) ≤ 〈−w∗, xν(n) − x∗〉,

we obtain

m

∑
i=1
‖Sixν(n) − Si−1xν(n)‖2 ≤ −8mαν(n)ρ‖xν(n) − x∗‖2 − 8mαν(n)〈w∗, xν(n) − x∗〉.
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By using the boundedness of {xn} and lim
n→∞

αn = 0, we obtain

lim
n→∞

m

∑
i=1
‖Sixν(n) − Si−1xν(n)‖2 = 0.

This implies that

lim
n→∞
‖Sixν(n) − Si−1xν(n)‖2 = 0. (22)

On the other hand, by using the ρ-strongly monotonicity of f and the inequality (21),
we have

ρ‖xν(n) − x∗‖2 ≤ − f (xν(n), x∗)− f (x∗, xν(n)) ≤ 〈xν(n) − x∗, wν(n)〉 − f (x∗, xν(n)).

By means of the fact that
m
∑

i=1
‖Sixν(n) − Si−1xν(n)‖2 ≥ 0 in (20), it follows that

〈xν(n) − x∗, wν(n)〉 ≤ 0.

Combining this and the above inequality, we obtain

‖xν(n) − x∗‖2 ≤ −ρ−1 f (x∗, xν(n)).

By taking the superior limit, we have

lim sup
n→∞

‖xν(n) − x∗‖2 ≤ −ρ−1 lim sup
n→∞

f (x∗, xν(n)). (23)

As the sequence {xν(n)}∞
n=1 is bounded, there exist a weakly cluster point z ∈ H

and a subsequence {xν(nk)}∞
k=1 of {xν(n)}∞

n=1 such that xν(nk) ⇀ z ∈ H. By following the
argument as used in Case I together with the fact (22) and the DC principle of each Ti, we
obtain that, for any subsequence {xν(nk)}∞

k=1 of {xν(n)}∞
n=1, xν(nk) ⇀ z ∈ ⋂m

i=1 Fix Ti.
By using the weak lower semicontinuity of f (x∗, ·), we obtain

lim
k→∞

f (x∗, xν(nk)) = lim inf
k→∞

f (x∗, xν(nk)) ≥ f (x∗, z) ≥ 0.

It follows from the inequality (23) that

lim sup
n→∞

‖xν(n) − x∗‖2 ≤ −ρ−1 lim sup
n→∞

f (x∗, xν(n)) ≤ 0.

Then, we obtain

lim
n→∞
‖xν(n) − x∗‖2 = 0. (24)

Note that from the definition of xν(n)+1 and using the fact that ην(n) ≥ ‖dν(n)‖, we have

‖xν(n)+1 − xν(n)‖ = ‖xν(n) +
λν(n)

ην(n)
dν(n) − xν(n)‖ =

λν(n)

ην(n)
‖dν(n)‖ ≤ λν(n).

Combining this and using the triangle inequality, we have

‖xν(n)+1 − x∗‖ ≤ ‖xν(n)+1 − xν(n)‖+ ‖xν(n) − x∗‖

≤ λν(n) + ‖xν(n) − x∗‖.
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By using the inequality (24) and the fact that lim
n→∞

λn = 0, we obtain

lim
n→∞
‖xν(n)+1 − x∗‖ = 0. (25)

Next, using the inequality (19) and the fact that ν(n) ≤ n, we have

‖xn − x∗‖2 ≤‖xν(n)+1 − x∗‖2 −
n−1

∑
j=1

λj

4mηj

m

∑
i=1
‖Sixj − Si−1xj‖2

+
ν(n)

∑
j=1

λj

4mηj

m

∑
i=1
‖Sixj − Si−1xj‖2 +

n−1

∑
j=1

λ2
j −

ν(n)

∑
j=1

λ2
j

≤‖xν(n)+1 − x∗‖2 −
n

∑
j=ν(n)

λj

4mηj

m

∑
i=1
‖Sixj − Si−1xj‖2 +

n

∑
j=ν(n)

λ2
j

≤‖xν(n)+1 − x∗‖2 +
n

∑
j=ν(n)

λ2
j . (26)

Finally, by using the inequality (25), and the fact limn→∞
n
∑

j=ν(n)
λ2

j = 0, we obtain

lim
n→∞
‖xn − x∗‖2 = 0.

This completes the proof.

Remark 3. The DC principle assumption, which is assumed in the Theorem 1 holds true when the
operators Ti, i = 1, . . . , m, are nonexpansive. Actually, the metric projection onto closed convex
sets and the subgradient projections of a continuous convex function, which is Lipschitz continuous
on every bounded subset also satisfy the DC principle, see [16] further details.

Remark 4. It can be noted that the convergence result obtained in Theorem 1 holds true without
any boundedness assumption of the generated sequence as in the previous works, for instance [20].
This underlines the convergence improvements accomplished in this work.

4. A Numerical Example

In this section, we present a numerical example for solving the equilibrium problem
over a finite number of half-space constraints. Let A, B be n× n matrices, ci ∈ Rn, and
di ≥ 0 be given for all i = 1, 2, . . . , m, we consider the following equilibrium problem: find

a point ū ∈
m⋂

i=1
Fix Ti such that

〈Aū + By, y− ū〉 ≥ 0 for all y ∈
m⋂

i=1

Fix Ti, (27)

where the constrained set is

Fix Ti = Ci := {x ∈ Rn : 〈ci, x〉 ≤ di}, i = 1, 2, . . . , m.

We consider the operator Ti in two cases. In the first case, we put Ti to be the subgradi-
ent projection defined by

Pgi (x) =

{
x− gi(x)

‖∇gi(x)‖2∇gi(x) if gi(x) 6= 0,

x otherwise,
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where gi(x) = 1
2 dist(x, Ci)

2 with the distance function is given by dist(x, Ci) := infz∈Ci‖z−
x‖. In the second case, we put Ti := PCi , the metric projection onto Ci, for all i = 1, 2, . . . , m.
Note that it is known that the operators Pgi and PCi are cutters and satisfy the DC principle
with FixTi = Ci. We consider positive definite symmetric matrices A and B defined by
B := N>N + nIn, A := B + M>M + nIn, where the n × n matrices N, M are randomly
generated in (0, 1), and In is the identity n× n matrix. Note that the bifunction f (x, y) :=
〈Ax + By, y− x〉 is strongly monotone onH, and for fixed x ∈ H, we have f (x, ·) is convex
onH. Moreover, we note that the diagonal subdifferential ∂2 f (x, x) = {(A + B)x}, and we
also know that the function x 7→ ∂2 f (x, x) is bounded on a bounded subset of H. These
mean that the assumptions (A1)–(A3) are now satisfied. In this case, the problem (27) is the
particular case of Problem 1 so that the sequence generated by Algorithm 1 can be applied
to solve the problem.

We consider behavior of the sequence {xn}∞
n=1 generated by Algorithm 1 for various

positive real sequences {αn}∞
n=1 and {λn}∞

n=1 in the forms of Remark 3. We choose µ = 1,
and generate a vector ci in Rn by uniformly distributed random generating between (0, 1)
and a scalar di = 0, for all i = 1, 2, . . . , m. We choose the starting point of Algorithm 1 to be
a vector whose coordinates are one. We terminate Algorithm 1 by the stopping criterions

‖xn+1 − xn‖
‖xn‖+ 1

≤ ε.

In the first experiment, we fix the parameters a = 0.40, b = 0.60 and ε = 10−6. We
perform 10 independent tests for any collections of parameters α = 0.10, 0.20, 0.30, 0.40, and
0.50 and λ = 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, and 0.90 when utilizing the operator
Ti := Pgi and Ti := PCi and the results are presented respectively in Tables 1 and 2, where
the average number of iterations and the average computational runtime for any collection
of α and λ are presented.

Table 1. Influence of parameters α and λ when using the subgradient projection operator Ti = Pgi

where a = 0.40 and b = 0.60.

λ
α = 0.10 α = 0.20 α = 0.30 α = 0.40 α = 0.50

Iter Time Iter Time Iter Time Iter Time Iter Time

0.10 642 0.14 394 0.06 531 0.08 682 0.11 842 0.13
0.20 434 0.07 714 0.10 1013 0.16 1327 0.20 1644 0.25
0.30 594 0.09 1037 0.17 1492 0.23 1964 0.28 2439 0.37
0.40 754 0.11 1351 0.26 1970 0.29 2598 0.39 3223 0.48
0.50 914 0.14 1674 0.25 2443 0.36 3228 0.54 4013 0.60
0.60 1075 0.19 1987 0.33 2919 0.43 3861 0.65 4805 0.77
0.70 1232 0.18 2300 0.35 3396 0.51 4489 0.68 5571 0.84
0.80 1393 0.23 2618 0.40 3869 0.58 5119 0.77 6362 0.93
0.90 1550 0.23 2928 0.44 4342 0.64 5735 0.85 7157 1.05

Table 2. Influence of parameters α and λ when using the metric projection Ti = PCi where a = 0.40
and b = 0.60.

λ
α = 0.10 α = 0.20 α = 0.30 α = 0.40 α = 0.50

Iter Time Iter Time Iter Time Iter Time Iter Time

0.10 640 0.16 412 0.06 553 0.07 698 0.09 846 0.13
0.20 458 0.07 735 0.09 1033 0.12 1335 0.17 1644 0.24
0.30 617 0.08 1056 0.13 1510 0.18 1967 0.23 2440 0.49
0.40 775 0.10 1371 0.17 1984 0.23 2599 0.30 3230 0.52
0.50 936 0.11 1686 0.21 2454 0.29 3225 0.39 4030 0.49
0.60 1091 0.16 2003 0.25 2923 0.35 3851 0.47 4802 0.59
0.70 1252 0.15 2315 0.30 3390 0.41 4493 0.56 5588 0.67
0.80 1407 0.17 2634 0.32 3868 0.48 5117 0.62 6364 0.79
0.90 1568 0.21 2951 0.37 4332 0.52 5751 0.70 7148 0.86

In Table 1, we presented the number of iterations (k) (Iter), the computational time
(Time) in seconds when the stopping criteria of Algorithm 1 was met. Note that the
larger λ ∈ [0.20, 0.90] requires a larger number of iterations and computational runtime.
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Furthermore, the best choice of the involved parameters for both cases is α = 0.20 and
λ = 0.10.

In a similar fashion with Table 1, we also presented in Table 2 the number of itera-
tions (k) (Iter), the computational time (Time) in seconds, when the stopping criterions of
Algorithm 1 when using the operator Ti = PCi was met. The experimented results are in
the same direction with Table 1 where the best choice of the involved parameters for both
cases is α = 0.20 and λ = 0.10.

In the next experiment, we consider the influence of parameters a and b by fixing the
best parameters α = 0.20, λ = 0.10 and ε = 10−6. We performed 10 independent tests for
any collections of parameters a = 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 to 0.40 and b = 0.55, 0.60,
0.65, 0.70, 0.75, 0.80, 0.85, and 0.90 when utilizing the operator Ti := Pgi and Ti := PCi and
the results of the average number of iterations and the average computational runtime
for any collection of a and b are presented in Tables 3 and 4, respectively. We omit the
combinations that do not satisfy the assumption in Theorem 1 and label it by -.

Table 3. Influence of parameters a and b when using the subgradient projection Ti = Pgi where
α = 0.20 and λ = 0.10.

b
a = 0.10 a = 0.15 a = 0.20 a = 0.25 a = 0.30 a = 0.35 a = 0.40

Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

0.55 6968 1.08 3759 0.59 2216 0.33 1396 0.22 932 0.14 663 0.10 505 0.09
0.60 3765 0.58 2209 0.33 1391 0.21 929 0.15 649 0.10 489 0.08 394 0.06
0.65 2200 0.35 1391 0.22 926 0.14 649 0.10 473 0.07 450 0.07 - -
0.70 1387 0.22 924 0.15 648 0.10 534 0.09 619 0.10 - - - -
0.75 923 0.16 726 0.14 844 0.15 1055 0.17 - - - - - -
0.80 1405 0.25 1649 0.27 2101 0.34 - - - - - - - -
0.85 4000 0.67 5199 0.85 - - - - - - - - - -
0.90 18640 3.03 - - - - - - - - - - - -

In Table 3, we see that the numbers of iterations as well as computational running time
decrease when the value a increases. The the best result is obtained for the combination of
a = 0.40 and b = 0.60.

Table 4. Influence of parameters a and b when using the metric projection Ti = PCi where α = 0.20
and λ = 0.10.

b
a = 0.10 a = 0.15 a = 0.20 a = 0.25 a = 0.30 a = 0.35 a = 0.40

Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

0.55 6962 0.85 3769 0.48 2212 0.27 1395 0.17 941 0.14 682 0.09 526 0.07
0.60 3770 0.46 2207 0.33 1386 0.17 928 0.11 667 0.09 509 0.07 412 0.06
0.65 2206 0.31 1390 0.17 929 0.12 649 0.09 491 0.06 450 0.06 - -
0.70 1382 0.19 924 0.12 649 0.10 534 0.08 619 0.09 - - - -
0.75 923 0.13 726 0.10 842 0.12 1060 0.15 - - - - - -
0.80 1405 0.19 1649 0.23 2099 0.30 - - - - - - - -
0.85 4014 0.55 5200 0.70 - - - - - - - - - -
0.90 18636 2.55 - - - - - - - - - - - -

In the same direction as the results in Table 3, it can be seen from Table 4 that the
numbers of iterations and the computational running time is decreases when the values a
grow up. The the best result is acquired for the combination of a = 0.40 and b = 0.60.

From these all above experiment, we observe that the choice of corresponding pa-
rameters α = 0.20, λ = 0.10, a = 0.40 and b = 0.60 yields the best performance of both
considered cases.

In the next experiment, we consider the behavior of Algorithm 1 for various values n
and m by fixing the corresponding parameters as the above best choice. We also terminate
Algorithm 1 when the error tolerance ε = 10−6 was met, and the results are presented in
Table 5.
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Table 5. Comparisons between the using of the subgradient projection Ti = Pgi and the metric
projection Ti = PCi for different sizes of n and m.

n m
Ti := Pgi Ti := PCi

Iter Time Iter Time

200 100 393 0.15 412 0.21
200 394 0.25 411 0.35
300 392 0.36 413 0.50
400 396 0.51 411 0.53
500 393 0.56 413 0.62

1000 392 1.03 411 1.16

300 100 780 0.37 810 0.34
200 781 0.56 810 0.54
300 780 0.78 810 0.79
400 781 1.10 810 1.09
500 781 1.20 809 1.22

1000 781 2.21 809 2.14

400 100 1317 1.16 1353 0.97
200 1319 1.72 1354 1.59
300 1318 2.19 1354 2.11
400 1320 2.65 1356 2.57
500 1318 2.95 1354 2.96

1000 1318 5.23 1354 5.34

500 100 2009 2.51 2046 2.25
200 2008 3.63 2047 3.36
300 2007 4.38 2048 4.34
400 2008 5.24 2047 5.19
500 2009 5.91 2046 5.95

1000 2007 9.70 2046 10.30

1000 100 7755 33.31 7751 32.04
200 7749 38.88 7749 37.39
300 7750 43.94 7747 44.26
400 7749 49.75 7748 48.42
500 7750 55.72 7752 53.64

1000 7747 81.83 7751 80.63

It is observed from Table 5 that for the values n = 200, 300, 400, and 500, the using of
the subgradient projection is more efficient than using the metric projection in the sense
that the first one requires less computation than the second one in the average number of
iterations for all values m. In the case of n = 1000, we observe that there is no difference
on these two cases. One notable behavior is that for each value n, we observe that even if
the value m increases, the average numbers of iterations are almost the same, whereas the
average computational runtime is increasing.

Finally, we present the comparison of the use of the subgradient projection and the
metric projection for various optimality tolerances ε. We set n = 500 and m = 50 and
choose the corresponding parameters in the same manner as above, the average numbers
of iterations with respect to the optimality tolerances are presented in Figure 1.

Figure 1. Comparison between the using of the subgradient projection Ti = Pgi and the metric
projection Ti = PCi with different errors of tolerance.
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The plots in Figure 1 show that using the subgradient projection is more efficient than
the metric projection for all the optimality tolerances. This emphasizes the superiority of
using the subgradient projection when performing Algorithm 1.

5. Conclusions

In this work, we consider the solving of the bilevel equilibrium problem governed by
a strongly monotone bifunction over the intersection of fixed-point sets of cutter operators.
We associated with it the so-called subgradient-type extrapolation cyclic method. We
present that the generated sequence generated by the proposed method converges to the
unique solution to the problem. Our numerical experiment showed that using appropriate
operators can yield a better convergence behavior to the proposed method.

It can be seen that the proposed subgradient-type extrapolation cyclic method
(Algorithm 1) allows us to compute the operator Ti, i = 1, . . . , m, sequentially. The main ad-
vantage of our method is that the computing machine is not necessary to store information
while computing. Notwithstanding, the nature of the cyclic method, it is well-known that
to compute Si,, the cyclic method needs to have the estimate Si−1 in hand. This means that
there has a waiting process while performing the method. In this case, one may consider
the simultaneous extrapolation method [25] when dealing with the common fixed-point
constrained of BEP.
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