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Abstract: In this article, we present an extension of the controlled rectangular b-metric spaces, so-
called controlled rectangular metric-like spaces, where we keep the symmetry condition and we only
change the condition [D(s,r) =0 < s =r] to [D(s,r) =0 = s = r|, which means we may have a
non-zero self distance; also, D(s, s) is not necessarily less than D(s, 7). This new type of metric space
is a generalization of controlled rectangular b-metric spaces and partial rectangular metric spaces.
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1. Introduction

The uniqueness of a fixed-point theory for self-contractive mapping, which was intro-
duced by Banach in 1922 [1], opened a new area of research in various fields. It has become
an interesting domain and an exciting field of mathematical research see [2—4]; in fact, it has
become an important tool now in many fields of mathematics , such as variational inequali-
ties, approximation theory, linear inequalities nonlinear analysis, differential, and integral
equations; for more details on these type of applications, see [5-7]. Its applications appear
in mathematical sciences, super fractals, and more recently, in discrete dynamics. Kam-
ran et al. [8] introduced extended b-metric spaces, which is a generalization of metric spaces
and b-metric spaces [9]. Then, the generalization of these metrics appeared in the form of a
controlled metric [10] and double controlled metric spaces [11]. Further, Branciari [12], in
2000, introduced rectangular metric spaces. Then, in 2015, George et al. in [13], generalized
rectangular metric spaces to rectangular b-metric spaces. In 2020, Mlaiki et al., in [14],
generalized the rectangular b-metric spaces by introducing the controlled rectangular met-
ric spaces. Inspired by the work of Matthews in [15], where he introduced the notion of
partial metric spaces, which is basically assuming that the self distance is not necessarily
zero; however, we have D(s,s) < D(s,r). Shukla, in [16], introduced the concept of partial
rectangular metric spaces, which is basically the exact same work as Matthews, except it
is in rectangular metric spaces. In this article, we present a generalization of controlled
rectangular b-metric spaces and partial rectangular metric spaces, so-called controlled
rectangular metric-like spaces. In the next section, we present some preliminaries and
concepts needed later; while in the next section, we prove our main result. In the last
section, we present an application of our results.

2. Preliminaries

We present some preliminary definitions of rectangular b-metric spaces, and controlled
rectangular metric spaces, before presenting our new notion of a controlled rectangular
metric-like space.
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Definition 1 ([12]). (Branciari metric spaces) Let X # ¢ . A mapping D : X> — [0,00) is
called a rectangular metric on X if for any x,y € X and all u, # v € X\ {x,y}, having the
following conditions:

(R))x =y < D(x,y) =0;

(Ro) D(x,y) = D(y,x);

(R3) D(x,y) < D(x,u)+ D(u,v) + D(v,y).

In this case, then (X, D) is a rectangular metric space.

As a generalization of rectangular metric spaces, rectangular b-metric spaces were
introduced in [13], where the triangle inequality has a constant a > 1.

Definition 2 ([13]). (Rectangular b-metric spaces) Let X # ¢ . A mapping D : X> — [0, )
is known as rectangular b-metric on X for a constant a > 1 such that any xy € X and points
u #,v € X\ {x,y}, which has the following conditions:

(Rp) x =y <> D(x,y) =0;

(Ryp) D(x,y) = D(y, x);

(Rys) D(x,y) < a[D(x,u)+ D(u,v) + D(v,y)].

In this case, the pair (X, D) is called a rectangular b-metric space.

In 2020, a new extension to the rectangular metric spaces was defined as follows.

Definition 3 ([14]). Let X be a non empty set, a function 8 : X* — [1,00)
and D : X?> — [0,00). We say that (X, D) is a controlled rectangular b-metric space if all distinct
x,y,u,v € X we have:

1.  D(x,y) =0ifand onlyifx = y;
2. D(x,y) =D(y,x);
3. D(x,y) <0(x,y,u,0)[D(x,u)+D(u,v)+ D(v,y)].

In this manuscript, we define controlled rectangular metric-like spaces as follows;

Definition 4. Let X be a non empty set, a function 6 : X* — [1,0)
and D : X? — [0,00). We say that (X, D) is a controlled rectangular metric-like space if x # y #
u # v € X having the functions:

1. Dxy)=0=>x=y;
2. D(x,y) = D(y, x); (symmetric condition)
3. D(x,y) <6(x,y,u,v)[D(x,u) + D(u,v) + D(v,y)].

Remark 1. Note that, in Definition 4, we are assuming that the space is symmetric. However,
in the case where the symmetric condition is not satisfied, we will have a different space with a
totally different topology.

Next, we present two examples of controlled rectangular metric-like spaces that are
not controlled rectangular b-metric spaces.

Example 1. Let X = [0,00) and p : [0,00) x [0,00) — (1,00). Define D : X* — [0, 00) by
D(x,y) = (x + )P forall x,y € X

Note that (X, D) is a controlled rectangular metric-like space with
6(x,y,u,v) = 2r(max{xyhmaxfuo}) -1

Forall 0 <y < x we have

D(x,x) = (x + x)P0%) > (x +y)P¥) = D(x, ).
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Thus, (X, D) is not a controlled rectangular b-metric space nor a partial rectangular metric space.

Example 2. Let X = Y U Z where Y = {1 | m is a natural number} and Z C R*. We define
D: X% —[0,00) by
0, ifandonlyif x=y

2B, if x,yeY
D(x,y) — 1ﬁ f _y -

2, X=Yy= 1

g, otherwise,

where B is a constant bigger than 0. Now, define 6 : X* — [1,00) by 0(x,y,u,v) = max{x,y,u,v} +
2B. It is quite easy to check that (X, D) is a controlled rectangular metric-like space. However,
(X, D) is not a controlled rectangular metric type space nor a partial rectangular metric space, for
example D(1,1) = 1 # 0.

Remark 2. Notice that by Example 1, not every controlled rectangular metric-like space is a
controlled rectangular b-metric space. On the other hand, every controlled rectangular b-metric
space and every partial rectangular metric space is a controlled rectangular metric-like space.

Next, we present the topology of controlled rectangular metric-like spaces.

Definition 5. Let (X, D) be controlled rectangular metric-like space,

1. Asequence {x;} in a controlled rectangular metric-like space (X, D) is called D—convergent,
if there exists x € X such that lim;_,,, D(x;,v) = D(v,v).

2. Asequence {x;} is called D—Cauchy if and only if limy ,,_,o D (X}, X)) exists and finite.

3. A controlled rectangular metric-like space (X, D) is called D-complete if for every D—Cauchy
sequence {xy } in X, if there exists v € X, such that

lim D(x;,v) = lim D(x;,xy,) = D(v,v).
|—o0 I,m—o0

4. Fora € X, an open ball in a controlled rectangular metric-like space (X, D) define by
Bp(a,i7) = {b € X[ |D(a,b) = D(a,a)| <1}
Next, we define continuity in controlled rectangular metric-like spaces.

Definition 6. A self~mapping function { in F is said continuous at x € F if for all ¢ > 0, there
exists & > 0 such that {(B(s,d)) C B({(s,¢€)), that is limy_e0 C(x) = {(limy—e0 Xp).

In the next section, we present our main results by proving the existence of a fixed
point for mappings that satisfies different types of contractions in controlled rectangular
metric-like spaces.

3. Main Results

Theorem 1. Let (X, D) be a complete controlled rectangular metric-like space, and T is continuous
and maps to itself on X. If there exists 0 < k < 1, such that D(Tx, Ty) < kD(x,y) and

. 1
sup lim 0(x;, X151, X112, Xm) < =,
m>1l~>00 k

then in X there is a unique fixed point of T.

Proof. Let xp € X and it is a sequence {x;} as follows x; = Txg,x = T?xp, -+, X =
T!xo, - - - Now, by the hypothesis of the theorem, we have

D(xp, x111) < kD(x;-1,%1) < K*D(x1-2,%1-1) < -+ < k'D(x0,x1).



Symmetry 2022, 14, 991 40f 10

Note that taking the limit of the above inequality as n — co we deduce that D(x;, x;,1)
— 0as | — oo . Denote by D; = D(x;4;,x;1;11). Foralll > 1, we have two cases.

Case 1: Let x; = x,, for some integers | # m. Therefore, if for m > [ we have T"/(x;) = x;.
Choose y = x; and p = m — I. Then TPy = y, and that is, y is a periodic point of T. Thus,
D(y, Ty) = D(TPy, TP*'y) < kPD(y, Ty). Since k € (0,1), we obtain D(y, Ty) = 0, so
y = Ty, therefore, T has a fixed point y.

Case 2: Suppose T'x # T"x for all integers | # m. Let! < m € N, and to show that {x;} is
a D—Cauchy sequence, we considered two subcases:

Subcase 1: Assume that m = [ 4+ 2p + 1. By property (3) of the controlled rectangular-like
metric spaces, we have,

X1, X141, X142, X12p+1) [D (1, X141) + D(x151, X142) + D (X142, X142p11)]

X1, X141, X142, X2+ 1) D (X0, x1401) + 001, X141, X142, Xy2p 1) D (X141, X142)

D(xp, x112p41) <

AN
D > D
oD~~~

X1, X140 X142, X142p4+1)0 (X142, X143, X144, X142p41) [D (X142, X143)

X143, X144) + D (X144, X112p11)]

N+ +
> U

X1 X141, X142/ xl+2p+l)D(xl/ xp41) +0(x1, X141, X142, xl+2p+1)D(xl+1/ X142)
X1y X141, X142/ xl+2p+l)9(xl+21 X143/ X144 xl+2p+1)D(xl+21 X143)
X1 X141, X142, X1 2p+1)0(X1 42, X143, X144, X142p41) D (X143, X144)

X1, X140 X142, X142p4+1)0 (X142, X143, X4, X142p41) D (X144, X1 2p 41)

A+ o+
S D D

(
(
(

< 0(xp, X141, X142, X142p+1) D (%1, X141) + 0(x1, X140, X142, X112p11) D (X141, X142)
+0(x1, X141, X142, X142p41)0(X142, X143, X114, X1 42p11) D (X142, X143)

+0(x1, X151, X142, X142p+1)0 (X112, X143, X144, X142p11) D (X143, X114)

+ 00X, X141, X142, X142p+1)0 (X142, X143, X144, X1 2p 1)

o '9(x1+2p—2/ X142p—1, X14-2ps xl+2p+1)D(xl+2prxl+2p+l)

< 6(xlr X141, X142/ xl+2p+1)D0 + 9(.7(1, X141, X142, xl+2p+1)D1

+ 0(x1, X141, X142, X142p+1)0(X142, X143, X144, X142p 1) D2

+ 0(x1, X141, X142, X142p+1)0 (X112, X143, X144, X1 42p11) D3

+ 0(x1, X141, X142, X142p+1)0(X142, X143, X114, X4 2p11) X

X 0(X142p2, X142p—1, X142ps X112p+1) D2p



Symmetry 2022, 14, 991 50f 10

= 0(xy, X141, X142, X142p+1) [Do + D1]

+ 0(x1, X141, X142, X142p+1)0 (X142, X143, X144, X11.2p41) [D2 + D3]

+ e 00, X141, X142, X12p11)0(X14 2, X14s, Xiga, Xig2pi) X

X+ 0(X112p-2, X142p—1, X142ps X142p+1) [Dap—1 + D2p]

< 0(x1, X141, X142, Xiq2p1) [(K + K1) D (x0, x1))]

+ 01, X141, X142, X142p41)0 (X112, X113, X, Xpsopan) (K72 + K H3) D (x, %)
+ 00X, X1, X142 X1 2p 1) 0 (X142, X143, X1ga, Xig2py1) X oo

X+ 0(X12p2, Xisop—1, Xpraps Xiop1) (K272 4+ K21 D(xg, x7))]
< [0Cxs, X141, X112, Xiyops) (K + K

+0(xs, X101, X142, X142p1)0(X142, X113, X, Xpop1) (K2 4+ K3)+
w00, X1, X142, X142p+1)0(X142, Y13, Xias Xg2pg1) X0

X - 0(Xp 2p-2, X1g2p—1, X142ps X142p41) (K 2P 72 4 KF2P1)] D (x, 1)
p—1 r

= Z He(xl+2i/ X[ 42i41s X14-2i+2+ xl+2p+1) [kl“l + kl+21+1]D(x0/ xl)
r=0i=0

p=1
142
=Y TT0Ca 20 x10i01, X1 42i42, X142p41) [+ KK T2 D(x0, x1)
r=0i=0
Ask < 1, the above inequalities imply the following:
p=1 1o
D(x1, X112p41) < Y [ 10(x1520 X142i41, Xi42i42, X142p+1)2k 72" D (x0, x1).
r=0i=0

Since sup,,- ¢ 1imy_,o 0(x7, X141, X142, Xm) < % we deduce that,

[e) T
lyinoo (xl/xl+2p+1) < ZHG(XH-Zir X14-2i+17 X14-2i+2/ xl+2p+1)2kl+2’D(x0, x1)
’ r=0i=0
T
<) 2k D (x0, x1)
r=0
[ee]
< ZZkl-H 1D(XO,X1)
r=0

The series Y% ,2k'*""1D(xg,x1) is convergent by the ratio test, which implies that
D(x1, x112p41) converges as [, p — co.
Subcase 2: m = [ 4 2p Fist of all, note that

D(x;, X142) < kD(x;_1,%141) < K*D(x1-2,%) < --- < kK'D(x0,%2),
which leads us to conclude that D(x;, x;,5) — 0 as | — oo. Similarly to Subcase 1, we have:

D(x1, x112p) < 0(x1, X151, X142, X142p) [D(x1, X141) + D(x111, X142) + D (X142, X142p)]

o(
0(x1, X101, X142, X142p) D (21, x141) + 0(x1, X141, X142, X14.2p) D (X141, X142)

IN

+0(x1, X141, X142, xl+2p)9(xl+2/ X143, X1+4, xl+2p) [D(x142, X143)
+ D(x143, X144) + D (X144, X112p)]
<

G(X[, X141, X142/ xl+2p>D(xlr xl+1) + G(XI, X141, X142, xl+2p)D(xl+1rxl+2)
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+ 9(3{1, X141, X142, xl+2p)6('xl+2/ X143, X144, xl+2p)D(xl+2/ xl+3)
+ 9(9([, X141, X142, xl+2)9(xl+2/ X143, X144, xl+2p)D(xl+3r xl+4)

+0(x1, X141, X142, xl+2p)9(xl+2r X143, X144, xl+2p)D(xl+4r xl+2p)

< 0(xp, X141, X142, X142p) Do + 0(x1, X141, X142, X142p) D1
+ 601, X131, X142, X142p)0 (X142, X143, X114, X132p) D2

+ 0(x1, X141, X142, X142p)0 (X142, X143, X144, X112p) D3

+ PN

+ 0(x1, X141, X142, X142p) 0 (X142, X143, X144, X142p) X

X 9(x1+2p—3/ Xi142p-2/ xl+2p—11xl+2p)D2p
2p—2

+ H 0(x142i, xl+2i+1rxl+2i+1rxl+2p)D(xl+2p—2/ xl+2p)
i=0

<
|
—-

.
_ 14+2r 142r+1

= O(x1421, X1 2i 11, X142 42, X12p11) [ 77 +k ]D(x0, x1)
0i=0

-2

01426 X142 41, X142i 11, X142p) D (X1 42p -2, X112p)

‘
I

2

=

+
0
(e}

ki
L

.
014 2is X142i41, 11202, X142p+1) [1 + KK T2 D(x, x1)

i
[}

i=0

N
<
|
N

+ 0 (X1 421, X112i41, X142i 11, X142p) D(X142p—2, X142p)

A
- o

T
< 0(X121, X142i1, X1 2042, Xis2p1) [1 + KK 27D (x0, 1)
i=0

‘
Il
o

2p-2
I+2p-2
+ ] O(x1s2i X142i01, X12i 11, X142p) kTP 77D (x0, x2)
i=0

=

. . 1
Since sup,,, 1 lim;_, 0 0(x7, X141, X142, ¥m) < § we deduce that,

p—1

1 142 2p—171+2p—2
}}Ln D(x1, x142p) <l}}£)n00 2 sy [1+4 k|]k"™™“"D(x0, x1) + kP~ k' ™P~“D(x0, x2)
pfl
= llim Z [1 + k]kl+r_lD(xO, xl) + kl_lD(Xo, XZ)
,p—>00 —0

< 2 +kkm (x0,x1) + K" D(x9, x2)
From the ratio test, it is easy to show that the series
o0
Z 1 —l—k k™D (x0,x1) + k" D(xq, x2)

converges. Hence, D(xj, x;45,) converges as [, p going toward oco. Thus, by subcase 1 and
subcase 2, it is proved that the sequence {x;} is a D—Cauchy sequence. Since (X, D) is
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a D-complete extended rectangular metric-like space, we deduce that {x;} converges to
some v € X. Now, we show that v is fixed point of T.

D(x;,x141) = D(Tx;—1, Tx;) < kD(x;-1,%1) = kD(x1-1, Tx; 1) < D(x;-1, Tx; 1)
Now, taking the limit / — oo, and as T is continuous, we deduce that
D(v,Tv) < D(v, Tv),

which leads us to a contradiction. Hence, D(v, Tv) = 0 and that is Tv = v and v is a fixed
point of T.

Finally, for uniqueness, let us assume two fixed points of T say v and y such that
v # u. By the contractive property of T we have:

D(v,u) = D(Tv,Tu) < kD(v,u) < D(v, n)
which leads us to contradiction.Thus, T has a unique fixed point as required. [

Theorem 2. Let (X, D) be a complete controlled rectangular metric-like space, and T a continuous
self-mapping on X satisfying the following condition; for all x,y € X there exists 0 < k < %
such that

D(Tx, Ty) < K[D(x, Tx) + D(y, Ty)]
Furthermore, if

. 1
sup lim 0(x;, X111, X112, Xm) < =,
m>1l~>00 k

and for all u,v € X, we have:

lim 6(u,v,x;,x1,1) <1,
[—00

then T has a fixed point in X. Moreover, if for every fixed point v of T we have D(v,v) = 0, then
the fixed point of T is unique.

Proof. Let xg € X and define the sequence {x;} as follows
X1 = TXO,Xz = Tx1 = sz(],' X = Txl,l = TnX(), te
First of all, note that for all/ > 1, we have

D(x1, x141) < k[D(x;-1,x1) + D(x1, X141)]
= (1= k)D(x;,x141) < kD(x;-1, %)

k
= D(x1,x141) < mD(xl_bxl)-
Since 0 < k < %, one can easily deduce that 0 < % < 1. Therefore, let y = ﬁ
Hence,
D(x;, X141) < pD(x1-1,%1)
< WD(x1-2,%1-1)
<.
< W'D(xg, x1).
Therefore,

D(x;,x;41) = 0 as I — oo.

Furthermore, for alll > 1, we have



Symmetry 2022, 14, 991

8 of 10

D(xp, x112) < k[D(x-1,%1) + D(x141, %142)]
Thus, by using the fact that D(x;, x;,1) — 0 as [ — oo, we deduce that

D(xl,xl+2) —0 as [ — oo.

Now, similarly to the proof of case 1 and case 2 of Theorem 1, we deduce that the se-
quence {x;} is a D—Cauchy sequence. Since (X, D) is a D-complete controlled rectangular
metric-like space, we conclude that {x;} converges to some v € X. Now, we show that v is
a fixed point of T.

D(xy, x141) = D(Tx;—1, Tx;) < k[D(x1—1, Tx;—1) + D(x;, Txp)]

Now, taking the limit as I — oo and using the fact that T is continuous, we deduce that
D(v,Tv) < k[D(v,Tv) + D(v,Tv)] = 2kD(v, Tv) < D(v, Tv) since k < %,

which leads us to a contradiction. Hence, D(v, Tv) = 0, and that is, Tv = v, and v is a fixed
point of T. To show uniqueness, we assume two fixed points of T, say v and y such that
v % u. By the contractive property of T, we have:

D(v,u) = D(Tv, Tu) < k[D(v, Tv) + D(p, Tu)] = k[D(v,v) + D(p, Tu)] = 0.
Thus, D(v, i) = 0 and, thatis, v = . Therefore, T has a unique fixed point as required. [
In the next section, we present an application of our result.

4. Application
Let X be the set C([0,1],R) and consider the following Fredholm type integral equation:

1
20 = [ Fpad0)ds, for g0 [0,1] M)
where F(, w, {’(t)) is continuous from [0, 1]> — R. Next, let

D:XxX—R

(T0) = sup (\C’(f)\ +|Q(t)|)
’ te[01] 2

Notice that (X, D) is a complete controlled rectangular metric-like space, where
0(x,y,u,v) = max{x,y,u,v}.

Theorem 3. If {, 0 € X satisfies the following conditions
(D) 1E(p, @, ¢ ()] + (W, w,e(D)] < k(T (D] + [e(t)]), for some k € (0,1);
(2) F(¢,w, fo F(,w,'())ds) < F(y,w, (1)) forall ,w,

then Equation (1) has a unique solution.
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Proof. Let T : X — X be defined by TZ'(t) fo (¢, w,T'(t))ds, then

D(TZ, To) = suPte[o,l](i‘Tg (m;m’( )1y, Hence,

T2 (0] +[Te®)] _ | fo FW,@,8'(0)ds] + | fy F(,w,o(t))ds|
2 2
_ Jo [F@W,@, 2 (0)lds + fy [F(p,w, o(t))|ds
- 2
_ JoUF(,@,8' (1) + [F(,w,o(t))|)ds
2

fo (12" (O] + le(¥)])ds
2

<kD({, 0).
Thus, D(TZ, To) < kD({, 0). Now, letn € N*and { € X;

1

(TO) = T (1) = [ F(p,0, 771 ()ds
:/ (9, T(T"20) (1)) ds
= [, [ P (T2 0))s
< [[F (20 )as = (12 ()

Therefore, for all t € [0,1] we have (T"{’(t)),, which is a strictly decreasing and bounded-
below sequence and, hence, converges to some I. Since (T ), is a monotone sequence, it fol-
lows from Dini Theorem that sup, [T"(’(t)| converges to some I < sup,, ., [F(, w, ' (t))].
Now, it is not difficult to see that all the hypotheses of Theorem 1 are satistied, and therefore,
Equation (1) has a unique solution as required. [J

5. Conclusions

In this manuscript, we have introduced a new type of metric space, which is a general-
ization of rectangular metric spaces, rectangular b-metric spaces, and controlled rectangular
metric spaces. We have proved the existence and uniqueness of a fixed point for self-
mapping on controlled rectangular metric-like spaces. Our results are a generalization
of many theorems in the literature. Finally, we gave an application of our result to the
Fredholm-type integral equation.

In closing, we would like to present the following two questions;

Question 1. Let (X, D) be a controlled rectangular metric like space, and T a map from
X — X. Assume that forall {,n,T{, Ty € X there exists k € (0,1), where

D(T¢,Tn) < k6(Z,1,T¢, Tn)D(Z, 1)
under what other condition(s) does T have a unique fixed point in X?

Question 2. Let (X, D) be a controlled rectangular metric-like space, and T a map from X — X.
Assume that for all {, 11, T, Ty € X there exists k € (0,1), where

D(Tg, Ty) < 0(g,n,TE, Tn)[D(Z, TE) + D(y, Tn)]

under what other condition(s) does T have a unique fixed point in X?
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