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Abstract: In this article, we present an extension of the controlled rectangular b-metric spaces, so-
called controlled rectangular metric-like spaces, where we keep the symmetry condition and we only
change the condition [D(s, r) = 0⇔ s = r] to [D(s, r) = 0⇒ s = r], which means we may have a
non-zero self distance; also, D(s, s) is not necessarily less than D(s, r). This new type of metric space
is a generalization of controlled rectangular b-metric spaces and partial rectangular metric spaces.
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1. Introduction

The uniqueness of a fixed-point theory for self-contractive mapping, which was intro-
duced by Banach in 1922 [1], opened a new area of research in various fields. It has become
an interesting domain and an exciting field of mathematical research see [2–4]; in fact, it has
become an important tool now in many fields of mathematics , such as variational inequali-
ties, approximation theory, linear inequalities nonlinear analysis, differential, and integral
equations; for more details on these type of applications, see [5–7]. Its applications appear
in mathematical sciences, super fractals, and more recently, in discrete dynamics. Kam-
ran et al. [8] introduced extended b-metric spaces, which is a generalization of metric spaces
and b-metric spaces [9]. Then, the generalization of these metrics appeared in the form of a
controlled metric [10] and double controlled metric spaces [11]. Further, Branciari [12], in
2000, introduced rectangular metric spaces. Then, in 2015, George et al. in [13], generalized
rectangular metric spaces to rectangular b-metric spaces. In 2020, Mlaiki et al., in [14],
generalized the rectangular b-metric spaces by introducing the controlled rectangular met-
ric spaces. Inspired by the work of Matthews in [15], where he introduced the notion of
partial metric spaces, which is basically assuming that the self distance is not necessarily
zero; however, we have D(s, s) ≤ D(s, r). Shukla, in [16], introduced the concept of partial
rectangular metric spaces, which is basically the exact same work as Matthews, except it
is in rectangular metric spaces. In this article, we present a generalization of controlled
rectangular b-metric spaces and partial rectangular metric spaces, so-called controlled
rectangular metric-like spaces. In the next section, we present some preliminaries and
concepts needed later; while in the next section, we prove our main result. In the last
section, we present an application of our results.

2. Preliminaries

We present some preliminary definitions of rectangular b-metric spaces, and controlled
rectangular metric spaces, before presenting our new notion of a controlled rectangular
metric-like space.
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Definition 1 ([12]). (Branciari metric spaces) Let X 6= φ . A mapping D : X2 → [0, ∞) is
called a rectangular metric on X if for any x, y ∈ X and all u, 6= v ∈ X \ {x, y}, having the
following conditions:
(R1) x = y↔ D(x, y) = 0;
(R2) D(x, y) = D(y, x);
(R3) D(x, y) ≤ D(x, u) + D(u, v) + D(v, y).
In this case, then (X, D) is a rectangular metric space.

As a generalization of rectangular metric spaces, rectangular b-metric spaces were
introduced in [13], where the triangle inequality has a constant a > 1.

Definition 2 ([13]). (Rectangular b-metric spaces) Let X 6= φ . A mapping D : X2 → [0, ∞)
is known as rectangular b-metric on X for a constant a ≥ 1 such that any xy ∈ X and points
u 6=, v ∈ X \ {x, y}, which has the following conditions:
(Rb1) x = y↔ D(x, y) = 0;
(Rb2) D(x, y) = D(y, x);
(Rb3) D(x, y) ≤ a[D(x, u) + D(u, v) + D(v, y)].
In this case, the pair (X, D) is called a rectangular b-metric space.

In 2020, a new extension to the rectangular metric spaces was defined as follows.

Definition 3 ([14]). Let X be a non empty set, a function θ : X4 → [1, ∞)
and D : X2 → [0, ∞). We say that (X, D) is a controlled rectangular b-metric space if all distinct
x, y, u, v ∈ X we have:

1. D(x, y) = 0 if and only if x = y;
2. D(x, y) = D(y, x);
3. D(x, y) ≤ θ(x, y, u, v)[D(x, u) + D(u, v) + D(v, y)].

In this manuscript, we define controlled rectangular metric-like spaces as follows;

Definition 4. Let X be a non empty set, a function θ : X4 → [1, ∞)
and D : X2 → [0, ∞). We say that (X, D) is a controlled rectangular metric-like space if x 6= y 6=
u 6= v ∈ X having the functions:

1. D(x, y) = 0⇒ x = y;
2. D(x, y) = D(y, x); (symmetric condition)
3. D(x, y) ≤ θ(x, y, u, v)[D(x, u) + D(u, v) + D(v, y)].

Remark 1. Note that, in Definition 4, we are assuming that the space is symmetric. However,
in the case where the symmetric condition is not satisfied, we will have a different space with a
totally different topology.

Next, we present two examples of controlled rectangular metric-like spaces that are
not controlled rectangular b-metric spaces.

Example 1. Let X = [0, ∞) and p : [0, ∞)× [0, ∞)→ (1, ∞). Define D : X2 → [0, ∞) by

D(x, y) = (x + y)p(x,y) for all x, y ∈ X

Note that (X, D) is a controlled rectangular metric-like space with

θ(x, y, u, v) = 2p(max{x,y},max{u,v})−1.

For all 0 < y < x we have

D(x, x) = (x + x)p(x,x) > (x + y)p(x,y) = D(x, y).
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Thus, (X, D) is not a controlled rectangular b-metric space nor a partial rectangular metric space.

Example 2. Let X = Y ∪ Z where Y = { 1
m | m is a natural number} and Z ⊂ R+. We define

D : X2 → [0, ∞) by

D(x, y) =


0, if and only if x = y
2β, if x, y ∈ Y
1
2 , x = y = 1
β
2 , otherwise,

where β is a constant bigger than 0. Now, define θ : X4 → [1, ∞) by θ(x, y, u, v) = max{x, y, u, v}+
2β. It is quite easy to check that (X, D) is a controlled rectangular metric-like space. However,
(X, D) is not a controlled rectangular metric type space nor a partial rectangular metric space, for
example D(1, 1) = 1

2 6= 0.

Remark 2. Notice that by Example 1, not every controlled rectangular metric-like space is a
controlled rectangular b-metric space. On the other hand, every controlled rectangular b-metric
space and every partial rectangular metric space is a controlled rectangular metric-like space.

Next, we present the topology of controlled rectangular metric-like spaces.

Definition 5. Let (X, D) be controlled rectangular metric-like space,

1. A sequence {xl} in a controlled rectangular metric-like space (X, D) is called D−convergent,
if there exists x ∈ X such that liml→∞ D(xl , ν) = D(ν, ν).

2. A sequence {xl} is called D−Cauchy if and only if liml,m→∞ D(xl , xm) exists and finite.
3. A controlled rectangular metric-like space (X, D) is called D-complete if for every D−Cauchy

sequence {xn} in X, if there exists ν ∈ X, such that

lim
l→∞

D(xl , ν) = lim
l,m→∞

D(xl , xm) = D(ν, ν).

4. For a ∈ X, an open ball in a controlled rectangular metric-like space (X, D) define by

BD(a, η) = {b ∈ X | |D(a, b)− D(a, a)| < η}.

Next, we define continuity in controlled rectangular metric-like spaces.

Definition 6. A self-mapping function ζ in F is said continuous at x ∈ F if for all ε > 0, there
exists δ > 0 such that ζ(B(s, δ)) ⊆ B(ζ(s, ε)), that is limn→∞ ζ(xn) = ζ(limn→∞ xn).

In the next section, we present our main results by proving the existence of a fixed
point for mappings that satisfies different types of contractions in controlled rectangular
metric-like spaces.

3. Main Results

Theorem 1. Let (X, D) be a complete controlled rectangular metric-like space, and T is continuous
and maps to itself on X. If there exists 0 < k < 1, such that D(Tx, Ty) ≤ kD(x, y) and

sup
m>1

lim
l→∞

θ(xl , xl+1, xl+2, xm) ≤
1
k

,

then in X there is a unique fixed point of T.

Proof. Let x0 ∈ X and it is a sequence {xl} as follows x1 = Tx0, x2 = T2x0, · · · , xl =
Tl x0, · · · Now, by the hypothesis of the theorem, we have

D(xl , xl+1) ≤ kD(xl−1, xl) ≤ k2D(xl−2, xl−1) ≤ · · · ≤ kl D(x0, x1).
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Note that taking the limit of the above inequality as n→ ∞ we deduce that D(xl , xl+1)
→ 0 as l → ∞ . Denote by Di = D(xl+i, xl+i+1). For all l ≥ 1, we have two cases.

Case 1: Let xl = xm for some integers l 6= m. Therefore, if for m > l we have Tm−l(xl) = xl .
Choose y = xl and p = m− l. Then Tpy = y, and that is, y is a periodic point of T. Thus,
D(y, Ty) = D(Tpy, Tp+1y) ≤ kpD(y, Ty). Since k ∈ (0, 1), we obtain D(y, Ty) = 0, so
y = Ty, therefore, T has a fixed point y.

Case 2: Suppose Tl x 6= Tmx for all integers l 6= m. Let l < m ∈ N, and to show that {xl} is
a D−Cauchy sequence, we considered two subcases:
Subcase 1: Assume that m = l + 2p + 1. By property (3) of the controlled rectangular-like
metric spaces, we have,

D(xl , xl+2p+1) ≤ θ(xl , xl+1, xl+2, xl+2p+1)[D(xl , xl+1) + D(xl+1, xl+2) + D(xl+2, xl+2p+1)]

≤ θ(xl , xl+1, xl+2, xl+2p+1)D(xl , xl+1) + θ(xl , xl+1, xl+2, xl+2p+1)D(xl+1, xl+2)

+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)[D(xl+2, xl+3)

+ D(xl+3, xl+4) + D(xl+4, xl+2p+1)]

≤ θ(xl , xl+1, xl+2, xl+2p+1)D(xl , xl+1) + θ(xl , xl+1, xl+2, xl+2p+1)D(xl+1, xl+2)

+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)D(xl+2, xl+3)

+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)D(xl+3, xl+4)

+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)D(xl+4, xl+2p+1)

≤ · · ·

≤ θ(xl , xl+1, xl+2, xl+2p+1)D(xl , xl+1) + θ(xl , xl+1, xl+2, xl+2p+1)D(xl+1, xl+2)

+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)D(xl+2, xl+3)

+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)D(xl+3, xl+4)

+ · · ·+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)

· · · θ(xl+2p−2, xl+2p−1, xl+2p, xl+2p+1)D(xl+2p, xl+2p+1)

≤ θ(xl , xl+1, xl+2, xl+2p+1)D0 + θ(xl , xl+1, xl+2, xl+2p+1)D1

+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)D2

+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)D3

+ · · ·
+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)× · · ·
× · · · θ(xl+2p−2, xl+2p−1, xl+2p, xl+2p+1)D2p
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= θ(xl , xl+1, xl+2, xl+2p+1)[D0 + D1]

+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)[D2 + D3]

+ · · ·+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)× · · ·
× · · · θ(xl+2p−2, xl+2p−1, xl+2p, xl+2p+1)[D2p−1 + D2p]

≤ θ(xl , xl+1, xl+2, xl+2p+1)[(kl + kl+1)D(x0, x1)]

+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)[(kl+2 + kl+3)D(x0, x1)]

+ · · ·+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)× · · ·

× · · · θ(xl+2p−2, xl+2p−1, xl+2p, xl+2p+1)[(kl+2p−2 + kl+2p−1)D(x0, x1)]

≤ [θ(xl , xl+1, xl+2, xl+2p+1)(kl + kl+1)

+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)(kl+2 + kl+3)+

· · ·+ θ(xl , xl+1, xl+2, xl+2p+1)θ(xl+2, xl+3, xl+4, xl+2p+1)× · · ·

× · · · θ(xl+2p−2, xl+2p−1, xl+2p, xl+2p+1)(kl+2p−2 + kl+2p−1)]D(x0, x1)

=
p−1

∑
r=0

r

∏
i=0

θ(xl+2i, xl+2i+1, xl+2i+2, xl+2p+1)[kl+2l + kl+2l+1]D(x0, x1)

=
p−1

∑
r=0

r

∏
i=0

θ(xl+2i, xl+2i+1, xl+2i+2, xl+2p+1)[1 + k]kl+2rD(x0, x1)

Ask < 1, the above inequalities imply the following:

D(xl , xl+2p+1) <
p−1

∑
r=0

r

∏
i=0

θ(xl+2i, xl+2i+1, xl+2i+2, xl+2p+1)2kl+2rD(x0, x1).

Since supm>1 liml→∞ θ(xl , xl+1, xl+2, xm) ≤ 1
k we deduce that,

lim
l,p→∞

D(xl , xl+2p+1) <
∞

∑
r=0

r

∏
i=0

θ(xl+2i, xl+2i+1, xl+2i+2, xl+2p+1)2kl+2rD(x0, x1)

≤
∞

∑
r=0

1
kr+1 2kl+2rD(x0, x1)

≤
∞

∑
r=0

2kl+r−1D(x0, x1).

The series ∑∞
r=0 2kl+r−1D(x0, x1) is convergent by the ratio test, which implies that

D(xl , xl+2p+1) converges as l, p→ ∞.
Subcase 2: m = l + 2p Fist of all, note that

D(xl , xl+2) ≤ kD(xl−1, xl+1) ≤ k2D(xl−2, xl) ≤ · · · ≤ kl D(x0, x2),

which leads us to conclude that D(xl , xl+2)→ 0 as l → ∞. Similarly to Subcase 1, we have:

D(xl , xl+2p) ≤ θ(xl , xl+1, xl+2, xl+2p)[D(xl , xl+1) + D(xl+1, xl+2) + D(xl+2, xl+2p)]

≤ θ(xl , xl+1, xl+2, xl+2p)D(xl , xl+1) + θ(xl , xl+1, xl+2, xl+2p)D(xl+1, xl+2)

+ θ(xl , xl+1, xl+2, xl+2p)θ(xl+2, xl+3, xl+4, xl+2p)[D(xl+2, xl+3)

+ D(xl+3, xl+4) + D(xl+4, xl+2p)]

≤ θ(xl , xl+1, xl+2, xl+2p)D(xl , xl+1) + θ(xl , xl+1, xl+2, xl+2p)D(xl+1, xl+2)



Symmetry 2022, 14, 991 6 of 10

+ θ(xl , xl+1, xl+2, xl+2p)θ(xl+2, xl+3, xl+4, xl+2p)D(xl+2, xl+3)

+ θ(xl , xl+1, xl+2, xl+2)θ(xl+2, xl+3, xl+4, xl+2p)D(xl+3, xl+4)

+ θ(xl , xl+1, xl+2, xl+2p)θ(xl+2, xl+3, xl+4, xl+2p)D(xl+4, xl+2p)

≤ θ(xl , xl+1, xl+2, xl+2p)D0 + θ(xl , xl+1, xl+2, xl+2p)D1

+ θ(xl , xl+1, xl+2, xl+2p)θ(xl+2, xl+3, xl+4, xl+2p)D2

+ θ(xl , xl+1, xl+2, xl+2p)θ(xl+2, xl+3, xl+4, xl+2p)D3

+ · · ·
+ θ(xl , xl+1, xl+2, xl+2p)θ(xl+2, xl+3, xl+4, xl+2p)× · · ·
× · · · θ(xl+2p−3, xl+2p−2, xl+2p−1, xl+2p)D2p

+
2p−2

∏
i=0

θ(xl+2i, xl+2i+1, xl+2i+1, xl+2p)D(xl+2p−2, xl+2p)

=
p−1

∑
r=0

r

∏
i=0

θ(xl+2i, xl+2i+1, xl+2i+2, xl+2p+1)[kl+2r + kl+2r+1]D(x0, x1)

+
2p−2

∏
i=0

θ(xl+2i, xl+2i+1, xl+2i+1, xl+2p)D(xl+2p−2, xl+2p)

=
p−1

∑
r=0

r

∏
i=0

θ(xl+2i, xl+2i+1, xl+2i+2, xl+2p+1)[1 + k]kl+2rD(x0, x1)

+
2p−2

∏
i=0

θ(xl+2i, xl+2i+1, xl+2i+1, xl+2p)D(xl+2p−2, xl+2p)

≤
p−1

∑
r=0

r

∏
i=0

θ(xl+2i, xl+2i+1, xl+2i+2, xl+2p+1)[1 + k]kl+2rD(x0, x1)

+
2p−2

∏
i=0

θ(xl+2i, xl+2i+1, xl+2i+1, xl+2p)kl+2p−2D(x0, x2)

Since supm>1 liml→∞ θ(xl , xl+1, xl+2, xm) ≤ 1
k we deduce that,

lim
l,p→∞

D(xl , xl+2p) ≤ lim
l,p→∞

p−1

∑
r=0

1
kl+1 [1 + k]kl+2rD(x0, x1) + k2p−1kl+2p−2D(x0, x2)

= lim
l,p→∞

p−1

∑
r=0

[1 + k]kl+r−1D(x0, x1) + kl−1D(x0, x2)

≤
∞

∑
m=0

[1 + k]kmD(x0, x1) + kmD(x0, x2)

From the ratio test, it is easy to show that the series

∞

∑
m=0

[1 + k]kmD(x0, x1) + kmD(x0, x2)

converges. Hence, D(xl , xl+2p) converges as l, p going toward ∞. Thus, by subcase 1 and
subcase 2, it is proved that the sequence {xl} is a D−Cauchy sequence. Since (X, D) is
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a D-complete extended rectangular metric-like space, we deduce that {xl} converges to
some ν ∈ X. Now, we show that ν is fixed point of T.

D(xl , xl+1) = D(Txl−1, Txl) ≤ kD(xl−1, xl) = kD(xl−1, Txl−1) < D(xl−1, Txl−1)

Now, taking the limit l → ∞, and as T is continuous, we deduce that

D(ν, Tν) < D(ν, Tν),

which leads us to a contradiction. Hence, D(ν, Tν) = 0 and that is Tν = ν and ν is a fixed
point of T.

Finally, for uniqueness, let us assume two fixed points of T say ν and µ such that
ν 6= µ. By the contractive property of T we have:

D(ν, µ) = D(Tν, Tµ) ≤ kD(ν, µ) < D(ν, µ)

which leads us to contradiction.Thus, T has a unique fixed point as required.

Theorem 2. Let (X, D) be a complete controlled rectangular metric-like space, and T a continuous
self-mapping on X satisfying the following condition; for all x, y ∈ X there exists 0 < k < 1

2
such that

D(Tx, Ty) ≤ k[D(x, Tx) + D(y, Ty)]

Furthermore, if

sup
m>1

lim
l→∞

θ(xl , xl+1, xl+2, xm) ≤
1
k

,

and for all u, v ∈ X, we have:

lim
l→∞

θ(u, v, xl , xl+1) ≤ 1,

then T has a fixed point in X. Moreover, if for every fixed point ν of T we have D(ν, ν) = 0, then
the fixed point of T is unique.

Proof. Let x0 ∈ X and define the sequence {xl} as follows

x1 = Tx0, x2 = Tx1 = T2x0, · · · , xl = Txl−1 = Tnx0, · · ·

First of all, note that for all l ≥ 1, we have

D(xl , xl+1) ≤ k[D(xl−1, xl) + D(xl , xl+1)]

⇒ (1− k)D(xl , xl+1) ≤ kD(xl−1, xl)

⇒ D(xl , xl+1) ≤
k

1− k
D(xl−1, xl).

Since 0 < k < 1
2 , one can easily deduce that 0 < k

1−k < 1. Therefore, let µ = k
1−k .

Hence,

D(xl , xl+1) ≤ µD(xl−1, xl)

≤ µ2D(xl−2, xl−1)

≤ · · ·
≤ µl D(x0, x1).

Therefore,
D(xl , xl+1)→ 0 as l → ∞.

Furthermore, for all l ≥ 1, we have
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D(xl , xl+2) ≤ k[D(xl−1, xl) + D(xl+1, xl+2)]

Thus, by using the fact that D(xl , xl+1)→ 0 as l → ∞, we deduce that

D(xl , xl+2)→ 0 as l → ∞.

Now, similarly to the proof of case 1 and case 2 of Theorem 1, we deduce that the se-
quence {xl} is a D−Cauchy sequence. Since (X, D) is a D-complete controlled rectangular
metric-like space, we conclude that {xl} converges to some ν ∈ X. Now, we show that ν is
a fixed point of T.

D(xl , xl+1) = D(Txl−1, Txl) ≤ k[D(xl−1, Txl−1) + D(xl , Txl)]

Now, taking the limit as l → ∞ and using the fact that T is continuous, we deduce that

D(ν, Tν) < k[D(ν, Tν) + D(ν, Tν)] = 2kD(ν, Tν) < D(ν, Tν) since k <
1
2

,

which leads us to a contradiction. Hence, D(ν, Tν) = 0, and that is, Tν = ν, and ν is a fixed
point of T. To show uniqueness, we assume two fixed points of T, say ν and µ such that
ν 6= µ. By the contractive property of T, we have:

D(ν, µ) = D(Tν, Tµ) ≤ k[D(ν, Tν) + D(µ, Tµ)] = k[D(ν, ν) + D(µ, Tµ)] = 0.

Thus, D(ν, µ) = 0 and, that is, ν = µ. Therefore, T has a unique fixed point as required.

In the next section, we present an application of our result.

4. Application

Let X be the set C([0, 1],R) and consider the following Fredholm type integral equation:

ζ ′(t) =
∫ 1

0
F(ψ, ω, ζ ′(t))ds, for ψ, ω ∈ [0, 1] (1)

where F(ψ, ω, ζ ′(t)) is continuous from [0, 1]2 → R. Next, let

D : X× X −→ R

(ζ, $) 7→ sup
t∈[0,1]

(
|ζ ′(t)|+ |$(t)|

2
)

Notice that (X, D) is a complete controlled rectangular metric-like space, where

θ(x, y, u, v) = max{x, y, u, v}.

Theorem 3. If ζ, $ ∈ X satisfies the following conditions
(1) |F(ψ, ω, ζ ′(t))|+ |F(ψ, ω, $(t))| ≤ k(|ζ ′(t)|+ |$(t)|), for some k ∈ (0, 1);
(2) F(ψ, ω,

∫ 1
0 F(ψ, ω, ζ ′(t))ds) < F(ψ, ω, ζ ′(t)) for all ψ, ω,

then Equation (1) has a unique solution.
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Proof. Let T : X −→ X be defined by Tζ ′(t) =
∫ 1

0 F(ψ, ω, ζ ′(t))ds, then

D(Tζ, T$) = supt∈[0,1](
|Tζ ′(t)|+|T$(t)|

2 ). Hence,

|Tζ ′(t)|+ |T$(t)|
2

=
|
∫ 1

0 F(ψ, ω, ζ ′(t))ds|+ |
∫ 1

0 F(ψ, ω, $(t))ds|
2

≤
∫ 1

0 |F(ψ, ω, ζ ′(t))|ds +
∫ 1

0 |F(ψ, ω, $(t))|ds
2

=

∫ 1
0 (|F(ψ, ω, ζ ′(t))|+ |F(ψ, ω, $(t))|)ds

2

≤
∫ 1

0 k(|ζ ′(t)|+ |$(t)|)ds
2

≤ kD(ζ ′, $).

Thus, D(Tζ, T$) ≤ kD(ζ, $). Now, let n ∈ N? and ζ ∈ X;

(Tnζ)(t) = T(Tn−1ζ ′(t)) =
∫ 1

0
F(ψ, ω, Tn−1ζ ′(t))ds

=
∫ 1

0
F(ψ, ω, T(Tn−2ζ)(t))ds

=
∫ 1

0
F(ψ, ω,

∫ 1

0
F(ψ, ω, (Tn−2ζ ′(t))))ds

<
∫ 1

0
F(ψ, ω, (Tn−2ζ ′(t)))ds = (Tn−1ζ ′(t))

Therefore, for all t ∈ [0, 1] we have (Tnζ ′(t))n, which is a strictly decreasing and bounded-
below sequence and, hence, converges to some l. Since (Tn)n is a monotone sequence, it fol-
lows from Dini Theorem that supt |Tnζ ′(t)| converges to some l′ ≤ supψ,ω |F(ψ, ω, ζ ′(t))|.
Now, it is not difficult to see that all the hypotheses of Theorem 1 are satisfied, and therefore,
Equation (1) has a unique solution as required.

5. Conclusions

In this manuscript, we have introduced a new type of metric space, which is a general-
ization of rectangular metric spaces, rectangular b-metric spaces, and controlled rectangular
metric spaces. We have proved the existence and uniqueness of a fixed point for self-
mapping on controlled rectangular metric-like spaces. Our results are a generalization
of many theorems in the literature. Finally, we gave an application of our result to the
Fredholm-type integral equation.
In closing, we would like to present the following two questions;

Question 1. Let (X, D) be a controlled rectangular metric like space, and T a map f rom
X → X. Assume that f or all ζ, η, Tζ, Tη ∈ X there exists k ∈ (0, 1), where

D(Tζ, Tη) ≤ kθ(ζ, η, Tζ, Tη)D(ζ, η)

under what other condition(s) does T have a unique fixed point in X?

Question 2. Let (X, D) be a controlled rectangular metric-like space, and T a map from X → X.
Assume that for all ζ, η, Tζ, Tη ∈ X there exists k ∈ (0, 1), where

D(Tζ, Tη) ≤ θ(ζ, η, Tζ, Tη)[D(ζ, Tζ) + D(η, Tη)]

under what other condition(s) does T have a unique fixed point in X?
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