Article

Fredholm Type Integral Equation in Controlled Rectangular Metric-like Spaces

Salma Haque, Fatima Azmi (D) and Nabil Mlaiki * (D)
Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia; shaque@psu.edu.sa (S.H.); fazmi@psu.edu.sa (F.A.)
* Correspondence: nmlaiki@psu.edu.sa or nmlaiki2012@gmail.com

Citation: Haque, S.; Azmi, F.; Mlaiki, N. Fredholm Type Integral Equation in Controlled Rectangular Metric-like Spaces. Symmetry 2022, 14, 991. https://doi.org/10.3390/sym14050991

Academic Editor: Boris Malomed

Received: 12 April 2022
Accepted: 10 May 2022
Published: 12 May 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In this article, we present an extension of the controlled rectangular b-metric spaces, socalled controlled rectangular metric-like spaces, where we keep the symmetry condition and we only change the condition $[D(s, r)=0 \Leftrightarrow s=r]$ to $[D(s, r)=0 \Rightarrow s=r]$, which means we may have a non-zero self distance; also, $D(s, s)$ is not necessarily less than $D(s, r)$. This new type of metric space is a generalization of controlled rectangular b-metric spaces and partial rectangular metric spaces.

Keywords: controlled rectangular metric-like spaces; fixed point; integral equations
MSC: 47H10; 54H25

1. Introduction

The uniqueness of a fixed-point theory for self-contractive mapping, which was introduced by Banach in 1922 [1], opened a new area of research in various fields. It has become an interesting domain and an exciting field of mathematical research see [2-4]; in fact, it has become an important tool now in many fields of mathematics, such as variational inequalities, approximation theory, linear inequalities nonlinear analysis, differential, and integral equations; for more details on these type of applications, see [5-7]. Its applications appear in mathematical sciences, super fractals, and more recently, in discrete dynamics. Kamran et al. [8] introduced extended b-metric spaces, which is a generalization of metric spaces and b-metric spaces [9]. Then, the generalization of these metrics appeared in the form of a controlled metric [10] and double controlled metric spaces [11]. Further, Branciari [12], in 2000, introduced rectangular metric spaces. Then, in 2015, George et al. in [13], generalized rectangular metric spaces to rectangular b-metric spaces. In 2020, Mlaiki et al., in [14], generalized the rectangular b-metric spaces by introducing the controlled rectangular metric spaces. Inspired by the work of Matthews in [15], where he introduced the notion of partial metric spaces, which is basically assuming that the self distance is not necessarily zero; however, we have $D(s, s) \leq D(s, r)$. Shukla, in [16], introduced the concept of partial rectangular metric spaces, which is basically the exact same work as Matthews, except it is in rectangular metric spaces. In this article, we present a generalization of controlled rectangular b-metric spaces and partial rectangular metric spaces, so-called controlled rectangular metric-like spaces. In the next section, we present some preliminaries and concepts needed later; while in the next section, we prove our main result. In the last section, we present an application of our results.

2. Preliminaries

We present some preliminary definitions of rectangular b-metric spaces, and controlled rectangular metric spaces, before presenting our new notion of a controlled rectangular metric-like space.

Definition 1 ([12]). (Branciari metric spaces) Let $X \neq \phi$. A mapping $D: X^{2} \rightarrow[0, \infty)$ is called a rectangular metric on X if for any $x, y \in X$ and all $u, \neq v \in X \backslash\{x, y\}$, having the following conditions:
$\left(R_{1}\right) x=y \leftrightarrow D(x, y)=0 ;$
$\left(R_{2}\right) D(x, y)=D(y, x)$;
$\left(R_{3}\right) D(x, y) \leq D(x, u)+D(u, v)+D(v, y)$.
In this case, then (X, D) is a rectangular metric space.
As a generalization of rectangular metric spaces, rectangular b-metric spaces were introduced in [13], where the triangle inequality has a constant $a>1$.

Definition 2 ([13]). (Rectangular b-metric spaces) Let $X \neq \phi$. A mapping $D: X^{2} \rightarrow[0, \infty)$ is known as rectangular b-metric on X for a constant $a \geq 1$ such that any $x y \in X$ and points $u \neq, v \in X \backslash\{x, y\}$, which has the following conditions:
$\left(R_{b 1}\right) x=y \leftrightarrow D(x, y)=0 ;$
$\left(R_{b 2}\right) D(x, y)=D(y, x)$;
$\left(R_{b 3}\right) D(x, y) \leq a[D(x, u)+D(u, v)+D(v, y)]$.
In this case, the pair (X, D) is called a rectangular b-metric space.
In 2020, a new extension to the rectangular metric spaces was defined as follows.
Definition 3 ([14]). Let X be a non empty set, a function $\theta: X^{4} \rightarrow[1, \infty)$
and $D: X^{2} \rightarrow[0, \infty)$. We say that (X, D) is a controlled rectangular b-metric space if all distinct $x, y, u, v \in X$ we have:

1. $D(x, y)=0$ if and only if $x=y$;
2. $D(x, y)=D(y, x)$;
3. $D(x, y) \leq \theta(x, y, u, v)[D(x, u)+D(u, v)+D(v, y)]$.

In this manuscript, we define controlled rectangular metric-like spaces as follows;
Definition 4. Let X be a non empty set, a function $\theta: X^{4} \rightarrow[1, \infty)$
and $D: X^{2} \rightarrow[0, \infty)$. We say that (X, D) is a controlled rectangular metric-like space if $x \neq y \neq$ $u \neq v \in X$ having the functions:

1. $D(x, y)=0 \Rightarrow x=y$;
2. $D(x, y)=D(y, x)$; (symmetric condition)
3. $D(x, y) \leq \theta(x, y, u, v)[D(x, u)+D(u, v)+D(v, y)]$.

Remark 1. Note that, in Definition 4, we are assuming that the space is symmetric. However, in the case where the symmetric condition is not satisfied, we will have a different space with a totally different topology.

Next, we present two examples of controlled rectangular metric-like spaces that are not controlled rectangular b-metric spaces.

Example 1. Let $X=[0, \infty)$ and $p:[0, \infty) \times[0, \infty) \rightarrow(1, \infty)$. Define $D: X^{2} \rightarrow[0, \infty)$ by

$$
D(x, y)=(x+y)^{p(x, y)} \text { for all } x, y \in X
$$

Note that (X, D) is a controlled rectangular metric-like space with

$$
\theta(x, y, u, v)=2^{p(\max \{x, y\}, \max \{u, v\})-1}
$$

For all $0<y<x$ we have

$$
D(x, x)=(x+x)^{p(x, x)}>(x+y)^{p(x, y)}=D(x, y)
$$

Thus, (X, D) is not a controlled rectangular b-metric space nor a partial rectangular metric space.
Example 2. Let $X=Y \cup Z$ where $Y=\left\{\left.\frac{1}{m} \right\rvert\, m\right.$ is a natural number $\}$ and $Z \subset \mathbb{R}^{+}$. We define $D: X^{2} \rightarrow[0, \infty) b y$

$$
D(x, y)=\left\{\begin{array}{l}
0, \quad \text { if and only if } x=y \\
2 \beta, \quad \text { if } x, y \in Y \\
\frac{1}{2}, \quad x=y=1 \\
\frac{\beta}{2}, \quad \text { otherwise }
\end{array}\right.
$$

where β is a constant bigger than 0 . Now, define $\theta: X^{4} \rightarrow[1, \infty)$ by $\theta(x, y, u, v)=\max \{x, y, u, v\}+$ 2β. It is quite easy to check that (X, D) is a controlled rectangular metric-like space. However, (X, D) is not a controlled rectangular metric type space nor a partial rectangular metric space, for example $D(1,1)=\frac{1}{2} \neq 0$.

Remark 2. Notice that by Example 1, not every controlled rectangular metric-like space is a controlled rectangular b-metric space. On the other hand, every controlled rectangular b-metric space and every partial rectangular metric space is a controlled rectangular metric-like space.

Next, we present the topology of controlled rectangular metric-like spaces.
Definition 5. Let (X, D) be controlled rectangular metric-like space,

1. A sequence $\left\{x_{l}\right\}$ in a controlled rectangular metric-like space (X, D) is called D-convergent, if there exists $x \in X$ such that $\lim _{l \rightarrow \infty} D\left(x_{l}, v\right)=D(v, v)$.
2. A sequence $\left\{x_{l}\right\}$ is called D-Cauchy if and only if $\lim _{l, m \rightarrow \infty} D\left(x_{l}, x_{m}\right)$ exists and finite.
3. A controlled rectangular metric-like space (X, D) is called D-complete iffor every D-Cauchy sequence $\left\{x_{n}\right\}$ in X, if there exists $v \in X$, such that

$$
\lim _{l \rightarrow \infty} D\left(x_{l}, v\right)=\lim _{l, m \rightarrow \infty} D\left(x_{l}, x_{m}\right)=D(v, v)
$$

4. For $a \in X$, an open ball in a controlled rectangular metric-like space (X, D) define by

$$
B_{D}(a, \eta)=\{b \in X| | D(a, b)-D(a, a) \mid<\eta\} .
$$

Next, we define continuity in controlled rectangular metric-like spaces.
Definition 6. A self-mapping function ζ in F is said continuous at $x \in F$ if for all $\varepsilon>0$, there exists $\delta>0$ such that $\zeta(B(s, \delta)) \subseteq B(\zeta(s, \varepsilon))$, that is $\lim _{n \rightarrow \infty} \zeta\left(x_{n}\right)=\zeta\left(\lim _{n \rightarrow \infty} x_{n}\right)$.

In the next section, we present our main results by proving the existence of a fixed point for mappings that satisfies different types of contractions in controlled rectangular metric-like spaces.

3. Main Results

Theorem 1. Let (X, D) be a complete controlled rectangular metric-like space, and T is continuous and maps to itself on X. If there exists $0<k<1$, such that $D(T x, T y) \leq k D(x, y)$ and

$$
\sup _{m>1} \lim _{l \rightarrow \infty} \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{m}\right) \leq \frac{1}{k^{\prime}}
$$

then in X there is a unique fixed point of T.
Proof. Let $x_{0} \in X$ and it is a sequence $\left\{x_{l}\right\}$ as follows $x_{1}=T x_{0}, x_{2}=T^{2} x_{0}, \cdots, x_{l}=$ $T^{l} x_{0}, \cdots$ Now, by the hypothesis of the theorem, we have

$$
D\left(x_{l}, x_{l+1}\right) \leq k D\left(x_{l-1}, x_{l}\right) \leq k^{2} D\left(x_{l-2}, x_{l-1}\right) \leq \cdots \leq k^{l} D\left(x_{0}, x_{1}\right)
$$

Note that taking the limit of the above inequality as $n \rightarrow \infty$ we deduce that $D\left(x_{l}, x_{l+1}\right)$ $\rightarrow 0$ as $l \rightarrow \infty$. Denote by $D_{i}=D\left(x_{l+i}, x_{l+i+1}\right)$. For all $l \geq 1$, we have two cases.
Case 1: Let $x_{l}=x_{m}$ for some integers $l \neq m$. Therefore, if for $m>l$ we have $T^{m-l}\left(x_{l}\right)=x_{l}$. Choose $y=x_{l}$ and $p=m-l$. Then $T^{p} y=y$, and that is, y is a periodic point of T. Thus, $D(y, T y)=D\left(T^{p} y, T^{p+1} y\right) \leq k^{p} D(y, T y)$. Since $k \in(0,1)$, we obtain $D(y, T y)=0$, so $y=T y$, therefore, T has a fixed point y.

Case 2: Suppose $T^{l} x \neq T^{m} x$ for all integers $l \neq m$. Let $l<m \in N$, and to show that $\left\{x_{l}\right\}$ is a D-Cauchy sequence, we considered two subcases:
Subcase 1: Assume that $m=l+2 p+1$. By property (3) of the controlled rectangular-like metric spaces, we have,

$$
\begin{aligned}
D\left(x_{l}, x_{l+2 p+1}\right) & \leq \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right)\left[D\left(x_{l}, x_{l+1}\right)+D\left(x_{l+1}, x_{l+2}\right)+D\left(x_{l+2}, x_{l+2 p+1}\right)\right] \\
& \leq \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) D\left(x_{l}, x_{l+1}\right)+\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) D\left(x_{l+1}, x_{l+2}\right) \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right)\left[D\left(x_{l+2}, x_{l+3}\right)\right. \\
& \left.+D\left(x_{l+3}, x_{l+4}\right)+D\left(x_{l+4}, x_{l+2 p+1}\right)\right] \\
& \leq \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) D\left(x_{l}, x_{l+1}\right)+\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) D\left(x_{l+1}, x_{l+2}\right) \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right) D\left(x_{l+2}, x_{l+3}\right) \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right) D\left(x_{l+3}, x_{l+4}\right) \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right) D\left(x_{l+4}, x_{l+2 p+1}\right) \\
& \leq \cdots \\
& \leq \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) D\left(x_{l}, x_{l+1}\right)+\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) D\left(x_{l+1}, x_{l+2}\right) \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right) D\left(x_{l+2}, x_{l+3}\right) \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right) D\left(x_{l+3}, x_{l+4}\right) \\
& +\cdots+\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right) \\
& \cdots \theta\left(x_{l+2 p-2}, x_{l+2 p-1}, x_{l+2 p}, x_{l+2 p+1}\right) D\left(x_{l+2 p}, x_{l+2 p+1}\right) \\
& \leq \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) D_{0}+\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) D_{1} \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right) D_{2} \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right) D_{3} \\
& +\cdots \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right) \times \cdots \\
& \times \cdots \theta\left(x_{l+2 p-2}, x_{l+2 p-1}, x_{l+2 p}, x_{l+2 p+1}\right) D_{2 p}
\end{aligned}
$$

$$
\begin{aligned}
& =\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right)\left[D_{0}+D_{1}\right] \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right)\left[D_{2}+D_{3}\right] \\
& +\cdots+\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right) \times \cdots \\
& \times \cdots \theta\left(x_{l+2 p-2}, x_{l+2 p-1}, x_{l+2 p}, x_{l+2 p+1}\right)\left[D_{2 p-1}+D_{2 p}\right] \\
& \leq \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right)\left[\left(k^{l}+k^{l+1}\right) D\left(x_{0}, x_{1}\right)\right] \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right)\left[\left(k^{l+2}+k^{l+3}\right) D\left(x_{0}, x_{1}\right)\right] \\
& +\cdots+\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right) \times \cdots \\
& \times \cdots \theta\left(x_{l+2 p-2}, x_{l+2 p-1}, x_{l+2 p}, x_{l+2 p+1}\right)\left[\left(k^{l+2 p-2}+k^{l+2 p-1}\right) D\left(x_{0}, x_{1}\right)\right] \\
& \leq\left[\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right)\left(k^{l}+k^{l+1}\right)\right. \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right)\left(k^{l+2}+k^{l+3}\right)+ \\
& \cdots+\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p+1}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p+1}\right) \times \cdots \\
& \left.\times \cdots \theta\left(x_{l+2 p-2}, x_{l+2 p-1}, x_{l+2 p}, x_{l+2 p+1}\right)\left(k^{l+2 p-2}+k^{l+2 p-1}\right)\right] D\left(x_{0}, x_{1}\right) \\
& =\sum_{r=0}^{p-1} \prod_{i=0}^{r} \theta\left(x_{l+2 i}, x_{l+2 i+1}, x_{l+2 i+2}, x_{l+2 p+1}\right)\left[k^{l+2 l}+k^{l+2 l+1}\right] D\left(x_{0}, x_{1}\right) \\
& =\sum_{r=0}^{p-1} \prod_{i=0}^{r} \theta\left(x_{l+2 i}, x_{l+2 i+1}, x_{l+2 i+2}, x_{l+2 p+1}\right)[1+k] k^{l+2 r} D\left(x_{0}, x_{1}\right)
\end{aligned}
$$

As $k<1$, the above inequalities imply the following:

$$
D\left(x_{l}, x_{l+2 p+1}\right)<\sum_{r=0}^{p-1} \prod_{i=0}^{r} \theta\left(x_{l+2 i}, x_{l+2 i+1}, x_{l+2 i+2}, x_{l+2 p+1}\right) 2 k^{l+2 r} D\left(x_{0}, x_{1}\right) .
$$

Since $\sup _{m>1} \lim _{l \rightarrow \infty} \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{m}\right) \leq \frac{1}{k}$ we deduce that,

$$
\begin{aligned}
\lim _{l, p \rightarrow \infty} D\left(x_{l}, x_{l+2 p+1}\right) & <\sum_{r=0}^{\infty} \prod_{i=0}^{r} \theta\left(x_{l+2 i}, x_{l+2 i+1}, x_{l+2 i+2}, x_{l+2 p+1}\right) 2 k^{l+2 r} D\left(x_{0}, x_{1}\right) \\
& \leq \sum_{r=0}^{\infty} \frac{1}{k^{r+1}} 2 k^{l+2 r} D\left(x_{0}, x_{1}\right) \\
& \leq \sum_{r=0}^{\infty} 2 k^{l+r-1} D\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

The series $\sum_{r=0}^{\infty} 2 k^{l+r-1} D\left(x_{0}, x_{1}\right)$ is convergent by the ratio test, which implies that $D\left(x_{l}, x_{l+2 p+1}\right)$ converges as $l, p \rightarrow \infty$.
Subcase 2: $m=l+2 p$ Fist of all, note that

$$
D\left(x_{l}, x_{l+2}\right) \leq k D\left(x_{l-1}, x_{l+1}\right) \leq k^{2} D\left(x_{l-2}, x_{l}\right) \leq \cdots \leq k^{l} D\left(x_{0}, x_{2}\right)
$$

which leads us to conclude that $D\left(x_{l}, x_{l+2}\right) \rightarrow 0$ as $l \rightarrow \infty$. Similarly to Subcase 1 , we have:

$$
\begin{aligned}
D\left(x_{l}, x_{l+2 p}\right) & \leq \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p}\right)\left[D\left(x_{l}, x_{l+1}\right)+D\left(x_{l+1}, x_{l+2}\right)+D\left(x_{l+2}, x_{l+2 p}\right)\right] \\
& \leq \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p}\right) D\left(x_{l}, x_{l+1}\right)+\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p}\right) D\left(x_{l+1}, x_{l+2}\right) \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p}\right)\left[D\left(x_{l+2}, x_{l+3}\right)\right. \\
& \left.+D\left(x_{l+3}, x_{l+4}\right)+D\left(x_{l+4}, x_{l+2 p}\right)\right] \\
& \leq \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p}\right) D\left(x_{l}, x_{l+1}\right)+\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p}\right) D\left(x_{l+1}, x_{l+2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p}\right) D\left(x_{l+2}, x_{l+3}\right) \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p}\right) D\left(x_{l+3}, x_{l+4}\right) \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p}\right) D\left(x_{l+4}, x_{l+2 p}\right) \\
& \leq \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p}\right) D_{0}+\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p}\right) D_{1} \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p}\right) D_{2} \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p}\right) D_{3} \\
& +\cdots \\
& +\theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{l+2 p}\right) \theta\left(x_{l+2}, x_{l+3}, x_{l+4}, x_{l+2 p}\right) \times \cdots \\
& \times \cdots \theta\left(x_{l+2 p-3}, x_{l+2 p-2}, x_{l+2 p-1}, x_{l+2 p}\right) D_{2 p} \\
& +\prod_{i=0}^{2 p-2} \theta\left(x_{l+2 i}, x_{l+2 i+1}, x_{l+2 i+1}, x_{l+2 p}\right) D\left(x_{l+2 p-2}, x_{l+2 p}\right) \\
& =\sum_{r=0}^{p-1} \prod_{i=0}^{r} \theta\left(x_{l+2 i}, x_{l+2 i+1}, x_{l+2 i+2}, x_{l+2 p+1}\right)\left[k^{l+2 r}+k^{l+2 r+1}\right] D\left(x_{0}, x_{1}\right) \\
& +\prod_{i=0}^{2 p-2} \theta\left(x_{l+2 i}, x_{l+2 i+1}, x_{l+2 i+1}, x_{l+2 p}\right) D\left(x_{l+2 p-2}, x_{l+2 p}\right) \\
& =\sum_{r=0}^{p-1} \prod_{i=0}^{r} \theta\left(x_{l+2 i}, x_{l+2 i+1}, x_{l+2 i+2}, x_{l+2 p+1}\right)[1+k] k^{l+2 r} D\left(x_{0}, x_{1}\right) \\
& +\prod_{i=0}^{2 p-2} \theta\left(x_{l+2 i}, x_{l+2 i+1}, x_{l+2 i+1}, x_{l+2 p}\right) D\left(x_{l+2 p-2}, x_{l+2 p}\right) \\
& \leq \sum_{r=0}^{p-1} \prod_{i=0}^{r} \theta\left(x_{l+2 i}, x_{l+2 i+1}, x_{l+2 i+2}, x_{l+2 p+1}\right)[1+k] k^{l+2 r} D\left(x_{0}, x_{1}\right) \\
& +\prod_{i=0}^{2 p-2} \theta\left(x_{l+2 i}, x_{l+2 i+1}, x_{l+2 i+1}, x_{l+2 p}\right) k^{l+2 p-2} D\left(x_{0}, x_{2}\right)
\end{aligned}
$$

Since $\sup _{m>1} \lim _{l \rightarrow \infty} \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{m}\right) \leq \frac{1}{k}$ we deduce that,

$$
\begin{aligned}
\lim _{l, p \rightarrow \infty} D\left(x_{l}, x_{l+2 p}\right) & \leq \lim _{l, p \rightarrow \infty} \sum_{r=0}^{p-1} \frac{1}{k^{l+1}}[1+k] k^{l+2 r} D\left(x_{0}, x_{1}\right)+k^{2 p-1} k^{l+2 p-2} D\left(x_{0}, x_{2}\right) \\
& =\lim _{l, p \rightarrow \infty} \sum_{r=0}^{p-1}[1+k] k^{l+r-1} D\left(x_{0}, x_{1}\right)+k^{l-1} D\left(x_{0}, x_{2}\right) \\
& \leq \sum_{m=0}^{\infty}[1+k] k^{m} D\left(x_{0}, x_{1}\right)+k^{m} D\left(x_{0}, x_{2}\right)
\end{aligned}
$$

From the ratio test, it is easy to show that the series

$$
\sum_{m=0}^{\infty}[1+k] k^{m} D\left(x_{0}, x_{1}\right)+k^{m} D\left(x_{0}, x_{2}\right)
$$

converges. Hence, $D\left(x_{l}, x_{l+2 p}\right)$ converges as l, p going toward ∞. Thus, by subcase 1 and subcase 2 , it is proved that the sequence $\left\{x_{l}\right\}$ is a D-Cauchy sequence. Since (X, D) is
a D-complete extended rectangular metric-like space, we deduce that $\left\{x_{l}\right\}$ converges to some $v \in X$. Now, we show that v is fixed point of T.

$$
D\left(x_{l}, x_{l+1}\right)=D\left(T x_{l-1}, T x_{l}\right) \leq k D\left(x_{l-1}, x_{l}\right)=k D\left(x_{l-1}, T x_{l-1}\right)<D\left(x_{l-1}, T x_{l-1}\right)
$$

Now, taking the limit $l \rightarrow \infty$, and as T is continuous, we deduce that

$$
D(v, T v)<D(v, T v),
$$

which leads us to a contradiction. Hence, $D(v, T v)=0$ and that is $T v=v$ and v is a fixed point of T.

Finally, for uniqueness, let us assume two fixed points of T say v and μ such that $v \neq \mu$. By the contractive property of T we have:

$$
D(\nu, \mu)=D(T v, T \mu) \leq k D(\nu, \mu)<D(v, \mu)
$$

which leads us to contradiction. Thus, T has a unique fixed point as required.
Theorem 2. Let (X, D) be a complete controlled rectangular metric-like space, and T a continuous self-mapping on X satisfying the following condition; for all $x, y \in X$ there exists $0<k<\frac{1}{2}$ such that

$$
D(T x, T y) \leq k[D(x, T x)+D(y, T y)]
$$

Furthermore, if

$$
\sup _{m>1} \lim _{l \rightarrow \infty} \theta\left(x_{l}, x_{l+1}, x_{l+2}, x_{m}\right) \leq \frac{1}{k}
$$

and for all $u, v \in X$, we have:

$$
\lim _{l \rightarrow \infty} \theta\left(u, v, x_{l}, x_{l+1}\right) \leq 1,
$$

then T has a fixed point in X. Moreover, if for every fixed point v of T we have $D(v, v)=0$, then the fixed point of T is unique.

Proof. Let $x_{0} \in X$ and define the sequence $\left\{x_{l}\right\}$ as follows

$$
x_{1}=T x_{0}, x_{2}=T x_{1}=T^{2} x_{0}, \cdots, x_{l}=T x_{l-1}=T^{n} x_{0}, \cdots
$$

First of all, note that for all $l \geq 1$, we have

$$
\begin{aligned}
& D\left(x_{l}, x_{l+1}\right) \leq k\left[D\left(x_{l-1}, x_{l}\right)+D\left(x_{l}, x_{l+1}\right)\right] \\
& \Rightarrow(1-k) D\left(x_{l}, x_{l+1}\right) \leq k D\left(x_{l-1}, x_{l}\right) \\
& \Rightarrow D\left(x_{l}, x_{l+1}\right) \leq \frac{k}{1-k} D\left(x_{l-1}, x_{l}\right) .
\end{aligned}
$$

Since $0<k<\frac{1}{2}$, one can easily deduce that $0<\frac{k}{1-k}<1$. Therefore, let $\mu=\frac{k}{1-k}$.
Hence,

$$
\begin{aligned}
D\left(x_{l}, x_{l+1}\right) & \leq \mu D\left(x_{l-1}, x_{l}\right) \\
& \leq \mu^{2} D\left(x_{l-2}, x_{l-1}\right) \\
& \leq \cdots \\
& \leq \mu^{l} D\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Therefore,

$$
D\left(x_{l}, x_{l+1}\right) \rightarrow 0 \text { as } l \rightarrow \infty .
$$

Furthermore, for all $l \geq 1$, we have

$$
D\left(x_{l}, x_{l+2}\right) \leq k\left[D\left(x_{l-1}, x_{l}\right)+D\left(x_{l+1}, x_{l+2}\right)\right]
$$

Thus, by using the fact that $D\left(x_{l}, x_{l+1}\right) \rightarrow 0$ as $l \rightarrow \infty$, we deduce that

$$
D\left(x_{l}, x_{l+2}\right) \rightarrow 0 \text { as } l \rightarrow \infty
$$

Now, similarly to the proof of case 1 and case 2 of Theorem 1, we deduce that the sequence $\left\{x_{l}\right\}$ is a D-Cauchy sequence. Since (X, D) is a D-complete controlled rectangular metric-like space, we conclude that $\left\{x_{l}\right\}$ converges to some $v \in X$. Now, we show that v is a fixed point of T.

$$
D\left(x_{l}, x_{l+1}\right)=D\left(T x_{l-1}, T x_{l}\right) \leq k\left[D\left(x_{l-1}, T x_{l-1}\right)+D\left(x_{l}, T x_{l}\right)\right]
$$

Now, taking the limit as $l \rightarrow \infty$ and using the fact that T is continuous, we deduce that

$$
D(v, T v)<k[D(v, T v)+D(v, T v)]=2 k D(v, T v)<D(v, T v) \text { since } k<\frac{1}{2}
$$

which leads us to a contradiction. Hence, $D(v, T v)=0$, and that is, $T v=v$, and v is a fixed point of T. To show uniqueness, we assume two fixed points of T, say v and μ such that $v \neq \mu$. By the contractive property of T, we have:

$$
D(\nu, \mu)=D(T v, T \mu) \leq k[D(v, T v)+D(\mu, T \mu)]=k[D(v, v)+D(\mu, T \mu)]=0 .
$$

Thus, $D(v, \mu)=0$ and, that is, $v=\mu$. Therefore, T has a unique fixed point as required.
In the next section, we present an application of our result.

4. Application

Let X be the set $C([0,1], \mathbb{R})$ and consider the following Fredholm type integral equation:

$$
\begin{equation*}
\zeta^{\prime}(t)=\int_{0}^{1} F\left(\psi, \omega, \zeta^{\prime}(t)\right) d s, \text { for } \psi, \omega \in[0,1] \tag{1}
\end{equation*}
$$

where $F\left(\psi, \omega, \zeta^{\prime}(t)\right)$ is continuous from $[0,1]^{2} \rightarrow \mathbb{R}$. Next, let

$$
\begin{aligned}
D: X \times X & \longrightarrow \mathbb{R} \\
(\zeta, \varrho) & \mapsto \sup _{t \in[0,1]}\left(\frac{\left|\zeta^{\prime}(t)\right|+|\varrho(t)|}{2}\right)
\end{aligned}
$$

Notice that (X, D) is a complete controlled rectangular metric-like space, where

$$
\theta(x, y, u, v)=\max \{x, y, u, v\}
$$

Theorem 3. If $\zeta, \varrho \in X$ satisfies the following conditions
(1) $\left|F\left(\psi, \omega, \zeta^{\prime}(t)\right)\right|+|F(\psi, \omega, \varrho(t))| \leq k\left(\left|\zeta^{\prime}(t)\right|+|\varrho(t)|\right)$, for some $k \in(0,1)$;
(2) $F\left(\psi, \omega, \int_{0}^{1} F\left(\psi, \omega, \zeta^{\prime}(t)\right) d s\right)<F\left(\psi, \omega, \zeta^{\prime}(t)\right)$ for all ψ, ω,
then Equation (1) has a unique solution.

Proof. Let $T: X \longrightarrow X$ be defined by $T \zeta^{\prime}(t)=\int_{0}^{1} F\left(\psi, \omega, \zeta^{\prime}(t)\right) d s$, then $D(T \zeta, T \varrho)=\sup _{t \in[0,1]}\left(\frac{\left|T \zeta^{\prime}(t)\right|+|T \varrho(t)|}{2}\right)$. Hence,

$$
\begin{aligned}
\frac{\left|T \zeta^{\prime}(t)\right|+|T \varrho(t)|}{2} & =\frac{\left|\int_{0}^{1} F\left(\psi, \omega, \zeta^{\prime}(t)\right) d s\right|+\left|\int_{0}^{1} F(\psi, \omega, \varrho(t)) d s\right|}{2} \\
& \leq \frac{\int_{0}^{1}\left|F\left(\psi, \omega, \zeta^{\prime}(t)\right)\right| d s+\int_{0}^{1}|F(\psi, \omega, \varrho(t))| d s}{2} \\
& =\frac{\int_{0}^{1}\left(\left|F\left(\psi, \omega, \zeta^{\prime}(t)\right)\right|+|F(\psi, \omega, \varrho(t))|\right) d s}{2} \\
& \leq \frac{\int_{0}^{1} k\left(\left|\zeta^{\prime}(t)\right|+|\varrho(t)|\right) d s}{2} \\
& \leq k D\left(\zeta^{\prime}, \varrho\right) .
\end{aligned}
$$

Thus, $D(T \zeta, T \varrho) \leq k D(\zeta, \varrho)$. Now, let $n \in \mathbb{N}^{\star}$ and $\zeta \in X$;

$$
\begin{aligned}
\left(T^{n} \zeta\right)(t)=T\left(T^{n-1} \zeta^{\prime}(t)\right) & =\int_{0}^{1} F\left(\psi, \omega, T^{n-1} \zeta^{\prime}(t)\right) d s \\
& =\int_{0}^{1} F\left(\psi, \omega, T\left(T^{n-2} \zeta\right)(t)\right) d s \\
& =\int_{0}^{1} F\left(\psi, \omega, \int_{0}^{1} F\left(\psi, \omega,\left(T^{n-2} \zeta^{\prime}(t)\right)\right)\right) d s \\
& <\int_{0}^{1} F\left(\psi, \omega,\left(T^{n-2} \zeta^{\prime}(t)\right)\right) d s=\left(T^{n-1} \zeta^{\prime}(t)\right)
\end{aligned}
$$

Therefore, for all $t \in[0,1]$ we have $\left(T^{n} \zeta^{\prime}(t)\right)_{n}$, which is a strictly decreasing and boundedbelow sequence and, hence, converges to some l. Since $\left(T_{n}\right)_{n}$ is a monotone sequence, it follows from Dini Theorem that $\sup _{t}\left|T^{n} \zeta^{\prime}(t)\right|$ converges to some $l^{\prime} \leq \sup _{\psi, \omega}\left|F\left(\psi, \omega, \zeta^{\prime}(t)\right)\right|$. Now, it is not difficult to see that all the hypotheses of Theorem 1 are satisfied, and therefore, Equation (1) has a unique solution as required.

5. Conclusions

In this manuscript, we have introduced a new type of metric space, which is a generalization of rectangular metric spaces, rectangular b-metric spaces, and controlled rectangular metric spaces. We have proved the existence and uniqueness of a fixed point for selfmapping on controlled rectangular metric-like spaces. Our results are a generalization of many theorems in the literature. Finally, we gave an application of our result to the Fredholm-type integral equation.
In closing, we would like to present the following two questions;
Question 1. Let (X, D) be a controlled rectangular metric like space, and T a map from $X \rightarrow X$. Assume that for all $\zeta, \eta, T \zeta, T \eta \in X$ there exists $k \in(0,1)$, where

$$
D(T \zeta, T \eta) \leq k \theta(\zeta, \eta, T \zeta, T \eta) D(\zeta, \eta)
$$

under what other condition(s) does T have a unique fixed point in X ?
Question 2. Let (X, D) be a controlled rectangular metric-like space, and T a map from $X \rightarrow X$. Assume that for all $\zeta, \eta, T \zeta, T \eta \in X$ there exists $k \in(0,1)$, where

$$
D(T \zeta, T \eta) \leq \theta(\zeta, \eta, T \zeta, T \eta)[D(\zeta, T \zeta)+D(\eta, T \eta)]
$$

under what other condition(s) does T have a unique fixed point in X ?

Author Contributions: Conceptualization, S.H., F.A. and N.M.; methodology, S.H., F.A. and N.M.; supervision, N.M.; validation, S.H., F.A. and N.M.; writing-original draft preparation, S.H., F.A. and N.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors would like to thank Prince Sultan University for paying the publication fees for this work through TAS LAB.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Banach, S. Sur les operations dans les ensembles et leur application aux equation sitegrales. Fundam. Math. 1922, 3, 133-181. [CrossRef]
2. Souayah, N.; Mrad, M. On Fixed-Point Results in Controlled Partial Metric Type Spaces with a Graph. Mathematics 2020, 8, 33. [CrossRef]
3. Souayah, N.; Mrad, M. Some Fixed Point Results on Rectangular Metric-Like Spaces Endowed with a Graph. Symmetry 2019, 11, 18. [CrossRef]
4. Abodayeh, K.; Karapınar, E.; Pitea, A.; Shatanawi, W. Hybrid contractions on Branciari type distance spaces. Mathematics 2019, 7, 994. [CrossRef]
5. Chauhan, S.; Aydi, H.; Shatanawi, W.; Vetro, C. Some integral type fixed-point theorems and an application to systems of functional equations. Vietnam. J. Math. 2014, 42, 17-37. [CrossRef]
6. Laksaci, N.; Boudaoui, A.; Shatanawi, W. TAM Shatnawi Existence Results of Global Solutions for a Coupled Implicit RiemannLiouville Fractional Integral Equation via the Vector Kuratowski Measure of Noncompactness. Fractal Fract. 2022, 6, 130. [CrossRef]
7. Shatanawi, W.; Karapinar, E.; Aydi, H.; Fulga, A. Wardowski type contractions with applications on Caputo type nonlinear fractional differential equations. Univ. Politech. Buchar. Sci. Bull. Ser. Appl. 2020, 82, 157-170.
8. Kamran, T.; Samreen, M.; Ul Ain, Q. A Generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [CrossRef]
9. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5-11.
10. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled Metric Type Spaces and the Related Contraction Principle. Mathematics 2018, 6, 194. [CrossRef]
11. Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double controlled metric type spaces and some fixed point results. Mathematics 2018, 6, 320. [CrossRef]
12. Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. 2000, 1-2, 31-37.
13. George, R.; Rodenovic, S.; Rashma, K.P.; Shukla, S. Rectangular b-metric spaces and contraction principals. J. Nonlinear Sci. Appl. 2015, 8, 1005-1013. [CrossRef]
14. Mlaiki, N.; Hajji, M.; Abdeljawad, T. A new extension of the rectangular-metric spaces. Adv. Math. Phys. 2020, 2020, 8319584. [CrossRef]
15. Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183-197. [CrossRef]
16. Shukla, S. Partial Rectangular Metric Spaces and Fixed Point Theorems. Sci. World J. 2014, 2014, 756298. [CrossRef] [PubMed]
