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Abstract: This study is the first to use Laplace transform methods to solve a system of Caputo
fractional Volterra integro-differential equations with variable coefficients and a constant multi-time
delay. This technique is based on different types of kernels, which we will explain in this paper.
Symmetry kernels, which have properties of difference kernels or simple degenerate kernels, are able
to compute analytical work. These are demonstrated by solving certain examples and analyzing the
effectiveness and precision of cause techniques.

Keywords: system fractional-integro differential equation; Laplace transform; Caputo fractional
derivative; delay differential equations; difference and simple degenerate kernels

1. Introduction

The purpose of this paper is to solve linear system integro-fractional differential
equations of the Volterra type (LS-VIFDEs) with variable coefficients and multi-time delay
of the retarded type (RD):

C
a Dα

t ur(t) +
n−1
∑

i=1
Pri(t) C

a D
αr(n−i)
t ur(t) + Prn(t)ur(g(t, τr))

= fr(t) +
m
∑

j=0
λrj
∫ t

a Krj (t, x)uj
(

g
(
x, τrj

))
dx, a ≤ t ≤ b.

(1)

All r = 0, 1, 2, · · · , m, as well as the fractional orders, have the basic ordering property
αrn > αr(n−1) > αr(n−2) > . . . > αr1 > αr0 = 0, and are given together with the initial condi-

tions. For all r = 0, 1, . . . , m;
[
u(kr)

r (t)
]

t=a
= ur,kr and historical functions, u(kr)

r (t) = ϕ
(kr)
r (t)

for all t ∈ [a, a], as well as a = a −max
{

τr, τrj : j = 0, 1, . . . , m
}

, kr = 0, 1, . . . , µr − 1,
µr = max{dr`| ` = 0, 1, 2, . . . , n}, dr` = dαr`e, where ur(t) are (m + 1). This function
is unknown and is the solution of LS-VIFDE’s multi-time RD, Equation (1), with con-
ditions and functions: Krj : S×R→ R. (S = {(t, x) : a ≤ x ≤ t ≤ b}), r, j = 0, 1, 2, . . . , m
and fr; Pri : [a, b]→ R for all i = 1, 2, . . . , n; r = 0, 1, . . . , m for all real bounded contin-
uous functions. In addition, for all r = 0, 1, . . . , m , where ur(t) ∈ R, C

a Dαr`
t ur(t) is

the αr`-fractional Caputo-derivative order of the functions ur on [a, b] and all αr`, ∈ R+,
dr` − 1 > αr` ≤ dr`, dr` = dαr`e for all r = 0, 1, . . . , m ; ` = 1, 2, . . . , n. Moreover, the
value of τrj, τr ∈ R+ for all j = 0, 1, . . . , m are called positive constant time lags or time
delays. Because the problem of LS-delayed VIFDE’s time delay is a relatively new topic in
mathematics, there are only one or two ways of solving it, and since the specific analytic
solution no longer exists, an approximation method must be used. In this paper, we use the
Laplace transform to provide an explanation for how to solve Equation (1) with conditions.
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The Laplace transform is a very useful method for solving various types of equations,
such as integro-differential equations, integral equations, fractional equations, and delay
differential equations. It can also be used to solve initial and boundary value problems re-
lated to differential equations and partial differentials with constant coefficients [1–6]. This
transform method is also used for solving linear Caputo fractional-integro differential equa-
tions with multi-time retarded delays [7] and for solving linear system integro-fractional
differential equation of Volterra-type equations [8]. When using this technique, it is impor-
tant and necessary to explain and define several properties of the Laplace transform that
are important for driving this transformation of delay functions and the Caputo fractional
derivative, which is expressed in Equation (1).

This work is classified into these sections as follows: some definitions and important
properties are shown in Section 2. In Section 3, a system of integro-fractional differential
equations of the Volterra type with variable coefficients and multi-time delay technique
is presented. In Section 4, the results are illustrated with all of the examples. Finally, a
discussion of this method is included in Section 5.

2. Definitions with Important Properties
2.1. Fractional Calculus

In this subsection, we recall the most common definitions and results of fractional
calculus that will be useful for this research. First, we start from the definition of function
space Cγ, γ ∈ R, which is the basic definition that operational calculus needs for the
differential operator:

Definition 1. [4,7]. A real valued function u defined on[a, b] is in the space of γ-functions Cγ[a, b],
γ ∈ R if there exists a real number r > γ, such that u(t) = (t− a)rû(t), where û ∈ C[a, b], and
it is said to be in the spaceCn

γ[a, b] if and only if u(n) ∈ Cγ[a, b], n ∈ N0.

Definition 2. [4,8]. For a function u ∈ Cγ[a, b], δ ≥ −1, the Reimann–Liouville fractional
integral operator a Jα

t of fractional order α ∈ R+ and origin point a is defined as:

a Jα
t u(t) = 1

Γ(α)

∫ t
a (t− x)α−1u(x)dx.

a J0
t u(t) = u(t), a ≤ t ≤ b.

where Γ is the gamma function. a Jα
t has an important (or semigroup) property, that is:a Jα

t a Jβ
t u(t) =

a Jβ
t a Jα

t u(t) = a Jα+β
t u(t) for arbitrary α > 0 and β > 0. Additionally, it has the following properties

a Jα
t (t− a) δ =

Г(δ)
Г(δ + α + 1)

(t− a) δ+α, δ > −1.

Definition 3. [7,8]. Let α > 0, m = α and a ∈ R. The Reimann–Liouville fractional derivative of
order α and starting pointa of a function u(t) ∈ Cm

−1[a, b] is given as:

R
a Dα

t u(t) = Dm[
a Jm−α

t u(t)
]
.

R
a D0

t u(t) = u(t), a ≤ t ≤ b.

If α = m(∈ Z+) and u ∈ Cm[a, b], thus R
a Dm

t u(t) = dm

dtm u(t).

Definition 4. [8,9]. Let α > 0, m = α, then the Caputo fractional derivative of order α and
starting pointa of a function u(t) ∈ Cm

−1[a, b] is given as:

C
a Dα

t u(t) = a Jm−α
t u(m)(t) = 1

Γ(m−α)

∫ t
a (t− s)m−α−1u(m)(s)ds.

C
a D0

t u(t) = u(t), a ≤ t ≤ b.

Additionally, if α = m(∈ Z+) and u ∈ Cm[a, b], thus C
a Dm

t u(t) = dm

dtm u(t).
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2.2. Some Important Properties

In this subsection, we are interested some important properties which are used later
on this paper [4,7–9].

i. R
a Dα

tA = A (t−a)−α

Γ(1−α)
; where A is any constant; (α ≥ 0, α /∈ N).

ii. If the Caputo fractional derivative of a constant function is equal to zero, it means
C
a Dα

tA = 0, for any constant A and all α > 0.
iii. The relationship between the R-L integral and Caputo derivatives are shown here:

Let α ≥ 0, m = α and u ∈ Cm[a, b], then:

C
a Dα

t [a Jα
t u(t)] = u(t) ; a ≤ t ≤ b

a Jα
t

[
C
a Dα

t u(t)
]
= u(t)−

m−1

∑
k=0

u(k)(a)
k!

(t− a)k .

iv. Let Tm−1[γ; a] be the Taylor polynomial of degree (m− 1) for the function γ, then:

C
a Dα

t γ(t) = R
a Dα

t [γ(t)− Tm−1[γ; a]],

where (m− 1 < α ≤ m).
v. Let u(t) = (t− a)β and α > 0 ; m = α for some β ≥ 0, then:

C
a Dα

t u(t) =


0 if β ∈ {0, 1, 2, · · · , m− 1}

Γ(β+1)
Γ(β+1−α) (t− a)β−α if β ∈ N and β ≥ m

or β /∈ N and β > m− 1

Definition 5. [1,10]. The Laplace transform (LT) for the suitable function, u(t), of real vari-
able t ≥ 0, is the function U(s), which is defined by the integral form:

U(s) = L{u(t)} =
∫ ∞

0
e−stu(t)dt (2)

with U(s) the LT of u(t), and inverse Laplace transform of U(s), denoted by L−1 {U(s); t},
being the function u defined on [0, ∞), which has the fewest number of discontinuities and satisfies
L{u(t); s} = U(s). Laplace transform has various properties with some lemmas, which are the key
for our work, as shown below [1,6,11–13]:

i. If u(t) and q(t) have well-defined Laplace transforms, then U(s) = L{u(t)} and Q(s) =
L{q(t)}, respectively. Now, the Laplace transform of the convolution integral is defined by
the form:

L{(u ∗ q)(t)} = L
{∫ t

0
u(t− x) q(x)dx

}
= U(s)Q(s) (3)

If u = 1, then:

L
{∫ t

0
q(x)dx; s

}
=

1
s

Q(s) (4)

ii. Put the power function tm of order m ∈ Z+, then:

L{tmu(t)} = (−1) m dm

dsm L{u(t)} = (−1)m dm

dsm U(s) (5)

iii. From (ii and iii), we obtain:

L
{∫ t

0 t u(x)dx; s
}
= − d

ds

(
1
s U(s)

)
and L

{∫ t
0 x u(x)dx ; s

}
= − 1

s
d
ds U(s) . (6)
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The following shows the important lemma for the Laplace transform of a constant
delay function:

Lemma 1. [7]. Let u(t)be a continuous differentiable function on a closed bounded interval [0, b],
b ∈ R+, and let τ be a constant delay such that:

u(t) = ϕ(t), for− τ ≤ t < 0. (7)

Then, the Laplace transform of a τ − delay function is given by:

L{u(t− τ); s } = e−sτ [U(s) + Q(s, τ)]. (8)

where Q(s, τ) =
∫ 0
−τ e−st ϕ(t)dt and L{u(t) } = U(s). If the historical function ϕ(t) is defined

by power function tn(n ∈ Z+), we obtain:

L{u(t− τ); s} = e−sτ U(s) +
n

∑
p=0

(−1)n−p p!
(

n
p

)
τn−p

sp+1 −
n!

sn+1 e−sτ (9)

Lemma 2. [4,9]. Laplace transform of Caputo fractional of order α (m− 1 < α ≤ m), m = α can
be obtained as:

L{c
aDα

t u(t); s} = L
{

Jm−α
t Dm

t u(t); s
}
= s−(m−α) L

{
u(m)(t); s

}
= s−(m−α)

[
sm U(s)−

m−1
∑

k=0
sm−k−1 u(k)(0)

]
= sα U(s)−

m−1
∑

k=0
sα−k−1 u(k)(0) .

(10)

3. Solving LS-VIFDE’s Multi-Time RD Using the Laplace Transform Technique

In this section, we try to find a general analytical solution to a linear system of integro-
differential equations of the arbitrary orders with variable coefficients and multi-time
delays using the Laplace transform method in various types of kernels.

3.1. First Type (Difference Kernel)

We use Equation (1) with different kernels and a = 0 as the starting point. Further-
more, we consider Pri(t) as a power function, with difference kernels form Krj (t, x) =
Krj (t− x), where Crit`ri , Cri ∈ R are constants and `ri are arbitrary non-negative integers
for all r and i, and the Laplace transformation is taken for all r = 0, 1, . . . , m, which is:

L
{C

a Dαrn
t ur(t); s

}
+ L

{
n−1
∑

i=1
Pri(t) C

a D
αr(n−i)
t ur(t); s

}
+ L{Prn(t)ur(g(t, τr)); s}

= L{ fr(t); s}+
m
∑

j=0
λrjL

{ ∫ t
0 Krj (t− x)uj

(
g
(
x, τrj

))
dx; s

}
.

(11)

After applying the Laplace transformation in Equation (11), using Lemma 2 with the
initial condition for the first part, where mαrn − 1 < αrn ≤ mαrn for all r = 0, 1, . . . , m, and
also using Definition (5; part (ii)) and Lemma 2 for second parts, where mαr(n−i) − 1 <
αr(n−i) ≤ mαr(n−i) , for all r = 0, 1, . . . , m, we obtain:

L
{C

a Dαrn
t ur(t); s

}
= sαrn Ur(s)−

mαrn−1
∑

kr=0
sαrn−kr−1 u(kr)

r (0)

= sαrn Ur(s)−
mαrn−1

∑
kr=0

sαrn−kr−1 ur,kr .
(12)
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where ur,kr are given for all r from the conditions. For all r = 0, 1, . . . , m using Equations (5)
and (10) and conditions, for each i = 1, 2, . . . , n− 1, we obtain:

L
{

Pri(t) C
a D

αr(n−i)
t ur(t); s

}
= Cri(−1)`ri d`ri

ds`ri

[
sαr(n−i) Ur(s)

]
−Cri(−1)`ri d`ri

ds`ri

mαr(n−i)
−1

∑
kr=0

sαr(n−i)−kr−1ur,kr

.

(13)

where `ri is the order of Pri(t) for each i = 1, 2, . . . , n− 1 and r = 0, 1, . . . , m. Consequently,
we use Equation (5) and then apply the Lemma (1, Equations (8) and (9)), respectively, with
the defined g(t, τr) = t− τr, thus obtaining for each r:

L{Prn(t)ur(g(t, τr)); s} = Crn(−1)`rn d`rn

ds`rn

[
e−sτr (Ur(s) + Qr(s, τr))

]
.

where:

Qr(s, τr) =
∫ 0

−τr
e−st ϕr(t)dt.

If the historical function ϕr(t) is tqr , qr ∈ Z+ for all r = 0, 1, . . . , m, in this special case,
we obtain:

L{Prn(t)ur(g(t, τr)); s}

= Crn (−1)`rn

{
d`rn

ds`rn [e
−sτr Ur(s)] + d`rn

ds`rn

[
qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τr

qr−p

sp+1

]
− d`rn

ds`rn

[
qr !

sqr+1 e−sτr
]}

.
(14)

the Laplace transform of the homogenous part is simply written as:

L{ fr(t); s} = Fr(s), r = 0, 1, . . . , m. (15)

By applying Equation (3) from Definition 4 with Lemma (1, Equations (8) and (11))
with defined g

(
x, τrj

)
= x− τrj for all r; j = 0, 1, . . . , m, the last part of Equation (11) will

become:

L
{ ∫ t

0
Krj (t− x)uj

(
g
(
x, τrj

))
dx; s

}
= Krj(s) e−sτrj

[
Uj(s) + Qj

(
s, τrj

)]
.

where:

Qj
(
s, τrj

)
=
∫ 0

−τrj

e−st ϕj(t)dt.

The symbolic Krj(s) is the Laplace transform of the difference kernel Krj (t− x) for
each r and j. If the historical function ϕj(t) is tqr , qr ∈ Z+ for all r = 0, 1, . . . , m, in this
special case, we obtain:

L
{ ∫ t

0 Krj (t− x)uj
(

g
(
x, τrj

))
dx; s

}
= Krj(s)

[
e−sτrj Uj(s) +

qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τrj

qr−p

sp+1 −
qr !

sqr+1 e−sτrj

]
.

(16)

After putting Equations (12)–(16) into Equation (11), they become:
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sαrn Ur(s)−
mαrn−1

∑
kr=0

sαrn−kr−1 ur,kr+
n−1
∑

i=1
Cri(−1)`ri d`ri

ds`ri

[
sαr(n−i) Ur(s)

]
−

n−1
∑

i=1
Cri(−1)`ri d`ri

ds`ri

mαr(n−i)
−1

∑
kr=0

sαr(n−i)−kr−1ur,kr

+Crn (−1)`rn
{

d`rn

ds`rn [e
−sτr (Ur(s) + Qr(s, τr))]

= Fr(s) +
m
∑

j=0
λrjKrj(s) e−sτrj

[
Uj(s) + Qj

(
s, τrj

)]
.

If tqr , qr ∈ Z+ for each r = 0, 1, . . . , m is a power function, which is also a historical
function, using part two of Lemma 1 above the equation means it becomes:

sαrn Ur(s)−
mαrn−1

∑
kr=0

sαrn−kr−1 ur,kr

+
n−1
∑

i=1
Cri(−1)`ri d`ri

ds`ri

[
sαr(n−i) Ur(s)

]
−

n−1
∑

i=1
Cri(−1)`ri d`ri

ds`ri

mαr(n−i)
−1

∑
kr=0

sαr(n−i)−kr−1ur,kr


+Crn (−1)`rn

{
d`rn

ds`rn [e
−sτr Ur(s)] + d`rn

ds`rn

[
qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τr

qr−p

sp+1

]
− d`rn

ds`rn

[
qr !

sqr+1 e−sτr
]}

= Fr(s) +
m
∑

j=0
λrj Krj(s)

[
e−sτrj Uj(s) +

qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τrj

qr−p

sp+1 −
qr !

sqr+1 e−sτrj

]
.

(17)

Consequently, the system of ordinary differential equation of components
{Ur(s) : r = 0, 1, . . . , m} is solved to find Ur(s). In the end, the inverse of the Laplace
transform on Ur(s) is used to obtain the solution ur(t) of LS-VIFDEs for multi-time RD (1).
After some simple manipulations, from Equation (17), we obtain:[

sαrn +
n−1
∑

i=1
Cri(−1)`ri d`ri

ds`ri
sαr(n−i) + Crn (−1)`rn d`rn

ds`rn e−sτr − λrr Krr(s)e−sτrr

]
Ur(s)

−
m
∑

j = 0
j 6= r

λrj Krj(s)e
−sτrj Uj(s) +

n−1
∑

i=1
Cri(−1)`ri sαr(n−i) d`ri

ds`ri
Ur(s)

+Crn (−1)`rn e−sτr d`rn

ds`rn Ur(s) = Fr(s). r = 0, 1, . . . , m

where

Fr(s) = Fr(s) +
mαrn−1

∑
kr=0

sαrn−kr−1 ur,kr +
n−1
∑

i=1
Cri(−1)`ri d`ri

ds`ri

mαr(n−i)
−1

∑
kr=0

sαr(n−i)−kr−1ur,kr


−Crn(−1)`rn

{
d`rn

ds`rn

[
qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τr

qr−p

sp+1

]
− d`rn

ds`rn

[
qr !

sqr+1 e−sτr
]}

+
m
∑

j=0
λrj Krj(s)

[
qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τrj

qr−p

sp+1 −
qr !

sqr+1 e−sτrj

]
.

As a special case, if the Pri(t) and Prn(t) are only constants, this means that `ri and
`rn are equal to zero. Thus, after some simple manipulations, from Equation (17), we obtain
the following system for all r = 0, 1, . . . , m:

Hr(s)Ur(s)−
m

∑
j = 0
j 6= r

λrj Krj(s)e
−sτrj Uj(s) = Fr(s). (18)
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where:

Hr(s) = sαrn +
n−1

∑
i=1

Cri(−1)`ri d`ri

ds`ri
sαr(n−i) + Crn (−1)`rn d`rn

ds`rn
e−sτr − λrr Krr(s)e−sτrr .

Finally, the system of ordinary differential equation of components
{Ur(s) : r = 0, 1, . . . , m} is solved to find Ur(s). In the end, the inverse of the Laplace
transform on Ur(s) is used to obtain the solution ur(t) of LS-VIFDEs for multi-time RD (1).

3.2. Second Type (Simple Degenerate Kernel)

Some types of linear-system VIFDEs of consistent multi-time can be solved using
the Laplace transform approach. We take the same conditions as Equation (12) with all
conditions by changing the kernel from difference kernel to a simple degenerate kernel.

Define the kernel: Krj (t, x) = crjt
k1

rj + drjx
k2

rj , where crj, drj ∈ R for all r, j = 0, 1, . . . , m and
k1

rj, k2
rj ∈ Z+; then:

L
{C

a Dαrn
t ur(t); s

}
+ L

{
n−1
∑

i=1
Pri(t) C

a D
αr(n−i)
t ur(t); s

}
+ L{Prn(t)ur(g(t, τr)); s}

= L{ fr(t); s}+
m
∑

j=0
λrjL

{ ∫ t
0

[
crjt

k1
rj + drjx

k2
rj
]
uj
(

g
(
x, τrj

))
dx; s

}
.

(19)

The left hands in all parts of Equation (19) are the same as Equation (11) in Section 3.1,
while for the integral part, it is different. We apply the important property of Equation (6)
part (iii) in Section 2.2 using Equations (8) and (9), respectively, and for higher derivative of
multiplication functions using Leibniz’s formula [7,14], with the property g

(
x, τrj

)
= x− τrj;

then, after some manipulating, we obtain:

L
{ ∫ t

0

[
crjt

k1
rj + drjx

k2
rj
]
uj
(

g
(
x, τrj

))
dx; s

}
= e−sτrj

s

{crj

 k1
rj

∑
b=0

b!

(
k1

rj
b

)
1
sb τrj

k1
rj−b

+ drjτrj
k2

rj

+

drj

k2
rj−1

∑
b=0

(−1)b+k2
rj τrj

b

(
k2

rj
b

)
d

k2
rj−b

ds
k2
rj−b


+

crj

k1
rj−1

∑
b=0

(−1)b+k1
rj b!

(
k1

rj
b

)
1
sb

k1
rj−b−1

∑
p=0

(−1)pτrj
p

(
k1

rj − b
p

)
d

k1
rj−b−p

ds
k1
rj−b−p

}Uj(s)

+ 1
s

crj

 k1
rj

∑
b=0

(−1)b+k1
rj b!

(
k1

rj
b

)
1
sb

d
k1
rj−b

ds
k1
rj−b

+ drj

[
(−1)k2

rj d
k2
rj

ds
k2
rj

]Hq
rj(s).

(20)

for all r, j = 0, 1, . . . , m, where:

Hq
rj(s) =


e−sτrj Qj

(
s, τrj

)
; if the historical function be any countinous differential function.

qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τrj

qr−p

sp+1 −
qr !

sqr+1 e−sτrj ; i f ϕr(t) = tqr .

and:

Qj
(
s, τrj

)
=
∫ 0

−τrj

e−st ϕj(t)dt.

After some simple manipulations, and using Equation (20), we obtain the general
solution for Equation (19):
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sαrn Ur(s)−
mαrn−1

∑
k=0

sαrn−k−1 ur,kr

+
n−1
∑

i=1
Cri(−1)`ri d`ri

ds`ri

[
sαr(n−i) Ur(s)

]
+

n−1
∑

i=1
Cri(−1)`ri d`ri

ds`ri

mαr(n−i)−1

∑
k=0

sαr(n−i)−k−1ur,kr


+Crn (−1)`rn

{
d`rn

ds`rn [e
−sτr Ur(s)] + d`rn

ds`rn

[
qr

∑
p=0

(−1)qr−p p!

(
qr

p

)
τr qr−p

sp+1

]
− d`rn

ds`rn

[
qr !

sqr+1 e−sτr
]}

= Fr(s)

+
m
∑

j=0
λrj

e
−sτrj

s





crj

 k1
rj

∑
b=0

b!

(
k1

rj

b

)
1
sb τrj

k1
rj−b

+ drjτrj
k2

rj

+

drj

k2
rj−1

∑
b=0

(−1)b+k2
rj τrj

b

(
k2

rj

b

)
d

k2
rj−b

ds
k2
rj−b


+

crj

k2
rj−1

∑
b=0

(−1)b+k1
rj b!

(
k1

rj

b

)
1
sb

k2
rj−b−1

∑
p=0

(−1)pτrj p

(
k1

rj − b

p

)
d

k1
rj−b−p

ds
k1
rj−b−p




Uj(s)

+ 1
s

crj

 k1
rj

∑
b=0

(−1)b+k1
rj b!

(
k1

rj

b

)
1
sb

d
k1
rj−b

ds
k1
rj−b

+ drj

[
(−1)k2

rj d
k2
rj

ds
k2
rj

]Hq
rj(s)


.

(21)

Equation (21) becomes:

Fr(s) = Fr(s) +
mαrn−1

∑
kr=0

sαrn−kr−1 ur,kr +
n−1
∑

i=1
Cri(−1)`ri d`ri

ds`ri

mαr(n−i)
−1

∑
kr=0

sαr(n−i)−kr−1ur,kr


−Crn(−1)`rn

{
d`rn

ds`rn

[
qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τr

qr−p

sp+1

]
− d`rn

ds`rn

[
qr !

sqr+1 e−sτr
]}

+
m
∑

j=0
λrj

1
s

{
crj

 k1
rj

∑
b=0

(−1)b+k1
rj b!

(
k1

rj
b

)
1
sb

d
k1
rj−b

ds
k1
rj−b

+ drj

[
(−1)k2

rj d
k2
rj

ds
k2
rj

]}
Hq

rj(s).

As a special case, if the Pri(t) and Prn(t) are the only constants, this means that `ri and
`rn are equal to zero. Thus, after some simple manipulations, system Equation (21) was
formed, and we obtained the following system, for all r = 0, 1, . . . , m:

Hr(s)Ur(s)−
m

∑
j = 0
j 6= r

λrj Krj(s)e
−sτrj Uj(s) = Fr(s). (22)

where:

Hr(s) = sαrn +
n−1

∑
i=1

Cri(−1)`ri d`ri

ds`ri
sαr(n−i) + Crn (−1)`rn d`rn

ds`rn
e−sτr − λrr Krr(s)e−sτrr .

and:

Krj(s) =

crj

 k1
rj

∑
b=0

b!

(
k1

rj
b

)
1
sb τrj

k1
rj−b

+ drjτrj
k2

rj

+

drj

k2
rj−1

∑
b=0

(−1)b+k2
rj τrj

b

(
k2

rj
b

)
d

k2
rj−b

ds
k2
rj−b


+

crj

k1
rj−1

∑
b=0

(−1)b+k1
rj b!

(
k1

rj
b

)
1
sb

k1
rj−b−1

∑
p=0

(−1)pτrj
p

(
k1

rj − b
p

)
d

k1
rj−b−p

ds
k1
rj−b−p

.

If the (HF) is any continuously differentiable function ϕr(t). Consequently, there
is an ordinary differential equation in Ur(s), Uj(s), which is solved to find Ur(s), Uj(s).
Finally, the inverse of the Laplace transform is used on Ur(s), Uj(s) to obtain the solu-
tion ur(t), uj(t) for the system of integro-fractional differential equations with variable
coefficients and multi-delays.
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4. Analytic Examples

Here are some examples of the system of integro-fractional differential equations with
variable coefficients and multi-delays, which were solved by Laplace transform method:

Example 1. Consider the linear SIFDEs of the Volterra type with the constant multi-time delay
and variable coefficients of retarded delay on [0, 1] :

C
0 D1.5

t u0(t)− t C
0 D0.5

t u0(t)− 3t u0(t− 1)
= f0(t) +

∫ t
0

[
(t− x)u0(x− 2)− et−xu1(x− 1)

]
dx.

(23)

C
0 D0.9

t u1(t)− 1
2

C
0 D0.5

t u1(t) + 1
2 u1(t− 0.2)

= f1(t) +
∫ t

0

[
(t− x)u0(x− 0.3) + (t− x)2u1(x− 0.5)

]
dx.

(24)

where:
f0(t) =

2
Γ(1.5)

t0.5 +
2

Γ(2.5)
t2.5 + et − 1

12
t4 − 7

3
t3 + 4t2 − 5t− 1.

f1(t) =
2

Γ(1.1)
t0.1 − 1

Γ(1.5)
t0.5 − 1

4
t4 + 0.1 t3 − 0.045 t2 + t + 0.3.

with historical function (HF) and initial condition u0(0) = 0; u′0(0) = 0; ϕ0(t) = t2;u1(0) =
1; u′1(0) = 2; ϕ1(t) = 2t + 1, so we have:K0,1(t, x) = (t− x) ;K0,2(t, x) = et−x,K1,1(t, x) =
(t− x);K1,2(t, x) = (t− x)2 and τ0 = 1,τ0,1 = 2, τ0,2 = 1, τ1 = 0.2, τ1,1 = 0.3 ; τ1,2 = 0.5 ,
which are constant different time delays, and P0,1(t) = t, P0,2(t) = −3t, P1,1(t) = −1

2 , P1,2(t) =
1
2 are variable coefficients.

The Laplace transform is taken to the above equation and Equations (17) and (18) are used
to obtain:

H0(s)U0(s) +
e−s

(s− 1)
U1(s) = F0(s). (25)

H1(s)U1(s)−
e−0.3s

s2 U0(s) = F1(s). (26)

where:
H0(s) = s1.5 − d

ds
s0.5 + 3

d
ds

e−s − 1
s2 e−2s.

H1(s) = s0.9 − 1
2

s0.5 +
1
2

e−0.2s − 2
s3 e−0.5s.

and:

F0(s) =
2

s1.5 +
5

s3.5 −
6 e−s

s3 − 18 e−s

s4 − 2 e−2s

s5 +
2e−s

s2(s− 1)
+

e−s

s(s− 1)
.

F1(s) =
2

s1.1 −
1

s1.5 +
1

s0.1 −
1

2s0.5 +
e−0.2s

s2 +
e−0.2s

2s
− 2e−0.3s

s5 − 4e−0.5s

s5 − 2e−0.5s

s4 .

After substituting Equation (25) into Equation (26) and solving this with U(∞) = 0,
which is ODE of the first order, the following is obtained: U0(s) = 2

s3 .
By substituting U0(s) into one of either Equation (25) or Equation (26), we obtain:

U1(s) = 2
s2 +

1
s .

By taking the inverse of the Laplace transform of U0(s) and U1(s), the exact solutions,
u0(t) and u1(t), are obtained from Equations (22) and (23): u0(t) = L−1

{
2
s3

}
= t2; u1(t) =

L−1
{

2
s2 +

1
s

}
= 2t + 1, which is the exact solution for our given system.

Example 2. Consider linear SIFDEs of a constant multi-time retarded delay with variable coeffi-
cients on [0, 1] :
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C
0 D1.3

t u0(t) + 2 u0(t− 0.4) = f0(t) +
∫ t

0
(t + x)u1(x− 1) dx. (27)

C
0 D0.8

t u1(t)−
1
2

C
0 D0.5

t u1(t) = f1(t) +
∫ t

0

(
2t + 2x2

)
u1(x− 0.2) dx. (28)

where : f0(t) =
1

Γ(1.7)
t0.7 − 5t

6
t3 + t2 − 0.8 t + 0.16.

f1(t) =
1

Γ(1.2)
t0.2 − 1

2 Γ(1.5)
t0.5 − 1

5
t5 − 0.7

3
t4 +

0.64
3

t3 + 0.04 t2.

With initial conditions and historical functions:
u0(0) = 0; u′0(0) = 0; ϕ0(t) = 1

2 t2 ; u1(0) = 1; u′1(0) = 2; ϕ1(t) = t + 1, since here we
have: K0,1(t, x) = (t + x) ; K1,1(t, x) =

(
2t + 2x2) ; τ0 = 0.4, τ0,1 = 1, τ1,1 = 0.2, which are

constant different time delays, and P0,2(t) = 2, P1,1(t) = −1
2 ; are variable coefficients.

Taking the Laplace transform for the above equation and using Equations (21) and
(22), we obtain:

H0(s)U0(s) +
m

∑
j = 0
j 6= r

λ01 K01(s)e−sτ01U1(s) = F0(s). (29)

H1(s)U1(s) +
m

∑
j = 0
j 6= r

λ10 K10(s)e−sτ10U0(s) = F1(s). (30)

where:

K01(s) =
1
s

{
2 +

1
s
− 2

d
ds

}
.

K10(s) =
1
s

{
0.48 +

2
s
+ 2

d2

ds2 − 2.8
d
ds

}
.

H0(s) = s1.3 + 2e−0.4s.

H1(s) = s0.8 − 1
2

s0.5.

and:

F0(s) =
1

s1.7 +
2e−0.4s

s3 − 5 e−s

s3 − 5 e−s

s4 − 2 e−s

s2 .

F1(s) =
1

s1.2 −
1

2s1.5 +
1

s0.2 −
1

2s0.5 −
10.4 e−0.2s

s5 − 0.48 e−0.2s

s4 − 24 e−0.2s

s6 .

After substituting Equation (29) into Equation (30) and with U(∞) = 0, which is
ODE of the first order, after solving it, the following is obtained:U0(s) = 1

s3 . Next, by
substituting U0(s) in either one of Equation (29) or Equation (30), we obtain: U1(s) = 2

s +
1
s .

By taking the inverse of the Laplace transform of U0(s) and U1(s), the exact solutions,
u0(t) and u1(t), are obtained from Equations (27) and (28): u0(t) = L−1

{
2
s3

}
= 1

2 t2;

u1(t) = L−1
{

2
s2 +

1
s

}
= t + 1, which are the exact solutions for our given system.

5. Discussion

In this work, after using the Laplace transform to solve a linear system of integro-
fractional differential equations of the Volterra type with variable coefficients and multi-
time retarded delay using some illustrating examples, we found the following:
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1. Generally, this method which was amended here, provided good results and valida-
tion.

2. Here: we successfully applied the Laplace transform method for two different types
of kernels, which were difference and simple degenerate kernels.
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