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Abstract: Product fault diagnosis has always been the focus of quality and reliability research.
However, a failure–rate curve of some products is a symmetrical function, the fault analysis result
is not true because the failure period of the products cannot be judged accurately. In order to solve
the problem of fault diagnosis, this paper proposes a new Takagi-Sugeno (T-S) dynamic fault tree
analysis method based on a Bayesian network accompanying the Wiener process. Firstly, the top
event, middle event, and bottom event of the product failure mode are determined, and the T-S
dynamic fault tree is constructed. Secondly, in order to form the Bayesian network diagram of the T-S
dynamic fault tree, the events in the fault tree are transformed into nodes, and the T-S dynamic gate
is also transformed into directed edges. Then, the Wiener process is used to model the performance
degradation process of the stationary independent increment of the symmetric function distribution,
and the maximum likelihood estimation method is applied to estimate the unknown parameters
of the degradation model. Next, the product residual life prediction model is established based on
the concept of first arrival time, and a symmetric function of failure–rate curve is obtained by using
the product failure probability density function. According to the fault density function derived
from the Wiener process, the reverse reasoning algorithm of the Bayesian network is established.
Combined with the prior probability of the bottom event, the posterior probability of the root node is
calculated and sorted as well. Finally, taking the insufficient braking force of electromagnetic brakes
as an example, the practicability and objectivity of the new method are proved.

Keywords: Bayesian network; Wiener process; symmetric function; T-S dynamic fault tree; electromagnetic
brakes

MSC: 62P30

1. Introduction

The importance of diagnosis accuracy for equipment faults is a well-known fact. The
need for rapid delivery and ever-changing requirements increases the importance of fault
diagnosis and analysis processes during product design and manufacture. Moreover, the
combination of the traditional data analysis method and the mathematics statistics method
improves the veracity and reliability of fault diagnosis [1,2]. According to the viewpoints
of the probability and mathematical statistics, the influence of subjective factors on the final
diagnosis result could be eliminated. In addition, the methods of intelligence fault diagnosis
have developed a new way to ensure the reliability of complex industrial systems [3,4]. On
the other hand, the internal structure of the electromagnetic brakes is relatively complex,
the coordination accuracy between mechanical structures is relatively high, and the overall
failure–curve of the electromagnetic brakes is normally distributed. In addition, the failure
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period of some components is not clear once the electromagnetic brakes fail. Therefore, an
excellent method of product fault diagnosis, and one worth advocating, can not only deal
with complex product structures, but also accurately judge the failure period of parts when
the failure–curve is symmetrically distributed. In this paper, based on comprehensive fault
diagnosis, the results are synthesized to realize the analysis of the dynamic fault tree, and
the reliability of electromagnetic brakes is well evaluated based on the Bayesian network
accompanying the Wiener process.

The fault diagnosis of products has always been a key point of research. Scholars
also make their own efforts to standardizethe judgment process as much as possible by
combining more scientific methods. Ziyun Wang et al. [5] proposed a hierarchical fault
diagnosis algorithm based on in-situ filtering for complex systems with multiple fault types.
Its advantage is that, for faults that are not in the fault database, they will actively cluster the
missing faults and then carry out system analysis. Lei Kou et al. [6] proposed an open circuit
fault diagnosis method of insulated gate bipolar transistors (IGBTs) based on knowledge
driven and data driven technology, and used Concorde transform (knowledge driven)
and random forests (RFs) technology (data driven) to improve the robustness of fault
diagnosis classifier. Xiaoyue Yang et al. [7] proposed an optimal fractional transient fault
(TF) diagnosis method to overcome the noise problem in weak fault feature extraction. This
method can suppress the background noise, amplify the fault part of the signal, and locate
the fault component by using kurtosis and fault duration. Liangjun Feng et al. [8] proposed
a data-driven fault analysis method when there is no target fault sample for model training.
This method learns to use the human-defined fault description instead of the collected
fault samples to determine the fault category and can diagnose the target fault according
to the defined fault description without any additional data-based training. In addition,
some scholars have also used constructive methods, such as the combination of fault tree
analysis and Monte Carlo simulation [9], and the combination of fault tree analysis and the
Bayesian network [10]. The above methods can greatly ensure the objectivity of judgment.

Fault tree analysis (FTA) is a deductive failure analysis method from top to bottom. It
uses Boolean logic to combine low-order events and analyze the unwanted states in the
system. It is characterized by intuitive thinking and strong logic. It can perform qualitative
analysis or quantitative analysis. At present, as a classic method, FTA is applied in many
fields. Bekir Sahin et al. [11] extended the fuzzy fault tree analysis by embedding the fault
tree structure based on ontology. The ontology-based method allows advanced analysis
based on rich domain knowledge. Traditional and rule-based methods are used to calculate
the fault probability and analyze the fault tree. Xue Lei et al. [12] applied FTA to supply
chain risk analysis, not only in natural sciences, but also in humanities. However, with
the development of history, itslimitations appear. The relationship between events based
on the fuzzy tree cannot be expressed by the traditional fuzzy tree, so the relationship
between events based on the fuzzy tree was proposed by Hu Gen in 2008. Since then,
the T-S fault tree has been pursued and improved by many scholars, making it gradually
perfect in the field of fault judgment. Zhen Li et al. [13] proposed an automatic system
modeling and fault analysis method based on AltaRica, and the automatic fault analysis
is correct and efficient in the detailed example. Zhuqing Bi et al. [14] proposed a new
method combining the T-S fuzzy gate fault tree with the Bayesian network and verified the
feasibility of this method through the fault diagnosis model of pumping unit rotor. Yingkui
Gu et al. [15] have applied a probabilistic model test and discrete-time Markov chain to fault
tree analysis, and the logic gate in the fault tree is transformed into a discrete-time Markov
chain. The Markov decision process is used to simulate the uncertain behavior of the
system in the unknown environment. Chen Wu et al. [16] proposed an evaluation method
for the possibility of tunnel collapse in drilling and blasting construction based on the T-S
fuzzy fault tree and used the T-S fuzzy gate instead of a traditional logic gate to describe the
relationship between events. In addition, some scholars have developed a dynamic fault
tree for fault judgment based on the idea of the control rules of the T-S fault tree. These
methods can be applied to some products with multiple states and the application area is
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more targeted [17,18]. No matter what kind of fault tree analysis methods, they are judged
based on the failure density function of parts. Therefore, it is necessary to fit or deduce the
failure density function before fault tree analysis.

On the one hand, the Bayesian network is an extension of the Bayes method, also
known as a belief network. It is one of the most effective theoretical models in the field of
uncertain knowledge expression and reasoning. Important information regarding various
parts can be obtained through the reverse reasoning algorithm of the Bayesian network.
Hongqing Liao et al. [19] have applied the Bayesian network reasoning technology com-
bined with the pan function theory to establish grey Bayesian network reasoning and
predict the development trend of the system through flight time. Zhengxing Xiao et al. [20]
used the Bayesian network theory to establish an independent intelligent decision-making
model of traffic lights based on the Dynamic Bayesian network. It can be seen from the
above literature that the Bayesian network is widely used in the field of reasoning and can
also objectively reflect the situation of each node. The electromagnet plays an important
part in automatic control. In the long-term operation process, due to the influence of
the complex mechanical structure and other uncertain factors of the electromagnet, its
performance will inevitably deteriorate. Therefore, when a fault occurs, the electromagnet
will cause huge casualties and property losses. At present, due to the randomness of the
residual life and degradation process of products, the reliability evaluation model based
on performance degradation data is mostly used for this kind of product [21,22]. These
common performance degradation models include the gamma process model [23], the
inverse Gaussian process model [24], and the Wiener process model [25].

On the other hand, a large number of the most used degradation models are found in
statistical mechanics, such as the Wiener process, gamma process, inverse Gaussian process,
compound Poisson process, and so on [26,27]. Compared with other stochastic processes,
the Wiener process has been widely used in the field of reliability degradation modeling
because of its good analytical properties. The Wiener process has the advantage of being able
to describe many types of product degradation processes. Pingping Wang et al. [28] proposed
a variable-point Wiener process with measurement error to fit the two-phase degradation path
of organic light-emitting diodes (OLED) and derived the failure time distribution. Xiaolin
Wang et al. [29] proposed a degenerate model that covers a variety of models based on the
Wiener process as their limit cases, and then proposed a two-stage method for estimating the
unknown parameters. Xiaosheng Si et al. [30] proposed a degenerate model and recursive
filtering algorithm based on the Wiener process, used recursive filters to update the drift
coefficients in the Wiener process, and used the expectation-maximization (EM) algorithm
to update all unknown parameters. Shengjin Tang et al. [31] proposed a prediction method
for lithium-ion batteries based on a Wiener process with measurement error and presented a
truncated normal distribution (TND) modeling approach to estimate the degradation state.
Baoping Cai et al. [32] used the Wiener process to describe the degradation process of the
system, and combined n sets of performance degradation monitoring data and historical
prediction data to establish the dynamic Bayesian networks’ (DBNs) model of system per-
formance degradation. Han Wang et al. [33] applied the improved Wiener model to thrust
ball bearings, where the drift and diffusion parameters of the model were adaptive with the
update of monitoring data. Ancha Xu et al. [34] proposed a new bivariate degradation model
based on the Wiener process, which can describe the common factor affecting the degradation
of the two performance characteristics and unit-to-unit variation, simultaneously. Zeyi Huang
et al. [35] proposed an adaptive oblique Wiener model that was more flexible than traditional
stochastic process models to model the degradation drift of industrial equipment.

In order to carry out failure diagnosis on electromagnetic brakes, a new dynamic fault
tree analysis method based on the Bayesian network and accompanying the Wiener process
is presented. The rest of this paper is organized as follows: The methodology and the
objectives of this study are proposed in Section 2. Firstly, the fault diagnosis process based
on the Bayesian network and the T-S dynamic fault tree analysis is presented. Secondly,
the inference model based on the Bayesian network is discussed and the algorithm based
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on the model is also approved. Then, a derivation process of fault probability density
function of electromagnetic brakes based on the Wiener process is introduced. Next, the
T-S dynamic fault tree analysis method is used to solve the actual existence problem of
electromagnetic brakes. Furthermore, the input and output analysis of algorithm of the T-S
dynamic gate is presented. Section 3 takes the insufficient braking force of electromagnetic
brakes as an example and the approved method is used to judge the fault. Finally, some
useful conclusions are summarized in Section 4.

2. Methodology

The main contributions of this paper are proposing the new dynamic fault tree analysis
method of electromagnetic brakes based on the Bayesian network and accompanying the
Wiener process. Firstly, the dynamic fault tree method can describe the dynamic products’
performance. Further, the processes of modeling are easy, and the structure of model is
clear and available. Based on the dynamic analysis, the results of the products’ quality
and reliability are synthesized to realize the analysis of a modular fault tree. Moreover,
compared with the traditional fault tree, the T-S dynamic fault tree can describe the fault
modes with multiple time sequences and multiple logical relationships, which is more
in line with the needs of modern mechanical structure fault diagnosis. However, it is
more suitable for structures with fewer parts than traditional products. If there are many
products parts, the T-S dynamic fault tree analysis method contains a large amount of
calculation and is not suitable for ordinary engineers to operate.

On the other hand, a class of optimal stochastic control problems relating to the Wiener
process is presented, and the stochastic process models are established in this study. The
characteristic of the Wiener process is that the trend after any point on the curve is only
related to the point value, but independent of the previous value. Therefore, the Wiener
process has time translation in variance, which is very helpful to determine the failure
period of a normal distribution failure–curve. Based on the advantages of the above two
aspects requests, this paper combines the advantage of the two methods of the T-S dynamic
fault tree analysis and the Wiener process. Firstly, the T-S dynamic fault tree analysis
method is used to decompose a large subsystem or mechanism until it is decomposed into
a small part. Secondly, the interaction relationship of parts of the whole product system,
the top event, middle event, bottom event, and the T-S dynamic door of failure mode is
determined in turn. Then, the factors mentioned above are connected to form a T-S dynamic
fault diagram. Next, the bottom event, intermediate event, top event, and T-S dynamic gate
are separately transformed into root node, root node, leaf node, and directed edge. After
the above steps are completed, the Bayesian network diagram of T-S dynamic fault tree can
be drawn. The detailed process is shown in Figure 1.

According to the figure above, the performance degradation data of electromagnets
are obtained experimentally, and the reliability of the performance degradation process
with smooth independent increments satisfying the symmetric function distribution is
modeled using the Wiener process. The maximum likelihood estimation method is used to
estimate the unknown parameters of the degradation model, the diagnostic model of the
remaining product life is determined, and the product failure probability density function
with the failure–rate curve as a symmetric function can be obtained. Thus, the posterior
probability of the root node can be calculated and ranked according to the inverse inference
algorithm of Bayesian networks combined with the failure probability density function.
After completing the fault determination, the faulty system is repaired in a targeted manner.
The derivation process of failure probability density function for each basic event is shown
in Figure 2.



Symmetry 2022, 14, 968 5 of 20Symmetry 2022, 14, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 1. Fault diagnosis based on the Bayesian network and the T-S dynamic fault tree analysis. 

According to the figure above, the performance degradation data of electromagnets 
are obtained experimentally, and the reliability of the performance degradation process 
with smooth independent increments satisfying the symmetric function distribution is 
modeled using the Wiener process. The maximum likelihood estimation method is used 
to estimate the unknown parameters of the degradation model, the diagnostic model of 
the remaining product life is determined, and the product failure probability density func-
tion with the failure–rate curve as a symmetric function can be obtained. Thus, the poste-
rior probability of the root node can be calculated and ranked according to the inverse 
inference algorithm of Bayesian networks combined with the failure probability density 
function. After completing the fault determination, the faulty system is repaired in a tar-
geted manner. The derivation process of failure probability density function for each basic 
event is shown in Figure 2. 

Figure 1. Fault diagnosis based on the Bayesian network and the T-S dynamic fault tree analysis.

2.1. Bayesian Network

A Bayesian network is one of the most efficient methods in uncertainty environment.
Further, Bayesian network is a model combining probability statistics and graph theory [36,37].
The nodes of the Bayesian network represent the random variables related to the problem,
and the directed arc between nodes represents the dependence between variables. Each
node is attached with the probability distribution table of its random variables. Moreover,
the root node is attached with its edge distribution, and the non-root node is attached with
the conditional probability distribution table. Therefore, it can be well used the reasoning
principle of the Bayesian network and the characteristics of displaying dependency of nodes
to reflect the relationship between influencing factors and failure modes. In addition, the
quantitative relationship between parent nodes and their offspring nodes can be expressed by
conditional probability, and the importance of each influence factor can also be calculated.



Symmetry 2022, 14, 968 6 of 20
Symmetry 2022, 14, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 2. Derivation of fault probability density function based on the Wiener process. 

2.1. Bayesian Network 
A Bayesian network is one of the most efficient methods in uncertainty environment. 

Further, Bayesian network is a model combining probability statistics and graph theory 
[36,37]. The nodes of the Bayesian network represent the random variables related to the 
problem, and the directed arc between nodes represents the dependence between varia-
bles. Each node is attached with the probability distribution table of its random variables. 
Moreover, the root node is attached with its edge distribution, and the non-root node is 
attached with the conditional probability distribution table. Therefore, it can be well used 
the reasoning principle of the Bayesian network and the characteristics of displaying de-
pendency of nodes to reflect the relationship between influencing factors and failure 
modes. In addition, the quantitative relationship between parent nodes and their off-
spring nodes can be expressed by conditional probability, and the importance of each in-
fluence factor can also be calculated. 

Furthermore, the establishment of the Bayesian network topology is established 
based on the selection of node random variables and the logical relationship of nodes, as 
shown in Figure 3. Considering that 𝑛 influencing factors are represented by root node 
of 𝑋௡, intermediate events or top events are represented by 𝑌௡, and the connecting line 
represents the input and output algorithm of the Bayesian network [38]. Through the 
Bayesian network, we can not only calculate the failure rate of top events, but also reverse 

Figure 2. Derivation of fault probability density function based on the Wiener process.

Furthermore, the establishment of the Bayesian network topology is established based
on the selection of node random variables and the logical relationship of nodes, as shown
in Figure 3. Considering that n influencing factors are represented by root node of Xn,
intermediate events or top events are represented by Yn, and the connecting line represents
the input and output algorithm of the Bayesian network [38]. Through the Bayesian
network, we can not only calculate the failure rate of top events, but also reverse the
importance of each basic event through top event failure. This article introduces a way
to take advantage of the Bayesian network approach which better than other simulation
optimization methods.
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2.2. Failure Probability Density Function with Wiener Process

A class of optimal stochastic analysis problems relating to a Wiener process is presented
in this paper. Further, the primary probability function, the failure probability, failure
probability density, reliability, and failure rate have been first discussed. During the
operation of electromagnet, the electromagnetic force shows a downward trend as a whole.
Due to the influence of uncertain factors such as coil aging, uneven wear of movable iron
core, ambient temperature change, and electromagnetic force shows a characteristic of
non-monotonic decline. As well, these influence factors are in line with the characteristics
of non-monotonic performance degradation as described by the Wiener process. Moreover,
a finite element model of the change with clearance of an energized coil or filament barrier
was established to analyze the non-monotonous attenuation of electromagnetic force [39].
Therefore, the Wiener process is also used to describe the performance degradation process
of the electromagnet’s electromagnetic force.

In addition, the Wiener process is a widely used stochastic process model which can be
used to model the performance degradation process of a stationary independent Gaussian
increment. If a continuous random time process obeys the Wiener process, then X(t) will
satisfy the following conditions:

(1) I f X(0) = 0, X(0) is continuous at t = 0;
(2) For any time between t and t + ∆t, the performance degradation increment

∆X(t) = X(t + ∆t)− X(t) obeys the normal distribution;
(3) For any different time, interval of [t1, t2], [t3, t4], t1 < t2 ≤ t3 < t4. Increment

X(t4)− X(t3) and X(t2)− X(t1) are independent of each other.

According to the above properties, the performance degradation model of the electro-
magnet based on the Wiener process is established. Assuming that X(t) is the performance
degradation amount of the permanent magnet brake at time t, the degradation process of
electromagnet’s electromagnetic force can be expressed as [40]:

X(t) = x0 + µt + σBB(t) (1)

where, x0 is the initial value of electromagnetic force degradation; µ is the drift parameter,
which represents the degradation rate of the electromagnetic force; σB is the diffusion
parameter, which indicates the influence of the internal structure of the electromagnet and
external factors on the performance during the degradation process; B(t) is the standard
Brownian motion, and B(t) ∼ N(0, t), which represents the randomness of the degradation
process of the electromagnet.

If the degradation process of the electromagnetic force’s performance of the electro-
magnet meets Equation (1) and the failure threshold of the electromagnetic force of the
electromagnet is V, the service life T of the electromagnet is the time when the degradation
amount of the electromagnetic force’s performance reaches failure for the first time [41]:

T = in f {t | Y(t) ≥ V, t > 0} (2)

According to the electromagnet lifetime defined in Equation (2), and with the inverse
Gaussian distribution of the first reach time T of the unitary Wiener process, combining
Equations (1) and (2), the residual life probability density function of the electromagnet at
moment τ can be derived as [42]:

fT1(t) =
V − xτ√
2πσ2t3

exp

[
− (V − xr − µt)2

2σ2t

]
(3)

where, xτ by τ degradation amount of electromagnet’s electromagnetic force performance
at time; V is the electromagnetic force failure threshold of the electromagnet.

Assuming that the initial value of the electromagnet’s electromagnetic force X(t0) = 0, the
quantity sequence is carried out to time (t0, t1, t2, · · · , tn) from (X(t0), X(t1), X(t2), · · · , X(tn))
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based on the electromagnet’s electromagnetic force degradation experiment, and
∆Xi = X(ti) − X(ti−1) is the electromagnetic force at time ti−1 → ti . The degradation
amount of the electromagnetic force between I can be known from the nature of the
Wiener process:

∆Xi ∼ N
(

µ∆ti, σ2∆ti

)
(4)

where, ∆ti = ti − ti−1, i = 1, 2, · · · , n.
Next, the parameters of the degradation model are estimated from the electromag-

netic force data samples of electromagnets µ and σ2. The likelihood function of torque
degradation can be obtained as follows:

L(µ, σ2) =
n

∏
i=1

1√
2πσ2∆ti

exp

[
− (∆x− µ∆ti)

2

2σ2∆ti

]
(5)

Then, the Pair likelihood function L
(
µ, σ2) takes Ln from both sides to obtain:

ln L =
n

∑
i=1

[
− ln ∆ti

2
− lnσ− (∆Xi − µ∆ti)

2

2σ2∆ti

]
(6)

Moreover, µ̂ partial derivation is obtained:

µ̂ =
1
n

n

∑
i=1

∆Xi
∆ti

(7)

In addition, σ̂ partial derivation is also obtained:

σ̂ =

[
1
n

n

∑
i=1

(∆Xi − µ̂∆ti)
2

∆ti

] 1
2

(8)

2.3. T-S Dynamic Fault Tree Analysis Method

The T-S fault tree analysis is one of the most effective means for the safety and reliability
analysis of a dynamic system. Compared with a traditional fault tree analysis, the T-S fault
tree analysis can describe the dynamic failure relationship of the system and describe the
actual failure form through a logic diagram, which makes it clearly visualized, specific,
convenient and simple. A T-S fault tree contains basic events, intermediate events, top
events, and T-S dynamic gates. The events describe the components of the system and the
T-S dynamic gates of the logical relationships among these components. For example, in
Figure 4, Y is the top event, Y1-Y3 is the intermediate event, X1-X4 is the basic event, and
G1-G4 is the T-S dynamic gate [43].

Suppose that the working time T of the system is divided into N parts, and the time of each
interval is l = T

m , which is, respectively, denoted as [(0, l), (l, 2l), · · · , ((N − 1)l, Nl), (Nl, · · ·)].
Basic event Xi in time period ji fault state is S(ai)

i , where i = 1, 2, · · · n; ji = 1, 2, · · · ,

N, N + 1; ai = 1, 2, · · · , ki; and 0 ≤ S(1)
i < S(2)

i < · · · < S(ki)
i ≤ 1; the top event Yi in

time period ji fault state is S(bi)
i , where i = 1, 2, · · · n; ji = 1, 2, · · · , N, N + 1; bi = 1, 2, · · · , ki;

and 0 ≤ S(1)
i < S(2)

i < · · · < S
(ky)
i ≤ 1. Moreover, the T-S dynamic gate has two kinds of logic

rules, one is defined according to the time of the event, and the other is defined according to the
sequence of the event. Taking two operating states and three time periods of two basic events as
an example, the T-S dynamic gate is shown in Table 1 based on the time of event occurrence.
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At the same time, the fault status of superior event Y in time periods 1, 2 and 3 is
PY1

1 , PY2

1 , PY3

1 . Similarly, these rules are shown in Table 2 if the sequence of events is used.

Table 2. Logical rules of event occurrence.

Rule X1 X2
Y

1 2 3

1 3 1 PY1
1 PY1

1 PY1
1

2 3 1 PY1
2 PY1

2 PY1
2

..
.

..
.

..
.

..
.

..
.

..
.

i i i PY1
i PY1

i PY1
i

2.4. Algorithm of T-S Dynamic Gate

1. Input analysis algorithm of T-S dynamic gate

Since there are two kinds of logic rules for the T-S dynamic gate, the input algorithms
under the two kinds of logic rules are given. Firstly, assume that the failure density function
of Xi is fi(t). Then, the probability of fault state of Xi in time period ji in input rule l is [44]:

P(l)
(

xji
i

)
=
∫ ji l

(ji−1)l
fi(t)dt (9)

where ji is time period, and i = 1, 2, · · · , n.
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Then, the occurrence probability of rule l in time state is as follows:

P′(l) =
N+1

∏
ji=1

n

∏
i=1

P(l)
(

xji
i

)
(10)

where P(l)
(

xji
i

)
is the same as Equation (9).

Next, the occurrence probability of rule l in event state is as follows:

P′(l) =
n

∏
i=1

P(l)
(

xji
i

)
(11)

The same meaning fits in Equations (10) and (11).

2. Output analysis algorithm of T-S dynamic gate

The top event occurs in time period ji of fault state y(ji)
i is S(bi)

i of probability, which
can be shown in the following [45]:

P
(

y(jy) = S1
y

)
=

r
∑

l=1
P′(l)P(l)

(
y(jy) = S1

y

)
P
(

y(jy) = S2
y

)
=

r
∑

l=1
P′(l)P(l)

(
y(jy) = S2

y

)
...

P
(

y(jy) = S
ky
y

)
=

r
∑

l=1
P′(l)P(l)

(
y(jy) = S

ky
y

)
(12)

where P(l)(y
(jy) = S

ky
y . is the time period ji of y. with rule l, the fault state y(ji)

i . of rule l. is

the probability of S(bi)
i . P

(
y(jy) = S

ky
y

)
. is the time period ji. of y, and the fault state y(ji)

i . is

the probability of S
(by)
i .

3. Reverse inference algorithm of Bayesian networks

A Bayesian network has the property of bidirectional inference, namely forward
inference and reverse inference. Forward inference can calculate the system reliability that
may be presented according to the specified design and assembly, and reverse inference
refers to the importance of factors causing the failure, which can be calculated backwards
in the failure system.

In this paper, we suppose that the posterior probability P(yjN
N = 1/xjy = 1) of the root

node yi in the multi-time and two-state state is [46]:

P(yjN
N = 1|xjy = 1) =

P(yjN
N = 1, xjy = 1)

P(xjy = 1)
. (13)

where P
(

xjy = 1
)

represents the failure probability of x in the jx period, x is the base event
of root node yi.

3. A Case Study

Electromagnetic brakes are a kind of electromagnetic force generated by the energized
coil to drive the upper and lower brake pads, in order to clamp the brake disc installed
on the moving device to realize braking. Their biggest advantage over other mechanical
structures is that they can control the execution and strength of the action without manual
operation. In this study, a kind of disc electromagnetic brake developed by a company in
China’s Zhejiang province is illustrated as an example. Electromagnetic brakes are mainly
used for the arm of the robot. So, the auxiliary computer control system breaks the robot.
The structure diagram of electromagnetic brakes is shown in Figure 5, and the physical
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drawing is shown in Figure 6. According to the analysis of the working principle and
the structure of the electromagnetic brake, the reason for the long braking time may be
the improper use of brake pad materials, excessive roughness of the brake pad surface,
excessive roughness of brake discs, and braking time. Thus, the new approved method is
used to accurately find out the fundamental factors which affecting the braking time and
corresponding parts.
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Firstly, the engineers conducted an electromagnetic force attenuation test on the
electromagnetic brakes. The schematic diagram of the test platform is shown in Figure 7,
and the physical diagram is shown in Figure 8.
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In Figures 7 and 8, we placed the electromagnetic brake on the test platform and ran it
with the power on. Then, the torque sensor uploaded the collected data to the computer.
Next, we calculated the electromagnetic force through the formula of W = F ∗ L, W is the
torque, the unit is N·mm, F is the electromagnetic force, the unit is N, L is the radius of the
brake pad, and the unit is mm. The calculated electromagnetic force is shown in Table 3.
The instrument models used in the test platform were the JN388 series torque sensor, ECMA
series servo motor, PLC control board, PLC data acquisition card, electromagnetic brake
and brake working counterweight produced by the company. In Table 3, BT represents the
breaking times and EF represents the electromagnetic force.

Table 3. Degradation data of the electromagnet’s electromagnetic force.

Cycle BT (s) EF (N)

1 50,000 0.00324
2 100,000 0.04335
3 150,000 0.03346
4 200,000 0.01123
5 250,000 0.05924
6 300,000 0.03748
7 350,000 0.05526
8 400,000 0.02636

According to the nature of the Wiener process, the degradation amount of electro-
magnetic force of the electromagnet must meet the normal distribution. Figure 9 shows
the degradation amount of the electromagnet during every other cycle in the degradation
process of electromagnetic force.
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Figure 9. Degradation of electromagnetic force of electromagnetic brakes.

Before modeling the degradation of electromagnetic force performance of the electro-
magnet, it was necessary to check whether it met normal distribution. The attenuation
data of the electromagnetic force was fed into the SPSS software from Table 3, and the
descriptive statistical analysis function of the software was used to obtain the P-P test
results of electromagnetic force attenuation, as shown in Figure 10. Through the P-P test, it
can be seen that the relative incremental cumulative probability of electromagnetic force is
basically arranged in a straight line, in line with the characteristics of normal distribution.
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In the next step, we modeled the electromagnetic force performance degradation of
the electromagnetic brakes. The electromagnetic force degradation was also analyzed by
the K-S analysis method to judge whether it met the normal distribution. Thus, the data
test results are shown in Table 4. From the test results, the data distribution conforms to the
normal distribution. Therefore, the Wiener process can be used to describe the degradation
process of the electromagnetic force of electromagnetic brakes.
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Table 4. K-S test for degradation force performance of electromagnetic brakes.

Number of Cases 8

normal parameter a,b mean value 0.03332
standard deviation 0.01967

Extremist difference
absolute 0.12211
positive 0.12223
negative −0.11714

test statistics 0.12215
Asymptotic Significance (Double Tail) 0.20000 c,d

a. The test distribution is normal.
b. Calculate according to data.
c. Reilly’s significant correction.
d. This is the lower limit of true significance.

According to the performance degradation data, the performance degradation model
of the electromagnet’s electromagnetic force is established. The drift coefficient can be
obtained from Equation (7) combined with the data in Table 3, µ̂ Estimated value is shown
in the following equation:

µ̂ =
1
n

n

∑
i=1

∆Xi
∆ti

= 0.03370

Then, the diffusion coefficient can be obtained from Equation (8), and σ̂ Estimated
value can be obtained using the following equation:

σ̂ =

[
1
n

n

∑
i=1

(∆Xi − µ̂∆ti)
2

∆ti

] 1
2

= 0.01841

According to the technical specifications of the electromagnet, the failure threshold
of the electromagnetic force of the electromagnet is 7N. Therefore, the probability density
function of the remaining life at the initial time of the electromagnet can be obtained in
combination with Equation (3):

fT1(t) =
V−xτ√
2πσ2t3 exp

[
− (V−xr−µt)2

2σ2t

]
= 8.68−7−0

2∗π∗(0.01841)2∗
√

t3 exp
[
− (8.68−7−0.03370t)2

2∗(0.01841)2t

]
= 1.68

0.00211
√

t3 exp
[
− (1.68−0.03370t)2

0.00067t

]
According to the diagnostic steps of the approved method, the T-S dynamic fault tree

can be constructed step by step. The top event of this example can be determined with
braking time, and the boundary of analysis for the designed product is divided. Thus, the
fault information of the system can be collected to consult historical data and find each
intermediate event and basic event, which is shown in Table 5.

Table 5. Fault tree model event table for long braking time.

No. Event

Y Long braking time (low braking force)
Y1 Attribute aspects of brake pads
Y2 Problems with brake discs on the kinematic mechanism
X1 Improper use of brake pad materials
X2 Excessive roughness of brake pad surface
X3 Excessive roughness of brake discs
X4 Braking time

We can acquire the following information from Table 5.
Top Event Y: Long braking time means low braking force.
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Intermediate Event Y1: The properties of the brake pad itself have a certain influence
on the brake durability, temperature resistance, heat fading and the friction and wear
requirements of the brake.

Intermediate event Y2: The brake disc is a part that completes a braking action with
upper and lower brake pads. Its effect is to reduce heat dissipation and increase vibration
during the braking process.

Basic Event X1: The improper material use of the brake pads affects the maximum speed
they are subjected to, as well as increasing the residual magnetic force of the electromagnetic
force, which results in the mechanism remaining braked when the power is cut off.

Basic Event X2: Excessive roughness of the brake pad surface increases friction loss
with the brake disc, resulting in many hidden costs.

Basic event X3; The surface treatment of the brake disc is uneven, which firstly
increases friction loss with brake pads, and secondly affects the performance of the
temperature-resistant and heat-dissipating circulation of the whole brake.

Basic Event X4: An overly long braking time of repeated braking tests may lead to
results in a thinning of the discs and a downward shift in the axiality of the discs.

Finally, the T-S dynamic gate is used to connect these event symbols, and the fault
diagram is confirmed upon re-examination from Figure 2.

In the next stage, the bottom event is transformed into the root node, the intermediate
event is transformed into the intermediate node, the top event is transformed into the leaf
node, and the T-S dynamic gate is transformed into the directed edge. In addition, the prior
probability of collecting the bottom event is shown in Table 6.

Table 6. Event failure rate.

No. Event Failure Rate

X1 Improper use of brake pad materials 4 × 10−6

X2 Excessive roughness of brake pad surface 8 × 10−6

X3 Excessive roughness of brake discs 12 × 10−6

X4 Braking time 14 × 10−6

Then, the Bayesian network diagram of the T-S dynamic fault tree is drawn as shown
in Figure 11. According to the achievement in research of the above analysis, the posterior
probability of the root node can be calculated.
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In this case study, we assumed that the total braking time was T = 1000(min) which
was divided into four sections. There were also five value ranges which are represented by
1–5 numbers in the following:

{(0, 250)(250, 500)(500, 750)(750, 1000)(1000, · · ·)}
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According to Equation (9), the failure probability density function can be calculated in
the following:

fT1(λi) =
1.68

0.00211
√

λi
3

exp

[
− (1.68− 0.03370λi)

2

0.00067t

]
Next, the failure probability value of the basic event in each value range can be obtained

in Table 7.

Table 7. Failure probability of each basic event in different event segments.

Event
Times

1 2 3 4 5

X1 0.00099 0.00099 0.00098 0.00099 0.99601
X2 0.00198 0.00198 0.00198 0.00198 0.99203
X3 0.00299 0.00300 0.00299 0.00297 0.98807
X4 0.00350 0.00349 0.00347 0.00346 0.98609

In the next step, we specified the influence law of the basic event and the top event
according to the event occurrence rule. The relationship between the basic event X1 and X2
is that once the basic event X1 fails and X2 also fails, the top event fails, and the basic event
X1 should directly affect the occurrence of the top event. By the above calculation rules, the
conditional probability table between X1, X2 and Y1 is shown in Table 8.

Table 8. Conditional probability table of Y1.

No. X1 X2
P (Y1

jn = 1|X1, X2)

1 2 3 4 5

1 1 1 1 0 0 0 0
2 1 2 0 1 0 0 0
3 1 3 0 0 1 0 0
4 1 4 0 0 0 1 0
5 1 5 0 0 0 0 1
6 2 1 1 0 0 0 0

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

24 5 4 0 0 0 1 0
25 5 5 0 0 0 0 1

So similarly, the conditional probability table of Y2(Y) is shown in Table 9.

Table 9. Conditional probability table of Y2(Y).

No. X3(Y1) X4(Y2)
P (Y2

jn = 1|X3, X4) P (Y in = 1|Y1, Y2)

1 2 3 4 5

1 1 1 1 0 0 0 0
2 1 2 1 0 0 0 0
3 1 3 1 0 0 0 0
4 1 4 1 0 0 0 0
5 1 5 1 0 0 0 0
6 2 1 1 0 0 0 0

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

24 5 4 0 0 0 1 0
25 5 5 0 0 0 0 1

According to Equation (11), Tables 7 and 8, the failure probability of all time periods
of intermediate events and top events can be calculated, which is shown in Table 10.
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Table 10. Failure probability of intermediate events and top events.

Event
Times

1 2 3 4 5

Y1 0.02061 0.02011 0.01954 0.01915 0.92013
Y2 0.03813 0.03652 0.03515 0.03365 0.85611
Y 0.02060 0.01934 0.01807 0.01704 0.78773

Next, we can calculate the posterior probability of the basic event according to Equation
(13). Once Y fails in the fourth time period, the posterior probability of X1 in the first time
period can be achieved using the following equation:

P
(

x1
1 = 1

∣∣y1 = 1
)

=
P(x1

1)P(x4
2)P(x4
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4)+P(x1

1)P(x5
2)P(x4

3)P(x4
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+
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2)P(x4

3)P(x5
4)+P(x1

1)P(x5
2)P(x5

3)P(x5
4)

P(y1=1)
= 0.001356

Similarly, the posterior probabilities of other basic events are obtained, as shown in Table 11.

Table 11. Posterior probability of root node in different time periods.

Event
Times

Sum
1 2 3 4

X1 0.00136 0.00106 0.00092 0.00074 0.00408
X2 0.00097 0.00082 0.00065 0.00054 0.00297
X3 0.03327 0.02527 0.01842 0.01352 0.09048
X4 0.03745 0.03316 0.02857 0.02485 0.12403

From the posterior probability of each basic event in Table 11, we concluded that the
fault should be investigated in the order of X4, X3, X1, and X2, which is also the factor
with the greatest impact on the top event. In this study, the dynamic fault tree method of
electromagnetic brakes based on the Bayesian network accompanying Wiener process is
presented to provide decision support for quality engineers and business management
staff. Furthermore, this paper will be helpful in that it has a significant capacity to enhance
the manager’s awareness of quality management and technical analysis capabilities.

4. Result Discussion

A new fault diagnosis method based on the Bayesian network and the Wiener process
is proposed in this study, which can better solve the dilemma of fault diagnosis in the
working process of electromagnetic brakes. Moreover, the case shows that the approved
method is reasonable, scientific, and obtains better effects. In addition, the value of this
paper is to build a test platform and use the Wiener process to fit the life–curve of electro-
magnetic brakes. The example also shows that the new method possesses the advantages
of feasibility, effectiveness, and easy control of operation, and it holds important value for
engineering application.

On the other hand, according to theoretical and experimental results, we have discov-
ered that the new method is superior to common fault diagnosis methods. If we choose not
to apply dynamic fault analysis in the case study, based on the fault rate of each bottom
event in the time period in Table 7, it is found that X3 has the highest failure rate of the
bottom event, followed by X4, X1 and X2. The calculation results are different from the
analysis of X3 and X4 bottom events. Therefore, the machine test of X3 and X4 bottom
events is carried out separately. So, two kinds of brake discs with an uneven surface of
roughness Ra 1.6 and Ra 3.2 are selected. Then, we set the braking time to start from 450,000
and increase by 50,000 in turn to obtain the electromagnetic force under various conditions,
as shown in Table 12.
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Table 12. Test data of brake pads with different roughness.

Braking Time (s) Brake Discs Roughness

Ra 1.6 Ra 3.2

450,000 0.02534 0.02465
500,000 0.02398 0.02226
550,000 0.02165 0.02136
600,000 0.01989 0.01986
650,000 0.01896 0.01794

From the data presented in Table 12, we can see that the unit of electromagnetic force
is N. For example, 0.02534 is the electromagnetic force when the braking time is 450,000 s
and Ra 1.6. It can be calculated from Table 12 that when the braking time is the same and
the roughness is different, the maximum difference of electromagnetic force is recorded as
D1, which is 0.00069, 0.00172, 0.00003 and 0.00102 in turn, and 0.00069 is the difference of
the electromagnetic force of two brake pads with different roughness when the braking
time is 450,000. Similarly, when the roughness is the same and the braking time is different,
the maximum difference of the electromagnetic force can also be calculated. It is recorded
as D2, which is 0.00638, 0.00671 and 0.00678 in turn. Among them, 0.00638 is the difference
of the electromagnetic force between 450,000 and 650,000 braking time when Ra is 1.6.
Furthermore, it was easy to acquire calculations through the computer test. Compared
with the surface roughness of the brake discs, the braking time had a greater impact on the
electromagnetic force. The result shows that the new dynamic fault tree analysis method
based on the Bayesian network accompanying Wiener process can be well used in the fault
diagnosis of electromagnetic brakes.

5. Conclusions

Failure analysis is an important and challenging problem for product quality and
reliability research, not only on the theoretical but also on the practical significance. With
the increasing complexity of products, fault tree analysis is becoming an indispensable
part of the design process of product development. Through analyzing the faults of
electromagnetic brakes by using the Bayesian network and accompanying the Wiener
process, effective solutions are proposed in this paper, and the hidden troubles of product
design and the production process are also resolved. Compared with the traditional T-S
fault tree, the approved method can dynamically divide the faults of the whole production
system, which can reduce the probability of each fault segment. Moreover, the T-S dynamic
fault tree analysis method can vividly express the logical relationship and dynamic state of
the fault system. The results showed that the new method is practicable in electromagnetic
brakes fault diagnosis, and it also has reference value on other complicated machines’ fault
diagnosis and decision making.

Furthermore, compared with the traditional quantitative analysis, the Bayesian net-
work is more convenient in calculating the importance of the dynamic fault tree. It can also
obtain the posterior probability of influencing factors by reverse reasoning, according to
the directed network. Considering the problem that it is difficult to predict the residual life
of an electromagnet, the thesis introduces the Bayesian network and the Wiener process in
a random process theory to model the practical operation. Further, the parameters of the
degradation model can be estimated by a maximum likelihood estimation method, and the
probability density function of the residual life of an electromagnet can be also obtained
according to the concept of first arrival time. The simulation and application results on
the actual electromagnetic brakes indicate that the new method can improve product fault
diagnosis performance significantly. These computations also provide important decision-
making information for the maintenance and replacement of electromagnets. The new
approved method is limited in its scope but rathereffective, and it definitely has a potential
engineering application value for use in the future.



Symmetry 2022, 14, 968 19 of 20

Author Contributions: Conceptualization, J.P.; Data curation, J.D.; Formal analysis, J.D. and Y.L.;
Funding acquisition, J.P. and Y.L.; Methodology, C.Z.; Project administration, Y.L.; Supervision, J.P.
and Y.L.; Validation, H.Z.; Visualization, H.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No.
72071149, 71671130), Provincial Natural Science Foundation, Zhejiang, China (No. LY20G010014).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, P.; Ye, Z.S. Estimation of field reliability based on aggregate lifetime data. Technometrics 2017, 59, 115–125. [CrossRef]
2. Xu, A.C.; Zhou, S.R.; Tang, Y.C. A unified model for system reliability evaluation under dynamic operating conditions. IEEE

Trans. Reliab. 2021, 70, 65–72. [CrossRef]
3. Hu, J.W.; Chen, P. Predictive maintenance of systems subject to hard failure based on proportional hazards model. Reliab. Eng.

Syst. Safe 2020, 196, 106707. [CrossRef]
4. Luo, C.L.; Shen, L.J.; Xu, A.C. Modelling and estimation of system reliability under dynamic operating environments and lifetime

ordering constraints. Reliab. Eng. Syst. Safe 2022, 218, 108136. [CrossRef]
5. Wang, Z.Y.; Xu, G.X.; Wang, Y.; Park, J.H.; Ji, Z. Orthotopic-filtering-based hierarchical fault diagnosis algorithm for linear

recursive models. IET Control Theory Appl. 2020, 14, 2310–2318. [CrossRef]
6. Kou, L.; Liu, C.; Cai, G.W.; Zhou, J.N.; Yuan, Q.D.; Pang, S.M. Fault diagnosis for open-circuit faults in NPC inverter based on

knowledge-driven and data-driven approaches. IET Power Electron. 2020, 13, 1236–1245. [CrossRef]
7. Yang, X.Y.; Yang, C.H.; Yang, C.; Peng, T.; Chen, Z.; Wu, Z.; Gui, W. Transient fault diagnosis for traction control system based on

optimal fractional-order method. ISA Trans. 2020, 102, 365–375. [CrossRef]
8. Feng, L.J.; Zhao, C.H. Fault description based attribute transfer for zero-sample industrial fault diagnosis. IEEE Trans. Ind. Inform.

2020, 17, 1852–1862. [CrossRef]
9. Wang, Y.M.; Ran, W.J. Comprehensive Eutrophication assessment based on fuzzy matter element model and Monte Carlo-

Triangular fuzzy numbers approach. Int. J. Environ. Res. Public Health 2019, 16, 1769. [CrossRef]
10. Wang, C.; Wang, L.D.; Chen, H.; Yang, Y.; Li, Y. Fault diagnosis of train network control management system based on dynamic

fault tree and Bayesian network. IEEE Access 2020, 9, 2618–2632. [CrossRef]
11. Sahin, B.; Yazidi, A.; Roman, D.; Soylu, A. Ontology-Based fault tree analysis algorithms in a fuzzy environment for autonomous

ships. IEEE Access 2021, 9, 40915–40932. [CrossRef]
12. Lei, X.; MacKenzie, C.A. Assessing risk in different types of supply chains with a dynamic fault tree. Comput. Ind. Eng. 2019, 137,

106061–106073. [CrossRef]
13. Li, Z.; Jiang, Z.Q.; Wang, D.S.; Wang, Z. System modeling and fault tree analysis based on Altarica. IEEE Access 2020, 8,

168879–168897. [CrossRef]
14. Bi, Z.Q.; Li, C.M.; Li, X.J.; Gao, H. Research on fault diagnosis for pumping station based on T-S fuzzy fault tree and Bayesian

network. J. Electr. Comput. Eng. 2017, 11, 1–7. [CrossRef]
15. Gu, Y.K.; Zhang, J.; Shen, Y.J.; Fan, C.-J. Fault tree analysis method based on probabilistic model checking and discrete time

Markov Chain. J. Chin. Inst. Eng. 2019, 36, 146–153. [CrossRef]
16. Chen, W.; Zhang, G.H.; Wang, H.; Zhong, G.Q.; Wang, C.T. Evaluation of possibility of tunnel collapse by drilling and blasting

method based on T-S fuzzy fault tree. Rock Soil Mech. 2019, 40, 319–328.
17. Volk, M.; Junges, S.; Katoen, J.P. Fast dynamic fault tree analysis by model checking techniques. IEEE Trans. Ind. Inform. 2018, 14,

370–379. [CrossRef]
18. Ammar, M.; Hamad, G.B.; Mohamed, O.A.; Savaria, Y. Towards an accurate probabilistic modeling and statistical analysis of

temporal faults via Temporal Dynamic Fault-Trees (TDFTs). IEEE Access 2019, 7, 29264–29276. [CrossRef]
19. Liao, H.Q.; Fang, Z.G.; Wang, C.H.; Liu, X. Economic development forecast of China’s general aviation industry. Complexity 2020,

2020, 1–8. [CrossRef]
20. Xiao, Z.X.; Jiang, Q.; Nie, Z.; Wang, R.; Zhang, Z.; Huang, H.; Sun, B.; Wang, L.; Wei, Y. Research on intelligent traffic light control

system based on dynamic Bayesian reasoning. Comput. Electr. Eng. 2020, 84, 106635–106648.
21. Li, J.X.; Wang, Z.H.; Liu, X.; Zhang, Y.; Fu, H.; Liu, C. A Wiener process model for accelerated degradation analysis considering

measurement errors. Microelectron. Reliab. 2016, 65, 8–15. [CrossRef]
22. Si, X.S.; Wang, W.B.; Hu, C.H.; Zhou, D.H. Remaining useful life estimation–a review on the statistical data driven approaches.

Eur. J. Oper. Res. 2011, 213, 1–14. [CrossRef]

http://doi.org/10.1080/00401706.2015.1096827
http://doi.org/10.1109/TR.2019.2948173
http://doi.org/10.1016/j.ress.2019.106707
http://doi.org/10.1016/j.ress.2021.108136
http://doi.org/10.1049/iet-cta.2019.1229
http://doi.org/10.1049/iet-pel.2019.0835
http://doi.org/10.1016/j.isatra.2020.03.006
http://doi.org/10.1109/TII.2020.2988208
http://doi.org/10.3390/ijerph16101769
http://doi.org/10.1109/ACCESS.2020.3046681
http://doi.org/10.1109/ACCESS.2021.3061929
http://doi.org/10.1016/j.cie.2019.106061
http://doi.org/10.1109/ACCESS.2020.3022016
http://doi.org/10.1155/2017/6175429
http://doi.org/10.1080/21681015.2019.1645050
http://doi.org/10.1109/TII.2017.2710316
http://doi.org/10.1109/ACCESS.2019.2902796
http://doi.org/10.1155/2020/3747031
http://doi.org/10.1016/j.microrel.2016.08.004
http://doi.org/10.1016/j.ejor.2010.11.018


Symmetry 2022, 14, 968 20 of 20

23. Ling, M.H.; Tsui, K.L.; Balakrishnan, N. Accelerated degradation analysis for the quality of a system based on the gamma process.
IEEE Trans. Reliab. 2014, 64, 463–472. [CrossRef]

24. Ye, Z.S.; Chen, N. The inverse Gaussian process as a degradation model. Technometrics 2014, 56, 302–311. [CrossRef]
25. Liu, T.Y.; Sun, Q.; Feng, J.; Pan, Z.; Huangpeng, Q. Residual life estimation under time-varying conditions based on a Wiener

process. J. Stat. Comput. Simul. 2017, 87, 211–226. [CrossRef]
26. Zhou, S.R.; Xu, A.C. Exponential dispersion process for degradation analysis. IEEE Trans. Reliab. 2019, 68, 398–409. [CrossRef]
27. Chen, P.; Ye, Z.S. Approximate statistical limits for a gamma distribution. J. Qual. Technol. 2017, 49, 64–77. [CrossRef]
28. Wang, P.P.; Tang, Y.C.; Bae, S.J.; Xu, A. Bayesian approach for two-phase degradation data based on change-point Wiener process

with measurement errors. IEEE Trans. Reliab. 2018, 67, 688–700. [CrossRef]
29. Wang, X.L.; Jiang, P.; Guo, B.; Cheng, Z. Real-time reliability evaluation with a general Wiener process-based degradation model.

Qual. Reliab. Eng. Int. 2014, 30, 205–220. [CrossRef]
30. Si, X.S.; Wang, W.B.; Hu, C.H.; Chen, M.-Y.; Zhou, D.-H. A Wiener-process-based degradation model with a recursive filter

algorithm for remaining useful life estimation. Mech. Syst. Signal Process. 2013, 35, 219–237. [CrossRef]
31. Tang, S.J.; Yu, C.Q.; Wang, X.; Guo, X.; Si, X. Remaining useful life prediction of lithium-ion batteries based on the wiener process

with measurement error. Energies 2014, 7, 520. [CrossRef]
32. Cai, B.P.; Fan, H.Y.; Shao, X.Y.; Liu, Y.; Liu, G.; Liu, Z.; Ji, R. Remaining useful life re-prediction methodology based on Wiener

process: Subsea Christmas tree system as a case study. Comput. Ind. Eng. 2021, 151, 106983–106995. [CrossRef]
33. Wang, H.; Ma, X.B.; Zhao, Y. An improved Wiener process model with adaptive drift and diffusion for online remaining useful

life prediction. Mech. Syst. Signal Process. 2019, 127, 370–387. [CrossRef]
34. Xu, A.C.; Shen, L.J.; Wang, B.X.; Tang, Y. On modeling bivariate Wiener degradation process. IEEE Trans. Reliab. 2018, 67, 897–906.

[CrossRef]
35. Huang, Z.Y.; Xu, Z.G.; Ke, X.J.; Wang, W.; Sun, Y. Remaining useful life prediction for an adaptive skew-Wiener process model.

Mech Syst Signal Process. 2017, 87, 294–306. [CrossRef]
36. Scanagatta, M.; Salmerón, A.; Stella, F. A survey on Bayesian network structure learning from data. Prog. Artif. Intell. 2019, 8,

425–439. [CrossRef]
37. Rebello, S.; Yu, H.Y.; Ma, L. An integrated approach for system functional reliability assessment using dynamic Bayesian network

and hidden Markov model. Reliab. Eng. Syst. Safe 2018, 180, 124–135. [CrossRef]
38. Dohale, V.; Gunasekaran, A.; Akarte, M.; Verma, P. An integrated Delphi-MCDM-Bayesian network framework for production

system selection. Int. J. Prod. Econ. 2021, 242, 108296–108306. [CrossRef]
39. Ta, W.R.; Gao, Y.W. Electromagnetic–mechanical coupling analysis of Nb3Sn superconducting strand. IEEE Trans. Appl. Supercond.

2016, 26, 1–5. [CrossRef]
40. Zhang, Z.X.; Si, X.S.; Hu, C.H.; Lei, Y. Degradation data analysis and remaining useful life estimation: A review on Wiener-

process-based methods. Eur. J. Oper. Res. 2018, 271, 775–796. [CrossRef]
41. Nishimura, Y. Stabilization by artificial wiener processes. IEEE Trans. Autom. Control 2017, 61, 3574–3579. [CrossRef]
42. Lahiri, S.N.; Das, U.; Nordman, D.J. Empirical likelihood for a long range dependent process subordinated to a gaussian process.

J. Time Ser. Anal. 2019, 40, 447–466. [CrossRef]
43. Dai, Y.; Cheng, S.; Gan, Q.J.; Yu, T.-J.; Wu, X.; Bi, F.-L. Life prediction of Ni-Cd battery based on linear Wiener process. J. Cent.

South Univ. 2021, 84, 2919–2930. [CrossRef]
44. Li, Y.F.; Huang, H.Z.; Liu, Y.; Li, H. A new fault tree analysis method: Fuzzy dynamic fault tree analysis. Eksploat Niezawodn 2012,

14, 208–214.
45. Sem-Jacobsen, F.O.; Skeie, T.; Lysne, O.; Duato, J. Dynamic fault tolerance in fat trees. IEEE Trans. Comput. 2011, 60, 508–525.

[CrossRef]
46. Fukuyama, E. Dynamic faulting on a conjugate fault system detected by near-fault tilt measurements. Earth Planets Space 2015, 67,

38. [CrossRef]

http://doi.org/10.1109/TR.2014.2337071
http://doi.org/10.1080/00401706.2013.830074
http://doi.org/10.1080/00949655.2016.1202953
http://doi.org/10.1109/TR.2019.2895352
http://doi.org/10.1080/00224065.2017.11918185
http://doi.org/10.1109/TR.2017.2785978
http://doi.org/10.1002/qre.1489
http://doi.org/10.1016/j.ymssp.2012.08.016
http://doi.org/10.3390/en7020520
http://doi.org/10.1016/j.cie.2020.106983
http://doi.org/10.1016/j.ymssp.2019.03.019
http://doi.org/10.1109/TR.2018.2791616
http://doi.org/10.1016/j.ymssp.2016.10.027
http://doi.org/10.1007/s13748-019-00194-y
http://doi.org/10.1016/j.ress.2018.07.002
http://doi.org/10.1016/j.ijpe.2021.108296
http://doi.org/10.1109/TASC.2016.2536200
http://doi.org/10.1016/j.ejor.2018.02.033
http://doi.org/10.1109/TAC.2016.2522087
http://doi.org/10.1111/jtsa.12465
http://doi.org/10.1007/s11771-021-4816-5
http://doi.org/10.1109/TC.2010.97
http://doi.org/10.1186/s40623-015-0207-1

	Introduction 
	Methodology 
	Bayesian Network 
	Failure Probability Density Function with Wiener Process 
	T-S Dynamic Fault Tree Analysis Method 
	Algorithm of T-S Dynamic Gate 

	A Case Study 
	Result Discussion 
	Conclusions 
	References

