
Citation: Liu Y.; Jia F. On the

Aggregation of Comonotone or

Countermonotone Fuzzy Relations.

Symmetry 2022, 14, 958. https://

doi.org/10.3390/sym14050958

Academic Editors: Jan Awrejcewicz

and Sergei D. Odintsov

Received: 30 March 2022

Accepted: 5 May 2022

Published: 7 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

On the Aggregation of Comonotone or Countermonotone
Fuzzy Relations
Yuanyuan Liu and Fan Jia *

School of Management Science and Engineering, Shangdong University of Finance and Economics,
Jinan 250014, China; liuyuanyuan@shu.edu.cn
* Correspondence: fanta07@126.com

Abstract: The properties of fuzzy relations have been extensively studied, and the preservation of
their properties plays a fundamental role in the various applications. However, either sufficient
or necessity conditions for the preservation requires the aggregated functions of fuzzy relations
to dominate or to be dominated by the corresponding operations, which constructs a significant
limitation on applicable functions. This work concentrates on the preservation of transitivities and
Ferrers property for the aggregation of comonotone or countermonotone fuzzy relations. Firstly,
definitions of comonotonicity and countermonotonicity for binary functions are initially proposed. On
the foundation of that, the relations of commuting and bisymmetry between min/max and commonly
used increasing/decreasing functions are found. Afterwards, with the condition that underlying
fuzzy relations are pair-wisely comonotone or countermonotone, theorems on the aggregation
functions which can preserve the transitivities and the Ferrers property are proposed. Moreover, an
interesting conclusion that the equivalent condition for the min-Ferrers property of fuzzy relations
is clarified.

Keywords: fuzzy relation; aggregation; comonotonicity; countermonotonicity; transitivity; fer-
rers property

1. Introduction

The use of fuzzy relations, a natural generalization of crisp relations, has become
widespread due to their expressive power. Both in theoretical developments and practical
applications, their properties are widely studied and play a fundamental role. These
properties include reflexivity, (a)symmetry, transitivity, the Ferrers property, and so on [1–5].
In fields such as preference modelling, decision making and approximate reasoning, the
aggregation of fuzzy relations is a common theme and, in particular, the preservation of
said properties by such aggregation process.

Many researchers have contributed to the study of this preservation of properties [6–11].
More specifically, an n-ary function F : [0, 1]n → [0, 1] is said to preserve a given prop-
erty, if for any fuzzy relations R1, R2, . . . , Rn having this property, the aggregated result
RF = F(R1, R2, . . . , Rn) also has this property [12]. Under this overall consideration for
underlying fuzzy relations, many remarkable studies made efforts on providing weak
conditions on the functions of fuzzy relations to achieve the preservation.

In this paper, we focus in particular on the preservation of transitivity properties and
the Ferrers property of fuzzy relations. As for the preservation of other properties, we refer
to [13]. Recall that an n-ary (n ≥ 2) aggregation function is a mapping A : [0, 1]n → [0, 1]
that is increasing (i.e. A(x1, . . . , xn) ≤ A(y1, . . . , yn) whenever xi ≤ yi for all i ∈ {1, . . . , n})
and satisfies the boundary conditions A(0, . . . , 0) = 0, A(1, . . . , 1) = 1. Inspired by the
work of De Baets and Mesiar on the refinement of fuzzy partitions [14], Saminger et al. [12]
showed that a necessary and sufficient condition for the preservation of T-transitivity
of fuzzy relations is that the aggregation function A involved dominates the t-norm T,
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denoted as A� T, with the notion of dominance borrowed from the field of probabilistic
metric spaces [15,16]. Continuing along this line, Drewniak [17] gave an extension on the
applicable transitivities and the aggregated function of fuzzy relations for the preservation,
and separately proposed the sufficient condition for any increasing n-ary functions F :
[0, 1]n → [0, 1] preserving B-transitivity of fuzzy relations where B can be any binary
operation: [0, 1]2 → [0, 1], and the necessary condition for any n-ary functions F : [0, 1]n →
[0, 1] preserving B-transitivity where B has the zero element z = 0. Both of the above
sufficient and necessary condition presented in [17] required F � B.

Furthermore, in [13], the authors extended their study in [17] to negative transitivity,
semitransitivity and the Ferrer property. With respect to increasing n-ary operation F:
[0, 1]n→[0, 1], they proposed the sufficient and necessary condition for the preservation
of negative B-transitivity, i.e., B � F, where B has the zero element z = 1, and sufficient
conditions for preservation of B1-B2-semitransitivity and the B1-B2-Ferrers property, i.e.,
F � B1 and B2 � F, where B1 and B2 are any binary operations: [0, 1]2→[0, 1].

Regarding the above advanced results for the preservation of tansitivities or the
Ferrers property, we can notice that there are several restrictions. First of all is their
definition for the preservation of the properties from an overall aspect. All the fuzzy
relations having that property are taken into account to constraint the aggregated function
to preserve the property. In fact, it is this restriction that results in the strong necessary
condition on the aggregated function for the preservation. The second restriction is that
either the sufficient condition or the necessary condition for the preservation asks the
aggregated functions to dominate or to be dominated by the corresponding t-norms,
t-conorms, or the general binary operations B. According to the definition of dominance, F
dominates B if for an arbitrary matrix [xij] = X ∈ [0, 1]n×2, F(B(x11, x12), . . . , B(xn1, xn2)) ≥
B(F(x11, . . . , xn1), F(x12, . . . , xn2)). No doubt that this is a very strict constraint for the
function F, especially w.r.t. transitivities and the Ferrers properties involving min or max
since any increasing function dominates max and is dominated by min, and there are a few
functions could dominate min or be dominated by max, thus the applications are badly
limited. Furthermore, based on the connections between dominance and commuting, the
constraint on the aggregated function F actually requires that F commutes with min or
max. The third limitation of existing results is the presumption for the functions of fuzzy
relations, i.e., increasing functions, or the aggregation operators. We expect they could be
generalized as much as possible to expand their applicable problems. Therefore, we can
conclude that all these advanced results are meant to guarantee their methods adaptable for
any fuzzy relations with the property, however, in order to achieve this, some redundant
conditions have to impose on the aggregated function, which finally result that a few
functions are available for the preservation.

Out of the above analysis, different from the investigates trying to weaken the re-
striction on the aggregated function F to preserve the property for all fuzzy relations with
that property, we turn to focus on the fuzzy relations with some reasonable characteristics
thereby accordingly give practical suggestions on aggregated functions for the preserva-
tion. Firstly, we initially give the definitions of comonotonicty and countermonotonicty
for binary functions, then w.r.t. pair-wisely comonotone or countermonotone functions,
we prove the commuting or bisymmetric relation for min or max with the general func-
tions which are increasing or decreasing in each argument. Secondly, regarding the fuzzy
relations with the characteristic of pair-wisely comonotone or countermonotone, some
theorems are proposed for the preservation of the properties that are tough to handle with
the existing results, like min-transitivity, negative max-transitivity, min-semitransitivity,
and min-Ferrers property under the aggregation with general functions. Besides the more
effective methods for users to preserve the fuzzy relations property, the transforming of
min-transitivity and negative max-transitivity during the aggregated process with any
decreasing function is detected. Furthermore, another interesting finding is the equivalent
relation between the min-Ferrers property of fuzzy relations and their self-comonotonicity
in one argument at any.
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The paper is organized as follows. Section 2 introduces some basic concepts, e.g.,
fuzzy relations, t-norm (t-conorm), aggregation operator, dominance, etc., and briefly
recalls the advanced results for the preservation of tansitivities and the Ferrers property.
Section 3 presents the new definitions of comonotoncity and countermonotonicity and
proves the relations of min and max with general functions which are the foundations for
the preservation. Section 4 puts forward the results on preservations and transformations
of fuzzy relations properties.

2. Preliminaries

In this section, the relevant concepts including fuzzy relation, the commonly studied
properties of fuzzy relations, aggregated fuzzy relation, etc., are presented. In addition,
advanced theorems proposed in [12,13,17] for the preservation of fuzzy relations properties
are also recalled, which are the foundations of our work.

Definition 1 (See [18]). A fuzzy relation on a set X 6= ∅ is an arbitrary function R : X2→[0, 1].
The family of all fuzzy relations on X is denoted by FR(X).

Along with the proposition of fuzzy relations, their properties are studied. In our
work, we mainly focus on the tansitivities and the Ferrers property.

Definition 2 (See [3]). Let T be a t-norm and S a t-conorm. A fuzzy relation R on X is called
(i) T-transitive if ∀x, y, z ∈ X,

T(R(x, y), R(y, z)) ≤ R(x, z);

(ii) negatively S-transitive if ∀x, y, z ∈ X,

R(x, z) ≤ S(R(x, y), R(y, z));

(iii) T-S-semitransitive if ∀x, y, z, w ∈ X,

T(R(x, y), R(y, z)) ≤ S(R(x, w), R(w, z));

(iv) T-S-Ferrers if ∀x, y, z, w ∈ X,

T(R(x, y), R(z, w)) ≤ S(R(x, w), R(z, y)).

Definition 3 (See [15]). A binary operation T: [0, 1]2→[0, 1] is called a t-norm if it satisfies:
(i) Neutral element 1: ∀x ∈ [0, 1], T(x, 1) = T(1, x) = x;
(ii) Monotonicity: T is increasing in each variable.
(iii) Commutativity: ∀(x, y) ∈ [0, 1]2, T(x, y) = T(y, x);
(iv) Associativity: ∀(x, y, z) ∈ [0, 1]3, T(x, T(y, z)) = T(T(x, y), z));
Any t-norm T corresponds a dual t-conorm S defined by S(x, y) = 1− T(1− x, 1− y).

Three popular t-norms are given by:
(i) the Lukasiewicz t-norm TL(x, y) = max(0, x + y− 1);
(ii) the algebraic product TP(x, y) = xy;
(iii) the minimum operator TM(x, y) = min(x, , y).

The corresponding dual t-conorms are as follows.
(i) the bounded sum t-conorm SL(x, y) = min(x + y, 1);
(ii) the probabilistic sum SP = x + y− xy;
(iii) the maximum operator SM(x, y) = max(x, y).

It is well-known that t-norms and t-conorms are special cases of fuzzy conjunctions
and fuzzy disjunctions, respectively.
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Definition 4 (See [19]). An operation C : [0, 1]2→[0, 1] is called a fuzzy conjunction if it is
increasing and

C(1, 1) = 1, C(0, 0) = C(0, 1) = C(1, 0) = 0.

An operation D : [0, 1]2→[0, 1] is called a fuzzy disjunction if it is increasing and

D(0, 0) = 0, D(1, 1) = C(0, 1) = C(1, 0) = 1.

Definition 5 (See [12]). Let F : [0, 1]n → [0, 1], R1, . . . , Rn ∈ FR(X). An aggregated fuzzy
relation RF ∈ FR(X) is described by the formula

RF(x, y) = F(R1(x, y), . . . , Rn(x, y)), x, y ∈ X.

The paper [12] shows the close connection between the preservation of T-transitivity
for an aggregated fuzzy relation and the dominance of that aggregation operator over the
corresponding t-norm T. The definitions of aggregation operator and dominance are as
follows.

Definition 6 (See [20]). A function A :
⋃

n ∈ N
[0, 1]n → [0, 1] is called an n-ary aggregation

operator if it fulfills A(x1, . . . , xn) ≤ A(y1, . . . , yn) whenever xi ≤ yi for all i ∈ 1, . . . , n and
A(0, . . . , 0) = 0, A(1, . . . , 1) = 1.

Definition 7 (See [12]). Consider an n-ary aggregation operator A(n) and an m-ary aggregation
operator B(m). We say that A(n) dominates B(m) (A(n) � B(m)) if for an arbitrary matrix
[xij] = X ∈ [0, 1]m×n,

B(m)(A(n)(x11, . . . , x1n), . . . , A(n)(xm1, . . . , xmn)) ≤ A(n)(B(m)(x11, . . . , xm1), . . . , B(m)(x1n, . . . , xmn)).

Theorem 1 (See [12]). Let T be an arbitrary t-norm. An aggregated fuzzy relation RF preserves
the T-transitivity if and only if the aggregation operator F dominates T, i.e., F � T.

In [13,17], authors devote their work to generalize the conclusion for the preservation
in Theorem 1 by weakening restrictions on the aggregated functions of fuzzy relations
and extending the T-transitivity to other properties. In the following theorems, unless
otherwise specified, B, B1, B2 are any binary operations: [0, 1]2→[0, 1], and F is an n-ary
function: [0, 1]n→[0, 1].

Theorem 2 (See [17]). Let B have the zero element z = 0. If R1, . . . , Rn have the B-transitivity,
and RF preserves B-transitivity, then F � B.

Theorem 3 (See [17]). Let F be an increasing function. If R1, . . . , Rn have the B-transitivity, and
F � B, then RF preserves B-transitivity.

Theorem 4 (See [13]). Let B have the zero element z = 1, and F be an increasing function. Assume
that R1, . . . , Rn have negative B-transitivity, then RF preserves the negative B-transitivity if and
only if B� F.

Theorem 5 (See [13]). Let F be an increasing function. If R1, . . . , Rn have the B1-B2-semitransitivity,
and F� B1, B2 � F, then RF preserves the B1-B2-semitransitivity.

Theorem 6 (See [13]). Let F be an increasing function. If R1, . . . , Rn have the B1-B2-Ferrers
property, and F � B1, B2 � F, then RF preserves the B1-B2-Ferrers property.

As we can seen that no matter the preservation of T-transitivity in [12] or the preser-
vations of B-transitivity, negative B-transitivity, B1-B2-semitransitivity and B1-B2-Ferrers
property in [13,17], the dominance of the aggregation operators over the corresponding
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t-norms or the binary operations is included in the theorems. However, this condition is
not easy to be achieved, especially for the transitivities and the Ferrers properties related
with min or max. As is well known, the min dominates any increasing function, while the
max is dominated by any increasing function. A few increasing functions could dominate
the min and be dominated by the max.

Theorem 7. An n-ary increasing function F : [0, 1]n→[0, 1] dominates min if and only if for
each x1, . . . , xn ∈ [0, 1], F(x1, . . . , xn) = min( f1(x1), . . . , fn(xn)), where fi : [0, 1]→[0, 1] is
increasing with i = 1, . . . , n.

Theorem 8. An n-ary increasing function F : [0, 1]n→[0, 1] is dominated by max if and only if
for each x1, . . . , xn ∈ [0, 1], F(x1, . . . , xn) = max( f1(x1), . . . , fn(xn)), where fi : [0, 1]→[0, 1] is
increasing with i = 1, . . . , n.

Therefore, for min-tansitivity, negative max-transitivity, min-semitransitivity and min-
Ferrers property, a few increasing functions can satisfy the constraints in Theorems 3–6.
Removing the condition of aggregation operator in the definition of dominance, n-ary
functions satisfying Theorem 2 are still very limited. Meanwhile, note that the sufficient
and necessary conditions in Theorems 3–6 actually imply a requirement for the relation
of commuting or bisymmetry between the function F and min or max. The definition of
commuting is originally defined for aggregation operators, and an extension of that for any
functions is given in next section.

Definition 8. Consider an n-ary aggregation operator A(n) and an m-ary aggregation operator
B(m). We say that A(n) and B(m) commute with each other if for all xi,j ∈ [0, 1] with i ∈ {1, . . . , m}
and j ∈ {1, . . . , n}, the following equation holds:

B(m)(A(n)(x11, . . . , x1n), . . . , A(n)(xm1, . . . , xmn)) = A(n)(B(m)(x11, . . . , xm1), . . . , B(m)(x1n, . . . , xmn)).

The conditions for any increasing function that dominates min or is dominated by max
are adaptable for the commuting with min or max (cf. [21], Proposition 21). What is more,
two operators commuting with each other is a special case of generalized bisymmetry.

Definition 9 (See [22]). The functional equation of m× n generalized bisymmetry, or the GEB
for short, is

G(F1(x11, . . . , x1n), . . . , Fm(xm1, . . . , xmn)) = F(G1(x11, . . . , xm1), . . . , Gn(x1n, . . . , xmn)).

3. Comonotonicity and Countermonotonicity

In this section, definitions of comonotonicity and countermonotonicity for binary
functions are introduced firstly. Then, the commuting and bisymmetric relations between
min or max and some commonly used functions are proposed.

3.1. Definitions of Comonotonicity and Countermonotonicity

The paper [23] gives the definition of comonotonicity for functions with one argument.
We extend that work into binary functions.

Definition 10 (See [23]). Let Ω be a non-empty set. Two functions f , g : Ω → R are said to be
comonotone, if for all x, y ∈ Ω,(

f (x)− f (y)
)(

g(x)− g(y)
)
≥ 0.
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Definition 11. (Comonotonicity) Let Ω be a non-empty set. Two functions F, G : Ω2 → R are
said to be comonotone, if for all x1, x2, y1, y2 ∈ Ω,(

F(x1, y1)− F(x2, y2)
)(

G(x1, y1)− G(x2, y2)
)
≥ 0.

Example 1. PD and NSD are comonotone for any fuzzy intervals.

Proof. The indices PD and NSD were proposed in [24] for comparing fuzzy intervals. Let
M and N be two fuzzy intervals with membership functions πM and πN , then

PD(M, N) = sup
u ≥ v

min
(
πM(u), πN(v)

)
,

NSD(M, N) = 1− sup
u ≤ v

min
(
πM(u), πN(v)

)
.

In addition, it is known that (i) PD(M, N)+ NSD(N, M) = 1 (ii) max(PD(M, N), PD(N,
M)) = 1. From (i), we can get (PD(X, Y) − PD(Z, W))(NSD(X, Y) − NSD(Z, W)) =
(PD(X, Y)− PD(Z, W))(PD(W, Z)− PD(Y, X)).

Based on (ii), there are four cases in total: PD(X, Y) = PD(Z, W) = 1, PD(X, Y) =
PD(W, Z) = 1, PD(Y, X) = PD(Z, W) = 1, and PD(Y, X) = PD(W, Z) = 1. It can always
be deduced that (PD(X, Y)− PD(Z, W))(NSD(X, Y)− NSD(Z, W)) ≥ 0 for each case,
which implies that PD and NSD are comonotone.

Furthermore, the Definition 11 of comonotonicity can be reformulated as follows.

Lemma 1. Functions F, G : Ω2 → R are comonotone if and only if for all x1, x2, y1, y2 ∈ Ω,

F(x1, y1) > F(x2, y2) implies G(x1, y1) ≥ G(x2, y2).

Lemma 2. For functions F, G, H : Ω2 → R :
(i) if both F and G are comonotone with H, then F + G and H are comonotone;
(ii) if F, G and H are pair-wisely comonotone, then max(F, G) and H are comonotone, as are
min(F, G) and H.

Remark 1. If both F and G are comonotone with H, there is no conclusion that F and G are comono-
tone.

For example, suppose F, G, H are functions: Ω2 → R. H is a constant function, F is
strictly increasing in the first argument, while G is strictly decreasing in the first argument.
We can know that both F and G are comonotone with H, however, F and G are not
comonotone since for all y ∈ Ω, if x1 6= x2, (F(x1, y)− F(x2, y))(G(x1, y)− G(x2, y)) < 0.

Definition 12. (Countermonotonicity) Let Ω be a non-empty set. Two functions F, G : Ω2 → R
are said to be countermonotone, if for all x1, x2, y1, y2 ∈ Ω,(

F(x1, y1)− F(x2, y2)
)(

G(x1, y1)− G(x2, y2)
)
≤ 0.

This definition can be reformulated as follows.

Lemma 3. Functions F and G : Ω2 → R are countermonotone, if and only if for all x1, x2, y1, y2 ∈ Ω,

F(x1, y1) > F(x2, y2) implies G(x1, y1) ≤ G(x2, y2).

Lemma 4. For functions F, G, H : Ω2 → R :
(i) if F and G are countermonotone with H, respectively, then F + G and H are countermonotone;
(ii) if F, G and H are pair-wisely countermonotone, then max(F, G) and H are countermonotone,
as are min(F, G) and H.
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Similarly with the situation of comonotonicity, given both functions F and G are counter-
monotone with H, there’s no conclusion that F and G are countermonotone or comonotone.

3.2. Relations with Commuting and Bisymmetry

Ahead of proposing the theorems on the preservation of fuzzy relations properties,
some employed results are presented firstly in this part. The aggregated functions for fuzzy
relations in our work are not restricted to be aggregation operators or increasing functions
any more, and some corresponding extensions are given as follows.

The notions of dominance and commuting w.r.t. aggregation operators can be general-
ized for any functions, i.e., we can say that an n-ary function F : Ωn → R dominates an
m-ary function G : Ωm→R (F � G) if for any matrix [xij] = X ∈ Ωm×n,

G(F(x11, . . . , x1n), . . . , F(xm1, . . . , xmn)) ≤ F(G(x11, . . . , xm1), . . . , G(x1n, . . . , xmn)),

and F, G commute with each other if

G(F(x11, . . . , x1n), . . . , F(xm1, . . . , xmn)) = F(G(x11, . . . , xm1), . . . , G(x1n, . . . , xmn)).

Proposition 1. Any n-ary increasing function commutes with min for inputs generated by
pair-wisely comonotone functions F1, . . . , Fn: Ω2 → R.

Proof. An interpretation of Proposition 1: let A be an arbitrary n-ary increasing function,
for all x1, x2, y1, y2 ∈ Ω, A

(
min(F1(x1, y1), F1(x2, y2)), . . . , min(Fn(x1, y1), Fn(x2, y2))

)
=

min
(

A(F1(x1, y1), . . . , Fn(x1, y1)), A(F1(x2, y2), . . . , Fn(x2, y2))
)
.

Case 1: Suppose there exists Fi(x1, y1) > Fi(x2, y2), 1 ≤ i ≤ n. Since F1, . . . , Fn are
pair-wisely comonotone, we have

Fi(x1, y1) ≥ Fi(x2, y2), i = 1, . . . , n.

A is an increasing function, so

A
(

F1(x1, y1), . . . , Fn(x1, y1)
)
≥ A

(
F1(x2, y2), . . . , Fn(x2, y2)

)
.

Then, we obtain

A
(

min(F1(x1, y1), F1(x2, y2)), . . . , min(Fn(x1, y1), Fn(x2, y2))
)

= A
(

F1(x2, y2), . . . , Fn(x2, y2)
)

= min
(

A(F1(x1, y1), . . . , Fn(x1, y1)), A(F1(x2, y2), . . . , Fn(x2, y2))
)
.

Case 2: Suppose there exists Fi(x1, y1) < Fi(x2, y2), 1 ≤ i ≤ n. It is similar with case 1,
and is omitted.

Case 3: Suppose for i = 1, . . . , n, Fi(x1, y1) = Fi(x2, y2). The equality for the proposi-
tion can be derived immediately.

Corollary 1. Any n-ary increasing function commutes with max for inputs generated by pair-
wisely comonotone functions F1, . . . , Fn: Ω2 → R.

This can be obtained through similar analysis with the three cases in Proposition 1,
and is omitted.

Proposition 2. For pair-wisely comonotone functions F1, . . . , Fn: Ω2→R, and an aribitrary n-ary de-
creasing function A, the “generalized equation of bisymmetry”: A

(
max(F1(x1, y1), F1(x2, y2)),

. . . , max(Fn(x1, y1), Fn(x2, y2))
)
= min

(
A(F1(x1, y1), . . . , Fn(x1, y1)), A(F1(x2, y2), . . . , Fn

(x2, y2))
)

holds for all x1, x2, y1, y2 ∈ Ω.
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Proof. Case 1: Suppose there exists Fi(x1, y1) > Fi(x2, y2), 1 ≤ i ≤ n. Since F1, . . . , Fn are
pair-wisely comonotone, we have

Fi(x1, y1) ≥ Fi(x2, y2), i = 1, . . . , n.

A is a decreasing function, so

A
(

F1(x1, y1), . . . , Fn(x1, y1)
)
≤ A

(
F1(x2, y2), . . . , Fn(x2, y2)

)
.

Then, we obtain

A
(

max(F1(x1, y1), F1(x2, y2)), . . . , max(Fn(x1, y1), Fn(x2, y2))
)

= A
(

F1(x1, y1), . . . , Fn(x1, y1)
)

= min
(

A(F1(x1, y1), . . . , Fn(x1, y1)), A(F1(x2, y2), . . . , Fn(x2, y2))
)
.

Case 2: Suppose there exists Fi(x1, y1) < Fi(x2, y2), 1 ≤ i ≤ n. It is similar with case 1,
and is omitted.

Case 3: Suppose for i = 1, . . . , n, Fi(x1, y1) = Fi(x2, y2). The equality in the proposition
can be derived immediately.

Corollary 2. For pair-wisely comonotone functions F1, . . . , Fn: Ω2→R, and an arbitrary n-ary de-
creasing function A, the “generalized equation of bisymmetry”: A

(
min(F1(x1, y1), F1(x2, y2)),

. . . , min(Fn(x1, y1), Fn(x2, y2))
)
= max

(
A(F1(x1, y1), . . . , Fn(x1, y1)), A(F1(x2, y2), . . . , Fn

(x2, y2))
)

holds for all x1, x2, y1, y2 ∈ Ω.

The proof is omitted.

Proposition 3. Given that functions F1, . . . , Fn : Ω2 → R, Fi, i = 1, . . . , m and Fj, j = m +
1, . . . , n are pair-wisely comonotone, respectively, and Fi and Fj are pair-wisely countermonotone. If
an n-ary function A(x1, . . . , xm, xm+1, . . . , xn) is increasing w.r.t. x1, . . . , xm and decreasing w.r.t.
xm+1, . . . , xn, the “generalized equation of bisymmetry”: A

(
min(F1(x1, y1), F1(x2, y2)), . . . ,

min(Fm(x1, y1), Fn(x2, y2)), max(Fm+1(x1, y1), Fm+1(x2, y2)), . . . , max(Fn(x1, y1), Fn(x2, y2)
)
)
= min

(
A(F1(x1, y1), . . . , Fn(x1, y1)), A(F1(x2, y2), . . . , Fn(x2, y2))

)
holds for all x1, x2, y1,

y2 ∈ Ω.

Proof. Case 1: Suppose there exists Fi(x1, y1) > Fi(x2, y2), 1 ≤ i ≤ m. According to the
assumption, we have

Fi(x1, y1) ≥ Fi(x2, y2), i = 1, . . . , m,

and
Fj(x1, y1) ≤ Fj(x2, y2), i = m + 1, . . . , n.

The function A is increasing w.r.t. x1, . . . , xm and decreasing w.r.t. xm+1, . . . , xn, so

A
(

F1(x1, y1), . . . , Fn(x1, y1)
)
≥ A

(
F1(x2, y2), . . . , Fn(x2, y2)

)
.

Then, we obtain

A
(

min(F1(x1, y1), F1(x2, y2)), . . . , min(Fm(x1, y1), Fm(x2, y2)),

max(Fm+1(x1, y1), Fm+1(x2, y2)), . . . , max(Fn(x1, y1), Fn(x2, y2))
)

= A
(

F1(x2, y2), . . . , Fn(x2, y2)
)

= min
(

A(F1(x1, y1), . . . , Fn(x1, y1)), A(F1(x2, y2), . . . , Fn(x2, y2))
)
.
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Case 2: Suppose there exists Fi(x1, y1) < Fi(x2, y2), Fj(x1, y1) < Fj(x2, y2), or Fj(x1, y1)
> Fj(x2, y2), 1 ≤ i ≤ m, m + 1 ≤ j ≤ n. All these situations are similar with case 1, and
omitted.

Case 3: Suppose for k = 1, . . . , n, Fk(x1, y1) = Fk(x2, y2). The equality in the proposi-
tion can be derived immediately.

Corollary 3. Given that functions F1, . . . , Fn : Ω2 → R, Fi, i = 1, . . . , m and Fj, j = m+ 1, . . . , n
are pair-wisely comonotone, respectively, and Fi and Fj are pair-wisely countermonotone. If an
n-ary function A(x1, . . . , xm, xm+1, . . . , xn) is increasing w.r.t. x1, . . . , xm and decreasing w.r.t.
xm+1, . . . , xn, the “generalized equation of bisymmetry”: A

(
max(F1(x1, y1), F1(x2, y2)), . . . ,

max(Fm(x1, y1), Fn(x2, y2)), min(Fm+1(x1, y1), Fm+1(x2, y2)), . . . , min(Fn(x1, y1), Fn(x2, y2)
)
)
= max

(
A(F1(x1, y1), . . . , Fn(x1, y1)), A(F1(x2, y2), . . . , Fn(x2, y2))

)
holds for all x1, x2, y1,

y2 ∈ Ω.

Remark 2. Binary operations min and max in Propositions 1–3 and Corollaries 1–3 can be
extended to minimum and maximum for any n arguments (n ≥ 2), respectively, and they all hold.

4. Preservation of Transitivities and the Ferrers Properties

In this section, based on the conclusions in Section 3, theorems on the preservations
of min-transitivity, negative max-transitivity, min-semitransitivity and min-Ferrers prop-
erty for the aggregation of pair-wisely comonotone or countermonotone fuzzy relations
are presented.

4.1. Preservation of Transitivities

Theorem 9. Given that F: [0, 1]n → [0, 1] is an increasing function. If all fuzzy relations
R1, . . . , Rn are min-transitive and pair-wisely comonotone, the aggregated relation RF is min-
transitive.

Proof. Fuzzy relations Ri, i = 1, . . . , n are min-transitive, then min(Ri(x, y), Ri(y, z)) ≤
Ri(x, z). Based on Proposition 1, any increasing function commutes with min for pair-wisely
comonotone fuzzy relations. We obtain

min(RF(x, y), RF(y, z)) = min
(

F(R1(x, y), . . . , Rn(x, y)), F(R1(y, z), . . . , Rn(y, z))
)

= F
(

min(R1(x, y), R1(y, z)), . . . , min(Rn(x, y), Rn(y, z))
)

≤ F(R1(x, z), . . . , Rn(x, z)) = RF(x, z).

As a result, the min-transitivity of RF is proved.

Example 2. Given that fuzzy relations R1, R2 are min-transitive and comonotone, the new relation
RC and RD aggregated with any fuzzy conjunction C and disjunction D also min-transitive.

This can be directly derived from the property of increasing in two arguments for any
conjunction C or disjunction D. For example, let D = max, for any x, y, z ∈ X, there is
always min

(
max(R1(x, y), R2(x, y)), max(R1(y, z), R2(y, z))

)
≤ max(R1(x, z), R2(x, z)).

Theorem 10. Given that F: [0, 1]n → [0, 1] is an increasing function. If all fuzzy relations
R1, . . . , Rn are negatively max-transitive and pair-wisely comonotone, the aggregated relation RF
is negatively max-transitive.

Proof. Fuzzy relations Ri, i = 1, . . . , n are negatively max-transitive, then max(Ri(x, y), Ri
(y, z)) ≥ Ri(x, z). Based on Corollary 1, any increasing function commutes with max for
pair-wisely comonotone fuzzy relations. We obtain

max(RF(x, y), RF(y, z)) = max
(

F(R1(x, y), . . . , Rn(x, y)), F(R1(y, z), . . . , Rn(y, z))
)

= F
(

max(R1(x, y), R1(y, z)), . . . , max(Rn(x, y), Rn(y, z))
)

≥ F(R1(x, z), . . . , Rn(x, z)) = RF(x, z).
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As a result, the negative max-transitivity of RF is proved.

Example 3. Given that fuzzy relations R1, R2 are negatively max-transitive and comonotone, the
new relation RC and RD aggregated with any fuzzy conjunction C and disjunction D also are
negatively max-transitive.

Corollary 4. Given that F: [0, 1]n → [0, 1] is a decreasing function. If all fuzzy relations
R1, . . . , Rn are min-transitive and pair-wisely comonotone, the aggregated relation RF is neg-
atively max-transitive.

Proof. Based on Proposition 2, we obtain

max(RF(x, y), RF(y, z)) = max
(

F(R1(x, y), . . . , Rn(x, y)), F(R1(y, z), . . . , Rn(y, z))
)

= F
(

min(R1(x, y), R1(y, z)), . . . , min(Rn(x, y), Rn(y, z))
)

≥ F(R1(x, z), . . . , Rn(x, z)) = RF(x, z).

As a result, the negative max-transitivity of RF is proved.

Corollary 5. Given that F: [0, 1]n → [0, 1] is a decreasing function. If all fuzzy relations
R1, . . . , Rn are negatively max-transitive and pair-wisely comonotone, the aggregated relation
RF is min-transitive.

Proof. Based on Corollary 2, we obtain

min(RF(x, y), RF(y, z)) = min
(

F(R1(x, y), . . . , Rn(x, y)), F(R1(y, z), . . . , Rn(y, z))
)

= F
(

max(R1(x, y), R1(y, z)), . . . , max(Rn(x, y), Rn(y, z))
)

≤ F(R1(x, z), . . . , Rn(x, z)) = RF(x, z).

As a result, the min-transitivity of RF is proved.

Corollary 6. Given that F: [0, 1]n → [0, 1] is an increasing (or a decreasing) function. If all fuzzy
relations R1, . . . , Rn are min-transitive and negatively max-transitive and pair-wisely comonotone,
the aggregated relation RF is min-transitive and negatively max-transitive.

Proof. Case 1: If F is an increasing function, the preservations of min-transitivity and
negative max-transitivity for RF can be immediately got through Theorem 9 and Theorem
10, respectively.

Case 2: If F is a decreasing function, the min-transitivity and negative max-transitivity
for RF can be obtained through the transformings from the negative max-transitivity and
min-transitivity of R1, . . . , Rn based on Corollarie 4 and Corollarie 5, respectively.

Theorem 11. Given that fuzzy relations R1, . . . , Rn are min-transitive and negatively max-
transitive, Ri, i = 1, . . . , m and Rj, j = m + 1, . . . , n are pair-wisely comonotone, respectively,
and Ri and Rj are pair-wisely countermonotone. If the function F(x1, . . . , xm, xm+1, . . . , xn) :
[0, 1]n → [0, 1] is increasing w.r.t. x1, . . . , xm and decreasing w.r.t. xm+1, . . . , xn, the aggregated
relation RF is min-transitive and negatively max-transitive.

Proof. On the basis of the assumptions, combining Proposition 3 and Corollary 3, we have

min(RF(x, y), RF(y, z)) = min
(

F(R1(x, y), . . . , Rn(x, y)), F(R1(y, z), . . . , Rn(y, z))
)

= F
(

min(R1(x, y), R1(y, z)), . . . , min(Rm(x, y), Rm(y, z)),
max(Rm+1(x, y), Rm+1(y, z)), . . . , max(Rn(x, y), Rn(y, z))

)
≤ F

(
R1(x, z), . . . , Rm(x, z), Rm+1(x, z), . . . , Rn(x, z)

)
= RF(x, z)
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and

max(RF(x, y), RF(y, z)) = max
(

F(R1(x, y), . . . , Rn(x, y)), F(R1(y, z), . . . , Rn(y, z))
)

= F
(

max(R1(x, y), R1(y, z)), . . . , max(Rm(x, y), Rm(y, z)),

min(Rm+1(x, y), Rm+1(y, z)), . . . , min(Rn(x, y), Rn(y, z))
)

≥ F
(

R1(x, z), . . . , Rm(x, z), Rm+1(x, z), . . . , Rn(x, z)
)
= RF(x, z)

As a result, the new aggregated relation RF preserves min-transitivity and negative
max-transitivity.

Theorem 12. Given that F: [0, 1]n → [0, 1] is an increasing (or a decreasing) function, and fuzzy
relations R1, . . . , Rn are min-semitransitive and pair-wisely comonotone, the aggregated relation
RF is min-semitransitive .

Proof. Case 1: F is an increasing function. Given that fuzzy relations R1, . . . , Rn are pair-
wisely comonotone, combining Proposition 1 and Corollary 1, we have

min(RF(x, y), RF(y, z)) = min
(

F(R1(x, y), . . . , Rn(x, y)), F(R1(y, z), . . . , Rn(y, z))
)

= F
(

min(R1(x, y), R1(y, z)), . . . , min(Rn(x, y), Rn(y, z))
)

≤ F
(

max(R1(x, w), R1(w, z)), . . . , max(Rn(x, w), Rn(w, z))
)

= max
(

F(R1(x, w), . . . , Rn(x, w)), F(R1(w, z), . . . , Rn(w, z))
)

= max(RF(x, w), RF(w, z))

Case 2: F is a decreasing function. Given that fuzzy relations R1, . . . , Rn are pair-wisely
comonotone, combining Proposition 2 and Corollary 2, we have

min(RF(x, y), RF(y, z)) = min
(

F(R1(x, y), . . . , Rn(x, y)), F(R1(y, z), . . . , Rn(y, z))
)

= F
(

max(R1(x, y), R1(y, z)), . . . , max(Rn(x, y), Rn(y, z))
)

≤ F
(

min(R1(x, w), R1(w, z)), . . . , min(Rn(x, w), Rn(w, z))
)

= max
(

F(R1(x, w), . . . , Rn(x, w)), F(R1(w, z), . . . , Rn(w, z))
)

= max(RF(x, w), RF(w, z))

Therefore, no matter the aggregated function F is an increasing function or a decreasing
function, the min-semitransitivity can always been preserved for RF w.r.t. pair-wisely
comonotone fuzzy relations R1, . . . , Rn.

Theorem 13. Given that fuzzy relations R1, . . . , Rn are min-semitransitive, Ri, i = 1, . . . , m
and Rj, j = m + 1, . . . , n are pair-wisely comonotone, respectively, and Ri and Rj are pair-wisely
countermonotone. If the function F(x1, . . . , xm, xm+1, . . . , xn) : [0, 1]n → [0, 1] is increasing w.r.t.
x1, . . . , xm and decreasing w.r.t. xm+1, . . . , xn, the aggregated relation RF is min-semitransitive.

Proof. On the basis of the assumptions, combining Proposition 3 and Corollary 3, we have

min(RF(x, y), RF(y, z)) = min
(

F(R1(x, y), . . . , Rn(x, y)), F(R1(y, z), . . . , Rn(y, z))
)

= F
(

min(R1(x, y), R1(y, z)), . . . , min(Rm(x, y), Rm(y, z)),
max(Rm+1(x, y), Rm+1(y, z)), . . . , max(Rn(x, y), Rn(y, z))

)
≤ F

(
max(R1(x, w), R1(w, z)), . . . , max(Rm(x, w), Rm(w, z)),
min(Rm+1(x, w), Rm+1(w, z)), . . . , min(Rn(x, w), Rn(w, z))

)
= max

(
F(R1(x, w), . . . , Rn(x, w)), F(R1(w, z), . . . , Rn(w, z))

)
= max(RF(x, w), RF(w, z))

As a result, the min-semitransitivity of RF is proved.

4.2. Preservation of the Ferrers Property

In this part, an exploration for the min-Ferrers property is primarily presented. Under
the inspiration of the comonotonicity and countermonotonicity of binary functions, we find a
similar property for fuzzy relations themselves, named as self-comonotonicity, and we bring
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out its equivalent relation with the min-Ferrers property. Then, thereoms for the preservation
of min-Ferrers property are proposed, together with some illustrated examples.

Definition 13. Let Ω be a non-empty sets. A function F : Ω2 → R is said to be self-comonotone
in the first argument at (x1, x2, y1, y2), if(

F(x1, y1)− F(x2, y1)
)(

F(x1, y2)− F(x2, y2)
)
≥ 0.

Definition 14. Let Ω be a non-empty sets. A function F : Ω2 → R is said to be self-comonotone
in the second argument at (x1, x2, y1, y2), if(

F(x1, y1)− F(x1, y2)
)(

F(x2, y1)− F(x2, y2)
)
≥ 0.

The above definitions can be reformulated as follows.

Lemma 5. (i) A function F : Ω2 → R is self-comonotone in the first argument at (x1, x2, y1, y2) if

F(x1, y1) > F(x2, y1) implies F(x1, y2) ≥ F(x2, y2);

(ii) A function F : Ω2 → R is self-comonotone in the second argument at (x1, x2, y1, y2) if

F(x1, y1) > F(x1, y2) implies F(x2, y1) ≥ F(x2, y2).

Corollary 7. If a function F : Ω2 → R is increasing (or decreasing) in the first (or the second)
argument, then F is self-comonotone in the first (or the second) argument at any (x1, x2, y1, y2) ∈
Ω4.

Example 4. Any fuzzy conjunction C and disjunction D are self-comonotone in both arguments.

This can be got from the property of increasing in two arguments for any conjunction
C and any disjunction D.

Theorem 14. A fuzzy relation R : X2 → [0, 1] has the min-Ferrers property, if and only if it is
self-comonotone in the first or the second argument for any (x, z, y, w) ∈ X4 .

Proof. (i) If R is self-comonotone in the first or the second argument for any (x, z, y, w) ∈ X4,
then it has the min-Ferrers property.

Suppose R is self-comonotone in the first argument at (x, z, y, w), i.e.(
R(x, y)− R(z, y)

)(
R(x, w)− R(z, w)

)
≥ 0,

then, we have three cases:
Case 1: R(x, y) = R(z, y);
Case 2: R(x, y) > R(z, y) and R(x, w) ≥ R(z, w);
Case 3: R(x, y) < R(z, y) and R(x, w) ≤ R(z, w).

For the above cases, we always have

min
(

R(x, y), R(z, w)
)
≤ max

(
R(x, w), R(z, y)

)
.

Similarly, if R is self-comonotone in the second argument at (x, z, y, w), we can also
derive that R has the min-Ferrers property, which is omitted.

(ii) If R has the min-Ferrers property, then it is self-comonotone in the first or the second
argument for any (x, z, y, w) ∈ X4.

Suppose min
(

R(x, y), R(z, w)
)
= R(x, y) and max

(
R(x, w), R(z, y)

)
= R(z, y), then

we have R(x, y) ≤ R(z, y) and R(z, w) ≥ R(x, w). Furthermore, we can get
(

R(x, y) −
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R(z, y)
)(

R(x, w)− R(z, w)
)
≥ 0, which means R is self-comonotone in the first argument

at (x, z, y, w).
For the other similar cases w.r.t. min

(
R(x, y), R(z, w)

)
= R(z, w) or max

(
R(x, w), R(z,

y)
)
= R(x, w), it always can be derived either

(
R(x, y)− R(x, w)

)(
R(z, y)− R(z, w)

)
≥ 0

or
(

R(x, y)− R(z, y)
)(

R(x, w)− R(z, w)
)
≥ 0. Finally we obtain if R has the min-Ferrers

property, then it must be self-comonotone in the first or the second argument for any
(x, z, y, w) ∈ X4.

Corollary 8. If the fuzzy relation R is self-comonotone in the first (or the second) argument for any
(x, z, y, w) ∈ X4, then it has the min-Ferrers property.

Example 5. Any fuzzy conjunction C or disjunction D has the min-Ferrers property.

Example 6. Suppose two fuzzy relations R1, R2 ∈ FR(X), and R2(x, y) = a + bR1(x, y), x, y ∈
X, b ≤ 1− a. If R1 has the min-Ferrers property, then R2 also has the min-Ferrers property.

Example 7. Suppose two fuzzy relations R1, R2 ∈ FR(X) and R1 has the min-Ferrers property, If
there exists an increasing (or a decreasing) function F: [0, 1]→ [0, 1] that R2(x, y) = F(R1(x, y))
for any x, y ∈ X, then R2 also has the min-Ferrers property.

Case 1: If at (x, z, y, w),
(

R1(x, y)− R1(x, w)
)(

R1(z, y)− R1(z, w)
)
= 0, or

(
R1(x, y)−

R1(z, y)
) (

R1(x, w)− R1(z, w)
)
= 0, then

(
R2(x, y)− R2(x, w)

)(
R2(z, y)− R2(z, w)

)
= 0,

or
(

R2(x, y)− R2(z, y)
)(

R2(x, w)− R2(z, w)
)
= 0 can be obtained because R2 is a function

of R1.
Case 2: If at (x, z, y, w),(

R1(x, y)− R1(x, w)
)(

R1(z, y)− R1(z, w)
)
> 0,

or (
R1(x, y)− R1(z, y)

)(
R1(x, w)− R1(z, w)

)
> 0,

then (
R2(x, y)− R2(x, w)

)(
R2(z, y)− R2(z, w)

)
≥ 0,

or (
R2(x, y)− R2(z, y)

)(
R2(x, w)− R2(z, w)

)
≥ 0

can be obtained because for all x, y ∈ X, R2(x, y) increases or decreases with R1(x, y).
Finally, we can derive that R2 is self-comonotone in the first or the second argument at

any (x, z, y, w) ∈ X4 and has the min-Ferrers property.

Theorem 15. Given that F: [0, 1]n → [0, 1] is an increasing (or a decreasing) function. If all fuzzy
relations R1, . . . , Rn are min-Ferrers and pair-wisely comonotone, the aggregated relation RF is
min-Ferrers.

Proof. The proof for Theorem 15 is similar with that for Theorem 12.
Case 1: F is an increasing function.

min(RF(x, y), RF(z, w)) = min
(

F(R1(x, y), . . . , Rn(x, y)), F(R1(z, w), . . . , Rn(z, w))
)

= F
(

min(R1(x, y), R1(z, w)), . . . , min(Rn(x, y), Rn(z, w))
)

≤ F
(

max(R1(x, w), R1(z, y)), . . . , max(Rn(x, w), Rn(z, y))
)

= max
(

F(R1(x, w), . . . , Rn(x, w)), F(R1(z, y), . . . , Rn(z, y))
)

= max(RF(x, w), RF(z, y)).
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Case 2: F is a decreasing function.

min(RF(x, y), RF(z, w)) = min
(

F(R1(x, y), . . . , Rn(x, y)), F(R1(z, w), . . . , Rn(z, w))
)

= F
(

max(R1(x, y), R1(z, w)), . . . , max(Rn(x, y), Rn(z, w))
)

≤ F
(

min(R1(x, w), R1(z, y)), . . . , min(Rn(x, w), Rn(z, y))
)

= max
(

F(R1(x, w), . . . , Rn(x, w)), F(R1(z, y), . . . , Rn(z, y))
)

= max(RF(x, w), RF(z, y)).

Theorem 16. Given that fuzzy relations R1, . . . , Rn are min-Ferrers, Ri, i = 1, . . . , m and
Rj, j = m + 1, . . . , n are pair-wisely comonotone, respectively, and Ri and Rj are pair-wisely
countermonotone. If the function F(x1, . . . , xm, xm+1, . . . , xn) : [0, 1]n → [0, 1] is increasing w.r.t.
x1, . . . , xm and decreasing w.r.t. xm+1, . . . , xn, the aggregated relation RF is min-Ferrers.

Proof. The proof for Theorem 16 is similar with that for Theorem 13.

min(RF(x, y), RF(z, w)) = min
(

F(R1(x, y), . . . , Rn(x, y)), F(R1(z, w), . . . , Rn(z, w))
)

= F
(

min(R1(x, y), R1(z, w)), . . . , min(Rm(x, y), Rm(z, w)),

max(Rm+1(x, y), Rm+1(z, w)), . . . , max(Rn(x, y), Rn(z, w))
)

≤ F
(

max(R1(x, y), R1(z, w)), . . . , max(Rm(x, y), Rm(z, w)),

min(Rm+1(x, y), Rm+1(z, w)), . . . , min(Rn(x, y), Rn(z, w))
)

= max
(

F(R1(x, y), . . . , Rn(x, y)), F(R1(z, w), . . . , Rn(z, w))
)

= max(RF(x, y), RF(z, w)).

As a result, the preservation of min-Ferrers property for RF is proved.

Example 8. According to Example 1, the indices PD and NSD are comonotone for any fuzzy
intervals. In addition, it is known that both PD and NSD have the min-Ferrers property. Then,
according to Theorem 15, any increasing or decreasing function of PD and NSD preserves the
min-Ferrers property. By utilizing this conclusion, a new aggregated fuzzy relation representing a
combination of the possibility of M ≥ N and the necessity of M > N can be constructed by the
decision makers which preserves the min-Ferrers property.

5. Conclusions

Instead of restricting the aggregated functions to maintain the preservation for any
fuzzy relation that has the property, this work attended to give more general and sensible ag-
gregation functions without the constraint of dominance in a global sense through attaching
some reasonable conditions on the underling fuzzy relations. We gave the initial definitions
of comonotonicity and countermonotonicity for binary functions, and proved the commut-
ing and bisymmetric relations between min, max and some general functions. Based on
that, the preservations of min-transitivity, negative max-transitivity, min-semitransitivity
and min-Ferrers property for pair-wisely comonotone or countermonotone fuzzy relations
are suggested. Furthermore, some interesting relevant findings were also presented includ-
ing the definition of self-comonotonicity for binary functions, the equivalent conditions
of the min-Ferrers property of fuzzy relations, the transforming of min-transitivity and
negative max-transitivity, etc.

However, it also should be noted that (i) the theorems only provide the sufficient
conditions for the preservation of tansitivities and the Ferrers property; (ii) the conclusions
for the preservation are specially for the tansitivities and the Ferrers property involving
min and max. For the transitivities and the Ferrers properties with t-norms, t-conorms or
more general binary operations, they are not applicable. A further investigation on the
limitations of this paper would be an interesting work.



Symmetry 2022, 14, 958 15 of 15

Author Contributions: Conceptualization, Y.L. and F.J.; methodology, Y.L.; validation, Y.L. and F.J.;
formal analysis, Y.L.; investigation, Y.L. and F.J.; resources, Y.L.; data curation, Y.L.; writing—original
draft preparation, Y.L.; writing—review and editing, F.J.; visualization, F.J.; supervision, F.J.; project
administration, Y.L.; funding acquisition, Y.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the Natural Science Foundation of Shandong Province,
China (Grant ZR2018BG008,ZR2019PG009), the Ministry of Education Funded Project for Humanities
and Social Sciences Research (Grant No. 21YJC630088, No. 19YJC630059), and Shandong Province
Higher Educational Youth Innovation Team Development Program (Grant No. 2021RW020).

Data Availability Statement: Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

Acknowledgments: The authors especially thank the editors and anonymous reviewers for their
kind reviews and helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Díaz, S.; de Baets, B.; Montes, S. On the Ferrers property of valued interval orders. Top 2011, 19, 421–447. [CrossRef]
2. de Baets, B.; van de Walle, B.; Kerre, E. Fuzzy preference structures without incomparability. Fuzzy Sets Syst. 1995, 76, 333–348.

[CrossRef]
3. Fodor, J.; Roubens, M. Fuzzy Preference Modelling and Multicriteria Decision Support; Kluwer Academic Publishers: Dordercht, The

Netherlands; Boston, MA, USA; London, UK, 1994.
4. Herrera-Viedma, E.; Herrera, F.; Chiclana, F.; Luque, M. Some issues on consistency of fuzzy preference relations. Eur. J. Oper. Res.

2004, 154, 98–109. [CrossRef]
5. Wang, X.; Xue, Y. Traces and property indicators of fuzzy relations. Fuzzy Sets Syst. 2014, 246, 78–90. [CrossRef]
6. Chiclana, F.; Herrera-Viedma, E.; Herrera, F.; Alonso, S. Some induced ordered weighted averaging operators and their use for

solving group decision-making problems based on fuzzy preference relations. Eur. J. Oper. Res. 2007, 182, 383–399. [CrossRef]
7. Juan-De-Dios, G.; Juan-Jose, M.; Oscar, V. Aggregation of Indistinguishability Fuzzy Relations Revisited. Mathamtics 2021, in press.
8. Peneva, V.; Ivan, P. Properties of the aggregation operators related with fuzzy relations. Fuzzy Sets Syst. 2003, 139, 615–633.

[CrossRef]
9. Pradera, A.; Trillas, E.; Casti?eira, E. On the aggregation of some classes of fuzzy relations. In Technologies for Constructing

Intelligent Systems 2; Physica-Verlag HD: Berlin/Heidelberg, Germany, 2002; pp. 125–136.
10. Urszula, B. New types of aggregation functions for interval-valued fuzzy setting and preservation of pos-B and nec-B-transitivity

in decision making problems. Inf. Sci. 2015, 424, 385–399.
11. Xu, Z. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187.
12. Saminger, S.; Mesiar, R.; Bodenhofer, U. Domination of aggregation operators and preservation of transitivity. Int. J. Uncertain.

Fuzziness Knowl.-Based Syst. 2002, 10, 11–35. [CrossRef]
13. Urszula, B.; Król, A. Preservation of fuzzy relation properties based on fuzzy conjunctions and disjunctions during aggregation

process. Fuzzy Sets Syst. 2015, 291, 98–113.
14. de Baets, B.; Mesiar, R. Metrics and T-equalities. J. Math. Anal. Appl. 2002, 267, 531–547. [CrossRef]
15. Schweizer, B.; Sklar, A. Probabilistic Metric Spaces; Elsevier: New York, NY, USA, 1983.
16. Tardiff, R. Topologies for probabilistic metric spaces. Pacific J. Math. 1976, 65, 233–251. [CrossRef]
17. Drewniak, J.; Dudziak, U. Preservation of properties of fuzzy relations during aggregation processes. Kybernetika 2007, 43,

115–132.
18. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
19. Drewniak, J.; Król, A. A survey of weak connectives and the preservation of their properties by aggregations. Fuzzy Sets Syst.

2010, 161, 202–215. [CrossRef]
20. Calvo, T.; Kolesárová, A.; Komorníková, M.; Mesiar, R. Aggregation operators: Properties, classes and construction methods. In

Aggregation Operators; Studies in Fuzziness and Soft Computing; Calvo, T., Mayor, G., Mesiar, R., Eds.; Physica: Berlin/Heildelberg,
Germany, 2002; Volume 97, pp. 3–104.

21. Saminger, S.; Mesiar, R.; Dubois, D. Aggregation operators and commuting. IEEE Trans. Fuzzy Syst. 2007, 15, 1032–1045.
[CrossRef]

22. Aczél, J.; Gyula, M. Solution of the Rectangular m×n Generalized Bisymmetry Equation and of the Problem of Consistent
Aggregation. J. Math. Anal. Appl. 1996, 203, 104–126. [CrossRef]

23. Schmeidler, D. Integral representation without additivity. Proc. Amer. Math. Soc. 1986, 97, 255–261. [CrossRef]
24. Dubois, D.; Henri, P. Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci. 1983, 30, 183–224. [CrossRef]

http://doi.org/10.1007/s11750-010-0134-z
http://dx.doi.org/10.1016/0165-0114(94)00379-9
http://dx.doi.org/10.1016/S0377-2217(02)00725-7
http://dx.doi.org/10.1016/j.fss.2014.01.008
http://dx.doi.org/10.1016/j.ejor.2006.08.032
http://dx.doi.org/10.1016/S0165-0114(03)00141-6
http://dx.doi.org/10.1142/S0218488502001806
http://dx.doi.org/10.1006/jmaa.2001.7786
http://dx.doi.org/10.2140/pjm.1976.65.233
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/j.fss.2009.08.011
http://dx.doi.org/10.1109/TFUZZ.2006.890687
http://dx.doi.org/10.1006/jmaa.1996.0369
http://dx.doi.org/10.1090/S0002-9939-1986-0835875-8
http://dx.doi.org/10.1016/0020-0255(83)90025-7

	Introduction
	Preliminaries
	Comonotonicity and Countermonotonicity
	Definitions of Comonotonicity and Countermonotonicity
	Relations with Commuting and Bisymmetry

	Preservation of Transitivities and the Ferrers Properties
	Preservation of Transitivities
	Preservation of the Ferrers Property

	Conclusions
	References

