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Abstract: In this paper, we proposed an interval degradation model to improve the reliability
of the classical single point degradation model. The interval degradation model is very flexible
when model parameters follows different distributions. Twenty-five types of interval Gamma
degradation models are considered and discussed under different conditions. The reliabilities of
interval Gamma degradation models are obtained. The Monte Carlo method has been studied to
compute the reliability and lifetime of interval Gamma degradation model. The numerical examples
are conducted to compare the interval degradation model with the classical single point degradation
model. Simulation results reveal that the performance of reliability and mean lifetime of interval
Gamma degradation model are much better than those of the single Gamma degradation model.
Finally, we applied our model to a real data example and demonstrated the effectiveness and
feasibility of the interval Gamma degradation model.
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1. Introduction

The degradation model, as an important method for reliability evaluation of high-
reliability products, has become one of the hot topics in reliability theory and engineer-
ing [1–4]. In much of the literature [5–14], degradation paths have been modeled by the
general degradation process and the Stochastic process (SP) models, such as the Wiener
process, Gamma process, inverse Gaussian process, and exponential dispersion process.
For the Wiener process, it is known that the degradation path is not a strictly increasing
function. The degradation is monotonic when it is in the form of wear and cumulative
damage. The Gamma process and the inverse Gaussian (IG) process have a monotonic
degradation path and received wide applications when the monotonicity is necessary [1,9].
The scarce application of IG processes in degradation modeling might be attributed to its
unclear physical meaning to reliability engineers, in contrast to the well-known Wiener
and Gamma processes [9]. Degradation models based on the Gamma process have been
identified as the main way to model degradation processes given the characteristic that
its increments are independent and non-negative having a gamma distribution with an
identical scale parameter [10]. Gamma processes were satisfactorily fitted to data on creep
of concrete, fatigue crack growth, corroded steel gates, thinning due to corrosion, and chlo-
ride ingress into concrete [11]. The Gamma process is the limit of a compound Poisson
process [11,15]. This property is quite meaningful in degradation modeling, as many engi-
neers believe that many degradation phenomena are caused by external shocks. Moreover,
the shock magnitude is random and small, and the shock arrival process is described by a
compound Poisson process. Ref. [9] also gives the physical interpretation of the IG process
by showing that it is a limiting compound Poisson process under some conditions. The
physical interpretation of Gamma process is more intuitive and natural than that of the IG
process. Furthermore, many previous studies [16,17] revealed that the Gamma process is
more suitable for describing the degradation path.
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Thus, in this paper, we assumed the degradation path is the Gamma process. Fixed
failure thresholds were used for reliability assessment for the reason that product failure is
generally defined as degradation of the performance below or above a fixed threshold value.
This definition of fixed failure threshold degradation is called single point degradation.
This definition is simple and useful for study but is not reasonable to describe the failure of
the product completely.

In practice, it is difficult to express the failure threshold of the equipment with a fixed
value because of the differences among the test samples and the combined effect of the
uncertainty of external stress during use. For example, the shape variable of the coil spring,
the drift of the gyroscope, or the wear degree of mechanical parts [18,19].

Peng et al. [20] first proposed the concept of uncertain/random failure threshold in the
process of degradation modeling. The results showed that the uncertain/random failure
threshold was more credible for equipment reliability evaluation. However, the specific
distribution type of failure threshold and the analytical expression of remaining life were
not provided in this study. Usynin et al. [21] discussed the influence of reliability estimation
for random failure threshold in cumulative damage model based on linear Wiener process,
but still failed to provide the specific distribution type of failure threshold and the analytical
expression of remaining life. Huang et al. [22] proposed the use of normal distribution to
describe the random failure threshold and derived the corresponding integral expression
of equipment reliability. Ma Qiang [23] assumed that the random failure threshold was
a normal distribution, and carried out reliability assessment and analysis for the linear
degradation model, but the conclusion was only suitable for the linear degradation model.
Wang Zezhou et al. [24] assumed that the random failure threshold was a non-negative
normal distribution, and predicted and evaluated the residual life of the Wiener degradation
process. Paroissin and Salami [25] analyzed the Gamma degradation process when the
threshold is exponentially or Gamma distributed.

In summary, the threshold value is regarded as a random variable in the literature
above, which effectively solves the disadvantage of a fixed threshold value. There are two
deficiencies. Firstly, it is simply assumed that the threshold is a random variable, and there
is no restriction to the range of its value. It is unreasonable for the threshold to be very small
or large. For example, Kuitche (2010) [26] assumed that if the output power degradation
rate of photovoltaic modules increases to a threshold level, the photovoltaic modules
fail. If the threshold value is regarded as a random variable and follows exponential or
Gamma distribution at [0,+∞] [25], it is obviously unreasonable because the output power
degradation rate at [0, 1]. The threshold value follows exponential or Gamma distribution
at interval [D1, D2] ⊆ [0, 1] is more reasonable. Thus, it is more realistic to describe the
threshold by random variables within a certain interval. Secondly, the current literature
usually assumes that the thresholds are normally distributed, which may not be consistent
with practical situations.

Guan Qiang [27] first proposed the interval degradation model and assumed that the
threshold is a random variable within a certain interval. The interval degradation process
is shown in Figure 1, which solves the interval modeling problem of linear degradation.
Guan Qiang [28] further carried out interval type modeling and analysis for the exponential
degradation model. This paper assumes that the threshold is normal distribution, uniform
distribution, Gamma distribution, exponential distribution, and Weibull distribution within
a certain interval, and discusses the corresponding reliability assessment of different ran-
dom effects of the Gamma process degradation model. The estimation of reliability function
for interval type and single point type degradation models were compared and analyzed.
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Figure 1. Interval degradation.

The rest of this article is organized as follows. In Section 2, we introduced the interval
Gamma degradation models and the assumptions used in the study. In Section 3, the relia-
bility of different interval Gamma degradation models is demonstrated in theorems. In
Section 4, we proposed Monte Carlo method and computed the reliability for different
interval Gamma degradation models. In Section 5, simulations are conducted to show
the effectiveness of the interval Gamma degradation models. An example of real data is
analyzed in Section 6. The conclusion and discussion are shown in Section 7.

2. Interval Degradation Model

In many engineering applications, the failure time T for an item is defined as the time
at which the degradation path y(t, Θ) first reaches a pre-determined fixed threshold D0.
The lifetime T is defined as follows

T = in f {t ≥ 0, y(t, Θ) ≥ D0} (1)

where y(t, Θ) is a an increasing function. It is unrealistic to expect the threshold value D to
be a fixed constant D0. D is considered as a random variable in the literatures [20,21,24,25].
For example, Ref. [25] assumed D is exponentially or Gamma distributed at [0,+∞]. How-
ever, the random D has the boundary [DL, DU ]. The boundary [DL, DU ] is generally
assumed to be known and given according to expert judgments. For example, a tire failure
is considered when tire wear reaches a certain value D. Obviously, the boundary of D is
[0, L], where L is the length of the tire. Thus, the threshold value D is assumed to be a
random variable and in a certain interval [D1, D2] ⊆ [DL, DU ] is more scientific.

2.1. General Interval Degradation Model

The cumulative distribution function (CDF) of lifetime T is

F(t) = P(T ≤ t) =
{

P(y(t, Θ) ≥ D), if y(t, Θ) is an increasing funciton;
P(y(t, Θ) ≤ D), if y(t, Θ) is an decreasing funciton;

(2)

where D is a random threshold value at interval [D1, D2] ⊆ [DL, DU ], Θ is the param-
eters of the degradation model. [D1, D2] values are determined by expert judgements
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and engineering experiences. In general, let D1 = D0 − p% ∗ D0, D2 = D0 + p% ∗ D0.
p% = 5%, 10%, 20%, · · · , 100% represent the range of uncertain of threshold value.

2.2. Gamma Degradation Model

The degradation path is assumed to be Gamma process, {y(t, α, β), t ≥ 0}. The Gamma
process has the following properties:

• y(0, α, β) = 0 with probability one;
• y(t, α, β) has independent increments; that is, y(t2, α, β)− y(t1, α, β) and y(s2, α, β)−

y(s1, α, β) are independent, ∀t2 > t1s2 > s1;
• ∆y(t, α, β) = y(t + ∆t, α, β)− y(t, α, β) ∼ Gamma(α∆Λ(t), β), ∀t > 0.

where Gamma(α∆Λ(t), β) is a Gamma distribution with shape parameter α∆Λ(t) and scale
parameter β, and the corresponding probability density function (PDF) is

fG(y; α∆Λ(t), β) =
βα∆Λ(t)yα∆Λ(t)−1exp(−βy)

Γ(α∆Λ(t))
, (3)

where Λ(t) = tq,α is a known parameter for describing the common performance of
product. β is a random parameter for describing the different performance of product.

The traditional degradation models usually assume that D is fixed and the α, β are
non-random parameters in (1). In this situation, the CDF of lifetime T is

F(t) = P(y(t, α, β) ≥ D) =

+∞∫
D

fG(y; αΛ(t), β)dy =
Γ(αΛ(t), βD)

Γ(αΛ(t))
, (4)

where Γ(αΛ(t), βD) =
+∞∫
βD

uαΛ(t)−1 exp{−u}du. (4) is the same as Theorem 2.1 of [25].

When β is a random parameter, we called (3) a random effect Gamma degradation
model. β is usually assumed to be a Gamma distribution, Gamma (η, γ), and the corre-
sponding PDF of β is

g(β) =
γη

Γ(η)
βη−1 exp{−γβ}.

Hence the PDF of y(t, α, β) is

fy(t)(y) =
+∞∫
0

fG(y; αΛ(t), β)g(β)dβ =
yαΛ(t)−1γηΓ(αΛ(t) + η)

Γ(αΛ(t))Γ(η)(y + γ)αΛ(t)+η
. (5)

From (5), it is easy to prove that the random variable
ηy(t, α, β)

αγΛ(t)
follows an F distribu-

tion with 2αΛ(t) and 2η degrees of freedom.
When D is fixed, α is an unknown parameter and β is a random parameter with

Gamma (η, γ) distribution. The CDF of lifetime T is

F(t) = P(y(t, α, β) ≥ D) = P
(

ηy(t, α, β)

αγΛ(t)
≥ ηD

αγΛ(t)

)
= 1− F2αΛ(t),2η

(
ηD

αγΛ(t)

)
, (6)

where F2αΛ(t),2η(.) is the CDF of the F distribution with 2αΛ(t) and 2η degrees of freedom.

2.3. Random Effect Gamma Degradation Model Testing

The degradation data are

(tij, yij), i = 1, . . . , n, j = 1, . . . , ni.

Null hypothesis H0: β is an unknown parameter.
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Alternative hypothesis H1: β is a random variable (such as β is a Gamma (η, γ)
distribution).

When H0 holds, according to (3), the likelihood function is

L0(α, β) = Πn
i=1Πni

j=1

βαΛ(tij)y
αΛ(tij)−1
ij exp(−βyij)

Γ(αΛ(tij))
.

The maximum likelihood estimation (MLE) of α and β are denoted by α̂0 and β̂0,
and the estimation of α̂0 and β̂0 is similar to [29].

When H1 holds, according to (5), the likelihood function is

L1(α, η, γ) = Πn
i=1Πni

j=1

y
αΛ(tij)−1
ij γηΓ(αΓ(tij) + η)

Γ(αΛ(tij))Γ(η)(yij + γ)αΛ(tij)+η
.

The MLE of α, η and γ are denoted by α̂1, η̂1 and γ̂1.
The likelihood ratio test λ = L1(α̂1,η̂1,γ̂1)

L0(α̂0,β̂0)
. When n ∗ ni → +∞, 2LN(λ)→ χ(k). Thus,

when significance level α′ = 0.05 and 0.1 is given, the rejection region is {2LN(λ) > χα′(k)}.

2.4. Interval Gamma Degradation Model

The CDF of lifetime T is

F(t) = P(T ≤ t) = P(y(t, α, β) ≥ D) (7)

where, y(t, α, β) is a Gamma process, D is a random threshold value at interval [D1, D2],
and β is a random parameter. When β is assumed to be an X distribution and D is assumed
to be a Y distribution in (7), we called that an X-Y interval Gamma degradation model
and in short an X-Y interval model. When β is assumed to be an X distribution and D is a
fixed value in (7), we called it an X-random effect single point Gamma degradation model
and in short an X-Random effect model. D is a random threshold value in the interval
[D1, D2], thus, Y distribution usually truncate the distribution in interval [D1, D2] also. In
the following, we compared the interval and single point Gamma degradation models
under different situations.

3. Reliability of Interval Gamma Degradation Model

Theorem 1. β is assumed to be a Gamma (η, γ) distribution in (7).

• The threshold value D is a fixed value D0. According to (6), the reliability of the Gamma-
Random effect single point Gamma degradation model is

R(t) = 1− F(t) = 1− P(y(t, α, β) ≥ D0) = F2αΛ(t),2η

(
ηD0

αγΛ(t)

)
(8)

• When the threshold value D is a uniform distribution U(D1, D2), the reliability of the Gamma-
Uniform interval model is

R(t) =
1

D2 − D1

D2∫
D1

F2αΛ(t),2η

(
ηD

αγΛ(t)

)
dD (9)

• When the threshold value D is assumed to be a truncated normal distribution N(D1,D2)
(µ1, δ2

1),
the reliability of the Gamma-Normal interval model is
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R(t) =
D2∫

D1

F2αΛ(t),2η

(
ηD

αγΛ(t)

)
CN1√
2πδ1

exp

(
− (D− µ1)

2

2δ2
1

)
dD (10)

where CN1 = 1
Φ(

D2−µ1
δ1

)−Φ(
D1−µ1

δ1
)
.

• When the threshold value D is a truncated exponential distribution Exp(D1,D2)
(λ1), the

reliability of the Gamma-Exponential interval model is

R(t) =
D2∫

D1

F2αΛ(t),2η

(
ηD

αγΛ(t)

)
Ceλ1 exp (−Dλ1)dD (11)

where Ce =
1

exp{−D1λ1}−exp{−D2λ1}
.

• When the threshold value D is a truncated Weibull distribution Weibull(D1,D2)
(a, b), the

reliability of the Gamma-Weibull interval model is

R(t) =
D2∫

D1

F2αΛ(t),2η

(
ηD

αγΛ(t)

)
CW

a
b

(
D
b

)a−1
exp

{
−
(

D
b

)a}
dD (12)

where CW = 1
exp{−( D1

b )a}−exp{−( D2
b )a}

.

• When the threshold value D is a truncated Gamma distribution gamma(D1,D2)
(α1, β1), the

reliability of the Gamma-Gamma interval model is

R(t) =
D2∫

D1

F2αΛ(t),2η

(
ηD

αγΛ(t)

)
Cg

βα1
1

Γ(α1)
Dα1−1 exp{−β1D}dD (13)

where Cg = 1
F(D2)−F(D1)

, F(.) is the CDF of gamma(α1, β1).

Proof. See Appendix A.

Remark 1. Section 5.1 of [25] considerd D is a gamma distribution at (0,+∞). When the interval
(D1, D2) is (0,+∞), according to (13), the pdf of lifetime T is the same as [25]. In other words,
Ref. [25] is a special case of the Gamma-Gamma interval model (13).

Theorem 2. β is assumed to be a uniform distribution U(β1, β2) in (7).

• When the threshold value D is a fixed value D0, the reliability of the Uniform-Random effect
single point Gamma degradation model is

R(t) = 1− F(t) = 1− P(y(t, α, β) ≥ D0) =

β2∫
β1

1
β2 − β1

Fg(βD0)dβ (14)

where Fg(.) is the CDF of gamma(αΛ(t), 1).
• When the threshold value D is an uniform distribution U(D1, D2), the reliability of the

Uniform-Uniform interval model is

R(t) =
1

D2 − D1

D2∫
D1

β2∫
β1

1
β2 − β1

Fg(βD)dβdD (15)
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• When the threshold value D is a truncated normal distribution N(D1,D2)
(µ1, δ2

1), the reliability
of the Uniform-Normal interval model is

R(t) =
D2∫

D1

β2∫
β1

1
β2 − β1

Fg(βD)
CN1√
2πδ1

exp

(
− (D− µ1)

2

2δ2
1

)
dβdD (16)

• When the threshold value D is a truncated exponential distribution Exp(D1,D2)
(λ1), the

reliability of the Uniform-Exponential interval model is

R(t) =
D2∫

D1

β2∫
β1

1
β2 − β1

Fg(βD)Ceλ1 exp (−Dλ1)dβdD (17)

• When the threshold value D is a truncated Weibull distribution Weibull(D1,D2)
(a, b), the

reliability of the Uniform-Weibull interval model is

R(t) =
D2∫

D1

β2∫
β1

1
β2 − β1

Fg(βD)CW
a
b

(
D
b

)a−1
exp

{
−
(

D
b

)a}
dβdD (18)

• When the threshold value D is a truncated Gamma distribution gamma(D1,D2)
(α1, β1), the

reliability of the Uniform-Gamma interval model is

R(t) =
D2∫

D1

β2∫
β1

1
β2 − β1

Fg(βD)Cg
βα1

1
Γ(α1)

Dα1−1 exp{−β1D}dβdD (19)

Proof. See Appendix B.

Theorem 3. β is assumed to be a exponential distribution Exp(λ) in (7).

• When the threshold value D is a fixed value D0, the reliability of the Exponential-Random
effect single point Gamma degradation model is

R(t) = 1− F(t) = 1− P(y(t, α, β) ≥ D0) = F2αΛ(t),2

(
D0

αλΛ(t)

)
(20)

where F2αΛ(t),2(.) is CDF of F distribution with 2αΛ(t) and 2 degrees of freedom.
• When threshold value D is an uniform distribution U(D1, D2). The reliability of the Exponential-

Uniform interval model is

R(t) =
1

D2 − D1

D2∫
D1

F2αΛ(t),2

(
D

αλΛ(t)

)
dD (21)

• When the threshold value D is a truncated normal distribution N(D1,D2)
(µ1, δ2

1), the reliability
of the Exponential-Normal interval model is

R(t) =
D2∫

D1

F2αΛ(t),2

(
D

αλΛ(t)

)
CN1√
2πδ1

exp

(
− (D− µ1)

2

2δ2
1

)
dD (22)
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• When the threshold value D is a truncated exponential distribution Exp(D1,D2)
(λ1), the

reliability of the Exponential-Exponential interval model is

R(t) =
D2∫

D1

F2αΛ(t),2

(
D

αλΛ(t)

)
Ceλ1 exp (−Dλ1)dD (23)

• When the threshold value D is a truncated Weibull distribution Weibull(D1,D2)
(a, b), the

reliability of the Exponential-Weibull interval model is

R(t) =
D2∫

D1

F2αΛ(t),2

(
D

αλΛ(t)

)
CW

a
b

(
D
b

)a−1
exp

{
−
(

D
b

)a}
dD (24)

• When the threshold value D is a truncated Gamma distribution gamma(D1,D2)
(α1, β1), the

reliability of the Exponential-Gamma interval model is

R(t) =
D2∫

D1

F2αΛ(t),2

(
D

αλΛ(t)

)
Cg

βα1
1

Γ(α1)
Dα1−1 exp{−β1D}dD (25)

Proof. See Appendix C.

Theorem 4. β is assumed to be a Weibull distribution Weibull(k, λ) in (7).

• When the threshold value D is a fixed value D0, the reliability of the Weibull-Random effect
single point Gamma degradation model is

R(t) = 1− P(y(t, α, β) ≥ D0) =

+∞∫
0

Fg(βD0)
k
λ

(
β

λ

)k−1
exp

{
−
(

β

λ

)k
}

dβ (26)

where Fg(.) is the CDF of gamma(αΛ(t), 1).
• When the threshold value D is an uniform distribution U(D1, D2), the reliability of the

Weibull-Uniform interval model is

R(t) =
1

D2 − D1

D2∫
D1

+∞∫
0

Fg(βD)
k
λ

(
β

λ

)k−1
exp

{
−
(

β

λ

)k
}

dβdD (27)

• When the threshold value D is a truncated normal distribution N(D1,D2)
(µ1, δ2

1), the reliability
of the Weibull-Normal interval model is

R(t) =
D2∫

D1

+∞∫
0

Fg(βD)
k
λ

(
β

λ

)k−1
exp

{
−
(

β

λ

)k
}

CN1√
2πδ1

exp

(
− (D− µ1)

2

2δ2
1

)
dβdD (28)

• When the threshold value D is a truncated exponential distribution Exp(D1,D2)
(λ1), the

reliability of the Weibull-Exponential interval model is

R(t) =
D2∫

D1

+∞∫
0

Fg(βD)
k
λ

(
β

λ

)k−1
exp

{
−
(

β

λ

)k
}

Ceλ1 exp (−Dλ1)dβdD (29)

• When the threshold value D is a truncated Weibull distribution Weibull(D1,D2)
(a, b), the

reliability of the Weibull-Weibull interval model is
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R(t) =
D2∫

D1

+∞∫
0

Fg(βD)
k
λ

(
β

λ

)k−1
exp

{
−
(

β

λ

)k
}

CW
a
b

(
D
b

)a−1
exp

{
−
(

D
b

)a}
dβdD (30)

• When threshold value D is a truncated Gamma distribution gamma(D1,D2)
(α1, β1), the

reliability of the Weibull-Gamma interval model is

R(t) =
D2∫

D1

+∞∫
0

Fg(βD)
k
λ

(
β

λ

)k−1
exp

{
−
(

β

λ

)k
}

Cg
βα1

1
Γ(α1)

Dα1−1 exp{−β1D}dβdD (31)

Proof. See Appendix B.

Theorem 5. β is assumed to be a truncated normal distribution N(β1,β2)
(µ, δ2) in (7).

• When the threshold value D is a fixed value D0, the reliability of the Normal-Random effect
single point Gamma degradation model is

R(t) = 1− P(y(t, α, β) ≥ D0) =

β2∫
β1

Fg(βD0)
CN√
2πδ

exp
(
− (β− µ)2

2δ2

)
dβ (32)

where CN = 1
Φ(

β2−µ
δ )−Φ(

β1−µ
δ )

,

• When the threshold value D is an uniform distribution U(D1, D2), the reliability of the
Normal-Uniform interval model is

R(t) =
1

D2 − D1

D2∫
D1

β2∫
β1

Fg(βD)
CN√
2πδ

exp
(
− (β− µ)2

2δ2

)
dβdD (33)

• When the threshold value D is a truncated normal distribution N(D1,D2)
(µ1, δ2

1), the reliability
of the Normal-Normal interval model is

R(t) =
D2∫

D1

β2∫
β1

Fg(βD)
CN√
2πδ

exp
(
− (β− µ)2

2δ2

)
CN1√
2πδ1

exp

(
− (D− µ1)

2

2δ2
1

)
dβdD (34)

• When the threshold value D is a truncated exponential distribution Exp(D1,D2)
(λ1), the

reliability of the Normal-Exponential interval model is

R(t) =
D2∫

D1

β2∫
β1

Fg(βD)
CN√
2πδ

exp
(
− (β− µ)2

2δ2

)
Ceλ1 exp (−Dλ1)dβdD (35)

• When the threshold value D is a truncated Weibull distribution Weibull(D1,D2)
(a, b), the

reliability of the Normal-Weibull interval model is

R(t) =
D2∫

D1

β2∫
β1

Fg(βD)
CN√
2πδ

exp
(
− (β− µ)2

2δ2

)
CW

a
b

(
D
b

)a−1
exp

{
−
(

D
b

)a}
dβdD (36)
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• When the threshold value D is a truncated Gamma distribution gamma(D1,D2)
(α1, β1), the

reliability of the Normal-Gamma interval model is

R(t) =
D2∫

D1

β2∫
β1

Fg(βD)
CN√
2πδ

exp
(
− (β− µ)2

2δ2

)
Cg

βα1
1

Γ(α1)
Dα1−1 exp{−β1D}dβdD (37)

Proof. See Appendix B.

4. Estimate Reliability for Interval Degradation Model

From Theorems 1–5, most of the reliabilities of the product have no analytical form.
When all parameters degradation model are estimated, the reliability of the product cannot
be obtained.

We adopt the Monte Carlo method to compute these integrations. From Theorems 1–5,
most of the reliabilities have following form

R(t) =
D2∫

D1

β2∫
β1

g(t, β, D) f1(β) f2(D)dβdD (38)

where f1(β), f2(D) are known density functions in (β1, β2) and (D1, D2), respectively,
and g(t, β, D) is a known function. Thus, we can use following steps of compute the reliability.

1. Draw M random samples (β1, · · · , βM) from density function f1(β).
2. Draw N random samples (D1, · · · , DN) from density function f2(D).
3. For fixed t,

R(t) =

M
∑

i=1

N
∑

j=1
g(t, βi, Dj)

MN
.

For the general interval degradation model (2), its CDF of lifetime and reliability can
be estimated by following steps of the Monte Carlo method.

1. Draw a random sample Θ̂ from density function f1(Θ), and obtain the degradation
path y(t, Θ̂).

2. Draw a random sample D̂ from density function f2(D), and compute the lifetime
T̂ = in f (y(t, Θ̂) > D̂).

3. Repeat step 1 and 2 by N times, and obtain the lifetime (T̂1, · · · , T̂N).

4. For fixed t, calculate the number of (T̂1, · · · , T̂N) < t, and denote the result by M(t),
then the CDF of lifetime and reliability can be estimated by

F(t) =
M(t)

N
, R(t) = 1− F(t).

5. Simulation Comparison Results

For simplicity, we used the following terminologies in the simulation results: (i) the
No-random effect Gamma process degradation model for α, β, and D is fixed, (ii) the
Random effect Gamma process degradation model for α and D is fixed and β follows corre-
sponding distributions, (iii) the X-Y interval Gamma process degradation model (Random
effect interval Gamma process degradation model) for α is fixed, β and D follow X and
Y distributions, respectively. For comparing those degradation models in the simulation:
(i) let α = 0.5, β = 30 q = 1.1 and D = 60 in (3) for the No-random effect Gamma process
degradation model; (ii) let α = 0.5, q = 1.1, D = 60, and β follows the Gamma distribution
G(60, 2), Uniform distribution U(20, 40), Weibull distribution Weibull(0.5, 15), Exponential
distribution Exp(1/30), and Normal distribution N(30, 102) with the same mean of 30 for
different random effect Gamma process degradation model respectively. (iii) let α = 0.5,
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q = 1.1, β follows different distributions with the same mean 30 and D follows different
distributions at interval [D1, D2] with the same mean of 60 for different X-Y interval Gamma
process degradation model, respectively. Interval [D1, D2] represents the range of uncertain
of threshold value 60. [D1, D2] values are determined by expert judgments and engineering
experiences. In general, let D1 = D0 − p% ∗ D0, D2 = D0 + p% ∗ D0. Two interval [D1, D2]
cases [55, 65] and [50, 70] are considered in this simulation. The reliability of the X-Y interval
and single point Gamma process degradation model (No-random effect and Random effect
Gamma process degradation models) are calculated from Theorems 1–5 and Section 4.
According to these terminologies, the model in Section 5.1 of [25] is the Gamma-Gamma
interval Gamma process degradation model, and the interval is (0,+∞). The results are
shown in Figures 2–26. The mean lifetime, 10 percent lifetime, and 90 percent lifetime for
the different models are listed in Table 1.

Figure 2. Reliability of the Gamma-Gamma interval degradation model.

Figure 3. Reliability of Gamma-Uniform interval degradation model.
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Figure 4. Reliability of the Gamma-Normal interval degradation model.

Figure 5. Reliability of the Gamma-Exponential interval degradation model.



Symmetry 2022, 14, 954 13 of 32

Figure 6. Reliability of the Gamma-Weibull interval degradation model.

Figure 7. Reliability of the Uniform-Gamma interval degradation model.
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Figure 8. Reliability of the Uniform-Uniform interval degradation model.

Figure 9. Reliability of Uniform-Normal interval degradation model.
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Figure 10. Reliability of the the Uniform-Exponential interval degradation model.

Figure 11. Reliability of the Uniform-Weibull interval degradation model.
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Figure 12. Reliability of the Exponential-Gamma interval degradation model.

Figure 13. Reliability of the Exponential-Uniform interval degradation model.
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Figure 14. Reliability of the Exponential-Normal interval degradation model.

Figure 15. Reliability of the Exponential-Exponential interval degradation model.
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Figure 16. Reliability of the Exponential-Weibull interval degradation model.

Figure 17. Reliability of the Weibull-Gamma interval degradation model.
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Figure 18. Reliability of the Weibull-Uniform interval degradation model.

Figure 19. Reliability of the Weibull-Normal interval degradation model.
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Figure 20. Reliability of the Weibull-Exponential interval degradation model.

Figure 21. Reliability of the Weibull-Weibull interval degradation model.
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Figure 22. Reliability of the Normal-Gamma interval degradation model.

Figure 23. Reliability of the Normal-Uniform interval degradation model.



Symmetry 2022, 14, 954 22 of 32

Figure 24. Reliability of the Normal-Normal interval degradation model.

Figure 25. Reliability of the Normal-Uniform interval degradation model.
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Figure 26. Reliability of the Normal-Normal interval degradation model.

Some points are quite clear from Figures 2–26, and Table 1.

• The reliability, 10 percent lifetime, and 90 percent lifetime of the No-random effect
model are significantly different from the random effect model and interval model. It
suggests that the test of original data being random or non-random is critical before
choosing the model to use.

• When the parameter β follows exponential distribution, the reliabilities, 10 percent
and 90 percent lifetime are almost the same in Random effect model and interval
degradation models (Table 1 and Figures 12–16). In other words, the Random effect
single degradation model and Random effect interval degradation model are the same
in such cases.

• The reliabilities, 10 percent and 90 percent lifetime of the random effect models except
for the Exponential random effect model are a little different from the interval model.
The differences of reliabilities, 10 percent and 90 percent lifetime between the random
effect and interval models become larger, when the length of interval (D1, D2) is
increasing (Table 1 and Figure 3–26).

• The mean lifetimes of the Normal random effect model, Normal-Y interval model,
Gamma random effect model, Gamma-Y interval model, Uniform random effect
model, and Uniform-Y interval model are almost the same as the No-random ef-
fect model. However, the mean lifetimes of the Exponential random effect model,
Exponential-Y interval model, Weibull random effect model, and Weibull-Y interval
model are quite different from the No-random effect model (Table 1). In other words, it
needs to be more prudent to use the Exponential random effect model, Exponential-Y
interval model, Weibull random effect model, and Weibull-Y interval model until hav-
ing robust data to show that β follows exponential distribution or Weibull distribution
is compelling.
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Table 1. The life time for the different models.

Model Mean Life Time 10 Percent Life Time 90 Percent Life Time

No random effect model 1715 1662 1756
Gamma random effect model 1714 1452 1966

Gamma-Uniform interval 55–60 1709 1428 1978
Gamma-Uniform interval 50–70 1707 1381 2025
Gamma-Normal interval 55–60 1716 1428 1990
Gamma-Normal interval 50–70 1712 1381 2037

Gamma-Exponential interval 55–60 1709 1428 1978
Gamma-Exponential interval 50–70 1698 1381 2013

Gamma-Weibull interval 55–60 1744 1452 2013
Gamma-Weibull interval 50–70 1677 1358 2002
Gamma-Gamma interval 55–60 1710 1428 1978
Gamma-Gamma interval 50–70 1708 1405 2002

Gamma-Gamma ([25]) 1713 1393 2037
Uniform random effect model 1708 1288 2119

Uniform-Uniform interval 55–60 1712 1288 2119
Uniform-Uniform interval 50–70 1720 1276 2177
Uniform-Normal interval 55–60 1710 1264 2130
Uniform-Normal interval 50–70 1691 1241 2142

Uniform-Exponential interval 55–60 1701 1264 2095
Uniform-Exponential interval 50–70 1717 1253 2165

Uniform-Weibull interval 55–60 1688 1264 2084
Uniform-Weibull interval 50–70 1718 1276 2165
Uniform-Gamma interval 55–60 1690 1264 2107
Uniform-Gamma interval 50–70 1719 1253 2165

Exponential random effect model 1330 217 3643
Exponential-Uniform interval 55–60 1329 217 3652
Exponential-Uniform interval 50–70 1327 217 3679
Exponential-Normal interval 55–60 1331 217 3661
Exponential-Normal interval 50–70 1324 217 3652

Exponential-Exponential interval 55–60 1327 217 3634
Exponential-Exponential interval 50–70 1324 217 3652

Exponential-Weibull interval 55–60 1326 217 3634
Exponential-Weibull interval 50–70 1320 217 3625
Exponential-Gamma interval 55–60 1328 217 3643
Exponential-Gamma interval 50–70 1324 217 3634

Weibull random effect model 755 15 3752
Weibull-Uniform interval 55–60 761 19 3950
Weibull-Uniform interval 50–70 719 14 4500
Weibull-Normal interval 55–60 781 10 4067
Weibull-Normal interval 50–70 683 14 4500

Weibull-Exponential interval 55–60 767 15 3865
Weibull-Exponential interval 50–70 709 15 3689

Weibull-Weibull interval 55–60 702 19 4500
Weibull-Weibull interval 50–70 747 10 4351
Weibull-Gamma interval 55–60 770 15 3968
Weibull-Gamma interval 50–70 726 10 4247

No random effect model 1715 1662 1756
Normal random effect model 1691 898 2385

Normal-Uniform interval 55–60 1703 1052 2343
Normal-Uniform interval 50–70 1701 1024 2420
Normal-Normal interval 55–60 1696 996 2357
Normal-Normal interval 50–70 1675 982 2357

Normal-Exponential interval 55–60 1702 968 2385
Normal-Exponential interval 50–70 1679 996 2364

Normal-Weibull interval 55–60 1665 982 2314
Normal-Weibull interval 50–70 1666 982 2343
Normal-Gamma interval 55–60 1687 1038 2314
Normal-Gamma interval 50–70 1698 1017 2357
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6. Real Data Analysis

In this section, we used a real data example from the photovoltaic module problem
described by Kuitche (2010) [26] to test the model we proposed. When the output power
degradation rate of photovoltaic modules increases to a certain level, the photovoltaic
modules fail. Therefore, the output power degradation rate of photovoltaic modules
can be treated as the degradation characteristic y(t), and obviously, y(0) = 0. The real
data of output power degradation rate of photovoltaic modules is shown in Table 2. The
degradation characteristic (Liu et al. (2020) [30]) is assumed to follow the Gamma process
and is presented by

(tj, yij), i = 1, . . . , 4, j = 1, . . . , 10.

Here, we also assume Λ(t) = tq in (3). Liu et al. (2020) assumed β in Equation (3)
follows the Gamma distribution (η, γ). We use the likelihood ratio test for the random
effect β, the result are listed in Table 3.

Table 2. The output power degradation rate of photovoltaic modules.

Test Date Time (Day) Time (Year) S70L45 S72L46 S73L47 S71L48

9/24/1998 0 0 0 0 0 0
3/23/1999 180 0.493 1.866 2.005 1.919 0.949
3/29/2000 552 1.512 1.433 1.693 1.868 0.358
3/30/2001 918 2.515 3.824 4.493 0.940 7.345
4/18/2002 1302 3.567 4.004 6.040 2.706 8.582
5/7/2003 1686 4.619 5.296 8.242 2.914 12.845

3/16/2004 2000 5.479 7.010 11.465 4.499 15.526
7/14/2005 2485 6.808 13.341 11.460 6.554 18.517
5/25/2006 2800 7.671 23.853 22.862 11.612 24.881
5/29/2007 3169 8.682 30.398 28.378 17.109 31.551

Table 3. The likelihood ratio test for the Gamma process.

Model MLE of Parameters p-Value

H0: No random effect α̂ = 0.696, q̂ = 1.316, β̂ = 0.491
H1: Gamma random effect α̂ = 0.709, q̂ = 1.211, η̂ = 57.811, γ̂ = 175.37 0.001

We reject that the null hypothesis H0 is significant because the p-value = 0.001 < 0.05.
Thus, β following Gamma distribution holds. Liu et al. (2020) [30] is assumed to fail when
the output power degradation rate increases by 20% from its initial value. For the interval
degradation model, the photovoltaic modules are assumed to fail when the output power
degradation rate D increases at an interval (20%− ε, 20% + ε) from its initial value. Two
cases (17%, 23%) and (14%, 26%) of the interval (20%− ε, 20% + ε) are considered in this
real data analysis. D follows different distributions with the same mean 20%. Thus, we
calculate the reliabilities and mean lifetimes for different models by Theorem 1 and Section 4.
We also calculate the reliability and mean lifetime for the Gamma process degradation
model [25] in interval (0,+∞). The results are shown in Figures 27–31 and Table 4.

Figure 27 and Table 4 show that the range of reliabilities and the length of the 10 percent
lifetime and the 90 percent lifetime for Gamma-Gamma interval model increased with
the length of intervals (17%, 23%), (14%, 26%) and (0,+∞) [25]. Figures 27–31 show
that the reliabilities of No-random effect models are always larger than those of interval
degradation models. No-random effect model is easily affected by a photovoltaic module
S73L47 because the reliability of photovoltaic module S73L47 is larger than that of other
modules. The reliability of the interval degradation model is more realistic to reflect the
photovoltaic modules, which take into account all the photovoltaic modules at the same
time. The performances of interval degradation models are similar to random effect models.
Table 4 shows that the mean lifetime of the No-random effect model is 7.71 years which is
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close to 7.60 years and 6.80 years, which were estimated by Liu et al. (2020) [30]. The mean
lifetimes of interval degradation models are close to 6.70 years and are consistent with the
photovoltaic modules S70L45, S72L46, and S71L48. The 10 percent lifetimes of interval
degradation models are smaller than that of random effect degradation models, especially
No-random effect degradation models. It indicates that No-random and random effect
degradation models would overestimate the 10 percent lifetime of photovoltaic modules.
The 90 percent lifetime of interval degradation models is between that of the random effect
degradation model and the No-random effect degradation model.

Table 4. The lifetime of photovoltaic module for the different models.

Model Mean Life 10 Percent Life 90 Percent Life
Time (Year) Time (year) Time (Year)

No random effect nonlinear model ([30]) 7.60 ∗ ∗
No random effect linear model ([30]) 6.80 ∗ ∗

No random effect model 7.71 5.38 9.96
Gamma random effect model 6.66 3.95 9.37

Gamma-Uniform interval 17–23 6.67 3.89 9.43
Gamma-Uniform interval 14–26 6.60 3.71 9.55
Gamma-Normal interval 17–23 6.62 3.89 9.37
Gamma-Normal interval 14–26 6.44 3.59 9.37

Gamma-Exponential interval 17–23 6.56 3.83 9.31
Gamma-Exponential interval 14–26 6.56 3.71 9.49

Gamma-Weibull interval 17–23 6.75 3.95 9.55
Gamma-Weibull interval 14–26 6.72 3.77 9.73
Gamma-Gamma interval 17–23 6.63 3.89 9.37
Gamma-Gamma interval 14–26 6.65 3.83 9.49

Gamma-Gamma ([25]) 6.63 3.83 9.54
* denotes Null.

Figure 27. Reliability of the photovoltaic module for the Gamma-Gamma interval degradation model.
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Figure 28. Reliability of the photovoltaic module for the Gamma-Normal interval degradation model.

Figure 29. Reliability of the photovoltaic module for the Gamma-Uniform interval degradation model.
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Figure 30. Reliability of the photovoltaic module for the Gamma-Exponential interval degrada-
tion model.

Figure 31. Reliability of the photovoltaic module for the Gamma-Weibull interval degradation model.

7. Conclusions

In this study, we proposed an interval degradation model and demonstrated that it is
more flexible and has better performance than the single degradation model. When the
threshold values are uncertain, using the single degradation model will lead to consider-
able deviation.

We conducted five theorems for comparing the reliabilities of interval and single
Gamma degradation models. The Monte Carlo method has been used to compute the
reliability of interval Gamma degradation model. Simulation results showed that the
reliability and mean lifetime of the interval Gamma degradation model are much better
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than those of the single Gamma degradation model. The analysis of the example from real
data also showed the effectiveness and feasibility of the interval Gamma degradation model.

In summary, our study contributes in two aspects. Firstly, we proposed the interval
degradation model. It solves the problem of how to define the failure of the degradation
model when the threshold values are uncertain. Secondly, the simulation results revealed
that the proposed interval degradation models have more accurate estimations when com-
pared with the single Gamma degradation model (No-random effect model and random
effect model).

In the future, the interval failure method will be modelled for the Stress-Strength relia-
bility model [31] and the competing failure degradation process model [32–34] when the
threshold values are uncertain. Moreover, how to model the multi-state system model [35]
and finite degradation model [36] and the remaining useful lifetime estimate model [37]
with the interval failure method is also worth to explore for further study.
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Appendix A

We first prove that the reliability of the Gamma-Uniform interval model (β is as-
sumed to be a Gamma (η, γ) distribution and threshold value D is an uniform distribution
U(D1, D2)).

Proof of Theorem 1.

R(t) = 1− P(y(t, α, β) ≥ D) = 1−
D2∫

D1

P(y(t, α, β) ≥ D|D) fD(D)dD

= 1− 1
D2 − D1

D2∫
D1

(
(1− F2αΛ(t),2η

(
ηD

αγΛ(t)

))
dD =

1
D2 − D1

D2∫
D1

F2αΛ(t),2η

(
ηD

αγΛ(t)

)
dD

Similarly, we can prove the reliability of the Gamma-Gamma, Gamma-Normal, Gamma-
Exponential and Gamma-Weibull interval models.
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Appendix B

Proof of Theorems 2, 4 and 5. We first prove the reliability of the Uniform-Normal interval
model. For fixed D and β,

F(t) = P(y(t, α, β) ≥ D) =

+∞∫
D

βαΛ(t)yαΛ(t)−1exp(−βy)
Γ(αΛ(t))

dy

=

+∞∫
βD

uαΛ(t)−1exp(−u)
Γ(αΛ(t))

du = 1− Fg(βD)

where Fg(.) is the CDF of gamma(αΛ(t), 1).
For fixed D, β is assumed to be a uniform distribution U(β1, β2),

F(t) = P(y(t, α, β) ≥ D) =

β2∫
β1

P(y(t, α, β) ≥ D|β) fβ(β)dβ =

β2∫
β1

1
β2 − β1

(1− Fg(βD))dβ

When β is assumed to be an uniform distribution U(β1, β2), and D is a truncated
normal distribution N(D1,D2)

(µ1, δ2
1),

F(t) = P(y(t, α, β) ≥ D) =

D2∫
D1

P(y(t, α, β) ≥ D|D) fD(D)dD

=

D2∫
D1

β2∫
β1

1
β2 − β1

(1− Fg(βD))dβ
CN1√
2πδ1

exp

(
− (D− µ1)

2

2δ2
1

)
dD

Thus,

R(t) = 1− F(t) =
D2∫

D1

β2∫
β1

1
β2 − β1

Fg(βD)
CN1√
2πδ1

exp

(
− (D− µ1)

2

2δ2
1

)
dβdD

Similarly, we can prove the reliability of the Uniform-Gamma, Uniform-Uniform,
Uniform-Exponential, Uniform-Weibull interval models in Theorems 2, 4, and 5.

Appendix C

Proof of Theorem 3. We first prove that the reliability of Exponential-Uniform interval
model. β is assumed to be an exponential distribution Exp(λ) in (7), and the PDF of y(t) is

fy(t)(y) =

+∞∫
0

fG(y; αΛ(t), β)gE(β)dβ =

+∞∫
0

βαΛ(t)yαΛ(t)−1 exp (−βy)
Γ(αΛ(t))

λ exp (−λβ)dβ

=
Γ(αΛ(t) + 1)Λ(t)αΛ(t)−1

λΓ(αΛ(t))

(
y

λαΛ(t)

)αΛ(t)−1
ααΛ(t)−1

(
1 +

2αΛ(t)
2

y
2αΛ(t)

)− 2αΛ(t)+2
2

.

Thus, the random variable U(t) = y(t)
αλΛ(t) has a F distribution with 2αΛ(t) and 2 de-

grees of freedom. When threshold value D is a fixed value, the CDF of y(t) is

F(t) = P(y(t, α, β) ≥ D) = 1− F2αΛ(t),2

(
D

αλΛ(t)

)
(A1)
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When D is a uniform distribution at (D1, D2), the reliability of the Exponential-
Uniform interval model is

R(t) = 1− F(t) = 1− P(y(t, α, β) ≥ D) = 1−
D2∫

D1

P(y(t, α, β) ≥ D|D) fD(D)dD

= 1− 1
D2 − D1

D2∫
D1

(1− F2αΛ(t),2

(
D

αλΛ(t)

)
)dD

=
1

D2 − D1

D2∫
D1

F2αΛ(t),2

(
D

αλΛ(t)

)
dD.

Similarly, we can prove the reliability of the Uniform-Gamma, Uniform-Uniform,
Uniform-Exponential, and Uniform-Weibull interval models in Theorem 3.
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