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Abstract: The fluid in global equilibrium must fulfill some constraints. These constraints can be
derived from quantum statistical theory or kinetic theory. In this work, we show how these constraints
can be applied to determine the non-dissipative transport coefficients for chiral systems along with
the energy-momentum conservation, chiral anomaly for charge current and trace anomaly in the
energy-momentum tensor.
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1. Introduction

The charge currents associated withchiral anomaly exhibit peculiar properties which
normal currents do not possess, such as the famous chiral magnetic effect [1,2] and chiral
vortical effect [3–5]. These currents are all non-dissipative and may exist even in global
equilibrium. These anomalous currents can be derived from various approaches, such as
gauge/gravity duality [6–11], principle of entropy increase [12–15], Kubo formula from
quantum field theory [16–21] or quantum kinetic equation [22–29]. Because these currents
are non-dissipative, they may exist even in global equilibrium. However, in order to arrive
at global equilibrium, the system must satisfy some specific constraints, especially when
the electromagnetic field is present. In this work, we use these constraints along with the
energy-momentum conservation law, trace anomaly for energy-momentum tensor and
chiral anomaly for charge current to determine or constrain the non-dissipative transport
coefficients up to the second order. A similar method was used to deal with first-order
coefficients in References [30,31]. In Section 2, we first review how the constraint in global
equilibrium can be derived from either quantum statistical theory or kinetic theory when
the electromagnetic field is imposed. In Section 3, we show how to determine the energy-
momentum tensor and charge current from the conservation laws and chiral anomaly. We
summarize our results in Section 4.

We choose the metric tensor gµν = diag(1,−1,−1,−1) and the Levi-Civita tensor
εµνρσ with the convention ε0123 = 1. For simplicity, we set the electric charge of the chiral
fermion as the unit.

2. Global Equilibrium Constraints

When a fluid is in global equilibrium without external fields [32,33], the fluid four-
velocity uµ with u2 = 1 should be expansion-free and shear-free, and the thermal potential
µ̄ = µ/T, which is defined as the chemical potential µ divided by the temperature T should
be constant, i.e.,

∆µρ∆νσ
(
∂ρuσ + ∂σuρ

)
= 0, ∂µµ̄ = 0 (1)
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where ∆µν = gµν − uµuν denotes the spatial projection tensor. In conjunction with the ideal
hydrodynamical equation, it is easy to verify that these above conditions are equivalent to
the following equations

∂µβν + ∂νβµ = 0, ∂µµ̄ = 0 (2)

where βµ = uµ/T can be referred to as the thermal velocity similar to the the thermal
potential for chemical potential. These are just the constraint conditions which should
be obeyed by the fluid in global equilibrium without external fields. When an external
electromagnetic field tensor Fµν is present, the constraint conditions are generalized to

∂µβν + ∂νβµ = 0, ∂µµ̄ = −Fµνβν (3)

where the electromagnetic field should be static so as to be able to arrive at the global
equilibrium. The second equation above indicates that the external electromagnetic field
is balanced by the gradient of the thermal potential. In this work, we assume further that
the electromagnetic field is also homogeneous, which means that Fµν must be constant, i.e.,
∂λFµν = 0.

Now, we first review how these constraint conditions can be derived from more
underlying theories. The derivation from quantum statistical theory is based on the
global thermodynamic equilibrium density operator, whose details are given in [30,34].
The general covariant form of the local thermodynamic equilibrium density operator is
given by

ρ̂ =
1
Z

exp
[
−
∫

Σ
dΣµ

(
T̂µνβν − µ̄ ĵµ

)]
. (4)

where T̂µν is the symmetric energy-momentum tensor operator, ĵµ the conserved current
operator, Z the normalization factor such that trρ̂ = 1, and Σ a spacelike 3-D hypersurface.
In global equilibrium, the integrand should be time independent∫

Σ(τ)
dΣµ

(
T̂µνβν − µ̄ ĵµ

)
−
∫

Σ(τ+∆τ)
dΣµ

(
T̂µνβν − µ̄ ĵµ

)
= 0 (5)

and will not depend on the hypersurface Σ any more. With the assumption that the field
βµ and µ̄ vanish at the timelike boundary which connects two spacelike hypersurfaces,
Σ(τ) and Σ(τ + ∆τ), and according to Gauss’s theorem, the above equation implies that
the integrand is divergenceless:

∂µ

(
T̂µνβν − µ̄ ĵµ

)
=
(
∂µT̂µν

)
βν + T̂µν∂µβν −

(
∂µµ̄

)
ĵµ − µ̄

(
∂µ ĵµ

)
= 0 (6)

Using the conservation equations for energy-momentum tensor ∂µT̂µν = Fνµ ĵµ and
charge current ∂µ ĵµ = 0 and the fact that the energy-momentum tensor is symmetric,
we obtain

1
2

T̂µν
(
∂µβν + ∂νβµ

)
−
(
∂µµ̄ + Fµνβν

)
ĵµ = 0 (7)

It is obvious that this equation always holds if the constraint condition (3) is satisfied.
The global equilibrium condition can also be derived from kinetic theory [22,35]. In

equilibrium, the collision terms in the Boltzmann equation will vanish due to the detailed
balancing principle and the kinetic equation will reduce to the Vlasov equation:

δ(p2 −m2)pµ

(
∂

∂xµ − Fµν
∂

∂pν

)
f (x, p) = 0 . (8)
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where pµ denotes the four-momentum of the particle with mass m and we have written the
Vlasov equation in Lorentz covariant form. In equilibrium, the distribution function f (x, p)
should depend on x, p through the argument β · p− µ̄

f (x, p) = g(y), y = β · p− µ̄. (9)

Then, the kinetic Equation (8) can be expressed as

δ(p2 −m2)

[
1
2

pµ pν(∂µβν + ∂νβµ)− pµ∂µµ̄− pµFµνβν

]
dg
dy

= 0 , (10)

Obviously, the kinetic equation always holds if the equilibrium conditions (3) are satisfied.
Now, let us consider the constraint conditions listed above in more detail. We can

solve the first condition directly [36] and the general solution is given by

βµ = bµ −Ωµνxν (11)

where bµ is a constant vector and Ωµν is a constant antisymmetric tensor. Actually, Ωµν

is just the thermal vorticity tensor of the fluid (there is a minus sign difference from the
usual definition)

Ωµν =
1
2
(
∂µβν − ∂νβµ

)
. (12)

The second condition in (3) has a solution only if the integrability condition is
fulfilled [37]. It can be obtained by differentiating both sides of the second equation
in Equation (3) with ∂ν and using the commutative property of ordinary partial derivatives

∂ν∂µµ̄ = ∂µ∂νµ̄ = −Fµλ∂νβλ = −Fνλ∂µβλ, (13)

Together with Equation (11), the above equation can be written as

Fλ
µΩνλ − Fλ

νΩµλ = 0 , (14)

The general solution under this integrability condition is given by

µ̄ = −1
2

FµλxλΩµνxν−Fµνxµbν + c (15)

We can decompose the antisymmetric tensors Fµν and Ωµν with the fluid velocity uµ as

Fµν = Eµuν − Eνuµ + εµνρσuρBσ , (16)

Ωµν =
1
T
(
εµuν − ενuµ + εµνρσuρωσ

)
, (17)

where the electric field Eµ, magnetic field Bµ, acceleration vector εµ and vorticity vector ωµ

are given by, respectively,

Eµ = Fµνuν , Bµ =
1
2

εµναβuνFαβ , (18)

εµ = TΩµνuν , ωµ =
1
2

εµναβuν∂x
αuβ . (19)

With this decomposition, it is easy to verify that the integrability condition (14) is
equivalent to

Eµων − Eνωµ = −Bµεν + Bνεµ, Eµεν − Eνεµ = Bµων − Bνωµ . (20)
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We show that these relations play an important role in determining the possible forms
of the non-dissipative terms in the energy-momentum tensor and the charge current in
global equilibrium.

3. Non-Dissipative Transport Coefficients

In this section, we apply the conservation laws and trace anomaly to constrain the
possible anomalous transport coefficients in a chiral system in which only right-hand or
left-hand Weyl fermions are involved. These conservation laws and the trace anomaly are
given by

∂µTµν = Fνµ jµ, ∂µ jµ = CE · B, gµνTµν = C̃(E2 − B2) (21)

We expand the energy-momentum tensor and charge current in powers of Fµν and
Ωµν or equivalently in terms of Bµ,Eµ, ωµ and εµ. Because Fµν and Ωµν are both constant, it
is unnecessary to consider ∂µT, ∂µuν and ∂µµ̄ because all these derivatives can be expressed
as the linear combination of Eµ, ωµ and εµ by using the constraint condition (3), e.g.,

∂µT = −Tεµ, ∂µuν = −uµεν + εµναβuαωβ, ∂µµ̄ = −
Eµ

T
(22)

We take uµ, T and µ̄ to be of the zeroth order, Fµν and Ωµν to be of the first order and
so on.

Let us start with the zeroth-order Tµν and jµ. They are just the well-known ideal
hydrodynamical results:

T(0)µν = ρuµuν − P∆µν, j(0)µ = nuµ (23)

where ρ is the energy density, P the pressure and n the charge density. It is easy to verify that

∂µT(0)µν = (ρ + P)uµ∂µuν − ∂νP = −ρεν − T∂
P
T

(24)

Using the thermal identity

d
P
T

= ndµ̄− ρd
1
T

(25)

and the last equation in (22), we obtain

∂µT(0)µν = Eνn = Fνµ j(0)sµ (26)

which indicates that the energy-momentum conservation law holds automatically. It is
trivial to show that at zeroth-order charge current is also conserved automatically

∂µ j(0)µ = 0 (27)

There is no chiral anomaly at zeroth order as there should be. For the massless
fermions, the conformal symmetry holds at the zeroth order and the trace of the energy-
momentum tensor must vanish, which results in the well-known relation

ρ = 3P. (28)

When we go beyond the zeroth-order, we need to first pin down which frame we
choose for the fluid velocity uµ. Transport coefficients might take different forms in different
frames. Some recent investigations showed that the frame choices might even influence
the causality and stability of the fluid [38–43]. In our work, we use the β frame introduced
in [44], In this frame, the non-dissipative coefficients in global equilibrium would take a
more elegant form [45–47]. We assume the interactions which control the chiral system keep
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charge, parity and time reversal invariance. Then, at first order, the general expressions for
the energy-momentum tensor and charge current take the following form

T(1)µν = λω(uµων + uνωµ) + λB(uµBν + uνBµ), (29)

j(1)µ = ξωµ + ξBBµ (30)

With this expression, the divergence of the current reads

∂µ j(1)µ =
∂ξ

∂T
∂µTωµ +

∂ξ

∂µ̄
∂µµ̄ωµ + ξ∂µωµ +

∂ξB

∂T
∂µTBµ +

∂ξB

∂µ̄
∂µµ̄Bµ + ξB∂µBµ (31)

Using the relations (22) and the derived relations below

∂µων = ε ·ω gµν − 2εµων, (32)

∂µBν = −Eµων + ε · B uµuν + ω · E ∆µν −
(
uµενλρσ + uνεµλρσ

)
uλερEσ (33)

the Equation (31) can be written as

∂µ j(1)µ =

(
2ξ − T

∂ξ

∂T

)
ε ·ω +

(
2ξB − 1

T
∂ξ

∂µ̄

)
E ·ω +

(
ξB − T

∂ξB

∂T

)
ε · B− 1

T
∂ξB

∂µ̄
E · B (34)

The fact that this result should equal the anomalous term CE · B from the second
equation in (21) leads to the following equations:

2ξ − T
∂ξ

∂T
= 0, 2ξB − 1

T
∂ξ

∂µ̄
= 0, ξB − T

∂ξB

∂T
= 0, − 1

T
∂ξB

∂µ̄
= C. (35)

The general solution for this set of equations is easy to obtain

ξB = −CTµ̄ + bT = −Cµ + bT, (36)

ξ = −CT2µ̄2 + 2bT2µ̄ + aT2 = −Cµ2 + 2bTµ + aT2 (37)

where a and b are both integral constants. It should be noted that the temperature
dependence derived from the differential equations is consistent with the direct dimension
analysis. Actually, it is more convenient to determine the temperature power from
dimension analysis. These results were derived from the anomalous hydrodynamics
by using the principle of entropy increase [12–15]. However, it seems as though our method
that we present here involves many fewer calculations. Similarly, the divergence of the
energy-momentum tensor can be expressed as

∂µT(1)µν = ∂λ
∂T ∂µT(uµων + uνωµ) + ∂λ

∂µ̄ ∂µµ̄(uµων + uνωµ) + λ∂µ(uµων + uνωµ)

+ ∂λB

∂T ∂µT(uµBν + uνBµ) + ∂λB

∂µ̄ ∂µµ̄(uµBν + uνBµ) + λB∂µ(uµBν + uνBµ)

=
[
(3λ− T ∂λ

∂T )ε ·ω + (2λB − 1
T

∂λ
∂µ̄ )E ·ω + (2λB − T ∂λB

∂T )ε · B− 1
T

∂λB

∂µ̄ E · B
]
uν

−2λBεναβγuαωβBγ

(38)

where we use the second identity in Equation (20). The righthand of the energy-momentum
conservation at first order in Equation (21) is given by

Fνµ j(1)sµ = −ξ(E ·ω)uν − ξB(E · B)uν − ξεναβγuαωβBγ (39)

Then, the conservation law ∂µT(1)µν = Fνµ j(1)sµ requires

3λ− T
∂λ

∂T
= 0, 2λB − 1

T
∂λ

∂µ̄
= −ξ, 2λB − T

∂λB

∂T
= 0,

1
T

∂λB

∂µ̄
= ξB, 2λB = ξ (40)
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From the last equation, we note that the coefficient λB has been totally determined by
the coefficient ξ in the charge current. It is trivial to verify that both the second and third
last equations hold automatically with the result of ξ in Equation (37). Substituting the
result of λB into the first and second equations, we can obtain the general expression for λ.
We list the solution for λB and λ in the following:

λB =
1
2

ξ =
1
2

(
−Cµ̄2 + 2bµ̄ + a

)
T2, (41)

λ =
2
3

(
−Cµ̄3 + 3bµ̄2 + aµ̄ + c

)
T3 (42)

where c is another integral constant. Similarly, the temperature dependence can also be
obtained from direct dimension analysis. It is obvious that the energy-momentum tensor at
first order is traceless automatically.

Now, let us move on to consider the second-order case. The charge current and
energy-momentum tensor at second order take the general form

j(2)µ =
(

ξεεε2 + ξωωω2 + ξεEε · E + ξωBω · B + ξEEE2 + ξBBB2
)

uµ

+ξεωεµνρσuνερωσ + ξωEεµνρσuνEρωσ + ξEBεµνρσuνEρBσ, (43)

T(2)µν
s =

(
λεεε2 + λωωω2 + λεEε · E + λωBω · B + λEEE2 + λBBB2

)
uµuν

+
(

λ̄εεε2 + λ̄ωωω2 + λ̄εEε · E + λ̄ωBω · B + λ̄EEE2 + λ̄BBB2
)

∆µν

+λ̃εεεµεν + λ̃ωωωµων + λ̃εE(εµEν + ενEµ) (44)

+λ̃ωB(ωµBν + ωνBµ) + λ̃EEEµEν + λ̄BBBµBν

+(uµεναβγ + uνεµαβγ)uα

(
λεωεβωγ + λωEEβωγ + λEBEβBγ

)
In order to calculate the divergence of these quantities, we need other useful relations:

∂µεν = ωµων − εµεν + ε2uµuν −ω2∆µν +
(
uµενλρσ + uνεµλρσ

)
uλερωσ, (45)

∂µEν = Bµων + ε · E uµuν −ω · B ∆µν +
(
uµενλρσ + uνεµλρσ

)
uλEρωσ, (46)

0 = εµαβγεαωβEγ = εµαβγωαEβBγ = εµαβγEαBβεγ = εµαβγBαεβωγ (47)

All these relations can be derived from the first-order relations (22). It is easy to
verify that the conservation law for the charge current ∂µ j(2)µ = 0 is satisfied automatically.
Although we cannot constrain any coefficients appearing in the second-order current j(2)µ,
we can still relate the coefficients in the second-order energy-momentum tensor T(2)µν

s to
the ones in j(2)µ through the energy-momentum conservation. Following the same step as
we did at the first order, the divergence of the energy-momentum tensor reads

∂µT(2)µν = X1ε2εν +X2ω2εν +X3ε ·ωων

+X4ω · Bεν +X5ε · Bων +X6ω · Eων +X7ε2Eν +X8ω2Eν

+X9E2εν +X10B2εν +X11E · Bων +X12ε · EEν +X13ω · BEν

+X14E2Eν +X15B2Eν +X16E · BBν

(48)

where the coefficients X1, X2 and X3, which are irrelevant to the electromagnetic field, read

X1 = −λεε − λ̄εε − λ̃εε − T
∂λ̄εε

∂T
− T

∂λ̃εε

∂T
,

X2 = −λωω − 2λ̄εε + 2λεω − 3λ̄ωω − 3λ̃εε − T
∂λ̄ωω

∂T
, (49)

X3 = 2λ̄εε + 2λ̄ωω + λ̃εε + λ̃ωω − 2λεω − T
∂λ̃ωω

∂T
,
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the coefficients from X4 to X8 with linear dependence on the electromagnetic field are
given by

X4 = λεE − 3λ̃εE − λωB + 3λ̃ωB + T
∂λ̄εE

∂T
+ T

∂λ̃εE

∂T
− T

∂λ̄ωB

∂T
− T

∂λ̃ωB

∂T
+

1
T

∂λ̃εε

∂µ̄

X5 = −λεE + λ̃εE − λ̃ωB − T
∂λ̄εE

∂T
− T

∂λ̃εE

∂T
− T

∂λ̃ωB

∂T
− 1

T
∂λ̃εε

∂µ̄

X6 = λεE + 2λ̄εE + λ̃εE + 2λ̄ωB + 5λ̃ωB − 2λωE

+T
∂λ̄εE

∂T
+ T

∂λ̃εE

∂T
− T

∂λ̃ωB

∂T
+

1
T

∂λ̃εε

∂µ̄
− 1

T
∂λ̃ωω

∂µ̄
(50)

X7 = −λεE − T
∂λ̄εE

∂T
− 2T

∂λ̃εE

∂T
− 1

T
∂λ̄εε

∂µ̄
− 1

T
∂λ̃εε

∂µ̄

X8 = −λεE − 2λ̄εE − 3λ̃εE − 2λ̄ωB − 3λ̃ωB + 2λωE

−T
∂λ̄εE

∂T
− T

∂λ̃εE

∂T
+ T

∂λ̃ωB

∂T
− 1

T
∂λ̃εε

∂µ̄
− 1

T
∂λ̄ωω

∂µ̄

the coefficients with double linear dependence on the electromagnetic field are

X9 = −λ̄EE − λEE − 2λ̄BB − 3λ̃BB + 2λEB − T
∂λ̄EE

∂T
− 1

T
∂λ̃εE

∂µ̄
+

1
T

∂λ̃ωB

∂µ̄

X10 = λ̄BB + λ̃BB − λBB − T
∂λ̄BB

∂T
− T

∂λ̃BB

∂T

X11 = 2λ̄EE + 2λ̄BB + λ̃EE + 3λ̃BB − 2λEB − T
∂λ̃BB

∂T
− 2

T
∂λ̃ωB

∂µ̄
(51)

X12 = 2λ̄EE + 2λ̄BB + λ̃EE + 3λ̃BB − 2λEB − 1
T

∂λ̄εE

∂µ̄
− 1

T
∂λ̃εE

∂µ̄
− 1

T
∂λ̃ωB

∂µ̄
− T

∂λ̃EE

∂T

X13 = 2λEB−2λ̄EE − 2λ̄BB − 3λ̃EE − λ̃BB + T
∂λ̃BB

∂T
− 1

T
∂λ̄ωB

∂µ̄

and the coefficients with triple linear dependence on the electromagnetic field are given by

X14 = − 1
T

(
∂λ̄EE

∂µ̄
+

∂λ̃EE

∂µ̄

)
, X15 = − 1

T
∂λ̄BB

∂µ̄
, X16 = − 1

T
∂λ̃BB

∂µ̄
E · BBν (52)

It should be noted that in order to arrive at the final result above (48), we used the
following identities

ε ·ωBν = ε · Bων + ε2Eν − ε · Eεν,

ω · EBν = E · Bων + ε · EEν − E2εν,

ε · BBν = B2εν −ω · BEν + E · Bων, (53)

ε · Eεν = ε · Bων + ε2Eν + ω2Eν −ω · Bεν −ω · Eων

which can be derived directly from the constraint (20). With these identities, we express the
final result as the linear combination of independent terms. The source contribution from
the coupling between the electromagnetic field and the charge current is given by

Fνµ j(2)sµ = −ξεω(ω · B)εν+ξεω(ε · B)ων + ξεεε2Eν + ξωωω2Eν

+ξωE(E · B)ων−ξεE(ε · E)Eν + (ξωB−ξωE)(ω · B)Eν (54)

+ξEEE2Eν + (ξBB−ξEB)B2Eν + ξEB(E · B)Bν

Then, from the conservation law ∂µT(2)µν = Fνµ j(2)sµ , we obtain the equations that could
determine or constrain these coefficients. It is convenient to decompose these equations
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into three groups: Group I includes the coefficients for the pure εµ and ωµ term in the
energy-momentum tensor,

X1 = 0, X2 = 0, X3 = 0 (55)

Group II contains the mixed terms between the electromagnetic field and vorticity field in
the energy-momentum tensor

X4 = −ξεω, X5 = ξεω, X6 = 0, , X7 = ξεε, X8 = ξωω (56)

and Group III involves the pure electromagnetic terms in the energy-momentum tensor,

X9 = 0, X10 = 0, X11 = ξωE, X12 = −ξεE, X13 = ξωB − ξωE,

X14 = ξEE, X15 = ξBB − ξEB, X16 = ξEB (57)

We note that if we know the coefficients in the energy-momentum tensor, we can
directly obtain the coefficients in the charge current from Group II or Group III. At second
order for the chiral fermions, the energy-momentum tensor would include trace anomaly,
which can lead to extra constraint identities, referred to as Group IV

0 = λεε + 3λ̄εε + λ̃εε, (58)

0 = λωω + 3λ̄ωω + λ̃ωω, (59)

0 = λεE + 3λ̄εE + 2λ̃εE, (60)

0 = λωB + 3λ̄ωB + 2λ̃ωB, (61)

C̃ = λEE + 3λ̄EE + λ̃EE, (62)

−C̃ = λBB + 3λ̄BB + λ̃BB (63)

From Group I together with the first two equations in Group IV, we note that only
three coefficients are independent. From the naive dimension analysis, we know that
these coefficients in Group I must take the form of T2. Choosing λεε, λωω and λ̄ωω as
independent variables, we obtain

λ̃εε
s = 0, (64)

λ̄εε
s = −1

3
λεε

s , (65)

λ̃ωω
s = −λωω

s − 3λ̄ωω
s , (66)

λεω
s = −1

3
λεε

s +
1
2

λωω
s +

5
2

λ̄ωω
s (67)

Once these coefficients are known, from Group II and Group IV, together with the
naive dimension analysis λεE, λ̄εE, λ̃εE, λ̄ωB, λ̃ωB, λωE ∝ T, we find that ξεε,ξωω and ξεω in
j(2)µ satisfy the following constraint

ξεε
s − ξεω

s − ξωω
s = − 1

T
∂λ̄εε

s
∂µ̄s

+
1
T

∂λ̄ωω
s

∂µ̄s
+

1
T

∂λ̃ωω
s

∂µ̄s
, (68)

which indicates that only two of ξεε,ξωω and ξεω are independent. Still, from Group II with
known ξεε, we have

λ̄εE
s =

1
2

(
ξεε

s +
1
T

∂λ̄εε
s

∂µ̄s

)
, (69)

which further leads to

λ̄ωB
s =

1
2

(
ξεω

s − 2λ̄εE
s

)
, (70)
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Among the other transport coefficients for the mixed terms in the energy-momentum
tensor, we find that only one transport coefficient is independent. We choose λωB

s as the
independent one and from Group II and the middle two equations in the trace constraint
equations, we express other coefficients as the following

λ̃ωB
s = −1

2

(
λωB

s + 3λ̄ωB
s

)
, (71)

λ̃εE
s = −1

2

(
λωB

s + λ̄ωB
s

)
, (72)

λεE
s = −

(
3λ̄εE

s + 2λ̃εE
s

)
, (73)

λωE
s =

1
2

(
2λ̄ωB

s + 4λ̃ωB
s −

1
T

∂λ̃ωω
s

∂µ̄s

)
(74)

From the last equations in Group III, it is straightforward to obtain

λ̃BB
s = −

∫
TξEB

s dµ̄s, (75)

λ̄BB
s = −

∫
T
(

ξBB
s − ξEB

s

)
dµ̄s, (76)

where
∫

TξXXdµ̄ denotes the undetermined integral and possibly includes arbitrary functions
with temperature dependence. Then, from Group III together with the trace anomaly in
Group IV, the other coefficients can be totally determined by

λBB
s = −C̃− 3λ̄BB

s − λ̃BB
s , (77)

λ̃EE
s = −1

2

(
ξωB

s − 2λ̃BB
s +

1
T

∂λ̄ωB
s

∂µ̄s
+

2
T

∂λ̃ωB
s

∂µ̄s

)
, (78)

λ̄EE
s = −λ̃EE

s −
∫

TξEE
s dµ̄s, (79)

λEE
s = C̃− 3λ̄EE

s − λ̃EE
s , (80)

λEB
s = 1

4

(
ξωB

s − 2ξωE
s + 4λ̄EE + 4λ̃EE + 4λ̄BB

s + 4λ̃BB
s − 2T ∂λ̃BB

s
∂T + 1

T
∂λ̄ωB

s
∂µ̄s
− 2

T
∂λ̃ωB

s
∂µ̄s

)
(81)

Three independent equations are not used and remain as the constraint conditions:

0 = λ̄EE
s + λEE

s + 2λ̄BB
s +3λ̃BB

s − 2λEB
s + T

∂λ̄EE
s

∂T
+

1
T

∂λ̃εE
s

∂µ̄s
− 1

T
∂λ̃ωB

s
∂µ̄s

, (82)

0 = λ̄BB
s + λ̃BB

s − λBB
s − T

∂λ̄BB
s

∂T
− T

∂λ̃BB
s

∂T
, (83)

ξεE
s = −2λ̄EE

s − 2λ̄BB
s − λ̃EE

s −3λ̃BB
s + 2λEB

s + T ∂λ̃EE
s

∂T + 1
T

∂λ̄εE
s

∂µ̄s
+ 1

T
∂λ̃εE

s
∂µ̄s

+ 1
T

∂λ̃ωB
s

∂µ̄s
. (84)

It should be noted that we have eliminated the partial derivative on temperature from
the naive dimension analysis for the pure ε, ω terms and mixed terms between ε, ω and
E, B, whereas we kept the partial derivative for the pure E, B terms in Equations (80)–(83).
This is because the pure E, B terms in the energy-momentum tensor may include another
regularization scale due to ultraviolet divergence and the naive dimension analysis would
be broken, whereas there is no such complexity for the pure ε, ω terms and mixed terms.
This point was demonstrated by the direct calculation given in [37]. We checked that all
these second-order results were totally consistent with the results obtained from other
approaches [37,48,49].

4. Summary

When a system is in global equilibrium under an electromagnetic field, only constant
vorticity tensor is allowed when there is no gravity field involved. The electromagnetic
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and vorticity field must fulfill some constraint conditions. It turns out that these constraint
conditions can be applied to determine the non-dissipative anomalous coefficients together
with the energy-momentum conservation, chiral anomaly and trace anomaly.

At zeroth order, we find that the energy-momentum conservation and charge
conservation hold automatically and trace vanishing leads to the well-known relation
between the energy density and pressure. At first order, from the chiral anomaly and
energy-momentum conservation, all the coefficients can be totally determined up to some
integral constants, which is what the hydrodynamic method achieved from the second
law of thermodynamics. The trace of the energy-momentum tensor always vanishes at
first order. At second order, we find that the charge conservation holds automatically and
we cannot say anything about the transport coefficients relevant to the charge current.
However, we can relate these transport coefficients in the charge current to the ones in
the energy-momentum tensor by using the energy-momentum conservation law and find
that once we obtain the coefficients in the energy-momentum tensor, the coefficients in the
charge current can be derived directly. We find that among the coefficients relevant to the
pure vorticity tensor, in the energy-momentum tensor there are only three coefficients which
are independent and the other four coefficients can be expressed as the linear combination
of these three coefficients. We present the formulas which express the coefficients in the
mixed terms from the electromagnetic and vorticity field as well as the ones associated with
the pure vorticity terms in the energy-momentum tensor and charge current. Furthermore,
we determine the coefficients relevant to the pure electromagnetic field in the energy-
momentum tensor from the charge current associated with the electromagnetic field and
the energy-momentum tensor associated with the vorticity field. All these results do
not depend on any specific interactions and are very general. They are intended to be
very helpful in determining the second-order anomalous transport coefficients in various
chiral systems.
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