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Abstract: Spiral galaxies can spin clockwise or counterclockwise, and the spin direction of a spiral
galaxy is a clear visual characteristic. Since in a sufficiently large universe the Universe is expected to
be symmetric, the spin direction of a galaxy is merely the perception of the observer, and therefore,
galaxies that spin clockwise are expected to have the same characteristics of galaxies spinning
counterclockwise. Here, machine learning is applied to study the possible morphological differences
between galaxies that spin in opposite directions. The dataset used in this study is a dataset of
77,840 spiral galaxies classified by their spin direction, as well as a smaller dataset of galaxies
classified manually. A machine learning algorithm was applied to classify between images of
clockwise galaxies and counterclockwise galaxies. The results show that the classifier was able to
predict the spin direction of the galaxy by its image in accuracy higher than mere chance, even when
the images in one of the classes were mirrored to create a dataset with consistent spin directions. That
suggests that galaxies that seem to spin clockwise to an Earth-based observer are not necessarily fully
symmetric to galaxies that spin counterclockwise; while further research is required, these results are
aligned with previous observations of differences between galaxies based on their spin directions.
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1. Introduction

The morphology of a galaxy can provide useful information about its characteristics,
and galaxy morphology has been studied extensively in the past century [1]. Basic classifica-
tion of galaxy morphology includes the broad morphological types of elliptical, spiral and
lenticular galaxies, and the classification can be extended to irregular [2] and peculiar [3]
galaxies. Established and commonly used examples of more detailed systems for galaxy
morphology classification are the Hubble sequence and the de Vaucouleurs system [4].

One of the important tools used for studying the morphology of galaxies are catalogs of
galaxies annotated by their morphology. Such catalogs can be prepared by astronomers who
analyze large sets of galaxy images manually [5–7]. In the era of Big Data and autonomous
digital sky surveys, the vast astronomical pipelines reinforces the use of automation to
annotate many millions of galaxies. Since manual analysis is limited by the amount of
galaxies that can be analyzed, catalogs of galaxy morphology have been compiled by
using the power of a large number of non-expert volunteers who inspect galaxy images
manually, and collectively are able to provide morphological analysis of a large number
of galaxies [8–10]. More recently, computer vision algorithms have been used to annotate
galaxies automatically and generate catalogs [11–14].

A visually dominant morphological feature of a spiral galaxy is its spin direction.
Spiral galaxies may have clockwise or counterclockwise oriented patterns, separating spiral
galaxies into two classes. Galaxy spin direction may be considered to be merely a feature
of the location of the observer, as a galaxy that may seem to be spinning clockwise to an
observer on Earth might seem to be spinning counterclockwise to an observer located at
some distant galaxy. Therefore, galaxies that spin clockwise are expected to be symmetric
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to galaxies that spin counterclockwise in all of their morphological features, except from
their spin direction.

Previous studies have shown clear evidence of photometric differences between clock-
wise and counterclockwise galaxies [15,16]. These experiments were based on photometric
data taken from Sloan Digital Sky Survey [15], the Panoramic Survey Telescope and Rapid
Response System [16], and Hubble Space Telescope [16]. For instance, a supervised machine
learning experiment was performed such that the label of each sample was the galaxy
spin direction (clockwise or counterclockwise), and the features of each sample were the
454 photometric measurements provided by the SDSS pipeline. The results showed that
for ∼64% of the galaxies, the machine learning algorithm was able to predict whether the
galaxy is clockwise or counterclockwise based on the photometric variables [15]. That
accuracy is significantly stronger than the random chance classification accuracy of 50%
(p < 10−5) [15]. The experiment was also repeated using a galaxy dataset that was classified
to galaxies that spin clockwise and galaxies that spin counterclockwise. That was done
through a fully automatic process and without any human intervention, and provided
similar results of ∼65% classification accuracy [15].

Other studies showed evidence of asymmetry between the number of galaxies with
opposite spin directions as observed from Earth [17–21]. This consistent evidence using
different instruments and various data analyses suggests that certain differences can exist
between galaxies with opposite spin directions. Here, a machine learning method is applied
to test whether galaxies that spin clockwise are morphologically the same as galaxies that
spin counterclockwise as observed from Earth; while each galaxy is different, comparison
of a large number of galaxies enables a statistical analysis that can allow to identify possible
morphological differences between galaxies that spin in opposite directions.

2. Data

The main dataset used in the experiment contains 77,840 spiral galaxies that were
classified automatically into clockwise and counterclockwise galaxies. The dataset is
described in [21]. As described in [13], the galaxies were initially selected from SDSS DR8
such that the Petrosian radius of the galaxies was at least 5.5′′, and i magnitude of less than
18 to filter galaxies that are too small or too dim to identify their morphology.

Then, the galaxies were separated by their spin directions. That was done by applying
the Ganalyzer algorithm [22], as was done in [19–21]. Ganalyzer first applies a transfor-
mation of the galaxy image into its radial intensity plots. The radial intensity plot is an
image of 360 × 35 pixels, such that the X axis is the polar angle of the pixel in the original
image compared to the galaxy center, and the Y axis is the radial distance from the galaxy
center in percents of the galaxy radius. Then, a peak detection algorithm is applied to
identify groups of peaks in the horizontal lines of the radial intensity plot [22]. Since pixels
on the arm of the galaxy are expected to be brighter than pixels that are not on the arm
of the galaxy, the group of peaks identify the galaxy arms. Each vertical line made by the
peaks detected in the neighboring horizontal lines of the radial intensity plot is a galaxy
arm, and the slope of the line corresponds to the direction of the galaxy arm. A linear
regression is then applied to each vertical line, and the sign of the regression coefficient
reflects the direction of the curve. The direction of the curve indicates whether the arm is
leading or trailing, and therefore, can deduce the spin direction of the galaxy. The Ganalyzer
algorithm is fully described with examples and performance analysis in [19–22]. The use
of the algorithm to generate the specific dataset of gakaxy images used here is described
in [21].

Because many galaxies, such as elliptical galaxies, do not have a visually clear spin
direction, not all galaxies can be assigned with a spin direction by their visual appearance
alone. To avoid galaxies with unclear spin direction, only galaxies that had at least 30 peaks
in their radial intensity plots were used. Galaxies that did not have at least 30 peaks were
not used in the analysis. Separating the galaxies to clockwise and counterclockwise galaxies
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provided a dataset of 39,187 galaxies that spin clockwise and 38,653 galaxies that spin
counterclockwise. The entire process of the galaxy annotation is described in [21].

Figures 1 and 2 show the distribution of the r magnitude and the redshift of the
galaxies in the datset, respectively. The vast majority of the galaxies do not have spectra,
and therefore, just the subset of 10,281 galaxies that had spectroscopic information could
be used for deducing the redshift distribution.
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Figure 1. The r magnitude distribution of the galaxies in the dataset.
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Figure 2. Redshift distribution of the galaxies in the dataset.

In addition to the dataset of automatically classified galaxies, another dataset that was
used in the experiment was a dataset of 13,440 galaxies used in [15]. These galaxies were
annotated and inspected manually by the author in a long labor-intensive process. Because
the human perception is sensitive to the spin direction of the galaxy [23], the galaxies
were mirrored randomly before they were annotated. Then, the galaxies were mirrored
again to verify that the annotation was correct. The two annotations of each galaxy were
compared, and in case of disagreement, the galaxy was inspected carefully for the third
time to determine whether its spin direction can be identified clearly. Just 12 galaxies
had 2 conflicting annotations. Because the third manual inspection did not lead to a clear
identification of the spin directions of these galaxies, all of these galaxies were excluded
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from the analysis. Figure 3 shows examples of galaxies that are not necessarily elliptical,
but their spin direction could not be determined in an obvious and reliable manner.

Figure 3. Examples of galaxy images that are not necessarily elliptical, but their spin direction could
not be identified clearly.

That process required substantial labor of about 150 h of work, but provided a clean
dataset of 6941 clockwise galaxies and 6499 counterclockwise galaxies. For the rest of
the galaxies, the spin direction could not be determined (e.g., edge-on galaxies). Galaxy
pairs were also excluded from the experiment, and therefore, the weak spin magnitude
correlation in galaxy pairs [24] did not affect the results. A final inspection step included
random selection of 500 galaxies to verify that all galaxies are classified correctly, and found
no errors in the classifications.

3. Machine Learning Algorithm

Galaxy morphology has been analyzed by using deep neural networks (DNNs), and
specifically deep convolutional neural networks [12,14,25–30]; while DNNs have demon-
strated excellent performance in the automatic classification of image data, there are several
downsides to using DNNs for purposes related to analysis of subtle asymmetries. DNNs
rely on a large number of data-driven non-intuitive rules that are determined automatically
during the training process, and are very difficult to understand. The nature of deep neural
networks, therefore, makes it more difficult to turn the empirical results such as classi-
fication accuracy into useful insights about the specific features that identify differences
between the galaxy morphological types. Moreover, DNNs are also sensitive to background
information that can lead to substantial biases [31]. These biases were also identified to
be present among galaxy images, but are difficult to quantify due to the complex non-
intuitive nature of the algorithm [32]. In the absence of specific measurements, and given
the assumption that the DNNs can be biased, DNNs might not be a sound approach to
identifying subtle asymmetries in the morphology of galaxies.

To provide a more informative machine learning analysis of a possible asymmetry
between galaxies with opposite spin directions, the Wndchrm method was used [33]. Wnd-
chrm is a non-parametric method that is not based on deep neural networks, and has been
widely used to classify and analyze galaxy morphology [13,34]. Wndchrm implements a
comprehensive and large set of numerical content descriptors that reflect multiple aspects
of the image content, including textures [35,36], edges [37], fractals [38], statistics of the
pixel intensities [39], polynomial decomposition [40,41], Radon features [42], and Gabor
filters [43]. These features are filtered automatically by their Fisher discriminant scores [44],
and classified by the Weighted Nearest Neighbor [33] or other pattern recognition algo-
rithms as will be described in this section.

Wndchrm is non-parametric in the sense that all features are computed for all images.
The user is not required to make any preliminary assumption about the data, and the most
informative features are selected automatically by the pattern recognition algorithm, and
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without involving decisions made by the user. The advantage of the approach compared
to DNNs is that it uses defined features, and therefore, the analysis can identify specific
morphological features that correlate with the asymmetry of spin directions of spiral
galaxies. That is different from DNNs, which can provide high classification accuracy but
does not excel in its ability to identify explainable differences between the classes; while the
Wndchrm approach can identify specific defined image descriptors that can differentiate
between the morphology of the galaxies, it is not certain that such features will be identified
with statistical significance. However, the analysis attempts to identify such features. That
analysis is not possible with DNNs, which often work as a “black box”, and does not
allow to identify explainable attributes that differentiate between the different classes. An
analysis with a DNN is described in Section 3.3.

3.1. Machine Learning Analysis of the Manually Annotated Galaxies

The manually annotated galaxies taken from [15] allowed a dataset of 12,000 galaxy
images such that 5000 galaxies spinning clockwise and 5000 galaxies spinning counter-
clockwise galaxies were used for training, and 1000 from each class were used for testing.
That allowed to train and test the Wndchrm image classifier described in Section 3. The
classifier was able to differentiate between the two classes in accuracy of ∼54.3%. The
classification accuracy is not high, but it is higher than 50% mere chance accuracy, when
the prediction of the galaxy is done by guessing. Using cumulative binomial probability
such that the number of trials is 2000 and the chance of success is 0.5, the probability to
have 1085 or more successes by mere chance is ∼0.00008.

Wndchrm was initially designed as a machine learning tool that can analyze images
of cells [33], and therefore, its image content descriptors are rotationally invariant, so
that mirroring an image is not expected to lead to a difference in the Wndchrm analysis.
Therefore, while clockwise and counterclockwise galaxies are visually different from each
other, Wndchrm is not expected to differentiate between these galaxies, and a difference
detected by Wndchrm might reflect other differences between the galaxy images that are
not directly related to the spin direction. However, it might still be possible that some of the
features are sensitive to the spin direction, leading to the ability of the classifier to identify
between clockwise and counterclockwise spiral galaxies.

To completely eliminate the effect of the spin direction, two datasets were created
such that each dataset had two classes, and all galaxies in both classes have the same spin
direction. That was done by mirroring all images of one of the classes in each dataset.
The first dataset contained one class of the original clockwise galaxy images and another
class of the mirrored counterclockwise galaxy images. The second dataset contained the
original counterclockwise galaxy images, while the clockwise galaxies were mirrored. That
provided two datasets such that each dataset contained two classes, and all galaxies in the
two classes had the same spin direction. The uncompressed TIFF file format was used, so
that no compression can have an impact on the mirrored images.

While the TIFF format is not a common file format in astronomy, it is much more
frequent in the field of machine vision. Normally, the TIFF format does not allow to deduce
accurate photometric information that is available when using other formats such as FITS.
However, in the case of this study, the important information is not the photometry, but the
morphology of the galaxies, and therefore, the ability to deduce accurate photometry, is
not a primary expectation from the image format. Because the TIFF images contain several
color channels in a single image file, they provide more useful information to analyze the
shape of the galaxy compared to FITS images, which normally provide a single color band.
The TIFF files are not compressed, to avoid possible effect of the compression algorithm.

The machine learning experiment was then repeated using each of these datasets.
The numerical image content descriptors were classified using several different pattern
recognition algorithms. These supervised machine learning algorithms are Weighted
Nearest Distance (WND) [33], as well as Random Forest [45], Decision Table [46], Naive
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Bayesian classifier [47], Dagging [48], Bagging [49], OneR [50], and radial basic function
(RBF) Networks [51], available as part of the Weka machine learning software [52,53].

The classification accuracy was also compared to the classification accuracy observed
when the galaxies were separated randomly into clockwise and counterclockwise galax-
ies. Figures 4 and 5 display the classification accuracy of each of the classifiers when the
clockwise galaxies are mirrored and when the counterclockwise galaxies are mirrored, re-
spectively.
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Figure 4. Classification accuracy of predicting the galaxy spin direction from the galaxy image when
all clockwise galaxies are mirrored. The classification accuracy was also tested when the galaxies
were separated randomly to two classes.
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Figure 5. Classification accuracy of predicting the galaxy spin direction by its galaxy image when all
counterclockwise galaxies are mirrored.

As the figures show, the classification accuracy of the dataset where the clockwise
galaxies were mirrored was ∼54.6% (p ' 0.00002), and the accuracy of the dataset in which
the counterclockwise galaxies were mirrored was ∼54.1% (p ' 0.0001). The observation
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that clockwise and counterclockwise galaxies can be identified by a machine learning
algorithm with higher accuracy than mere chance shows that even when the spin direction
is the same, the classifier can still differentiate between clockwise and counterclockwise
galaxies, indicating that there could be differences between these galaxies other than
the spin directions. That means that when observing a large number of spiral galaxies,
galaxies that spin in one direction can be morphologically different from galaxies spin in
the opposite direction.

When assigning the galaxies with random spin directions, the classification accuracy
using WND was ∼49.7%. The probability to have that classification accuracy by chance is
∼0.37. All other machine learning algorithms provided similar results, i.e., around mere
chance accuracy.

3.2. Machine Learning Analysis Using Computer-Annotated Data

To compare the results with a dataset that was annotated in a fully automatic manner,
the same analysis was applied using the automatically classified dataset described in
Section 2. For the experiment, the galaxies with spectra were used, providing a dataset
comparable in size to the manually classified dataset, with 5142 counterclockwise galaxies
and 5139 galaxies that spin clockwise.

As with the manually classified dataset, the clockwise galaxies were classified against
the mirrored counterclockwise galaxies, and the counterclockwise galaxies were classified
against the mirrored clockwise galaxies. That led to two different datasets, each with two
classes, and in each dataset, the galaxy images in both classes had the same spin direction.
The classification accuracy of the clockwise and counterclockwise galaxies using different
pattern recognition algorithms are displayed in Figure 6.

As the graphs show, the classification accuracy is comparable to the classification
accuracy of the dataset of manually classified galaxies described in Section 3.1. The random
forest algorithm outperformed the WND classifier, and the Decision Table algorithm pro-
vided the highest classification accuracy. The naive Bayes and the OneR classifiers provide
a classification accuracy very close to mere chance, but the other classifiers all provide a
classification accuracy higher than random.
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Figure 6. Classification accuracy of the different algorithms when using automatically classified
galaxies. The classification accuracy was measured when the clockwise galaxies are mirrored (top)
and when the counterclockwise galaxies are mirrored (bottom).

3.3. Analysis Using a Deep Convolutional Neural Network

Another experiment used the same dataset used in Section 3.2, but the images classifier
that was used was a deep convolutional neural network. The neural network that was used
was of simple architecture as described in [32], and based on the LeNet-5 architecture [54].
The full description of the network is available in [32].

As before, 1000 images from each class were used for testing, and the rest for training
and validation. Table 1 summarizes the classification accuracy observed with three different
experiments. In the first experiments, the galaxies were not mirrored. That experiment was
followed by two other experiments in which the clockwise or counterclockwise galaxies
were mirrored to normalize the spin direction of the entire dataset. A fourth experiment
was performed by assigning random spin directions to the galaxies. In all cases, the
neural networks were trained from initial random weights, and without using any pre-
defined weights in the form of transfer learning that might have an unexpected impact on
the analysis.

Table 1. Classification accuracy between images of galaxies with opposite spin directions when using
a deep convolutional neural network. In one experiment, the original images were used, while in the
other experiments, the images in one of the classes were mirrored.

Dataset Accuracy (%)

Original images 78.5
Clockwise mirrored 55.3

Counterclockwise mirrored 54.9
Random labels 50.8

As the table shows, the original images were classified in accuracy far higher than mere
chance. That can be explained by the fact that CNNs are not rotationally invariant, and
therefore, the CNN can differentiate between galaxies with opposite spin directions. When
normalizing the images by mirroring one of the classes, the results become comparable
and slightly higher than the results observed with the feature-based machine learning
algorithms. When assigning the galaxies with random labels, the classification accuracy
drops to random accuracy level.
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3.4. Numerical Image Content Descriptors

Wndchrm uses a comprehensive set of 2885 numerical content descriptors of the visual
data [33], weighted by their Fisher discriminant scores. More informative descriptors have
a higher Fisher discriminant score, and therefore, a stronger impact on the classification
decision. These image content descriptors are extracted from the raw pixels, as well
as from different transforms of the image [33]. The groups of numerical image content
descriptors with the highest cumulative Fisher discriminant scores are displayed in Figure 7.
As the figure shows, numerous different numerical image content descriptors differentiate
between galaxies that spin clockwise and galaxies that spin counterclockwise.

None of the numerical image content descriptors shown in Figure 7 show a statistically
significant difference in the means measured in clockwise and counterclockwise galaxies.
The features with the highest Fisher discriminant scores are the Zernike features [41]
extracted from the Wavelet transforms of the galaxy images. The Zernike moment of degree
m and angular dependence n is defined by Amn = M+n

π

∫ ∫
f (x, y)[Vmn(x, y)]∗dxdy, where

x2 + y2 ≤ 1 is the complex conjugate and Vmn(x, y) is the polar coordinate expression of
the Zernike polynomial Vmn(r, θ) = Rmn(r) exp(jnθ).

The Zernike features used by Wndchrm are the magnitude of the complex numbers,
leading to 72 descriptors based on the different degrees and angular dependences, up
to a degree of 15 [33]. The means of these descriptors measured from clockwise and
counterclockwise galaxies are displayed in Figure 8.

None of these features show a statistically significant difference, but it can be noticed
that the feature values are somewhat higher for counterclockwise galaxies in the lower
degrees, especially when the angular dependence is 0. Although the differences are not
statistically significant, they can imply that counterclockwise galaxies have better fitness
when the number of consistent changes in pixel intensity around the center is lower. That
can happen if clockwise galaxies are flatter and more dense than counterclockwise galaxies,
and have a less dominant bulge. It is important to note that these differences are not
statistically significant, and the variety of shapes of spiral galaxies in each of the group
makes it difficult to make clear characterization of all galaxies within each class.
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3.5. Redshift Effect on the Classification of Clockwise and Counterclockwise Galaxies

Another experiment that was performed aimed at testing the change in the accuracy of
the automatic classification when the galaxies are limited to certain redshift ranges. For that
purpose, the galaxies were divided into five redshift ranges of 0–0.04, 0.02–0.06, 0.04–0.08,
0.06–0.1, and 0.08–0.12. When z > 0.12, the number of galaxies drops sharply, and does not
allow sufficient data to train and test the machine learning algorithm.

The ability of the algorithm to separate automatically between clockwise and mirrored
counterclockwise galaxies (and vise versa) was done as described in Section 3, such that
1500 clockwise and counterclockwise galaxies in each redshift range were used for training,
and 100 galaxies from each class for testing. Because the number of test galaxies was low, the
experiment was done by using cross-validation, such that the classification of the galaxies
in each redshift range was repeated 15 times, and in each run, 100 different galaxies per
class were used for testing. Then, the accuracy of the 15 runs was averaged to deduce the
classification accuracy. Figure 9 shows the average classification accuracy between images
of clockwise galaxies and mirrored images of counterclockwise galaxies, and between
counterclockwise galaxies and mirrored clockwise galaxies for each redshift range.
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Figure 9. Classification accuracy using WND when the galaxies are limited to certain z ranges.

As the figure shows, the classification accuracy tends to increase when the redshift
gets higher; while it is expected that galaxies with higher redshift would seem fainter and
smaller, the galaxies in the dataset were all bright and had large surface size. In any case,
the effect of the redshift is expected to impact both clockwise and counterclockwise galaxies
equally. That means that if clockwise galaxies become smaller and fainter due to the higher
redshift, galaxies spinning counterclockwise in the same redshift range are also expected
to become smaller and fainter. Because both clockwise and counterclockwise galaxies are
taken from the same field and the same redshift range, the impact on the redshift should be
equal on both clockwise and counterclockwise galaxies, and therefore, is not expected to
increase the classification accuracy when assuming that clockwise and counterclockwise
galaxies are not different in their morphology.

4. Discussion

The nature of galaxy rotation is one of the greatest mysteries in space science, and it
is not clear why and how galaxies rotate. Early astronomers assumed that the rotation of
stars around their galaxy center is driven by gravity, as is the case of planets orbiting their
star. That turned to be not nearly the case, as it has been shown and proven that unlike
planets, the velocity of stars does not change significantly as their distance from the galaxy
center increases [55]. That unexpected observation led to the assumption that the vast
majority of the mass of a galaxy is made of dark matter that does not interact with light or
any other radiation [55]. Other theories proposed that the rotation of galaxies is driven by
different physics that does not agree with the known Newtonian physics [56–58], and that
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modifications to Newtonian dynamics (MOND) can explain the anomaly of the galaxy
rotation, as well as other observations such as the Hubble constant tension [59]. Despite
five decades of research, no proven answer has been found, and research efforts are still
being continued. In fact, more recent observations showed that the common assumption
that galaxy rotation was initiated by gravitational interactions might not be correct, as
rotating galaxies have been observed before they could interact with other galaxies and spin
according to the current models [60]. Such observations agree with theories of primordial
spin [61], and in such a case, it can be expected that the spin directions of galaxies at higher
redshift are aligned [20].

This paper applies machine learning to study the symmetry of galaxies with opposite
spin directions. Substantial previous work, starting in the 20th century, proposed that the
number of galaxies with opposite spin directions is not necessarily equal within statistical
fluctuations [17–21]. More recent work also proposed that the brightness and color of
galaxies that spin in opposite directions is, on average, different [15,16]. This study aims at
addressing a new type of asymmetry between galaxies that rotate in opposite ways, which
is the morphology of the galaxies. The morphology of a galaxy is definitely linked to its
color and distance from Earth, and therefore, differences in color and brightness of the
galaxies can also be linked with their morphology, making the observation shown in this
paper expected.

By analyzing the morphology using machine learning, this study shows that the
morphology of galaxies that spin clockwise can be different from the morphology of
galaxies that spin counterclockwise. Naturally, a single galaxy cannot be used to show
such difference, and therefore, the study is done by analyzing a large number of galaxies,
and classifying them by their images. The results show that a machine learning classifier
can identify the galaxy spin direction based on its shape in accuracy higher than mere
chance. That shows that spiral galaxies that spin in opposite directions are not necessarily
symmetric on a large scale.

One of the observation is the link between the morphological differences and the
redshift. That link might be considered unexpected, as the level of details of the galaxy
images is expected to decline as the redshift gets higher, and therefore, an image classifier
is expected to become less informative when classifying between these images of galaxies
with higher redshift. On the other hand, it has been shown that the asymmetry between
the number of galaxies that spin in opposite directions increases with the redshift [20].
Redshift is known to correlate with the morphology of the galaxies [62,63]. Therefore, a
higher population of galaxies that spin in a certain direction at the higher redshift ranges
is expected to lead to certain average differences in the morphology of these groups
of galaxies. That is, if the morphology of the galaxies is linked to its redshift, and the
distribution of clockwise and counterclockwise galaxies changes in different redshifts
ranges, the morphology of the galaxies can become different.

Clearly, further research will be required to verify the observations and fully character-
ize and profile its nature. Future work will include the analysis of larger datasets, covering
a larger footprint of the sky. Such analysis can allow to better profile the differences in
morphology at different redshift ranges and different parts of the sky. Sky surveys such
as the Dark Energy Survey (DES) and the Dark Energy Spectroscopic Instrument (DESI)
Legacy Survey can provide such large datasets of galaxy images, and the Dark Energy
Spectroscopic Instrument can provide the spectra of a high number of galaxies. Such data
can allow to identify possible large-scale patterns exhibited by the possible asymmetry of
the morphology of galaxies spinning in opposite directions.
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11. Pović, M.; Aguerri, J.; Márquez, I.; Masegosa, J.; Husillos, C.; Molino, A.; Cristóbal-Hornillos, D.; Perea, J.; Benítez, N.; del Olmo,
A.; et al. The ALHAMBRA survey: Reliable morphological catalogue of 22 051 early-and late-type galaxies. Mon. Not. R. Astron.
Soc. 2013, 435, 3444–3461. [CrossRef]

12. Huertas-Company, M.; Gravet, R.; Cabrera-Vives, G.; Pérez-González, P.G.; Kartaltepe, J.; Barro, G.; Bernardi, M.; Mei, S.; Shankar,
F.; Dimauro, P.; et al. A Catalog of Visual-like Morphologies in the 5 CANDELS Fields Using Deep Learning. Astrophys. J. Suppl.
Ser. 2015, 221, 8. [CrossRef]

13. Kuminski, E.; Shamir, L. Computer-generated visual morphology catalog of ∼3,000,000 SDSS galaxies. Astrophys. J. Suppl. Ser.
2016, 223, 20. [CrossRef]

14. Cheng, T.Y.; Conselice, C.J.; Aragón-Salamanca, A.; Aguena, M.; Allam, S.; Andrade Oliveira, F.; Annis, J.; Bluck, A.; Brooks, D.;
Burke, D.; et al. Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural
networks. Mon. Not. R. Astron. Soc. 2021, 507, 4425–4444. [CrossRef]

15. Shamir, L. Asymmetry Between Galaxies with Clockwise Handedness and Counterclockwise Handedness. Astrophys. J. 2016,
823, 32. [CrossRef]

16. Shamir, L. Asymmetry between galaxies with different spin patterns: A comparison between COSMOS, SDSS, and Pan-STARRS.
Open Astron. 2020, 29, 15–27. [CrossRef]

17. MacGillivray, H.; Dodd, R. The anisotropy of the spatial orientations of galaxies in the local supercluster. Astron. Astrophys. 1985,
145, 269–274.

18. Longo, M.J. Detection of a Dipole in the Handedness of Spiral Galaxies with Redshifts z ∼ 0.04. Phys. Lett. 2011, 699, 224–229.
[CrossRef]

19. Shamir, L. Handedness asymmetry of spiral galaxies with z < 0.3 shows cosmic parity violation and a dipole axis. Phys. Lett.
2012, 715, 25–29.

20. Shamir, L. Patterns of galaxy spin directions in SDSS and Pan-STARRS show parity violation and multipoles. Astrophys. Space Sci.
2020, 365, 136. [CrossRef]

21. Shamir, L. Analysis of the alignment of non-random patterns of spin directions in populations of spiral galaxies. Particles 2021,
4, 2. [CrossRef]

22. Shamir, L. Ganalyzer: A tool for automatic galaxy image analysis. Astrophys. J. 2011, 736, 141. [CrossRef]
23. Land, K.; Slosar, A.; Lintott, C.; Andreescu, D.; Bamford, S.; Murray, P.; Nichol, R.; Raddick, M.J.; Schawinski, K.; Szalay, A.; et al.

Galaxy Zoo: The large-scale spin statistics of spiral galaxies in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 2008,
388, 1686–1692. [CrossRef]

24. Cervantes-Sodi, B.; Hernandez, X.; Park, C. Clues on the origin of galactic angular momentum from looking at galaxy pairs. Mon.
Not. R. Astron. Soc. 2010, 402, 1807–1815. [CrossRef]

https://people.cs.ksu.edu/~lshamir/data/assym
https://people.cs.ksu.edu/~lshamir/data/assym
http://doi.org/10.1086/143018
http://dx.doi.org/10.1086/145406
http://dx.doi.org/10.1093/mnras/286.4.969
http://dx.doi.org/10.1051/0004-6361/201016423
http://dx.doi.org/10.1086/161467
http://dx.doi.org/10.1111/j.1365-2966.2010.17432.x
http://dx.doi.org/10.1093/mnras/stt1458
http://dx.doi.org/10.1093/mnras/stw649
http://dx.doi.org/10.1093/mnras/stt1538
http://dx.doi.org/10.1088/0067-0049/221/1/8
http://dx.doi.org/10.3847/0067-0049/223/2/20
http://dx.doi.org/10.1093/mnras/stab2142
http://dx.doi.org/10.3847/0004-637X/823/1/32
http://dx.doi.org/10.1515/astro-2020-0001
http://dx.doi.org/10.1016/j.physletb.2011.04.008
http://dx.doi.org/10.1007/s10509-020-03850-1
http://dx.doi.org/10.3390/particles4010002
http://dx.doi.org/10.1088/0004-637X/736/2/141
http://dx.doi.org/10.1111/j.1365-2966.2008.13490.x
http://dx.doi.org/10.1111/j.1365-2966.2009.16001.x


Symmetry 2022, 14, 934 15 of 16

25. Dieleman, S.; Willett, K.W.; Dambre, J. Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon.
Not. R. Astron. Soc. 2015, 450, 1441–1459. [CrossRef]

26. Cheng, T.Y.; Conselice, C.J.; Aragón-Salamanca, A.; Li, N.; Bluck, A.F.; Hartley, W.G.; Annis, J.; Brooks, D.; Doel, P.; García-Bellido,
J.; et al. Optimizing automatic morphological classification of galaxies with machine learning and deep learning using Dark
Energy Survey imaging. Mon. Not. R. Astron. Soc. 2020, 493, 4209–4228. [CrossRef]

27. González, R.E.; Munoz, R.P.; Hernández, C.A. Galaxy detection and identification using deep learning and data augmentation.
Astron. Comput. 2018, 25, 103–109. [CrossRef]

28. Barchi, P.; de Carvalho, R.; Rosa, R.; Sautter, R.; Soares-Santos, M.; Marques, B.; Clua, E.; Gonçalves, T.; de Sá-Freitas, C.; Moura, T.
Machine and Deep Learning applied to galaxy morphology—A comparative study. Astron. Comput. 2020, 30, 100334. [CrossRef]

29. Domínguez Sánchez, H.; Huertas-Company, M.; Bernardi, M.; Tuccillo, D.; Fischer, J. Improving galaxy morphologies for SDSS
with deep learning. Mon. Not. R. Astron. Soc. 2018, 476, 3661–3676. [CrossRef]

30. Khan, A.; Huerta, E.; Wang, S.; Gruendl, R.; Jennings, E.; Zheng, H. Deep learning at scale for the construction of galaxy catalogs
in the Dark Energy Survey. Phys. Lett. 2019, 795, 248–258. [CrossRef]

31. Lapuschkin, S.; Wäldchen, S.; Binder, A.; Montavon, G.; Samek, W.; Müller, K.R. Unmasking clever hans predictors and assessing
what machines really learn. Nat. Commun. 2019, 10, 1096. [CrossRef]

32. Dhar, S.; Shamir, L. Systematic biases when using deep neural networks for annotating large catalogs of astronomical images.
Astron. Comput. 2022, 38, 100545. [CrossRef]

33. Shamir, L.; Orlov, N.; Eckley, D.M.; Macura, T.; Johnston, J.; Goldberg, I.G. Wndchrm—An open source utility for biological
image analysis. Source Code Biol. Med. 2008, 3, 13. [CrossRef] [PubMed]

34. Shamir, L. Automatic morphological classification of galaxy images. Mon. Not. R. Astron. Soc. 2009, 399, 1367–1372. [CrossRef]
[PubMed]

35. Tamura, H.; Mori, S.; Yamawaki, T. Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 1978,
8, 460–473. [CrossRef]

36. Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973,
6, 610–621. [CrossRef]

37. Prewitt, J.M. Object enhancement and extraction. Pict. Process. Psychopictorics 1970, 10, 15–19.
38. Wu, C.M.; Chen, Y.C.; Hsieh, K.S. Texture features for classification of ultrasonic liver images. IEEE Trans. Med. Imaging 1992,

11, 141–152.
39. Hadjidemetriou, E.; Grossberg, M.D.; Nayar, S.K. Spatial information in multiresolution histograms. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; IEEE: Kauai, HI, USA, 2001;
Volume 1, p. 7176925.

40. Gradshteyn, I.; Ryzhik, I. Table of Integrals, Series, and Products; Translated from the Fourth Russian Edition; Jeffrey, A., Ed.;
Academic Press: New York, NY, USA, 1994.

41. Teague, M.R. Image analysis via the general theory of moments. J. Opt. Soc. Am. 1980, 70, 920–930. [CrossRef]
42. Lim, J.S. Two-Dimensional Signal and Image Processing; Prentice Hall: Englewood Cliffs, NJ, USA, 1990; Volume 1, 710p.
43. Gabor, D. Theory of communication. Part 1: The analysis of information. Electr. Eng. Part III 1946, 93, 429–441. [CrossRef]
44. Bishop, C. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2007.
45. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
46. Kohavi, R. The power of decision tables. In Machine Learning: ECML-95; Springer: New York, NY, USA, 1995; pp. 174–189.
47. Lewis, D.D. Naive (Bayes) at forty: The independence assumption in information retrieval. In Machine Learning; Springer: New

York, NY, USA, 1998; pp. 4–15.
48. Ting, K.M.; Witten, I.H. Stacking bagged and dagged models. In Proceedings of the International Conference on Machine

Learning, San Francisco, CA, USA, 8–12 July 1997; Citeseer: San Francisco, CA, USA, 1997; pp. 367–375.
49. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
50. Holte, R.C. Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 1993, 11, 63–90.

[CrossRef]
51. Moody, J.; Darken, C.J. Fast learning in networks of locally-tuned processing units. Neural Comput. 1989, 1, 281–294. [CrossRef]
52. Witten, I.H.; Frank, E.; Trigg, L.; Hall, M.; Holmes, G.; Cunningham, S.J. Weka: Practical Machine Learning Tools and Techniques with

JAVA Implementations; Department of Computer Science, University of Waikato: Hamilton, New Zealand, 1999.
53. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. Acm

Sigkdd Explor. Newsl. 2009, 11, 10–18. [CrossRef]
54. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
55. Rubin, V.C. The rotation of spiral galaxies. Science 1983, 220, 1339–1344. [CrossRef]
56. Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J.

1983, 270, 365–370. [CrossRef]
57. Sivaram, C.; Arun, K.; Rebecca, L. MOND, MONG, MORG as alternatives to dark matter and dark energy, and consequences for

cosmic structures. J. Astrophys. Astron. 2020, 41, 1–6. [CrossRef]

http://dx.doi.org/10.1093/mnras/stv632
http://dx.doi.org/10.1093/mnras/staa501
http://dx.doi.org/10.1016/j.ascom.2018.09.004
http://dx.doi.org/10.1016/j.ascom.2019.100334
http://dx.doi.org/10.1093/mnras/sty338
http://dx.doi.org/10.1016/j.physletb.2019.06.009
http://dx.doi.org/10.1038/s41467-019-08987-4
http://dx.doi.org/10.1016/j.ascom.2022.100545
http://dx.doi.org/10.1186/1751-0473-3-13
http://www.ncbi.nlm.nih.gov/pubmed/18611266
http://dx.doi.org/10.1111/j.1365-2966.2009.15366.x
http://www.ncbi.nlm.nih.gov/pubmed/20161594
http://dx.doi.org/10.1109/TSMC.1978.4309999
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1364/JOSA.70.000920
http://dx.doi.org/10.1049/ji-3-2.1946.0074
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1022631118932
http://dx.doi.org/10.1162/neco.1989.1.2.281
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1126/science.220.4604.1339
http://dx.doi.org/10.1086/161130
http://dx.doi.org/10.1007/s12036-020-9619-9


Symmetry 2022, 14, 934 16 of 16

58. Sivaram, C.; Arun, K.; Prasad, A.; Rebecca, L. Non-detection of Dark Matter particles: A case for alternate theories of gravity. J.
High Energy Phys. Gravit. Cosmol. 2021, 7, 680. [CrossRef]

59. Sivaram, C.; Arun, K.; Rebecca, L. The Hubble tension: Change in dark energy or a case for modified gravity? Indian J. Phys.
2021, 1–4. [CrossRef]

60. Neeleman, M.; Prochaska, J.X.; Kanekar, N.; Rafelski, M. A cold, massive, rotating disk galaxy 1.5 billion years after the Big Bang.
Nature 2020, 581, 269–272. [CrossRef]

61. Sivaram, C.; Arun, K. Primordial rotation of the universe, hydrodynamics, vortices and angular momenta of celestial objects.
Open Astron. 2012, 5, 7–11. [CrossRef]

62. Calvi, R.; Poggianti, B.M.; Fasano, G.; Vulcani, B. The distribution of galaxy morphological types and the morphology–mass
relation in different environments at low redshift. Mon. Not. R. Astron. Soc. Lett. 2012, 419, L14–L18. [CrossRef]

63. Soo, J.Y.; Moraes, B.; Joachimi, B.; Hartley, W.; Lahav, O.; Charbonnier, A.; Makler, M.; Pereira, M.E.; Comparat, J.; Erben, T.; et al.
Morpho-z: Improving photometric redshifts with galaxy morphology. Mon. Not. R. Astron. Soc. 2018, 475, 3613–3632. [CrossRef]

http://dx.doi.org/10.4236/jhepgc.2021.72039
http://dx.doi.org/10.1007/s12648-021-02080-7
http://dx.doi.org/10.1038/s41586-020-2276-y
http://dx.doi.org/10.2174/1874381101205010007
http://dx.doi.org/10.1111/j.1745-3933.2011.01168.x
http://dx.doi.org/10.1093/mnras/stx3201

	Introduction
	Data
	Machine Learning Algorithm
	Machine Learning Analysis of the Manually Annotated Galaxies
	Machine Learning Analysis Using Computer-Annotated Data
	Analysis Using a Deep Convolutional Neural Network
	Numerical Image Content Descriptors
	Redshift Effect on the Classification of Clockwise and Counterclockwise Galaxies

	Discussion
	References

