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Abstract: The No-wait Flowshop Scheduling Problem (NWFSP) has always been a research hotspot
because of its importance in various industries. This paper uses a matheuristic approach that
combines exact and heuristic algorithms to solve it with the objective to minimize the makespan.
Firstly, according to the symmetry characteristics in NWFSP, a local search method is designed, where
the first job and the last job in the symmetrical position remain unchanged, and then, a three-level
neighborhood division method and the corresponding rapid evaluation method at each level are
given. The two proposed heuristic algorithms are built on them, which can effectively avoid al-ready
searched areas, so as to quickly obtain the local optimal solutions, and even directly obtain the
optimal solutions for small-scale instances. Secondly, using the equivalence of this problem and the
Asymmetric Traveling Salesman Problem (ATSP), an exact method for solving NWFSP is constructed.
Importing the results of the heuristics into the model, the efficiency of the Mil-ler-Tucker-Zemlin
(MTZ) model for solving small-scale NWFSP can be improved. Thirdly, the matheuristic algorithm is
used to test 141 instances of the Tailard and Reeves benchmarks, and each optimal solution can be
obtained within 134 s, which verifies the stability and effectiveness of the algorithm.

Keywords: heuristic; matheuristic; neighborhood search; no-wait

1. Introduction

Improving production efficiency is one of the final aims of the manufacturing industry.
Production scheduling can meet that need, so it is used in manufacturing systems exten-
sively. Considering the differences in factory conditions and job processing requirements,
the scheduling problem has been divided into several kinds, such as flow shop [1,2], hybrid
flow shop [3,4], job shop [5,6], open shop [7,8], and so on. The flow shop problem (FSP)
claims that each job should be processed in the same order through every stage, and the
hybrid flow shop refers to parallel machines at one or more stages. A job shop environment
permits jobs to pass some steps or repeat them at a given machine route, and the processing
order of the job in an open shop can be arbitrary. It can be concluded that the flow shop
problem is the basic one, then the others can be seen as its variants. In other words, the FSP
reflects some common characteristics of production scheduling problems.

In recent years, flow shop scheduling problems with constraints have become research
hotspots owing to the actual technology demand. Typically, no-wait attribute, which
stipulates all the jobs should be processed from the first stage to the last without any
interruption, fits lots of production industries. For instance, in steel processing, maintaining
the temperature is a necessary condition, so it calls for no-wait demand. Once you wait,
you need more time and energy to heat to the desired temperature, or accept degradation.
As early as 1971, Callahan [9] considered that the steel industry required a dependent
processing and the no-wait constraint. Tang and Song [10] modeled the mill roll annealing
process as a no-wait hybrid flow shop scheduling problem. Höhn and Jacobs [11] also
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considered continuous casting in the multistage production process a variant of no-wait
flowshop scheduling. Yuan and Jing [12] explained and affirmed the importance of the
no-wait flowshop problem to steel manufacturing. Similarly, Reklaits [13] pointed out
that the no-wait constraint is also suitable for the chemical industry due to its instability.
Hall [14] emphasized that a similar situation also occurs in plastic molding and silver-ware
industries, as well as the food processing industry [15]. In addition, there are also many
other practical problems that can be solved by the assistance of being modeled as no-wait
scheduling problems, such as controlling health care management costs [16], developing a
metro train real-time control system [17], and so on.

In this paper, the NWFSP with makespan criterion is considered because of its uni-
versality. It minimizes the maximum completion time of the jobs (Cmax), maximizing the
efficiency of machine usage [18]. The problem can be described as Fm|nwt|Cmax when
the symbolic notation proposed by Graham [19] is applied. The first field represents the
production environment, which is a flow shop with m stages. The second field shows the
constraints and “nwt“ is for “no-wait constraint”. The performance criteria occupy the
third field.

The research on NWFSP began around the 1970s. Garey and Johnson [20] proved
that the NWFSP is a strongly NP-hard problem when the number of machines is no less
than three. At the same time, the problem was documented as NP-hard for more than
two machines by Papadimitriou and Kanellakis [21]. Due to the complexity of NWFSP
and the wide range of its applications, many heuristic algorithms have emerged or been
tried by Bonney and Gundry [22], King and Spachis [23], Gangadharan and Rajendran [24],
Laha [25], and so on, which aimed to make the solution as close as possible to the optimal
within an acceptable time. In addition, exact methods [26] like branch-and-bound [27]
and the column generation method [28] are widely used to obtain optimal solutions for
small-scale problems. Metaheuristic algorithms, whose search mechanisms are inspired by
phenomena in various fields of the real world are also active for solving NWFSP. Hall [14]
and Allahverdi [29] jointly detailed the research progress of NWFSP before 2016. A typical
example is the discrete particle swarm optimization algorithm [30]. In recent years, various
improved or emerging metaheuristic algorithms have been used to solve the NWFSP. For
example, a hybrid ant colony optimization algorithm (HACO [31]), a discrete water wave
optimization algorithm (DWWO [32]), a factorial based particle swarm optimization with
a population adaptation mechanism (FPAPSO [33]), a single water wave optimization
(SWWO [34]), a hybrid biogeography-based optimization with variable neighborhood
search (HBV [35]), a quantum-inspired cuckoo co-search (QCCS [36]) algorithm, and
an improved discrete migrating birds optimization algorithm (IDMBO [37]) have also
been used with good results. In 2021, Lai used the Discrete Wolf Pack Algorithm [38]
to solve the NWFSP problem. Each algorithm has its own advantages, which makes
it perform better than others in certain applications. In order to give full play to the
advantages of each algorithm and enhance the generality of the algorithm, hyper-heuristic
(HH) [39] and matheuristic [40] algorithms have appeared. The emergence of a new
generation of large-scale mathematical programming optimizers such as CPLEX [41] and
Gurobi [42] has greatly improved the performance of matheuristic algorithms that combine
heuristic algorithms and exact algorithms. In recent years, matheuristics [43] have been
widely used in scheduling problems, including NWFSP. Since NWFSP can be transformed
into the ATSP [44], it is effective to incorporate more mathematical computations into its
search mechanism.

Existing NWFSP researches mostly focus on designing algorithms from the perspec-
tive of instances rather than problems. The heuristic rules or the component mechanisms
and parameter selections of the metaheuristics are determined by the quality of the test
results, so as to balance the local search and the global search. In this way, the algorithm
is dependent on the instances, and the performance of the algorithm will be different for
different instances. This paper aims to explore the heuristic rules from the perspective of
the problem, so that the rules show consistent effects on the instances, thereby enhancing
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the stability of the algorithm. Existing neighborhood structures for local search focus on
insertion, swap, destruction-construction, etc., and do not divide the already searched
area and the unsearched area, so the same sequence cannot avoid being tested repeat-
edly. Likewise, good structures are not necessarily preserved after multiple iterations. In
this paper, by expanding the search domain gradually, the search process is kept in the
unsearched potential areas, and the repeated calculation is reduced. The experimental
results in Section 4.1 show that such a search method can also effectively preserve good
structures. Exact algorithms are limited by the complexity and scale of the problem, so they
are less applicable than heuristics and metaheuristics. Using heuristic rules to guide the
search direction of the exact algorithm can improve the solving efficiency and increase the
application scope of the exact algorithm. The experiments in Section 4.2 demonstrate that
by fully exploiting the advantages of both methods, better results can be obtained than the
current mainstream metaheuristic algorithms for solving NWFSP problems.

The rest of this article is organized as follows. Section 2 describes the problem of
NWFSP. Section 3 proposes two heuristic algorithms for improving the solutions of NWFSP.
Section 4 discusses the performance of the proposed matheuristic algorithm on two bench-
marks. Section 5 summarizes the contributions of this article and provides some suggestions
for future research directions.

2. No-Wait Flow Shop Scheduling Problem

Compared to FSP, NWFSP permits no interruption when a job is processed from the
first stage to the last one. The details are expressed as follows.

Typically, the NWFSP includes m stages, preparing for n jobs to follow the same given
route, where the m and n are determined. It also restricts only one machine at each stage,
so it contains m machines overall. Furthermore, the processing time of job j on machine
i is also known and may be named as P(i, j). It is natural to consider every P(i, j) as the
element of row i, column j in processing time matrix P. One job should be processed on
only one machine at the same time and it is merely allowed to be transferred to the next
stage until the current work is finished; similarly, each machine cannot deal with more than
one job at any time. Here, one only considers the situation of ignoring the setup time and
transfer time.

2.1. Problem Description

As we known, makespan, the complete time of the last job in a sequence, is one of the
indicators that directly measures economic benefits. Let (Cmax)min denote the minimum
makespan and its expression is shown in Equation (1). The meanings of related symbols
are as follows.

The job set: J = {1, 2, 3, L, n|n ∈ Z, n ≥ 1}
The machine set: M = {1, 2, 3, L, m|m ∈ Z, m ≥ 1}
π any sequence
Π the set of all possible sequence π
πk the kth job in the sequence k ∈ Z and k ≥ 1
Cij end time of job j on machine i

(Cmax)min = min
π∈Π

(Cm,πn) (1)

DY(j1, j2) is the delay of the job j2 when it is arranged after job j1, ∀j1, j2 ∈ J, j1 6= j2.
PRj the tail value of the job j.

PRj =
m

∑
i=2

P(i, j), ∀j ∈ J, i ∈ M (2)
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P1 the sum of the processing times of all the jobs on the first machine

P1 =
n

∑
j=1

P(1, j) (3)

Owing to the no-wait constraint, the delay value between two adjacent jobs is constant
and can be calculated by matrix P. As shown in Figure 1, Cmax has been divided into three
parts and can be calculated from Equation (4). Obviously, P1 is a constant, so the change of
Cmax is only affected by two parts. Then, the simplified objective function was formulated
in Equation (5).

Cmax =
n−1

∑
j=1

DY
(
πj, πj+1

)
+ PRπn + P1 (4)

C′max =
n−1

∑
j=1

DY
(
πj, πj+1

)
+ PRπn (5)
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2.2. Equivalent Model

Considering jobs as cities and the delay value as the distance between two cities, the
NWFSP can be transformed into the ATSP. After adding virtual city/job “0”and “n + 1”,
the model can be described as follows. For convenience, “0” and “n + 1” are counted as
the same city, and “0” represents the starting city/job, and “n + 1” represents the ending
city/job. The city/job set is JC = {0, 1, 2, 3, L, n + 1|n ∈ Z, n ≥ 1}.

DY(0, j2) = P1, j2 ∈ [1, n] (6)

DY(j1, n + 1) = PRj1 , j1 ∈ [1, n] (7)

The objective:

Minimize

(
n

∑
j2=1

DY(0, j2)x0,j2+
n

∑
j1=1

n+1

∑
j2=1,j1 6=j2

DY(j1, j2)xj1,j2

)
(8)

Subjected to:
n

∑
j2=1

x0,j2 = 1 (9)

n+1

∑
j2=1,j2 6=j1

xj1,j2 = 1, ∀j1 ∈ [1, n] (10)
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n

∑
j1=0,j1 6=j2

xj1,j2 = 1, ∀j2 ∈ [1, n] (11)

n

∑
j1=1

xj1,n+1 = 1 (12)

∑
j1, j2 ∈ S, j1 6= j2

i f j1 = 0, then j2 6= n + 1
j1 ∈ [0, n], j2 ∈ [1, n + 1]

xj1,j2 ≤ |S| − 1, 2 ≤ |S| ≤ n, S ⊂ JC (13)

xj1,j2 =

{
1
0

i f j2 is the next job/city o f j1
else

(14)

3. The Proposed Heuristic Algorithms

The NWFSP can be transformed into the ATSP, so the path-exchange-strategy used
in the Lin-Kernighan–Helsgaun (LKH) [45] algorithm is also suitable for solving NWFSP.
Based on this idea, we can divide the neighborhood and construct heuristic algorithms.

3.1. Basic Neighborhood Structures

Considering the search efficiency fully, the search solution domain is initially limited
to three levels, that is, Neighborhood N2, N3, N4. The characteristics of the three basic
neighborhoods are given in Table 1. The n− exchange optimum means that the solution
cannot be better by exchanging n areas, which are arbitrarily divided in the sequence.

Table 1. Basic Neighborhood Features.

Name Total
Area Lines Total Areas Conditions for Jumping Out of the

Neighborhood

N2 2 3 Being the three-exchange optimum
N3 3 4 Being the four-exchange optimum
N4 4 5 Being the five-exchange optimum

The N2 neighborhood is shown in Figure 2 as an example, where L1 and L2 are the
two area lines and the three regions are Aera0, Aera1, Aera2.
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3.2. Selected Potential Sub-Neighborhoods

In order to improve the search efficiency and advance the search process in more
potential sub-domains, three rules are proposed and three sub-domains are selected, namely
Z2, Z3, and Z4. The details are shown in Table 2. Two heuristic algorithms will be carried
out along these three neighborhoods.
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Table 2. Neighborhood classification.

No Name Level Combinations to Be Tested for Each
Sequence Constant Job

1 Z2 A {102} Last job
2 Z3 B {2103} Last job
3 Z4 C {03214} First and Last job

• Skipping consecutive area rule

Considering that the current solution sequence is almost derived from the last region-
exchange operation, the combinations containing the adjacent area number pair (that is
“01”, “12”, “23”, “34”) as a part do not temporarily need to test again.

• First and last job unchanged rules

From the experimental results, along the evolutionary direction, the job in last position
is easier to have coincidence with the optimal solution because of being affected by PR
values. Then is the first position. When the evolution process has advanced to a certain
level, the first and last job can be fixed.

• Low-Level-neighborhood first searched rule

The lower the neighborhood level, the higher the search priority. The algorithm flow
chart is shown in Figure 3. “US” is the abbreviation of “Update successfully” and “UF” is
the abbreviation of “Update failed”. For ease of representation, the structure in the dashed
box in Figure 3 is referred to as “PHM”.
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Figure 3. The simplified search mechanism contains three neighborhoods.

3.3. Two Heuristic Algorithms

Based on the mechanism in Figure 3, it is easy to propose two heuristic algorithms ac-
cording to whether the PR value characteristic is highlighted. The two heuristic algorithms
HG1 and HG2 differ only in the first step, that is, the input feasible solutions are different.
The details are shown in Figure 4. The advantage of HG1 is randomness. HG2 always takes
the job with the smallest PR value as the final job to start the search, which is more in line
with the characteristics of NWFSP and can speed up the algorithm convergence.
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In order to improve the utilization of historical data and improve the efficiency of
neighborhood search. According to the different characteristics of the neighborhoods of Z2,
Z3 and Z4, corresponding search algorithms are provided one by one. They are vmcmp2,
vmcmp3, and vmcmp4.
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3.3.1. Local Evolutionary Algorithm in Z2

Searching the only manner {102} can improve evolution speed. Without the change of
PR, the evaluation speed is further improved. Let the size of ∆ characterize the degree of
improvement of the new sequence; the larger the value, the better the improvement.

∆ = C′max(CS)− C′max(NS) = DY(x1, y1) + DY(x2, y2)− DY(x2, A)− DY(x1, y2) (15)

In Figure 2, it can be seen that for the same CS, when L1 and L2 move, x1, x2, y1, y2
are changed, but A, B remains unchanged, which can be regarded as constants. Because
the first job is stored in A, once the adjustment is made according to {102}, the A value of
the new sequence must change, and the value of DY(x2, A) will also change. As can be
seen from Equation (15), in order to make full use of historical data and reduce repeated
calculating, ∆ is regarded as two components. The first part and the second part are
respectively represented by functions f and g, as shown in Equations (16) and (17).

f (x2, A) = DY(x2, A) (16)

g(x1, y2) = DY(x1, y1) + DY(x2, y2)− DY(x1, y2) (17)

The two-dimensional array G is constructed, and the calculation result g(x1, y2) of
Equation (17) is stored in the x1th row and the y2th column of G. Such an operation can
ensure that after the sequence is updated, the intermediate result G only needs to recalculate
part of the data. For the convenience of description, several definitions are given below.

Definition 1 (Point). Adjacent job pair makes up a point. If (x1, y1) is a point, x1 is the predecessor
job of y1, and y1 is the successor job of x1.

Definition 2 (Single-point Attribute (SPA)). The function value calculated by a point only or
with information of a stable job. For example, function f is the single-point attribute of the point
(x2, y2), where A is the stable job.

Definition 3 (Double-point Attribute (DPA)). The function value is calculated by two points
and reflects the relationship of four related jobs. For example, function g is the double-point attribute
of point (x1, y1) and point (x2, y2).

When traversing (L1, L2), function f is associated with the attributes of job x2 which
belongs to the second point (x2, y2). But in essence, x2 is still a job in CS. If the index
number of the first job in the sequence is 0, then the index range of x2 is [1, n− 2] (denote
the index of x2 in the sequence as L(x2), then L(x2) ∈ [1, n− 2]). Function f is seen as
the single-point attributes of the jobs whose index ranges from 1 to n − 2. Once CS is
given, we can directly calculate the function f . It can be seen from the characteristics of
the double-point attribute that if the two points do not change, then their DPAs do not
change. That is, as long as the con1 is met, the saved values in G need not be updated, and
the calculation speed can be increased.

The con1 is described as follows.
First, the jobs x1 and y2 remain in the original pair order, that is, in the sequence NS,

and x1 is still on the left side of y2.
Second, to find the g value of the job x and job y, that is, in g(x, y), x cannot be equal

to x1 or x2 in the last operation; y cannot be equal to y1 or y2.
The local optimal algorithm (Algorithm 1) for Z2 is described as follows.



Symmetry 2022, 14, 913 8 of 24

Algorithm 1. vmcmp2(con1)// Search {102} only

Step 1. compute all the SPAs in CS, that is, all the f
Step 2. compute all the DPAs in CS, that is, all the g
Step 3. (∆max, x1, x2) =(g− f )max //Save the best positions to x1 and x2 which provide the ∆max
Step 4. if (∆max > 0)

L1 = x1 and L2 = x2
CS=CS ({102})//Perform operation {102} on CS to update CS
update ( f ); //Recalculate all the f values
update (g, con1); // Recalculate g values that do not meet con1
jump to Step 3

end if
else// CS is the best of Z2 now

Stop searching in Z2
end else

3.3.2. Local Evolutionary Algorithm in Z3

Since the first job and the last job are constant, the point attribute can be used with
the historical data to optimize the algorithm. Figure 5 shows the evolution form of “0213”,
from which Equation (20) can be obtained.
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Where SD(j1, j2) represents the sum of the delay values of all the jobs from the job
j1 to the job j2 in the current sequence. Equation (20) is the sum of the expressions in
the three brackets, and the three sub-expressions, which can be seen as DPAs are in a
rotation-symmetric relationship. Parentheses 1 and 2 can share the function f1. Parenthesis
3 is denoted as function f2.

C′max(CS) = SD(A, x1) + DY(x1, y1) + SD(y1, x2) + DY(x2, y2) + SD(y2, x3) + DY(x3, y3) + SD(y3, B) + PR(B) (18)

C′max(NS) = SD(A, x1) + DY(x1, y2) + SD(y2, x3) + DY(x3, y1) + SD(y1, x2) + DY(x2, y3) + SD(y3, B) + PR(B) (19)

∆(0213) = C′max(CS)− C′max(NS) = [DY(x1, y1)− DY(x1, y2)] + [DY(x2, y2)− DY(x2, y3)] + [DY(x3, y3)− DY(x3, y1)] (20)

f1 and f2 are considered as functions of the job numbers and the function values are
saved. See Equations (21) and (22) for details.{

f1(xa, yb) = DY(xa, ya)− DY(xa, yb)
L(xa) ∈ [0, n− 3], L(yb) ∈ [2, n− 1], and L(xa) + 1 < L(yb)

(21){
f2(xb, ya) = DY(xb, yb)− DY(xb, ya)

L(xb) ∈ [2, n− 2], L(ya) ∈ [1, n− 3], and L(xb) > L(ya)− 1
(22)
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Compute and save each f1(xa, yb) value to the xath row, ybth column of the two-
dimensional array G1. Assume point1 (xa, ya), point2 (xb, yb), point3 (xc, yc), then Equation
(20) can be replaced by Equation (23) to reduce double counting.{

∆(0213) = f1(xa, yb) + f1(xb, yc) + f2(xc, ya)
L(xa) ∈ [0, n− 4], L(xb) ∈ [1, n− 3], L(xc) ∈ [2, n− 2], and L(xa) < L(xb) < L(xc)

(23)

In contrast to the search in S3, there is only one combination to try, so compute all
∆(0213) and choose the biggest improvement. If all ∆(0213) is computed but only updated
at most once, the utilization rate of historical data is too low. Then Multiple Iterations in
One step (MIO) is proposed to improve this situation.

Traverse the Z3 neighborhood of CS, the specific method is to calculate by Formula 23,
and save all the values greater than 0 in DY0. In Figure 6, DY0 is a multiset that sorts the
results according to its ∆ values, from largest to smallest, and itRS7 is the iterator of DY0.
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.
Suppose there is a NWFSP with n = 12, and the DY0 is shown in Figure 6. As shown

in Figure 7, its current solution is CS(0) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.
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Take out the element pointed to by the iterator itRS7, that is (T1, T2, T3).Then the
evolution process can be seen in Figure 8. The indices of points (1, 2), (3, 4), (10, 11)
in the sequence are respectively recorded as T1, T2, T3. In Figure 6, (T1, T2, T3) means
T1 < T2 < T3.
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Because of the constant last job, the PR is constant too. Then the essence of every
evolution manner is the change of boundary values. Combining Figures 6 and 7, we can
draw the conclusions of Table 3.

Table 3. Changed Paths of Boundary Values.

Evolution
Manner Changed Paths of Boundary Values

(T1, T2, T3) DY(1,2) + DY(3,4) + DY(10,11)→DY(1,4) + DY(3,11) + DY(10,2)
(Z1, Z2, Z3) DY(2,3) + DY(6,7) + DY(8,9)→DY(2,7) + DY(6,9) + DY(8,3)
(R1, R2, R3) DY(1,2) + DY(7,8) + DY(9,10)→DY(1,8) + DY(7,10) + DY(9,2)

It is easy to see from Table 3 that no matter how many iterations are completed, as long
as the changed path of boundary values still exist, evolution in this direction will succeed.

It can be seen from Figure 9 that after two iterations, the corresponding point of R1
cannot be found in CS(2) at this time, so it cannot be evolved in this way. Next, derive the
conditions con2 whose paths still exist after iterations, as shown in Table 4.
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Table 4. Conditions for con2.

Conditions for the Establishment of con2

1. Same points constraint.
The same 3 points can be found both in sequence before and after the iteration.
Suppose their corresponding relationship is: (Z1, Z2, Z3)→(Z1′ , Z2′ , Z3′ )

2. Position constraint.
Z1′ < Z2′ < Z3′ or Z2′ < Z3′ < Z1′ or Z3′ < Z1′< Z2′ (if Z1 < Z2 < Z3)

Traverse DY0 and determine whether each element meets the con2 in turn. If one
is satisfied, it is applicable and the iteration can be completed directly. Therefore, DY0
is calculated only once, and there is a chance to iterate multiple times. The algorithm
(Algorithm 2) vmcmp3(con2) suitable for Z3 is described as follows.
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Algorithm 2. vmcmp3(con2)

Step 1. Input CS(0), record Loc (j, CS(0)) and save them to vector k1, Let its jth element, k1(j) to
save the location of job j in CS(0)

Step 2. flag = 0// Set the initial value of the flag
Step 3. Compute and save f 1, f 2, then compute ∆ and save them to multiset DY0 when ∆> 0.
Step 4. if (DY0.size()! = 0) // if DY0 is not empty

for itRS7 = DY0.begin() to DY0.end ()-1)// Traverse DY0 by itRS7
if(con2) //If con2 is met
CS= update (itRS7, {2013}, CS);// According the locations

//provided by DY0, give CS a {2013} operation
flag=1// Updated successfully
update (Loc (j, CS)); // Save the new correspondence of location //and job number
end if(con2)

end for
end if
else
flag=2
end else

if flag==1 // When update successfully
jump to Step2
end if
else // When update failed
Stop searching in Z3

end else

3.3.3. Local Evolutionary Algorithm in Z4

Experiments show that the combination {03214} has a higher hit rate. Its main feature
is that the first and last jobs are not changed. The Figure 10 shows the evolution form.
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Still, start with the expression of ∆(03214), specific as shown in Equations (24)–(26).

C′max(CS) = SD(A, x1) + DY(x1, y1) + SD(y1, x2) + DY(x2, y2) + SD(y2, x3)
+DY(x3, y3) + SD(y3, x4) + DY(x4, y4) + SD(y4, B) + PR(B)

(24)

C′max(NS) = SD(A, x1) + DY(x1, y3) + SD(y3, x4) + DY(x4, y2) + SD(y2, x3)
+DY(x3, y1) + SD(y1, x2) + DY(x2, y4) + SD(y4, B) + PR(B)

(25)

∆(03214) = C′max(CS)− C′max(NS)
= DY(x1, y1) + DY(x2, y2) + DY(x3, y3) + DY(x4, y4)− DY(x1, y3)− DY(x4, y2)− DY(x3, y1)− DY(x2, y4)
= [DY(x1, y1) + DY(x3, y3)− DY(x1, y3)− DY(x3, y1)] + [DY(x2, y2) + DY(x4, y4)− DY(x4, y2)− DY(x2, y4)]

(26)
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Similarly, using Equation (27) to uniformly calculate the two parts separated by
parentheses in Equation (26) can simplify the calculation. Let ∆(03214) be V(xa, yb) here.{

V(xa, yb) = DY(xa, ya) + DY(xb, yb)− DY(xa, yb)− DY(xb, ya)
L(xa) ∈ [0, n− 4], L(yb) ∈ [3, n− 1], and L(xa) < L(yb)− 1

(27)

Compute all the results by Equation (27) and save them in multiset RS2.
Use two iterators, it1 and it2 to traverse RS2. Then select all the elements that meet

the condition of con3, and store them in multiset JSF. See Figures 11 and 12 for details.
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JSF collects all successful evolution paths. Its iterator is itRS9 in Figure 12 (T1 < T2 <
T3 < T4). Suppose the variables saved by a single element in RS2 are DOT1 and DOT2,
then the conditions for con3 to be established are shown in Table 5.

Table 5. Conditions for con3.

Conditions for the establishment of con3

1. Greater than 0 constraint, that is, DV > 0, where DV = it1.V + it2.V
2. Position constraint.
it1.DOT1 < it2.DOT1< it1.DOT2< it2.DOT2 or it2.DOT1 < it1.DOT1< it2.DOT2< it1.DOT2

Similarly, use MIO Strategy to construct an algorithm (Algorithm 3) to speed up the
search process.
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Algorithm 3. vmcmp4(con3, con4)

Step 1. Input CS(0), record Loc (j, CS(0)) and save them to vector k1, Let its jth element, k1(j) to
save the location of job j in CS(0)

Step 2. flag = 0// Set the initial value of the flag
Step 3. for xA = 0 to n-4 // The union of the ranges L1 and L2
for yB = 3 to n − 1// The union of the ranges L3 and L4
cmpRS2(xA,yB)//compute the DPAs of (xA, yA, xB, yB) and save them in RS2
end for // End the inner loop
end for// End outer loop
Step 4. it1begin = RS2.begin()

it2begin = it1 + 1 // Assign initial values to iterators it1 and it2
for it1 = it1begin to it1end

for it2 = it2begin to it2end // Double loop for traverse RS2
if (con3(it1, it2)) //If the elements pointed to by it1 and it2 satisfy con3
JSF. insert (it1, it2)//Save the evolution path provided

//by the elements which are pointed to by it1 and it2 in JSF
end if
end for// End the inner loop
end for// End outer loop
Step 5. if (JSF. size () 6=0)//If JSF is not empty, it means that CS(0) can be

//updated in its neighborhood Z4
for itJSF9 = JSF. begin () to JSF. end ()−1 //Traverse multiset JSF

//which is the neighborhood Z4 of CS(0)

if (con4(itJSF9))//If the element pointed to by itJSF9 satisfies the con4
CS = update (JSF9, {03214}, CS)//Update CS as specified by JSF9
update (Loc (j, CS)); // Save the new correspondence of

//location and job number
flag = 1; // Assign 1 to the flag bit

end if
end for

end if
else

flag = 2
end else
if flag == 1// If there is an update in this round
jump to Step2

end if
else// This round of searching this CS(0) in Z4 has not been updated
Stop searching in Z4
end else

Let the condition that satisfies MIO in Z4 be con4. If con4 in the algorithm is to be
established, two conditions must be met, as shown in Table 6.

Table 6. Conditions for con3.

Conditions for the Establishment of con4

1. Same points constraint.
The same 4 points can be found both in sequence before and after the iteration.
Suppose their corresponding relationship is: (Z1, Z2, Z3, Z4)→(Z1′ , Z2′ , Z3′ , Z4′ )
2. Position constraint.
Suppose (1, 2, 3, 4, DV) is taken from JSF, then rearrange them from small to large according to
their position numbers in the NS. There are 8 orders that satisfies the position constraint, that is
{4321, 4123, 3412, 3214, 2341, 2143, 1234, 1432}
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3.4. Experimental Results of the Two Heuristic Algorithms

Use HG1 and HG2 to solve Tailard (TA) benchmark. Then record the calculation results
in Table 7. The heuristic algorithms were coded in C++. All the experiments executed in
Windows 10 on a desktop PC with an 11th Gen Intel(R) Core (TM) i7-1165G7 (2.80GHz)
processor and 16.0 GB RAM. The calculation formula of RPI (Relative Percentage Increase)
and

_____
RPI are shown in Equations (28) and (29), where C(opt,a1) refers to the optimal Cmax of

instance a1. C(i1,a1) refers to the result of algorithm i1 to solve the instance a1.

RPI(i1, a1) =
C(i1,a1) − C(opt,a1)

C(opt,a1)
× 100 (28)

 _____
RPI | f rom b to b+9 =

a1=b+9
∑

a1=b
RPI(i1,a1)

10 × 100
b ∈ {1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111}

(29)

In Table 7, HG2 has a smaller
_____
RPI value than HG1 in all scale instances; its fluctuation

range is from 0.8% to 2.58%, the maximum
_____
RPI value of 2.58% appears on the small-scale

instances (scale is 20 × 10), while its
_____
RPI value on the largest-scale instances (500 × 20) is

only 1.28%. On the whole, it performs better for large-scale instances. The average
_____
RPI is

1.30%, and the fluctuation is not large, indicating that the algorithm has strong local search
ability, and can quickly converge to a local optimal solution regardless of the scale, with
stable performance.

It can be seen from Table 7 that out of 120 instances, HG1 only exceeds HG2 in 6
instances (the part in bold in the table). Therefore, for the goal of approximating the
optimal value, the effect of the HG2 algorithm constructed by introducing the PR value
is much better than that of HG1, and even HG2 directly obtains the optimum on some
small-scale instances (the part in italics in the table). Taking “TA 05” as an example, its
Gantt chart is shown in Figure 13. If the result of HG1 is imported into Gurobi, another
set of optimal solution sequences can be obtained. This Gantt chart is shown in Figure 14.
Therefore, the use of different heuristic algorithms is effective for the breadth search. The
same job-blocks in the HG1 sequence and the HG2 sequence can also be considered as
high-quality structures by comparing them with the optimal solution sequence. Therefore,
the heuristic algorithms can easily construct multiple high-quality solutions. Arrange the
jobs according to their PR values from small to large, take them as the last job in turn, and
then perform the PHM operation.
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Table 7. Results of HGs on Tailard Benchmark (TA).

TA
HG1 HG2

TA
HG1 HG2

TA
HG1 HG2

TA
HG1 HG2

CHG1
_____
RPI CHG2

_____
RPI CHG1

_____
RPI CHG2

_____
RPI CHG1

_____
RPI CHG2

_____
RPI CHG1

_____
RPI CHG2

_____
RPI

01 1505

4.10

1509

0.8

31 3220

2.23

3198

0.83

61 6488

1.92

6453

0.82

91 15523

2.08

15401

0.92

02 1590 1528 32 3467 3490 62 6333 6264 92 15326 15164
03 1586 1462 33 3310 3247 63 6232 6138 93 15536 15352
04 1634 1588 34 3424 3354 64 6148 6055 94 15303 15221
05 1482 1449 35 3398 3392 65 6274 6240 95 15379 15194
06 1522 1502 36 3403 3360 66 6203 6099 96 15328 15129
07 1561 1515 37 3292 3251 67 6326 6267 97 15643 15418
08 1548 1521 38 3336 3268 68 6210 6144 98 15467 15245
09 1577 1470 39 3162 3082 69 6487 6412 99 15320 15130
10 1405 1377 40 3407 3324 70 6445 6401 100 15573 15386
11 2228

5.40

2153

2.58

41 4448

3.40

4283

1.42

71 8214

2.50

8122

1.10

101 19773

2.18

19840

1.61

12 2248 2230 42 4372 4234 72 8084 7959 102 20331 20179
13 2051 1987 43 4300 4170 73 8267 8084 103 19998 19986
14 1945 1811 44 4477 4513 74 8538 8430 104 20297 20122
15 2077 2070 45 4340 4340 75 8049 8014 105 20233 19962
16 1925 1955 46 4390 4330 76 7952 7875 106 20329 20148
17 2031 1990 47 4653 4496 77 8123 7966 107 20478 20478
18 2145 2068 48 4555 4361 78 8100 7957 108 20238 20117
19 2120 1992 49 4270 4255 79 8331 8199 109 20319 20233
20 2126 2088 50 4381 4359 80 8247 8179 110 20195 20006
21 3102

5.39

3001

1.45

51 6260

4.07

6210

1.70

81 11092

3.01

10799

1.12

111 47034

1.71

46600

1.28

22 3128 2878 52 5990 5935 82 10904 10786 112 47561 47219
23 3090 3027 53 6098 5972 83 10783 10631 113 46922 46820
24 3275 3004 54 6001 5883 84 10938 10744 114 47131 47108
25 3137 3071 55 6177 5924 85 10762 10629 115 46879 46728
26 3132 3022 56 6205 5919 86 10898 10702 116 47276 47095
27 3193 3116 57 6247 6042 87 11128 10880 117 46592 46503
28 3036 2876 58 6079 6112 88 11147 10907 118 47098 46977
29 3199 3156 59 6116 5949 89 11101 10843 119 47028 46870
30 3019 3002 60 6194 6024 90 11039 10855 120 47243 46824
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Similarly, we used HG1 and HG2 to solve Reeves (REC) benchmark. The results are
recorded in Table 8.
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Table 8. Results of HGs on REC.

REC
HG1 HG2

REC
HG1 HG2

REC
HG1 HG2

REC
HG1 HG2

CHG1 RPI CHG2 RPI CHG1 RPI CHG2 RPI CHG1 RPI CHG2 RPI CHG1 RPI CHG2 RPI

01 1658 8.65 1534 0.52 13 2748 7.98 2653 4.24 25 3841 6.90 3669 2.12 37 8109 1.26 8079 0.89
03 1364 0.22 1361 0.00 15 2693 6.48 2597 2.69 27 3633 5.89 3531 2.91 39 8689 3.21 8569 1.78
05 1614 6.82 1545 2.25 17 2657 2.71 2657 2.71 29 3544 7.69 3380 2.70 41 8719 3.34 8543 1.26
07 2066 1.18 2066 1.18 19 3009 5.58 2906 1.96 31 4412 2.44 4383 1.76
09 2167 6.12 2066 1.18 21 2866 1.60 2835 0.50 33 4558 3.03 4477 1.20
11 2010 6.86 2011 6.91 23 2849 5.52 2719 0.70 35 4651 5.78 4407 0.23

On this benchmark, the values obtained by HG2 are also better than that obtained by
HG1. Except for REC11, HG1 does not get a better Cmax than HG2, and HG2 even gets the
optimal solution on REC03. Obviously, the effect of HG2 is better than that of HG1, so HG2
was selected to participate in the calculation in subsequent studies.

4. Solving the Model with Matheuristic Algorithms
4.1. Test on Small-Scale Instances with MTZ Model

When Gurobi solves the NWFSP problem, if all constraints are added directly at
the beginning of the optimization, the solution performance will be greatly reduced, for
example, when the famous Miller-Tucker-Zemlin model [46] (Formulas (6)–(12), Equation
(14) and Formula (30)) is used directly. However, the model has high research value [47].
We combine the heuristic algorithm to improve the efficiency.{

µj1 − µj2 + n× xj1,j2 ≤ n− 1
µj ≥ 0

(30)

Using Gurobi (The version is 9.1.2.) to solve this model directly, the results are shown
in Tables 9 and 10. Among them, TA02 takes a longer time, and TA37 has not completed
the calculation within 36,000 s.

Table 9. Results of MTZ model on REC (tolerance is 10−4).

REC RPI(%) Time(s) REC RPI(%) Time(s) REC RPI(%) Time(s) REC RPI(%) Time(s)

01 0 0.05 13 0 0.10 25 0 0.13 37 0 0.77
03 0 0.08 15 0 0.08 27 0 9.50 39 0 1.06
05 0 0.07 17 0 0.20 29 0 0.13 41 0 9.51
07 0 0.26 19 0 0.11 31 0 0.35
09 0 0.10 21 0 2.39 33 0 0.24
11 0 0.04 23 0 0.11 35 0 0.37

Table 10. Results of MTZ model on TA01–TA60 (tolerance is 10−4).

TA RPI(%) Time(s) TA RPI(%) Time(s) TA RPI(%) Time(s) TA RPI(%) Time(s) TA RPI(%) Time(s)

01 0 0.18 13 0 0.34 25 0 0.29 37 NA 36,000 49 0 72.10
02 0 971.08 14 0 0.05 26 0 0.30 38 0 0.29 50 0 0.72
03 0 0.05 15 0 0.04 27 0 0.15 39 0 0.37 51 0 0.98
04 0 0.05 16 0 0.09 28 0 0.07 40 0 0.21 52 0 0.84
05 0 0.10 17 0 0.21 29 0 0.08 41 0 0.41 53 0 0.27
06 0 0.11 18 0 0.07 30 0 0.10 42 0 0.37 54 0 8.01
07 0 0.05 19 0 0.05 31 0 0.36 43 0 0.37 55 0 0.68
08 0 0.06 20 0 59.29 32 0 1.17 44 0 0.38 56 0 0.66
09 0 0.05 21 0 0.39 33 0 18.69 45 0 0.61 57 0 0.56
10 0 0.07 22 0 0.49 34 0 0.47 46 0 0.31 58 0 0.42
11 0 0.23 23 0 0.24 35 0 0.35 47 0 0.63 59 0 1.28
12 0 0.26 24 0 0.14 36 0 0.24 48 0 154.33 60 0 0.47
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We select those instances (T > 7s) with longer solution times, and combine heuristics to
improve efficiency. NA (not a number) indicates that the calculation has not been completed
within 36,000 s.

The method of importing only the result (named as S2) of HG2 as an initial feasible
solution to the optimizer is called MH2, then the solution efficiency for instances marked
in italics is improved.

Since NWFSP is solved by transforming it into an ATSP problem, i.e., the solution
satisfies the characteristic of a “loop”. We choose the last three jobs in S2 to join the first
three jobs to form a test sequence. The test sequence is shown in Formula (31).

{S2[n− 2], S2[n− 1], S2[n], S2[1], S2[2], S2[3]} (31)

Using adjacent job pairs in the test sequence as constraints one by one, test the running
time separately (if a single test exceeds 10s, test the next job pair or end the test). Among
the results satisfying RPI = 0, select the best (the one with the shortest running time) as the
improvement value and store it in the IMH2 column of Table 11. It can be seen that the
speed of solving other instances in Table 11 are also improved to varying degrees (the last
column in Table 11). This shows that the matheuristic method is effective.

Table 11. Comparison Results of MH2, IMH2 and MTZ only (tolerance is 10−4).

Ins RPI TMTZ(s) RPI TMH2(s) RPI TIMH2(s) TMTZ/TIMH2

REC27 0 9.50 0 7.22 0 0.13 73.08
REC41 0 9.51 0 2.87 0 0.76 12.51
TA02 0 971.08 0 1726.03 0 0.05 19,421.60
TA20 0 59.29 0 63.50 0 0.08 741.13
TA33 0 18.69 0 6.29 0 5.35 3.49
TA37 NA >36,000 NA >36,000 0 0.51 >70,588.24
TA48 0 154.33 0 160.55 0 0.33 467.67
TA49 0 72.10 0 39.87 0 7.07 10.20
TA54 0 8.01 0 10.41 0 5.94 1.35

4.2. Comparison Results of MH2 and Other Algorithms

While we used the matheuristic in the previous subsection to improve the efficiency
of the MTZ model, the strategy of dynamically adding constraints using callback functions
when solving large-scale instances has greater advantages. We use this strategy to solve
the proposed model (Formula 6-Formula 14), also naming the mathematic algorithm that
introduces HG2 as MH2. The comparison results of MH2, DWWO [32], SWWO [34], and
IDMBO [37] are shown in Tables 12 and 13.

These comparison algorithms are the main intelligent algorithms for solving NWFSP
problems in recent years (2018–2020). We carefully reproduced the algorithms following
the steps in the literature and set the parameters as required therein. Considering the
uniformity, the condition for terminating the program was selected from the literature [34],
that is, the upper limit of the running time is n × m × 90/2. Each algorithm takes five
independent runs for each instance, according to [37]. Calculate with Equations (32)–(34)
and fill in Tables 12 and 13 with the results. All algorithms are programmed in C++ (Visual
studio 2019) and run on the same desktop PC with an 11th Gen Intel(R) Core (TM) i7-1165G7
(2.80GHz) processor and 16.0 GB RAM.

∆min,i1,a1 =
C(min,i1,a1) − C(opt,a1)

C(opt,a1)
× 100 (32)

∆Avg,i1,a1 =
C(Avg,i1,a1) − C(opt,a1)

C(opt,a1)
× 100 (33)
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SDi1,a1 =

√√√√√ 5
∑

ct=1

(
C(ct,i1,a1) − C(Avg,i1,a1)

)2

5
(34)

The minimum and average values of five independent runs of algorithm i1 on in-
stance a1 are denoted as C(min,i1,a1) and C(Avg,i1,a1).

___
∆min,

___
∆Avg,

___
SD and

______
Time represent the

arithmetic mean of ∆min, ∆Avg, SD and Time of the same scale, respectively, and C(ct,i1,a1)
represents the result of the ctth running of the algorithm i1 on the instance a1.

Table 12 shows the test results of the four algorithms on the Tailard benchmark, in
which the first column

____
opt. records the averages of the optimal values for instances of the

same size. The proposed matheuristic algorithm MH2 achieves the optimal solutions in
all instances. Even for the largest instances (500 × 20), the average running time is 112.82
s. The running time of a single instance with a scale of less than or equal to 200 is short,
ranging from tens of milliseconds to a dozen seconds. Therefore, the algorithm is efficient
and feasible. MH2 does not contain random parameters, so the SD value is always 0, and
the algorithm is stable.

It can be seen from column
___

∆min that when the job size of the Tailard benchmark is
greater than or equal to 50, the three metaheuristic algorithms cannot obtain an optimal
solution within n ×m × 90/2, even if they are run 5 times independently. As the job size
increases, the difference between the output value and the optimal solution also increases.
In the case of SWWO [34], which has the best comprehensive ability among the three
metaheuristics, when the scale is 200 × 20, the difference between the average output
solution and the average optimum is about 200 (19788.4 × 1.00%). The metaheuristic
algorithm needs more running time to get a better solution, and its convergence speed is
not as fast as MH2.

Table 13 shows the results of the four algorithms for solving the small-scale benchmark
Reeves, where the first column records the optimal values of the instances. The operating
efficiency of the MH2 algorithm is the highest, and the optimal value of any REC instance
can be obtained within 1 s. The second is the SWWO algorithm [34], which can find the
optimal solution except REC39 and REC41.

In summary, when n < 30, the difference between the four algorithms is not big, and
the optimal solutions can basically be found. When n = 50, the search ability of the two
swarm intelligence algorithms, IDMBO [37] and DWWO [32], are not as good as that
of the adaptive algorithm SWWO [34]. SWWO [34] has the ability to find the optimal
solution for an instance of size n = 75 in 67.5 s. To a certain extent, it verifies the NWFSP,
which is more suitable for a search mechanism with more local search than global search.
Comparing Table 7, it can be seen that when the scale is increased to 200 × 10 and 500 × 20,
the

________
RPI of the heuristic algorithm HG2 is 0.92% and 1.28% respectively, that is, the

search performance also exceeds the other three intelligent algorithms. This shows that it is
feasible to perform a local search with the job with the smallest PR value in the job set as
the end job.
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Table 12. Comparison Results of MH2, IDMBO, DWWO, and SWWO on TA.

n ×m
_____
opt.

MH2 IDMBO [37] DWWO [32] SWWO [34]
________

RPI
(%)

________
Time

(s)

___
∆min
(%)

___
∆Avg
(%)

___
SD

________
Time

(s)

___
∆min
(%)

___
∆Avg
(%)

___
SD

________
Time

(s)

___
∆min
(%)

___
∆Avg
(%)

___
SD

________
Time

(s)

20 × 5 1480.3 0 0.04 0 0.05 0.58 4.50 0 0 0.04 4.50 0 0 0 4.50
20 × 10 1983 0 0.08 0.02 0.08 0.77 9.00 0 0.12 0.12 9.00 0 0 0.04 9.00
20 × 20 2971.9 0 0.11 0 0.02 0.39 18.01 0 0.01 0.45 18.01 0.03 0.03 0.32 18.00
50 × 5 3269.5 0 0.18 1.62 1.91 6.86 11.26 0.83 1.09 6.54 11.27 0.02 0.12 2.32 11.25
50 × 10 4273.6 0 0.29 0.38 0.70 9.58 22.51 0.20 0.37 5.64 22.51 0.03 0.08 1.85 22.50
50 × 20 5897.4 0 0.64 0.23 0.43 9.04 45.01 0.10 0.28 9.59 44.21 0.01 0.06 2.93 45.00
100 × 5 6196.1 0 0.99 3.68 4.17 20.42 22.53 3.80 4.27 20.98 22.51 0.34 0.52 8.45 22.50

100 × 10 7991 0 1.56 1.90 2.23 20.39 45.03 1.65 1.98 18.47 45.01 0.28 0.44 10.13 45.00
100 × 20 10,658.5 0 2.11 1.13 1.49 24.31 90.03 1.07 1.28 16.76 90.01 0.29 0.40 10.12 90.08
200 × 10 15,124.7 0 6.39 4.14 4.42 29.88 90.07 5.27 5.61 36.87 90.02 1.09 1.34 25.62 90.00
200 × 20 19,788.4 0 10.55 2.85 3.13 39.49 180.07 3.42 3.77 46.20 180.02 1.00 1.19 27.51 180.00
500 × 20 46,284.1 0 112.82 4.92 5.10 57.91 450.21 6.36 6.58 69.18 450.10 2.31 2.53 77.71 450.02
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Table 13. Comparison Results of MH2, IDMBO, DWWO, and SWWO on REC.

REC opt.

MH2 IDMBO [37] DWWO [32] SWWO [34]
________

RPI
(%)

________
Time

(s)

___
∆min
(%)

___
∆Avg
(%)

___
SD

________
Time

(s)

___
∆min
(%)

___
∆Avg
(%)

___
SD

________
Time

(s)

___
∆min
(%)

___
∆Avg
(%)

___
SD

________
Time

(s)

01 1526 0 0.08 0 0 0 4.50 0 0 0 4.50 0 0 0 4.50
03 1361 0 0.03 0 0 0 4.50 0 0 0 4.50 0 0 0 4.50
05 1511 0 0.06 0 0.08 1.47 4.50 0 0 0 4.50 0 0 0 4.50
07 2042 0 0.13 0 0 0 9.01 0 0 0 9.00 0 0 0 9.00
09 2042 0 0.05 0 0.04 0.40 9.00 0 0 0 9.00 0 0 0 9.00
11 1881 0 0.04 0 0 0 9.00 0 0 0 9.00 0 0 0 9.00
13 2545 0 0.07 0 0 0 13.51 0 0 0 13.51 0 0 0 13.50
15 2529 0 0.09 0 0 0 13.51 0 0 0 13.51 0 0 0 13.50
17 2587 0 0.07 0 0 0 13.50 0 0 0 13.51 0 0 0 13.50
19 2850 0 0.04 0.14 0.30 4.84 13.50 0 0.25 5.98 13.51 0 0 0 13.50
21 2821 0 0.10 0 0.13 3.25 13.51 0 0.17 4.12 13.51 0 0 0 13.50
23 2700 0 0.06 0 0.30 7.29 13.50 0 0 0 13.51 0 0 0 13.50
25 3593 0 0.13 0 0.06 1.83 20.26 0 0 0 20.26 0 0 0 20.25
27 3431 0 0.15 0 0.01 0.40 20.27 0 0.01 0.40 20.26 0 0.01 0.49 20.25
29 3291 0 0.06 0 0 0 20.25 0 0.06 4.00 20.25 0 0 0 20.25
31 4307 0 0.41 0.60 0.75 4.92 22.52 0.23 0.36 3.26 22.50 0 0.02 2.00 22.50
33 4424 0 0.14 0.47 1.26 22.92 22.51 0.52 0.77 11.21 22.50 0 0.14 8.58 22.50
35 4397 0 0.24 0.52 0.65 5.71 22.51 0.07 0.32 11.15 22.50 0 0 0 22.50
37 8008 0 0.69 0.74 1.15 25.67 67.52 0.71 0.84 10.09 67.51 0 0.26 12.19 67.50
39 8419 0 0.77 0.68 0.75 5.69 67.52 0.58 0.96 18.71 67.52 0.13 0.35 14.66 67.50
41 8437 0 0.96 0.91 1.11 12.28 67.53 0.33 0.76 22.69 67.52 0.08 0.25 12.70 67.50
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4.3. Results and Discussion

• This study determined the optimal solutions for 141 instances on the Tailard and
Reeves benchmarks. Further analysis based on the optimal solutions can verify the
validity of the proposed heuristic rule. The final job of the optimal solution is often
the job with a smaller PR value.

Step 1. Arrange the jobs according to their PR values from small to large. The
corresponding rank with the smallest PR value is 0.

Step 2. Record the Final Job Ranking (FJR) of each optimal sequence. See Table 14
for details.

Table 14. The FJR of TA.

TA FJR TA FJR TA FJR TA FJR TA FJR TA FJR TA FJR TA FJR

01 7 16 10 31 2 46 0 61 5 76 0 91 0 106 1
02 0 17 0 32 0 47 0 62 0 77 2 92 0 107 1
03 0 18 0 33 0 48 0 63 0 78 0 93 1 108 5
04 0 19 1 34 1 49 1 64 6 79 0 94 3 109 14
05 0 20 1 35 0 50 2 65 0 80 5 95 0 110 0
06 0 21 3 36 0 51 2 66 0 81 1 96 0 111 0
07 1 22 0 37 0 52 1 67 0 82 5 97 0 112 0
08 2 23 2 38 0 53 4 68 3 83 0 98 0 113 1
09 0 24 0 39 0 54 3 69 0 84 1 99 0 114 1
10 0 25 5 40 0 55 0 70 0 85 0 100 0 115 0
11 2 26 0 41 0 56 0 71 0 86 0 101 2 116 0
12 1 27 4 42 0 57 1 72 7 87 0 102 15 117 2
13 1 28 0 43 4 58 1 73 6 88 0 103 25 118 0
14 0 29 5 44 1 59 0 74 1 89 1 104 1 119 0
15 1 30 0 45 0 60 5 75 0 90 0 105 30 120 0

It can be seen from Table 14 that the FJR values of the instances are distributed between
0 and 30, and the case of “FJR = 0” accounts for 55%, as shown in Figure 15.
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• The heuristic algorithm can effectively guide the optimization direction of the op-
timizer and improve the solution rate of complex models. Making full use of the
advantages of both can not only find more optimal solutions, but also expand the
application range of exact algorithms and obtain high-quality solutions that cannot be
obtained by metaheuristic algorithms. Two different optimal sequences are obtained
on REC05, REC09, TA01, TA03, TA05, TA21, TA32, TA33, TA34, TA35, TA41, TA42,
TA44, TA45 and TA46, respectively.
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5. Conclusions and Future Work
5.1. Conclusions

This paper studied the characteristics of NWFSP and verified that the PR value is an
important indicator of a job. Taking the job with the smaller PR value as the final job has a
higher probability of obtaining the optimal solution.

Along the evolutionary direction of HG1 and HG2, different optimal values can be
obtained. This shows that HG1 and HG2 as initial solutions have good dispersion. The PR
rule and Z2, Z3, Z4 neighborhoods are also fit to be components of intelligent algorithms.

If the job with the smallest PR value is placed in the last position, and then the
neighborhood search is expanded step by step (search Z2, Z3, Z4 in turn), the iterative
results are often consistent with the optimal solutions in the first few and last few jobs.
Bringing these into the optimizer increases the model solution rate.

Experiments show that the optimal values of the two benchmarks (REC and TA) can
be obtained by using the Matheuristic MH2 method within an acceptable time (the running
time of a single instance with a scale of 500 × 20 is less than 134 s). This shows that the
algorithm is feasible.

5.2. Future Work

• Considering the computing power of personal laptops, this paper only studies the
three-level neighborhood division method, and initially realizes the idea of gradually
expanding the search domain of NWFSP. However, for large-scale instances, the
coverage of the three-level neighborhood is not enough, so the effect has a certain
dependence on the initial value. In the future, more levels of neighborhood division
methods and corresponding neighborhood search methods can be further studied to
improve the stability of the algorithm.

• The scope of application of the proposed rules and neighborhood partitioning strate-
gies can be generalized in the future, and they can be embedded in the framework of
metaheuristic algorithms to solve NWFSP. In the past, heuristic algorithms were mostly
used to construct high-quality solutions, but the rules proposed in this paper satisfy
the conditions of participating in all stages. The interaction method between heuristic
rules driven by problem features and metaheuristics with the advantage of generality
can be further studied to improve the ability of metaheuristics to solve NWFSP.

• In real production, distributed requirements are becoming more and more extensive.

Since the matheuristic solves the NWFSP problem well, it can also be studied to
solve the Distributed No-wait Flowshop Scheduling Problem (DNWFSP). On the one
hand, it is possible to study the method of building a simplified model of DNWFSP based
on the existing NWFSP model; on the other hand, how to use the obtained heuristic
rules to guide the optimization direction of the optimizer, improve the speed of solving
large-scale instances and expand the application range of exact algorithms is also a future
research direction.
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