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Abstract: This paper proposes a simple and novel approach based on solving a partial differential
equation (PDE) to establish the concise analytical formulas for a conditional moment and mixed mo-
ment of the Jacobi process with constant parameters, accomplished by including random fluctuations
with an asymmetric Wiener process and without any knowledge of the transition probability density
function. Our idea involves a system with a recurrence differential equation which leads to the PDE
by involving an asymmetric matrix. Then, by using Itô’s lemma, all formulas for the Jacobi process
with constant parameters as well as time-dependent parameters are extended to the generalized
stochastic correlation processes. In addition, their statistical properties are provided in closed forms.
Finally, to illustrate applications of the proposed formulas in practice, estimations of parametric
methods based on the moments are mentioned, particularly in the method of moments estimators.

Keywords: conditional moment; conditional mixed moment; Jacobi process; stochastic correlation
process

MSC: 60G65; 62M20; 91G20

1. Introduction

The diffusion process has been studied thoroughly in seeking a solution for a stochastic
differential equation (SDE) as well as for its properties, such as the conditional moments
and mixed moments, which play significant roles in various applications and are especially
beneficial for the estimation of rate parameters. Usually, these moments can be directly
evaluated by utilizing the transition probability density function (PDF), which is sometimes
unknown, complicated, or unavailable in closed form. Hence, the analytical formula for the
moments of the SDE may be unavailable. The important application of these moments is
parameter estimation. There are many tools to estimate parameters, such as the maximum
likelihood estimator (MLE), which is one of the most efficient tools. Sometimes, however, it
cannot be performed directly for the data of processes for which the transition PDFs are un-
known or complicated. Thus, the moments are required for estimating parameters; this can
be performed via several methods, e.g., martingale estimating functions, quasi-likelihood
methods, nonlinear weighted least squares estimation, and method of moments (MM).

The aim of this paper is mainly to propose a simple analytical formula for conditional
mixed moments of a generalized stochastic correlation process without requiring the
transition PDF. As for more specific details, we let

(
Ω,Fs, {Fs}0≤s≤T1≤T2 , P

)
be a filtered
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probability space generated by an adapted stochastic process {ρt}s≤t≤T2 . This paper focuses
on the conditional expectation of a product of polynomial functions ρn1

T1
and ρn2

T2
of the form

E
[
ρn1

T1
ρn2

T2
| Fs

]
= E

[
ρn1

T1
ρn2

T2
| ρs = ρ

]
, (1)

called a conditional mixed moment up to order n1 + n2 for n1, n2 ∈ Z+
0 , the analytical

formula of which has not been provided, where ρ ∈ [ρmin, ρmax] ⊆ R and ρt evolve
according to a generalized stochastic correlation process (time-dependent parameters)
governed by the following SDE:

dρt = θ∗(t)(µ∗(t)− ρt)dt + σ∗(t)
√
(ρmax − ρt)(ρt − ρmin) dWt, (2)

where Wt is an asymmetric Wiener process, θ∗(t) > 0, σ∗(t) > 0, and ρmin < µ∗(t) < ρmax
for all t ∈ [s, T2]. The parameter θ∗(t) corresponds to the mean-reverting parameter, µ∗(t)
represents the mean of the process, and σ∗(t) is the volatility coefficient which determines
the state space of the diffusion. Emmerich [1] showed that the stochastic correlation process,
which is (2) when the parameters θ∗(t), µ∗(t),, and σ∗(t) are constant, ρmin = −1, and
ρmax = 1, fulfills the natural features which correlation is expected to possess. In fact, this
process is a transformed version of the Jacobi process [2]. In other words, the Jacobi process
is the generalized stochastic correlation process (2) when the parameters θ∗(t), µ∗(t), and
σ∗(t) are constant, ρmin = 0, and ρmax = 1. Moreover, the Jacobi process is commonly used
to describe the dynamic of discretely sampled data with range [0, 1], such as the regime
probability or default probability, discount coefficient, and arbitrage free pure discount
bond price; see e.g., [2,3].

The conditional mixed moment (1) becomes the well-known conditional moment
when γ1 = 0. It is worth noting that the conditional moment, which is usually used in
many branches of mathematical science (especially in describing the dynamics of observed
data), has been studied extensively from a probabilistic viewpoint. In 2002, to study the
moment evaluation of interest rates, Delbaen and Shirakawa [2] provided an analytical
formula for the transition PDF of the Jacobi process through solving it using the orthogonal
polynomials with the Fokker–Planck equation, called Jacobi polynomials. In addition, an
analytical formula for the conditional moments of the Jacobi process was algebraically
solved by applying the transition PDF; see Figure 1. The transition PDF of Jacobi process is
very complicated and involves the Jacobi polynomials; their formula is difficult to work
with, especially, when extending it to a formula for conditional mixed moments (1). The
authors showed that the Jacobi process, which is bounded on [0, 1], becomes a more general
bounded process on [ρmin, ρmax] by using Itô’s lemma; see more details in [2]. In this case,
an analytical formula for conditional moments of the new bounded process is provided
in [2] as well. In 2004, Gouriéroux and Valéry [3] proposed a method to find the conditional
mixed moments in order to calibrate the values of parameters on well conditional moments.
Their idea used the conditional power moments, sometimes called the tower property, on
the conditional moments. However, their formula for the conditional moments is based on
solving the system of conditional moments recursively.

In this work, by utilizing the Feynman–Kac formula, which is transformed from the
Kolmogorov equation by using Itô’s lemma, we provide a simple analytical formula for
conditional moments of the Jacobi process. The key interesting element of our work is that
we successfully solve the partial differential equation (PDE) given in the Feynman–Kac
formula, as shown in Figure 1. The obtained formula does not require solving any recursive
system, as is the case in the literature to date. In addition, by applying the obtained
formula with the binomial theorem, we immediately obtain a simple analytical formula
for conditional moments of the generalized stochastic correlation process (2). Moreover,
we extend the obtained formulas to the conditional mixed moments (1) using the tower
property. We propose an analytical formula for several mathematical properties, such as
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the conditional variance, covariance, central moment and correlation, as consequences of
our results.

The overall idea of our results relies on a PDE solution provided by the Feynman–Kac
formula, which corresponds to the solution of (1). Roughly speaking, by assuming the
solution of the PDE as a polynomial expression, we can solve the coefficients to receive a
closed-form formula directly. The key motivation for the form of conditional moments, that
is, a solution to PDE, is based on [4–7]. Because the SDE in the Jacobi process has linear
drift coefficient and polynomial squared diffusion coefficient, the closed-form solutions of
the conditional moments can be assumed by the polynomial expansion; see more details
in [4,8–11].

The rest of this paper is organized as follows. Section 2 provides a brief overview of
the extended Jacobi process and the generalized stochastic correlation process. The key
methodology and main theorems are proposed in Section 3. Experimental validations of
proposed formulas are shown in Section 4 via Monte Carlo (MC) simulations. To illustrate
applications in practice, parameter estimation methods based on conditional moments are
mentioned in Section 5.

Fokker-Planck equation

Kolmogorov equation

generalized

orthogonal

Itô’s lemma

Transition PDF

Feynman-Kac formula

integrate under

solving PDE

Conditional

polynomial

Traditional method

Our proposed method

measure P

moments

Figure 1. Comparative diagram between traditional methods methods proposed in this paper.

2. Jacobi and Generalized Stochastic Correlation Processes

The Jacobi process is a class of solvable diffusion processes the solution of which
satisfies the Pearson equation [12]. It involves a wide variety of issues in many branches,
such as chemistry, physics and engineering; see more details in [13]. Over the past decade,
the Jacobi process has been considered as one class of the Pearson diffusion process [4],
sometimes called a generalized Jacobi process. The Pearson diffusion process is presented
via an Itô process having linear drift coefficient and diffusion in quadratic square, which its
dynamics follows:

dXt = θ(µ− Xt)dt +
√

2θ
(
aX2

t + bXt + c
)

dWt, (3)

where Wt is an asymmetric Wiener process, Xt is in state space, θ > 0, and a, b, and c are
constants which ensure that the quadratic squared diffusion coefficient in (3) is well-defined
for all t in time space. By considering the transition PDF of the Pearson diffusion process
through the Fokker–Planck equation, Forman and Sørensen [4] classified it based on the
stationary solution into six classes, including the Jacobi process.

Under the classification of Forman and Sørensen [4], the Pearson diffusion process
becomes the Jacobi process under conditions a < 0 and b2 − 4ac > 0. The simplest form of
the Jacobi process follows the SDE (3) when a = −b < 0 and c = 0, and its dynamics follow

dXt = θ(µ− Xt)dt +
√

2a θ Xt(Xt − 1) dWt. (4)

Unlike the Cox–Ingersoll–Ross process [14], which is only bounded below, all val-
ues produced from the Jacobi process (4) are bounded both below and above. To avoid
inaccessible boundary points 0, 1, almost certain with respect to probability measure P,
we need a sufficient condition that is −a ≤ µ ≤ 1 + a; see e.g., [2,15]. Under this condi-
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tion, a generalized case of the Jacobi process (4) can be obtained by applying Itô’s lemma
with ρt = ρmin + (ρmax − ρmin)Xt. In this work, we call this the generalized stochastic
correlation process (constant parameters) governed by the SDE

dρt = θ((ρmax − ρmin)µ + ρmin − ρt)dt +
√

2a θ(ρt − ρmax)(ρt − ρmin) dWt. (5)

Comparing (2) with (5) yields θ∗(t) = θ, µ∗(t) = (ρmax − ρmin)µ + ρmin and
σ∗(t) =

√
−2a θ. Figure 2 summarizes the relation among processes (2)–(5) and (8). How-

ever, we return to the extended Jacobi process (8) again in Section 3.

The Jacobi process (4)
special case

Constant parameters

Extended Jacobi process (8)

Time-dependent parameters

Itô’s lemma

extended

extended

Itô’s lemma

correlation process (5)
Generalized stochastic Generalized stochastic

correlation process (2)

Pearson diffusion
process (3)

Figure 2. Relationship diagram of the Jacobi and generalized stochastic correlation processes.

In the context of conditional expectation, a rising question is whether the conditional
expectation can be calculated directly by using the transition PDF. We begin with the
transition PDF of the Jacobi process, which is associated with the Jacobi polynomials
through the Jacobi generator’s eigenfunctions; see more details in [16,17]. In this case,
we discuss only the simplest case provided in (4). We use the transition PDF following
Leonenko’s version [17], which can be rewritten as

p(x, T | xt, t) = beta(x)
∞

∑
j=0

e−λj(T−t)

ωj
P(α,β)

j (2xt − 1)P(α,β)
j (2x− 1), (6)

where beta(x) = xβ(1−x)α

B(α+1,β+1) is the invariant distribution, B(α, β) = Γ(α)Γ(β)
Γ(α+β)

is the beta
function, and Γ(·) is the gamma function

α = −1
a
+

µ

a
− 1, β = −µ

a
− 1, λj = −jaθ

(
j− 1− 1

a

)
, ω0 = 1,

ωj =
Γ(α + 2)Γ(β + 2)Γ(α + β + 4− j)

j! Γ(α + 2− j)Γ(β + 2− j)Γ(α + β + 3)(2j + α + β + 1)
and

P(α,β)
j (z) =

Γ(α + j + 1)
j! Γ(α + β + j + 1)

j

∑
k=0

(
j
k

)
Γ(α + β + j + k + 1)

Γ(α + k + 1)

(
z− 1

2

)k


(7)

for α, β ∈ (−1, ∞). The well-known parameter in (7) is λj, which is the discrete spectrum

of the generator corresponding to the Jacobi polynomial P(α,β)
j (z).

As shown in (6) and (7), the formula for conditional expectations such as the moments
are difficult to calculate using the transition PDF, and this becomes even more complicated
for conditional mixed moments (1). To overcome this issue, the Feynman–Kac formula is
applied here.
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3. Main Results

As strong empirical evidence indicates that movements in finance-based practices
tend to involve time (see more details in [18–20]), we therefore extend the dynamics of the
Jacobi process (4) governed by time-varying parameters, called the extended Jacobi process,

dXt = θ(t)(µ(t)− Xt)dt +
√

2a(t) θ(t) Xt(Xt − 1) dWt, (8)

where Wt is an asymmetric Wiener process, θ(t) > 0, a(t) < 0, and 0 < µ(t) < 1 for all
t. The well-known instant SDE processes governed by time parameters are the extended
Ornstein–Uhlenbeck [19] and the extended Cox–Ingersoll–Ross [21] processes. However,
to ensure the existence and uniqueness of the process (8), it is required that θ(t)(µ(t)− Xt)
and

√
2a(t) θ(t) Xt(Xt − 1) are Borel-measurable and satisfy the local Lipschitz and linear

growth conditions; see more details in [22]. This section is partitioned into three subsections
consisting of ten theorems and two lemmas.

This section presents the key methodology used in this paper as well as the main re-
sults. To achieve our aim (1), we first study the extended Jacobi process (8). The generalized
stochastic correlation process is transformed from the extended Jacobi process, as well as
the properties. Several consequences of the obtained theorems are investigated in the later
part of this section.

3.1. Extended Jacobi Process

By solving the PDE in the Feynman–Kac formula, Theorem 1 provides an analytical
formula for the γth conditional moments based on the extended Jacobi process (8) where
γ ∈ R. Unlike the previous works in the literature, the obtained formula is given as the
infinite sum, the limit of which is first assumed to converge uniformly.

Theorem 1. Suppose that Xt follows the extended Jacobi process (8). The γth conditional moment
for γ ∈ R is

U〈γ〉E (x, τ) := E
[
Xγ

T | Xs = x
]
=

∞

∑
k=0

P〈γ〉k (τ) xγ−k, (9)

for (x, τ) ∈ D〈γ〉E ⊂ R× [0, ∞) and τ = T − s, given that the infinite series in (9) converges

uniformly on D〈γ〉E , where the coefficients in (9) are expressed by

P〈γ〉0 (τ) = e
∫ τ

0 A〈γ〉0 (ξ) dξ and P〈γ〉k (τ) =
∫ τ

0
e
∫ τ

η A〈γ〉k (ξ) dξ B〈γ〉k−1(η)P〈γ〉k−1(η) dη (10)

for k ∈ Z+, where

A〈γ〉j (τ) = θ(T − τ)(γ− j)((γ− j− 1)a(T − τ)− 1) and

B〈γ〉j (τ) = θ(T − τ)(γ− j)(µ(T − τ)− (γ− j− 1)a(T − τ)).

 (11)

Proof. By the Feynman–Kac formula [23], U〈γ〉E (x, τ) := U in (9) satisfies the PDE

Uτ − θ(T − τ)(µ(T − τ)− x)Ux − θ(T − τ)
(

a(T − τ)x2 − a(T − τ)x
)

Uxx = 0 (12)

for all (x, τ) ∈ D〈γ〉E , subject to the initial condition

U〈γ〉E (x, 0) = E
[
Xγ

T | XT = x
]
= xγ. (13)
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By comparing the coefficients of (9) and (13), we obtain the conditions P〈γ〉0 (0) = 1

and P〈γ〉k (0) = 0 for k ∈ Z+. To solve (12), we use (9) to find the partial derivatives Uτ , Ux
and Uxx, which are

Uτ =
∞

∑
k=0

d
dτ

P〈γ〉k (τ) xγ−k,

Ux =
∞

∑
k=0

(γ− k)P〈γ〉k (τ) xγ−k−1 and

Uxx =
∞

∑
k=0

(γ− k)(γ− k− 1)P〈γ〉k (τ) xγ−k−2.

After substituting the above partial derivatives into (12), it can be simplified to obtain(
d

dτ
P〈γ〉0 (τ)− A〈γ〉0 (τ)P〈γ〉0 (τ)

)
xγ +

∞

∑
k=1

(
d

dτ
P〈γ〉k (τ)− A〈γ〉k (τ)P〈γ〉k (τ)− B〈γ〉k−1(τ)P〈γ〉k−1(τ)

)
xγ−k = 0.

Under the assumption of the uniform convergence of the infinite series in (9) over
D〈γ〉E , the above equation can be solved through the following system of recurrence differ-
ential equations:

d
dτ

P〈γ〉0 (τ)− A〈γ〉0 (τ)P〈γ〉0 (τ) = 0 and

d
dτ

P〈γ〉k (τ)− A〈γ〉k (τ)P〈γ〉k (τ)− B〈γ〉k−1(τ)P〈γ〉k−1(τ) = 0

 (14)

with initial conditions P〈γ〉0 (0) = 1 and P〈γ〉k (0) = 0 for k ∈ Z+. As the system (14)
consists only of the general linear first-order differential equations, the coefficients in (9)
are therefore obtained by solving the system (14) in the form of recursive relation, which
provides the results (10).

According to the infinite sum (9), a convergent case needs to be mentioned. Theorem 2
is a special case of Theorem 1 when γ is a non-negative integer. In such a case, the infinite
sum, which can cause a truncation error in practice, can be reduced to a finite sum. It
should be noted that our proposed formulas for the extended Jacobi process are more
general, covering the formulas provided in [2,3].

Theorem 2. Suppose that Xt follows the extended Jacobi process (8). Then, the nth conditional
moment for n ∈ Z+

0 is

U〈n〉E (x, τ) = E[Xn
T | Xs = x] =

n

∑
k=0

P〈n〉k (τ) xn−k, (15)

for (x, τ) ∈ D〈n〉E ⊂ R× [0, ∞), τ = T − s where the coefficients P〈n〉k (τ) in (15) are defined
by (10) and (11).

Proof. By considering B〈γ〉j (τ) in (11), when k = n = γ, we obtain B〈n〉k (τ) = 0. This then

implies the coefficients P〈n〉k (τ) = 0 for all integers k ≥ n + 1. Thus, the infinite sum (9) can
be reduced to the finite sum (15).

The other formula in the form of a finite sum is presented in Corollary 1 when a
constant γ = m + µ(τ)

a(τ) + 1 for all τ ≥ 0 and m ∈ N.
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Corollary 1. According to Theorem 1, with a constant γ = m + µ(τ)
a(τ) + 1 for all τ ≥ 0, m ∈ Z+

we have

U〈γ〉E (x, τ) = E
[
Xγ

T | Xs = x
]
=

m

∑
k=0

P〈γ〉k (τ) xγ−k (16)

for (x, τ) ∈ DE ⊂ (0, ∞)× [0, ∞), τ = T− s ≥ 0, where the coefficients P〈γ〉k (τ) are defined by
(10) and (11).

Proof. The result is directly obtained by inserting γ = m+ µ(τ)
a(τ) + 1 in B〈γ〉k (τ) of (11). Then,

B〈γ〉m (τ) = 0 for all τ ≥ 0. This makes P〈γ〉m+1(τ) = 0, which implies that P〈γ〉k (τ) = 0 for all
k ≥ m + 1.

To establish the results for the system of linear recurrence differential equations shown
in (14) when all parameters are constants, we provide an efficient tool in Lemma 1 in order
to consider the conditional moments in the Jacobi process (4) as well as the consequences.

Lemma 1. Let αk, βk ∈ R and n ∈ Z+. For distinct α0, α1, α2, . . . , αn, the recurrence differential
equations provided by

d
dt

y0(t) = α0y0(t) and
d
dt

yk(t) = αkyk(t) + βk−1yk−1(t) (17)

where the initial conditions yk(0) = φk ∈ R for k ∈ {0, 1, 2, . . . , n} have the solutions

y0(t) = φ0eα0t and yk(t) =
k

∑
j=0

j

∑
i=0

 k

∏
l=i
l 6=j

(
1

αj − αl

)
·

k−1

∏
l=i

βl · φi

eαjt.

Proof. For k ∈ {0, 1, 2, . . . , n}, we can rewrite (17) in the matrix form

d
dt y0(t)
d
dt y1(t)
d
dt y2(t)

...
d
dt yn(t)

 =


α0
β0 α1

β1 α2
. . . . . .

βn−1 αn




y0(t)
y1(t)
y2(t)

...
yn(t)

, where


y0(0)
y1(0)
y2(0)

...
yn(0)

 =


φ0
φ1
φ2
...

φn


which is denoted by d

dt y(t) = Ly(t) subject to the initial condition y(0) = Φ. Even though
L contains asymmetric structure, it is easy to see that its solution is y(t) = etLΦ. Note that
the coefficient matrix L is the lower triangular matrix. It is well known that the eigenvalues
of L are its diagonal entries, i.e., αj for j ∈ {0, 1, 2, . . . , n}. As these eigenvalues are all
distinct values, the matrix L can be diagonalizable. In the other words, L = SΛS−1. Thus,
the solution can be expressed in the following form:

y(t) = SetΛS−1Φ, (18)

where Λ = diag{α0, α1, α2, . . . , αn} is the eigenvalue matrix of L and S := [sk,j] is the
eigenvector matrix of L for all k, j ∈ {0, 1, 2, . . . , n}. Let the jth column of S, which is
the eigenvector corresponding to αj, be denoted by sj = [s0,j, s1,j, s2,j, . . . , sn,j]

>. Then,(
L− αj I

)
sj = 0, that is
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α0 − αj
β0 α1 − αj

. . . . . .
β j−1 0

. . . . . .
βn−1 αn − αj





s0,j
s1,j

...
sj,j
...

sn,j


=



0
0
...
0
...
0


. (19)

Because the matrix L has all distinct eigenvalues, it is simple and has completely n + 1
eigenvectors. Hence, for each eigenvalue αj, the system (19) has only one free variable. In
solving, we let sj,j be the free variable which contains a value equal to one. Thus, we can
directly solve (19) with sj,j = 1 to obtain sk,j = 0 for k ∈ {0, 1, 2, . . . , j− 1} and

sk,j =
βi−1sk−1,j

αj − αk
=

k−1

∏
i=j

(
βi

αj − αi+1

)
· sj,j =

k−1

∏
i=j

(
βi

αj − αi+1

)

for k ∈ {j + 1, j + 2, j + 3, . . . , n}. After varying all column indices j from 0 to n, we have
the eigenvector matrix S as the lower triangular matrix with elements sk,j. Next, the inverse
of eigenvector matrix S, denoted by S−1 := [rk,j], can be calculated directly. Accordingly, it
is the lower triangular matrix, with entries rk,j. Then, we can explicitly express the elements
sk,j and rk,j, respectively, as follows:

sk,j =


0 if k < j,

1 if k = j,
k−1
∏
i=j

(
βi

αj−αi+1

)
if k > j,

and rk,j =


0 if k < j,

1 if k = j,
k−1
∏
i=j

(
βi

αk−αi

)
if k > j.

Now, we substitute the obtained matrices into (18), namely,
y0(x)
y1(x)

...
yn(x)

 =


1

s1,0 1
...

. . . . . .
sn,0 · · · sn,n−1 1




eα0t

eα1t

. . .
eαnt




1
r1,0 1

...
. . . . . .

rn,0 · · · rn,n−1 1




φ0
φ1
...

φn

.

Evidently, we have y0(t) = φ0eα0t and for k ∈ {1, 2, 3, . . . , n},

yk(t) =
k

∑
j=0

sk,j

(
j

∑
i=0

rj,i φi

)
eαjt

=
k

∑
j=0

j

∑
i=0

(
k−1

∏
l=j

(
βl

αj − αl+1

)
·

j−1

∏
l=i

(
βl

αj − αl

)
· φi

)
eαjt

=
k

∑
j=0

j

∑
i=0

 k

∏
l=i
l 6=j

(
βl

αj − αl

)
·

β j

βk
· φi

eαjt

=
k

∑
j=0

j

∑
i=0

 k

∏
l=i
l 6=j

(
1

αj − αl

)
·

k−1

∏
l=i

βl · φi

eαjt

as required.
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Under the condition −a ≤ µ ≤ 1 + a, as mentioned in Section 2, Theorem 3 shows
that the formulas provided in (9), (15) and (16) can be expressed in closed forms under the
Jacobi process (4) when the parameters θ(t) = θ, µ(t) = µ, and a(τ) = a are constants.

Theorem 3. Suppose that Xt follows the Jacobi process (4). Then, the γth conditional moment for
γ ∈ R is

U〈γ〉J (x, τ) := E
[
Xγ

T | Xs = x
]
=

∞

∑
k=0

P〈γ〉k (τ) xγ−k, (20)

for (x, τ) ∈ D〈γ〉J ⊂ R× [0, ∞), τ = T − s, which uniformly converges on D〈γ〉J , where

P〈γ〉0 (τ) = eτÃ〈γ〉0 and P〈γ〉k (τ) =
k

∑
j=0

 k

∏
l=0
l 6=j

1

Ã〈γ〉j − Ã〈γ〉l

·
k−1

∏
l=0

B̃〈γ〉l

eτÃ〈γ〉j (21)

for k ∈ Z+, where

Ã〈γ〉j = θ(γ− j)((γ− j− 1)a− 1) and B̃〈γ〉j = θ(γ− j)(µ− (γ− j− 1)a). (22)

Proof. For the Jacobi process (4) the parameters in (8) become constant and we set θ(t) = θ,
µ(t) = µ, and a(t) = a. Thus, A〈γ〉j (τ) and B〈γ〉j (τ) provided in (11) are represented,

respectively, by Ã〈γ〉j and B̃〈γ〉j as provided in (22). The key idea of the proof is to solve the

coefficients P〈γ〉k (τ) in (14), which can be accomplished straightforwardly using Lemma 1.
We consider a partial sum of (20) from k = 0 to k = n. Recall the system (14); now we have

d
dτ

P〈γ〉0 (τ) = Ã〈γ〉0 P〈γ〉0 (τ) and
d

dτ
P〈γ〉k (τ) = Ã〈γ〉k P〈γ〉k (τ) + B̃〈γ〉k−1P〈γ〉k−1(τ) (23)

with distinct Ã〈γ〉k for all k ∈ {0, 1, 2, . . . n} and initial vector[
P〈γ〉0 (0), P〈γ〉1 (0), P〈γ〉2 (0), . . . , P〈γ〉n (0)

]>
= [1, 0, 0, . . . , 0]>.

By applying Lemma 1, the solution of the coefficients P〈γ〉k (τ) in (23) is (21) for all
k ∈ {0, 1, 2, . . . , n}. Hence, under the assumption that the infinite series in (20) uniformly
converges on D〈γ〉J , (21) holds for all k ∈ Z+ as required.

In the case that γ = n ∈ Z+
0 , U〈γ〉J (x, τ) can be expressed as a power series in terms

of x which terminates at finite order. This means that Theorem 4 reduces the result (15) in
Theorem 2 to a finite sum of order n.

Theorem 4. Suppose that Xt follows the Jacobi process (4). Then, the nth conditional moment for
n ∈ Z+

0 is

U〈n〉J (x, τ) = E[Xn
T | Xs = x]

= eτÃ〈n〉0 xn +
n

∑
k=1

k

∑
j=0

 k

∏
l=0
l 6=j

1

Ã〈n〉j − Ã〈n〉l

·
k−1

∏
l=0

B̃〈n〉l

eτÃ〈n〉j xn−k, (24)

where Ã〈n〉j and B̃〈n〉j are as provided in (22).
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Proof. The proof is rather trivial by combining Theorems 2 and 3.

The following corollary can be reduced from Theorem 3 using the same idea as in
Corollary 1.

Corollary 2. According to Theorem 3, with a constant γ = m + µ
a + 1, m ∈ Z+ we have

U〈γ〉J (x, τ) = E
[
Xγ

T | Xs = x
]

= eτÃ〈γ〉0 xγ +
m

∑
k=1

k

∑
j=0

 k

∏
l=0
l 6=j

1

Ã〈γ〉j − Ã〈γ〉l

·
k−1

∏
l=0

B̃〈γ〉l

eτÃ〈γ〉j xγ−k, (25)

where Ã〈γ〉j and B̃〈γ〉j are as provided in (22).

Proof. The proof is rather trivial by combining the idea of the proofs in Theorem 3 and
Corollary 1.

Remark 1. In the case that γ = m + µ
a + 1 ∈ N, as 0 < µ < 1 and a < 0, we have γ ≤ m. The

suitable theorem for this case is Theorem 4. In fact, we can use Corollary 2 with the coefficients of
xγ−k = 0 for all k ∈ {γ + 1, γ + 2, γ + 3, . . . , m}.

In addition, Theorem 5 is transformed from (24) in Theorem 4 to the unconditional
moment as τ → ∞; the obtained result no longer depends on x.

Theorem 5. Suppose that Xt follows Jacobi process (4). Then, the nth unconditional moment at
equilibrium for n ∈ Z+

0 , 0 < x < 1 and τ = T − s ≥ 0 is provided by

lim
τ→∞

U〈n〉J (x, τ) = lim
T→∞

E[Xn
T | Xs = x] =

n−1

∏
l=0

µ− al
1− al

. (26)

Proof. According to (24) in Theorem 4, because Ã〈n〉j < 0 for all j < n the coefficient terms

of xn−k provided in (21) approach 0 as τ → ∞ for j, k ∈ {0, 1, 2, . . . , n− 1}, except in the
case that k = j = n. We have Ã〈n〉n = 0; thus

lim
τ→∞

U〈n〉J (x, τ) = lim
τ→∞

 n

∏
l=0
l 6=n

1

Ã〈n〉n − Ã〈n〉l

·
n−1

∏
l=0

B̃〈n〉l

eτÃ〈n〉n = (−1)n
n−1

∏
l=0

B̃〈n〉l

Ã〈n〉l

=
n−1

∏
l=0

µ− al
1− al

as required.

3.2. Generalized Stochastic Correlation Process

Theorem 6 provides a relation between the extended Jacobi (8) and generalized stochas-
tic correlation processes (5) through Itô’s lemma, and provides a formula for the conditional
moments of the generalized stochastic correlation process (5) in closed form.

Theorem 6. Let Xt follow the extended Jacobi process (8) where Xt ∈ (0, 1) for all t ∈ [s, T].
Suppose that ρt = ρmin + (ρmax − ρmin)Xt for all t ∈ [s, T]. Then, (8) becomes a generalized
stochastic correlation process

dρt = θ(t)((ρmax − ρmin)µ(t) + ρmin − ρt)dt +
√

2a(t) θ(t)(ρt − ρmax)(ρt − ρmin) dWt, (27)

and ρt ∈ (ρmin, ρmax) for all t ∈ [s, T]. In addition, its nth conditional moment is
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U〈n〉G (ρ, τ) := E[ρn
T | ρs = ρ] =


ρn

max U〈n〉E (x, T − s), for ρmin = 0,

ρn
min

n
∑

k=0

(
(n

k)
(

ρmax−ρmin
ρmin

)k
U〈k〉E (x, T − s)

)
, for ρmin 6= 0,

(28)

where x = ρ−ρmin
ρmax−ρmin

, τ = T − s and U〈k〉E is defined in (15).

Proof. Applying ρt = ρmin + (ρmax − ρmin)Xt with Itô’s lemma provides

dρt = (ρmax − ρmin)dXt

= (ρmax − ρmin)

(
θ(t)(µ(t)− Xt)dt +

√
2a(t) θ(t) Xt(Xt − 1) dWt

)
= (ρmax − ρmin)

(
θ(t)

(
µ(t)− ρt − ρmin

ρmax − ρmin

)
dt

+

√
2a(t) θ(t)

(
ρt − ρmin

ρmax − ρmin

)(
ρt − ρmin

ρmax − ρmin
− 1
)

dWt

)
= θ(t)((ρmax − ρmin)µ(t) + ρmin − ρt)dt +

√
2a(t) θ(t)(ρt − ρmax)(ρt − ρmin) dWt

as shown in (27). As ρt−ρmin
ρmax−ρmin

= Xt ∈ (0, 1) for all t ∈ [s, T], ρt ∈ (ρmin, ρmax) for all
t ∈ [s, T]. The analytical formula for the conditional moments is determined in two cases.
For the case where ρmin = 0, we have

E[ρn
T | ρs = ρ] = E

[
(ρmaxXT)

n | Xs = x
]
= ρn

maxE[Xn
T | Xs = x].

For the other case, ρmin 6= 0, the binomial theorem results in

E[ρn
T | ρs = ρ] = E

[
(ρmin + (ρmax − ρmin)XT)

n | Xs = x
]

= E
[(

n

∑
k=0

(
n
k

)
ρn−k

min ((ρmax − ρmin)XT)
k

)
| Xs = x

]

= ρn
min

n

∑
k=0

(
n
k

)(
ρmax − ρmin

ρmin

)k
E
[

Xk
T | Xs = x

]
.

As Xt follow the extended Jacobi process (8), applying Theorem 2 yields the two cases
in (28).

Remark 2. It should be noted that the generalized stochastic correlation processes (6) are more
general than those of processes (4) and (5). Comparing the generalized stochastic correlation processes
(2) and (6) provides θ∗(t) = θ(t), µ∗(t) = (ρmax − ρmin)µ(t) + ρmin, and σ∗(t) =

√
−2a(t) θ.

In addition, Theorem 6 becomes Theorem 7 under the constant parameters; the sta-
tionary property at T → ∞ is studied in Theorem 7.

Theorem 7. According to Theorem 6 with the real constant parameters θ(t) = θ, µ(t) = µ and
a(t) = a, the nth conditional moment is

E[ρn
T | ρs = ρ] =


ρn

max U〈n〉J (x, T − s), for ρmin = 0,

ρn
min

n
∑

k=0

(
(n

k)
(

ρmax−ρmin
ρmin

)k
U〈k〉J (x, T − s)

)
, for ρmin 6= 0.

(29)
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where x = ρ−ρmin
ρmax−ρmin

and U〈k〉J is defined in (24). Moreover,

lim
T→∞

E[ρn
T | ρs = ρ] =


ρn

max
n−1
∏
l=0

µ−al
1−al , for ρmin = 0,

ρn
min

n
∑

k=0

(
(n

k)
(

ρmax−ρmin
ρmin

)k k−1
∏
l=0

µ−al
1−al

)
, for ρmin 6= 0.

(30)

Proof. Let θ(t) = θ, µ(t) = µ and a(t) = a be constant. The extended Jacobi process (8) is
reduced to the original Jacobi process (4). In addition, (27) is reduced to (5) rapidly. Hence,
the conditional moment (28) is transformed to (29). Thus, by applying (29) with Theorem 5
we obtain (30).

By applying the tower property, we derive an interesting result of the conditional
mixed moments (1) of process (2). To the best of our knowledge, no other authors have
found the simple formula as shown in Theorem 8. However, the following lemma is needed.

Lemma 2. Suppose that Xt follows the extended Jacobi process (8) and 0 ≤ s ≤ T1 ≤ T2. The
conditional mixed moment up to order n1 + n2 for n1, n2 ∈ Z+ is

E
[

Xn1
T1

Xn2
T2
| Xs = x

]
=

n2

∑
k=0

n1+n2−k

∑
j=0

P〈n2〉
k (T2 − T1)P〈n1+n2−k〉

j (T1 − s)xn1+n2−k−j, (31)

where the parameters dependent on time are provided in (10). In the spacial case of the Jacobi process
(4), the parameters are defined in (21).

Proof. Using the tower property for 0 ≤ s < T1 ≤ T2, the conditional mixed moment of
the extended Jacobi process (8) can be expressed as

E
[

Xn1
T1

Xn2
T2
| Xs = x

]
= E

[
Xn1

T1
E
[

Xn2
T2
| XT1

]
| Xs = x

]
.

After applying Theorem 2 twice, we have

E
[

Xn1
T1

Xn2
T2
| Xs = x

]
= E

[
Xn1

T1

n2

∑
k=0

P〈n2〉
k (T2 − T1) Xn2−k

T1
| Xs = x

]

=
n2

∑
k=0

P〈n2〉
k (T2 − T1)E

[
Xn1+n2−k

T1
| Xs = x

]
=

n2

∑
k=0

n1+n2−k

∑
j=0

P〈n2〉
k (T2 − T1)P〈n1+n2−k〉

j (T1 − s)xn1+n2−k−j

as required.

Theorem 8. According to Theorem 6 with 0 ≤ s ≤ T1 ≤ T2, the conditional mixed moment of the
generalized stochastic correlation process (27) up to order n1 + n2 for n1, n2 ∈ Z+ is

E
[
ρn1

T1
ρn2

T2
| ρs = ρ

]
=


ρn1+n2

max E
[

Xn1
T1

Xn2
T2
| Xs = x

]
, for ρmin = 0,

ρn1+n2
min

n1
∑

k=0

n2
∑

j=0
(n1

k )(
n2
j )
(

ρmax−ρmin
ρmin

)k+j
E
[

Xk
T1

X j
T2
| Xs = x

]
, for ρmin 6= 0,

(32)

where x = ρ−ρmin
ρmax−ρmin

and the conditional mixed moment E
[
Xn1

T1
Xn2

T2
| Xs = x

]
of the extended

Jacobi process (8) is provided in Lemma 2.
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Proof. For the case where ρmin = 0, similar to the proof of Theorem 6, it is not difficult
to check and is thus omitted here. For the latter case, applying the binomial theorem
twice yields

E
[
ρn1

T1
ρn2

T2
| ρs = ρ

]
= E

[
(ρmin + (ρmax − ρmin)XT1 )

n1 (ρmin + (ρmax − ρmin)XT2 )
n2 | Xs = x

]
= E

( n1

∑
k=0

(
n1
k

)
ρn1−k

min ((ρmax − ρmin)XT1 )
k

) n2

∑
j=0

(
n2
j

)
ρ

n2−j
min ((ρmax − ρmin)XT2 )

j

 | Xs = x


= ρn1+n2

min

n1

∑
k=0

n2

∑
j=0

(
n1
k

)(
n2
j

)(
ρmax − ρmin

ρmin

)k+j
E
[

Xk
T1

X j
T2
| Xs = x

]
,

where the analytical formula of conditional mixed moments E
[
Xk

T1
X j

T2
| Xs = x

]
, for

0 ≤ k ≤ n1 and 0 ≤ j ≤ n2, is provided in Lemma 2. This completes the proof.

Remark 3. Applying the idea in the proofs of Lemma 2 and Theorem 8, the general formula
for conditional mixed moments E

[
ρn1

T1
ρn2

T2
ρn3

T3
. . . ρ

nk
Tk
| ρs = ρ

]
, where n1, n2, n3, . . . , nk ∈ Z+

0
and 0 ≤ s < T1 ≤ T2 ≤ T3 ≤ . . . ≤ Tk, can be directly obtained. The advantage of our
formula for conditional mixed moments (8) is its simple closed form, which can be used in many
applications, especially to estimate the functions of the powers of observed processes which appeared
in Sørensen [24], Leonenko and Šuvak [25,26], and Avram et al. [27]. Moreover, in order to study
the integrated Jacobi process, the conditional mixed moments need to be evaluated. However, their
proposed formulas are very complicated; see Forman and Sørensen [4]. Thus, our results can be
applied easily.

Before finishing this section, we summarize the relationship of the presented formulas
in the form of the diagram displayed in Figure 3, which shows the development process
of the formulas consisting of ten theorems and two lemmas, which are categorized as
performed in processes (2), (4), (5) and (8).

Theorem 1

γ ∈ R

Theorem 2

γ ∈ Z+
0

Corollary 1

γ = m+ µ(τ)
a(τ)

+ 1

Theorem 3

γ ∈ R

Theorem 4

γ ∈ Z+
0

Corollary 2

γ = m+ µ
a
+ 1

Lemma 2

n1, n2 ∈ Z+

Theorem 8tower

property

binomial

theorem

Theorem 6

n ∈ Z+
0

n1, n2 ∈ Z+

Theorem 5

τ → ∞
Theorem 7

n ∈ Z+
0 , τ → ∞

Lemma 1

theorem

binomial

T
h
e
J
a
co
b
i
p
ro
ce
ss

(4
)

E
x
te
n
d
ed

J
a
co
b
i
p
ro
ce
ss

(8
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G
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a
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)
a
n
d
(5
)

Figure 3. Relationship diagram of all presented theorems and lemmas in processes (2), (4), (5) and (8).

3.3. Statistical Properties

The conditional variance of the generalized stochastic correlation process (27) can be
expressed as

Var[ρT | ρs = ρ] = E
[
(ρT −E[ρT | ρs])

2 | ρt = ρ
]
= U〈2〉G (ρ, T − s)−

(
U〈1〉G (ρ, T − s)

)2
,

where U〈γ〉G (ρ, T − s) is defined in Theorem 6. Furthermore, the nth moment about the
mean, that is, the nth central moment, can be expressed as
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µn := E
[
(ρT −E[ρT | ρs])

n | ρs = ρ
]
=

n

∑
k=0

(
n
k

)(
U〈k〉G (ρ, T − s)

)(
−U〈1〉G (ρ, T − s)

)n−k
.

Well-known instances for the central moment are the zero-th moment µ0 = 1, the
1st central moment µ1 = 0, the 2nd central moment µ2 = Var[ρT | ρs = ρ], called the
conditional variance, and the third µ3 and fourth µ4, known as the skewness and kurto-
sis, respectively.

We now move our focus to the conditional covariance and correlation. By applying
Theorem 8, for 0 ≤ s < T1 ≤ T2 where τ = T2 − s, τ1 = T1 − s and τ2 = T2 − T1 we have

Cov
[
ρT1 , ρT2 | ρs = ρ

]
= E

[(
ρT1 −E

[
ρT1 | ρs

])(
ρT2 −E

[
ρT2 | ρs

])
| ρs = ρ

]
= E

[
ρT1 ρT2 | ρs = ρ

]
−E

[
ρT1 | ρs = ρ

]
E
[
ρT2 | ρs = ρ

]
=

1

∑
k=0

2−k

∑
j=0

P〈1〉k (τ2)P〈2−k〉
j (τ1) ρ2−k−j −U〈1〉G (ρ, τ1)U〈1〉G (ρ, τ2)

and the conditional correlation of the generalized stochastic correlation process (27) is

Corr
[
ρT1 , ρT2 | ρs = ρ

]
=

Cov
[
ρT1 , ρT2 | ρs = ρ

]√
Var[ρT1 | ρt = ρ]

√
Var[ρT2 | ρs = ρ]

.

It should be noted that the analytical formulas for the conditional covariance and
correlation can be extended to the analytical of Cov

[
ρn1

T1
, ρn2

T2
| ρs = ρ

]
and Corr

[
ρn1

T1
, ρn2

T2
|

ρs = ρ
]

where n1, n2 ∈ Z+. Several of the related applications as estimator tools are
mentioned in [24–28].

4. Experimental Validation

As our results proposed in Section 3 are mainly based on the extended Jacobi pro-
cess (8), this experimental validation section discusses this process first. In this experiment,
we applied the Euler–Maruyama (EM) discretization method with MC simulations to pro-
cess (8). Let X̂t be a time-discretized approximation of Xt that is generated on time interval
[0, T] into N steps, i.e., 0 = t0 < t1 < t2 < . . . < tN = T. Then, the EM approximate is
defined by

X̂ti+1 = X̂ti + θ(ti)
(
µ(ti)− X̂ti

)
∆t +

√
2a(ti) θ(ti) X̂ti

(
X̂ti − 1

)√
∆t Zi+1, (33)

where the initial value X̂t0 = Xt0 , ∆t = ti+1 − ti is the size of the time step and Zi is the
standard normal random variable. We illustrate the validations of the 1st moment (n = 1)
of the formula (15) via the parameters studied by Ardian and Kumral [29] for the evolution
of gold prices and interest rates. For the generalized stochastic correlation process (2), their
estimated parameters are θ∗(t) = 1.15, µ∗(t) = 0.17 and σ∗(t) = 0.56 with ρmin = −1
and ρmax = 1. Thus, for the extended Jacobi process (8), those parameters correspond to
θ(t) = 1.15, µ(t) = 0.59 and a(t) = −0.14 for t ∈ [0, τ]; note that these parameters are all
constants. This then corresponds to the Jacobi process (4) as well, which can compute the 1st
conditional moment using formula (24) directly. This work was implemented in MATLAB
libraries available in GitHub repositories: https://github.com/TyMathAD/Conditional_
Mixed_Moments accessed on 21 April 2022.

To test the efficiency of the 1st moment U〈1〉J (x, τ), we compared the obtained results
with MC simulations at various points (x, τ), where x, τ ∈ {0.1, 0.2, 0.3, . . . , 1}. These
simulations were examined with the time step ∆t = 0.0001 and varied with the sample
paths by 100, 1000, and 10,000, as depicted in Figure 4, which is the contour plotting of
absolute errors between our formula and MC simulations. From Figure 4, we can see
obviously that the contour colors trend to the dark blue shade for the larger path numbers.
This means that the absolute errors approach zero. Figure 4a–c produces average absolute

https://github.com/TyMathAD/Conditional_Mixed_Moments
https://github.com/TyMathAD/Conditional_Mixed_Moments
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errors equal to 1.77 × 10−2, 5.67 × 10−3 and 6.42 × 10−4, respectively. Hence, the MC
simulations are most likely to converge to our formula.

(a) (b) (c)

Figure 4. Contour plotting of absolute errors between our formula and MC simulations with different
paths: (a) 100 paths; (b) 1000 paths; (c) 10,000 paths.

In this validation, these obtained results of our formula and the MC simulations
based on the EM method (33) were computed by implementing MATLAB R2021a software
run on a laptop computer configured with the following details: Intel(R) Core(TM) i7-
5700HQ, CPU @2.70 GHz, 16.0 GB RAM, Windows 10, 64-bit Operating System. As a
result, the computational run time of our analytical formula is around 0.0145 s, while the
MC simulations consume run times of 1.43, 4.32, and 40.21 s for 100, 1000, and 10,000
sample paths, respectively. Thus, we can see that the times of MC simulations are more
tremendously expensive than our formula, especially, with large path numbers. It is notable
that the MC simulations with just 100 paths spent more computing time than our formula,
with almost 100 times the time elapsed. Hence, for a more accurate result the use of MC
simulations may not be a good choice in terms of computing time. In contrast, the proposed
formula is independent of any discretizations and has a very low computational cost.
Therefore, the formulas presented here are efficient and suitable for practical use.

Moreover, we used the above parameters to compute the 1st and 2nd conditional
moments, U〈1〉G (ρ, τ) and U〈2〉G (ρ, τ), in order to model the correlation between gold prices
and interest rates. We computed these moments utilizing the presented formula (28)
at different values (ρ, τ) ∈ [−1, 1] × [0, 1.5]. The obtained results are demonstrated by
surface plots in Figure 5. In addition, we plotted the graphical contours of the 1st and 2nd
conditional moments for (ρ, τ) ∈ [−1, 1]× [0, 5]. It can be seen that when τ is increasing,
the obtained results converge to a certain value for both moments. This can be seen from
Figure 6, in that the contour colors trend to a light blue shade which has an approximate
value of 0.1. Using Theorem 7, it is confirmed that when τ → ∞ these 1st and 2nd
conditional moments are 0.17 and 0.15, respectively, corresponding to Figure 6.

Note that one primary concern for our proposed formula in Theorem 1 is that the
coefficients P〈γ〉k (τ) for k ∈ Z+

0 in (10) may not be exactly integrable. Thus, numerical
integration methods are needed to manipulate the integral terms, such as a trapezoidal
rule, Simpson’s rule, etc. One efficient method that we suggest to handle these integral
terms is the Chebyshev integration method provided by Boonklurb et al. [30–33], which
provides higher accuracy than other integration methods under the same discretization.
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(a) The 1st conditional moment (b) The 2nd conditional moment

Figure 5. Graphical behaviors of the 1st (a) and 2nd (b) conditional moments obtained by our formula.

(a) The 1st conditional moment (b) The 2nd conditional moment

Figure 6. Contour plotting of the 1st (a) and 2nd (b) conditional moments obtained by our formula.

5. Method of Moments Estimator

In certain cases, the MM is superseded by Fisher’s method when estimating parameters
of a known family of probability distribution, as the MLEs have a higher probability of
being suitable to the quantities to be estimated. However, in certain cases such as the
examples of gamma and beta distributions, MLEs may be intractable without computer
programming. In this case, estimation using MM can be used as a first approximation of
the solutions of the MLEs; the MM and the method of MLEs are symbiotic in this respect.

The key idea of the MM is to calibrate a well set of parameter values based on suitable
conditional moments. In this section, suppose that we need to calibrate an unknown
parameter vector θ = (θ∗, µ∗, σ∗) ∈ R3 of the generalized stochastic correlation process
(2), where the value of the true parameters is the vector θ0 on discretely observed data{

ρti

}
1≤i≤n, where ti−1 < ti for all i ∈ {1, 2, 3, . . . , n}. Normally, the basic conditional

moments selected for calibration may be the first three conditional moments of the form
provided in Theorem 6. It is sufficient to solve the unknown vector θ; however, in 2004,
Gouriéroux and Valéry [3] suggested that we need to choose those conditional moments
satisfying the identities of observed interest data.

They further determined sufficient moments to be adequately informative, such as the
1st, 2nd, 3rd (skewness), and 4th (kurtosis) conditional moments and the mixed moments
E
[
ρti ρ

2
ti−1
| ρt0 = ρ

]
and E

[
ρ2

ti
ρ2

ti−1
| ρt0 = ρ

]
to capture the dynamics of the risk premium

and the possible volatility persistence, respectively. Their set of conditional moments
selected for implementing MM is
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f (ρti ,θ) =



ρti−E
[
ρti | ρt0 = ρ

]
ρti ρti−1−E

[
ρti ρti−1 | ρt0 = ρ

]
ρ2

ti
−E
[
ρ2

ti
| ρt0 = ρ

]
ρti ρ

2
ti−1
−E
[
ρti ρ

2
ti−1
| ρt0 = ρ

]
ρ2

ti
ρti−1−E

[
ρ2

ti
ρti−1 | ρt0 = ρ

]
ρ2

ti
ρ2

ti−1
−E
[
ρ2

ti
ρ2

ti−1
| ρt0 = ρ

]
ρ3

ti
−E
[
ρ3

ti
| ρt0 = ρ

]
ρ4

ti
−E
[
ρ4

ti
| ρt0 = ρ

]


,

with the conditional moments and mixed moments appearing above having been proposed
in Theorems 6 and 8, respectively. In order to estimate parameters, we suppose that
the conditional expectations of f (ρti ,θ), E[ f (ρti ,θ) | Ft], exist as a real number for all
i ∈ {1, 2, 3, . . . , n}, satisfying E[ f (ρti ,θ0) | Ft] = 0, and let

fn(θ) =
1
n

n

∑
i=1

f (ρi,θ).

The MM estimator of θ0 based on the conditional expectation E[ f (ρti ,θ) | Ft] is the
solution to the system of equations fn(θ) = 0. If we cannot solve the exact value of θ, a
good estimate of the true value θ0, called θ̂, is needed. In other words, we need a θ̂ that
makes fn

(
θ̂
)

close to 0; see more details in [34]. In any event, the algorithm that we suggest
would use either Newton’s method or iterative methods to solve the system of nonlinear
equations fn

(
θ̂
)
= 0.

It should be noted that in certain cases, infrequent with large sample sizes and not as
infrequent with small ones, the estimates provided by the MM are not suitable. In this case,
they may be outside of the parameter space and it does not make sense to rely on the sample
provided by the MM. In the context of the properties of the MM and its generalized version,
under sufficient conditions they are consistent and asymptotically normally distributed;
see for more details in [34,35].

6. Conclusions

Without the knowledge of the transition PDF, this paper presents a simple and novel
approach for obtaining the analytical formulas for conditional moments and mixed mo-
ments of the extended Jacobi process. Those analytical formulas become concise forms
under the Jacobi process. In addition, the analytical formulas for the unconditional mo-
ments are provided. By applying Ito’s lemma to the extended Jacobi process we obtain
the generalized stochastic correlation process, and its analytic formulas for conditional
moments are proposed. Statistical properties, namely, conditional variance, central moment,
covariance, and correlation, are formulated. The validation of our formulas is shown by
comparing the results with MC simulations. Our results can be used to find the parameters
of correlation processes between financial product prices. Our study provides additional
support for the work of those who require statistical tools to studying data governed
by generalized stochastic correlation processes. Finally, a tool for estimating parameters
concerning the calculation of moments is provided as well.
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