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Abstract: The constrained recursive maximum correntropy criterion (CRMCC) combats the non-
Gaussian noise effectively. However, the performance surface of maximum correntropy criterion
(MCC) is highly non-convex, resulting in low accuracy. Inspired by the smooth kernel risk-sensitive
loss (KRSL), a novel constrained recursive KRSL (CRKRSL) algorithm is proposed, which shows
higher filtering accuracy and lower computational complexity than CRMCC. Meanwhile, a modified
update strategy is developed to avoid the instability of CRKRSL in the early iterations. By using
Isserlis’s theorem to separate the complex symmetric matrix with fourth-moment variables, the mean
square stability condition of CRKRSL is derived, and the simulation results validate its advantages.

Keywords: constrained adaptive filtering; kernel risk-sensitive loss; instability; mean square stability

1. Introduction

The constrained adaptive filters (CAFs) [1], where the weight is subject to linear
constraints, have been widely studied in the field of adaptive signal processing. The original
research of CAFs was derived from the antenna array processing, which employed the
linearly-constrained minimum-variance (LCMV) criterion to estimation the direction of the
antenna array [2]. CAFs have since been successfully applied to adaptive beamforming [3],
system identification [4], channel equalization [5], and blind multiuser detection [6].

The simplest linearly-constrained adaptive filter, named constrained least mean-square
(CLMS) [2], is developed from the LCMV criterion, and its mean square performance is
analyzed based on a decomposable symmetric matrix in [7]. Due to stochastic gradi-
ent optimization, the CLMS has a simple structure with low computational complexity.
However, its performance is highly influenced by the step size and correlated input. To
improve the convergence speed, the constrained fast least-squares (CFLS) algorithm [8],
linear-equality-constrained recursive least-squares (CRLS) algorithm [9] and its relaxed
version are proposed at the expense of high computational complexity. Furthermore, the
reduced-complexity constrained recursive least-squares algorithm based on the dichoto-
mous coordinate descent (CRLS-DCD) iterations [10] and low-complexity constrained
affine-projection (CAP) algorithm [11] with the data-selection method are proposed for
reducing the computational complexity effectively. Other types of improved constrained
filters [12–14] have been widely used, which make a trade-off between the computational
complexity and filtering performance, i.e., convergence speed and filtering accuracy. All
the mentioned constrained algorithms above are developed based on the mean square error
(MSE) criterion [15] with good performances under Gaussian assumptions. However, with
non-Gaussian cases, the filtering accuracy of these algorithms will decline sharply.

Therefore, the maximum correntropy criterion (MCC) [16,17], generalized MCC
(GMCC) [18] and minimum error entropy (MEE) [19] criteria from information theoretic
learning (ITL) [20] become alternative criteria, showing strong robustness to non-Gaussian
signals. Adding the linear constraints on the weights of MCC and GMCC, the constrained
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MCC (CMCC) [21] and constrained GMCC (CGMCC) [22] are developed by using stochas-
tic gradient optimization. CMCC and CGMCC display good filtering performances in
the presence of single-peak heavy-tailed noise. However, when coping with multi-peak
noise, their performances will decline. Due to the symmetry of the errors, MEE counteracts
the influence of multi-peak noise effectively. Adding the linear constraints into MEE, a
gradient-based constrained MEE (CMEE) algorithm [23] with a sliding window is proposed
at the expense of higher complexity but with better accuracy than CMCC and GMCC in the
presence of multi-peak noise. Except for the ITL-based constrained filters, there also exist
other criteria [24,25] to show good performance under a non-Gaussian environment. A con-
strained least mean M-estimation (CLMM) algorithm based on an improved M-estimation
loss function has been proposed in [24]. Inspired by the boundedness of the gradient of
the lncosh function, a constrained least lncosh adaptive filtering algorithm (CLLAF) has
been developed in [25]. These constrained algorithms show good performances under
different non-Gaussian noise. However, the gradient-based constrained adaptive filters
need to make a trade-off between accuracy and convergence speed through an adjustable
step size. Hence, the constrained recursive MCC (CRMCC) algorithm [26] is developed,
which not only improves the accuracy but also accelerates the convergence.

Recently, an advanced ITL-based criterion, named kernel risk-sensitive loss (KRSL) [27],
has been proposed by introducing a beneficial risk-sensitive parameter to regulate the
shape of its performance surface. Compared with MCC, the KRSL is more “convex”, which
conduces better accuracy and faster convergence. Based on the KRSL, a gradient-based
constrained mixture KRSL algorithm [28] is proposed, which indicates a higher filtering
accuracy than CMCC.

In this paper, thanks to the advantage of KRSL criterion, a novel constrained recursive
KRSL (CRKRSL) algorithm is proposed by using an average approximation method [29].
Thus, the proposed CRKRSL algorithm is converted to a variable step size gradient-based
algorithm, which has a lower complexity than the traditional constrained recursive algo-
rithms. Meanwhile, due to the instability of CRKRSL at the initial update stage, we use
a gradient algorithm with a fixed step size to replace its initial update. Moreover, the
convergence condition of mean square stability regarding iteration times is derived by
decomposing a symmetric matrix with fourth-order variables. Simulation results indicate
the advantages of CRKRSL on filtering accuracy and computational complexity.

The rest of the paper is organized as follows. The constrained KRSL loss and the
CRKRSL algorithm are presented in Section 2. Stability analysis of CRKRSL is given in
Section 3. Simulation results and discussion of CRKRSL are shown in Section 4. Finally, the
conclusion is given in Section 5.

2. CRKRSL Algorithm
2.1. Notations

Throughout this paper, R denotes the real field, Rm denotes an m-dimensional real-
valued vector space, Rn×m denotes n×m matrix where its entries belong to R; (·)T repre-
sents the transpose operation; E[·] is the expectation operation; ‖ · ‖ denotes the Euclidean
norm; and O(·) represents the computational complexity of algorithm.

2.2. KRSL Loss

As a nonlinear similarity measure of variable X ,Y ∈ R, the KRSL [27] is defined as

S(X ,Y) = 1
γ
E
[

exp
(

γ

2
‖ϕ(X )− ϕ(Y)‖2

)]
=

1
γ
E
[

exp
(

γ(1− κ(X −Y))
)]

,
(1)
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where γ ∈ [0,+∞) is a risk-sensitive parameter. ϕ(·) is the corresponding mapping variable
in reproducing kernel Hilbert spaces (RKHS) [30], satisfying ϕT(X )ϕ(Y) = κ(X −Y) with
Gaussian kernel

κ(X −Y) = exp
(
− ‖X − Y‖

2

2σ2

)
. (2)

Generally, in terms of the unknown joint distribution between X and Y , we adopt a
finite sampled data pair {x̃l , ỹl}N

l=1 to approximate the expected loss, which is given by

Ŝ(X ,Y) = 1
γN

N

∑
l=1

exp
(

γ(1− κ(x̃l − ỹl))

)
. (3)

2.3. Constrained KRSL Loss

When applied to constrained adaptive filtering, the optimization problem with KRLS
loss becomes

min
w

1
γ

n

∑
l=1

exp
(

γ(1− κ(dl −wTul))

)
s.t. CTw = f,

(4)

where {ul , dl}N
l=1 ∈ Rm ×R are the input–output training data pair; w ∈ Rm is the weight

vector and el = dl − wTul is the corresponding error; C ∈ Rm×q and f ∈ Rq are the
constrained matrix and vector, respectively. By constructing the Lagrange function, the
constrained problem is transformed to minimize the following constrained KRSL loss:

Jc(n) =
σ2

γ

n

∑
l=1

exp(γ(1− κ(dl −wTul))) + θT
n(f−CTw) (5)

with θn ∈ Rq being the Lagrange multiplier.

2.4. Proposed CRKRSL Algorithm

Taking the gradient of Jc(n) to zero at instant n, one has

∂Jc(n)
∂wn

=
n

∑
l=1

φ(el)(dl −wT
nul)ul + Cθn = 0 (6)

with φ(el) = exp(γ(1− κ(el)))κ(el).
Define

U−1
n =

n−1

∑
l=1

φ(el)ulu
T
l + φ(en)unuT

n (7)

dn =
n−1

∑
l=1

φ(el)uldl + φ(en)undn. (8)

Then, the constrained solution is derived as

wn = Undn + UnCθn (9)

with θn = (CTUnC)−1(f−CTUndn). By the matrix inversion lemma [31], Equation (7) is
further rewritten by

Un = Un−1 − gnuT
nUn−1, (10)
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where the gain is given by

gn =
Un−1un

φ−1(en) + uT
nUn−1un

. (11)

Reorganizing Equation (11), we get another form of gn by

gn = φ(en)(Un−1un − gnuT
nUn−1un)

= φ(en)Unun.
(12)

To obtain a recursive solution, we expand Equation (9) as follow:

wn = Un(dn−1 + φ(en)undn) + UnCθn

= (Un−1 − gnuT
nUn−1)dn−1 + φ(en)Unundn + UnCθn

= wn−1 + φ(en)Unundn − gnuT
nwn−1 + UnCθn

= wn−1 + φ(en)enUnun + UnCθn,

(13)

where the corrected error en updated by the a priori weight wn−1 is obtained by

en = dn − uT
nwn−1. (14)

Substituting Equation (12) into Equation (13), we get

wn = wn−1 + gnen + UnCθn (15)

with
θn = (CTUnC)−1(f−CT(wn−1 + gnen)). (16)

Therefore, combing Equations (10), (11), (14) and (15), we obtain the constrained
recursive CRKRSL algorithm. The main drawback of Equation (15) is that the inverse
matrix (CTUnC)−1 needs to be updated iteratively with complexity O(q3). To reduce the
computational complexity of the CRKRSL algorithm, we consider the following linear
model and give some assumptions. The linear model is described by

dn = wT
∗un + vn, (17)

where w∗ is the model parameter and vn is the noise at instant n. The assumptions are
given as follows:

• A1 {un} is independent identically distributed (i.i.d), generated from a multivariate
Gaussian distribution with covariance matrix R = E[unuT

n ];
• A2 {vn} is zero mean, i.i.d, and independent with {un}, satisfying δ2 = E[v2

n];
• A3 the error en is uncorrelated with unuT

n .

Inspired by the average approximation [29] and based on A1–A3, the correlation
matrix Un is approximated by

Un =
1
n

(
1
n

n

∑
l=1

φ(el)ulu
T
l

)−1

≈ 1
n
E[φ(en)]

−1E[unuT
n ]
−1 = ηnZ,

(18)

where Z = R−1 = E[unuT
n ]
−1 and ηn = (nE[φ(vn)])−1 is approximated by the first-order

Taylor expansion around the noise.
Furthermore, Equation (13) can be simplified as

wn = wn−1 + φ(en)enUnun + UnCθn

= wn−1 + ηnφ(en)enZun + ZCθ̂,
(19)
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where θ̂ = Θ(f−CT(wn−1 + ηnφ(en)enZun)) and the constrained inverse matrix is defined
as Θ = (CTZC)−1.

Therefore, wn is further expressed as

wn = Q(wn−1 + ηnφ(en)enZun) + p (20)

with Q = I− ZCΘCT and p = ZCΘf.
Based on the approximation, the recursive CRKRSL algorithm has been changed to a

gradient one with variable step size ηn and transformed input Zun.

Remark 1. The term φ(en) in Equation (20) has a significant impact on the stability of the CRKRSL
algorithm under non-Gaussian noise since CRKRSL can suppress large outliers (en → ∞) with a
small φ(en). Figure 1 shows the relation between φ(en) and the error en. It is clear to see that φ(en)
in CRKRSL is bigger than κ(en) in CRMCC, when the error is small. (Note that φ(en) = κ(en) if
γ = 0). Moreover, when γ = 0, the CRKRSL degenerates to an efficient CRMCC [26] algorithm
and φ(en) reaches the maximum at en = 0. When γ > 0, φ(en) reaches the maximum at local
points around en = 0 with a larger increment, resulting in a faster convergence speed and higher
accuracy than CRMCC.

-10 -5 0 5 10
e

n

0

1

2

3

4

5

6

(e
n)

(  = 0)
(  = 0.5)
(  = 2)
(  = 3)
(  = 4)

Figure 1. The relation between φ(en) and the error en (σ =
√

2).

However, Equation (20) is not stable at the initial update phase, since the variable step
size ηn is large with a small instant n. Especially, when the kernel width of KRSL is small,
the step size ηn even exceeds the convergence range, leading to the attenuation of filtering
performance. To overcome this unfavorable factor, we introduce a gradient strategy with a
fixed step size µ to replace the update of Equation (20) in the initial L iterations, which is
described by

wn = Q̂(wn−1 + µφ(en)enun) + p̂ (21)

with Q̂ = I−C(CTC)−1CT and p̂ = C(CTC)−1f.
Finally, the CRKRSL is summarized in Algorithm 1.
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Algorithm 1: The CRKRSL Algorithm.
Input:
Data pair {un, dn} ∈ Rm ×R, n = 1, 2, · · · .

Initialization:
Choose step-size µ; kernel width σ; risk-sensitive γ; initial iterative length L;
training size Ntr;
initial weight w0 = 0.

en = dn −wT
n−1un

for n = 1 : L
wn = Q̂(wn−1 + µφ(en)enun) + p̂

end
for n = (L + 1) : Ntr

wn = Q(wn−1 + ηnφ(en)enZun) + p
end

Remark 2. In Equation (20), the constant inverse matrix Θ = (CTZC)−1 needs to be calculated
only once before the update. On the contrary, (CTUnC)−1 in Equation (15) needs to be updated
iteratively. Meanwhile, the update of matrix Un by Equation (10) is avoided by using Equation (20).
Therefore, the proposed CRKRSL with Equation (20) has a lower computational complexity than
one with Equation (15).

3. Stability Analysis

To obtain the stability condition of mean square weight error of CRKRSL, we define
the weight error and model error as

w̃n = wn −wo (22)

w∆ = w∗ −wo (23)

with the optimal weight

wo = lim
n→∞

(Undn + UnCθn)

= lim
n→∞

Undn + lim
n→∞

UnC(CTUnC)−1(f−CTUndn)

= lim
n→∞

[ 1
n

n

∑
l=1

φ(el)ulu
T
l

]−1[ 1
n

n

∑
l=1

φ(el)uldl

]
+ lim

n→∞

[ 1
n

n

∑
l=1

φ(el)ulu
T
l

]−1
C
(

CT
[ 1

n

n

∑
l=1

φ(el)ulu
T
l

]−1
C
)−1

(f−CTUndn)

= Ud + UC(CTUC)−1(f−CTUd),

(24)

where the robust correlation matrix and vector are defined as U = lim
n→∞

[ 1
n ∑n

l=1 φ(el)uluT
l ]
−1 =

E[φ(en)unuT
n]
−1 and d = lim

n→∞
[ 1

n ∑n
l=1 φ(el)uldl] = E[φ(en)undn].

Subtracting wo from both sides of Equation (20), we obtain

w̃n = Q(wn−1 + ηnφ(en)Zundn − ηnφ(en)ZunuT
nwn−1) + p−wo

= Q(wn−1 + ηnφ(en)Zun(uT
nw∗ + vn)− ηnφ(en)ZunuT

nwn−1) + p−wo

= Q(wn−1 + ηnφ(en)Zun(uT
n(w∆ + wo) + vn)− ηnφ(en)ZunuT

nwn−1) + p−wo

= Q(wn−1 − ηnφ(en)ZunuT
nw̃n−1) + ηnφ(en)QZun(uT

nw∆ + vn) + p−wo

= Q(I− ηnφ(en)ZunuT
n)w̃n−1 + ηnφ(en)QZun(uT

nw∆ + vn) + Qwo −wo + p.

(25)
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Since Q is an idempotent matrix, we have Qwo −wo + p = 0 and Qw̃n = w̃n. Then,
we get

w̃n = Q(I− ηnφ(en)ZunuT
n)w̃n−1 + ηnφ(en)QZun(uT

nw∆ + vn)

= (I− ηnφ(en)QZunuT
n)w̃n−1 + ηnφ(en)QZun(uT

nw∆ + vn).
(26)

We take the expectation operator on both sides of the square norm, since the noise vn
is independent with un and the input sequence {un} is i.i.d under assumptions A1–A2. We
further get the useful results that the a priori error weight w̃n−1 is independent with un
and vn based on the independence assumptions [32]. Hence, the cross terms are equal to
zeros. Then, we obtain

E[‖w̃n‖2] = E[‖w̃n−1‖2
Fn
] + η2

nδ2E[φ2(en)]E[uT
nZQZun]

+ η2
nE[φ2(en)]wT

∆E[unuT
nZQZunuT

n ]w∆
(27)

with
Fn = E[(I− ηnφ(en)QZunuT

n)
T(I− ηnφ(en)QZunuT

n)]

= I− 2ηnE[φ(en)]E[QZunuT
n ] + η2

nE[φ2(en)]E[unuT
nZQZunuT

n ].
(28)

According to Isserlis’s theorem [33], the symmetric matrix with fourth-moment Gaus-
sian variables can be separated by

V = E[unuT
nZQZunuT

n ]

= E[unuT
nZ]E[QZunuT

n ] +E[unuT
nZQ]E[ZunuT

n ] +E[unuT
n ]E[uT

nZQZun]

= 2Q + tr{QZ}R,

(29)

where tr{·} denotes the trace operator and R = Z−1 = E[unuT
n ] is a positive define

correlation matrix.
Therefore, Equation (27) can be simplified as

E[‖w̃n‖2] = E[‖w̃n−1‖2
Fn
] + η2

nδ2E[φ2(en)]tr{QZ}+ η2
nE[φ2(en)]wT

∆(2Q + tr{QZ}R)w∆

= E[‖w̃n−1‖2
Fn
] + η2

nE[φ2(en)]tr{QZ}(wT
∆Rw∆ + δ2)

(30)

with a simplified

Fn = I− 2ηnE[φ(en)]Q + η2
nE[φ2(en)]V

= I− 2ηnE[φ(en)]Q + η2
nE[φ2(en)](2Q + tr{QZ}R).

(31)

Define qk and rk, k ∈ {1, 2, · · · , m}, being the kth eigenvalue of matrix Q and R. To
ensure the square stability, the eigenvalues of Fn should satisfy the following condition:

|1− 2ηnE[φ(en)]qk + η2
nE[φ2(en)](2qk + tr{QZ}rk)| < 1,

for k = 1, 2, · · · , m.
(32)

Then, the convergence condition about the step size can be expressed as

ηn < min
i

(
2E[φ(en)]qk

E[φ2(en)](2qk + tr{QZ}rk)

)
. (33)

Since the step size ηn = (nE[φ(vn)])−1 is related to the iteration n, finally, we obtain
the weight square error stability condition about the iteration n by

n > max
i

(
E[φ2(en)](2qk + tr{QZ}rk)

2E[φ(vn)]E[φ(en)]qk

)
, (34)
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where the nonlinear terms E[φ(en)] and E[φ2(en)] can be approximated by the
Taylor expansion.

Remark 3. Inequality (34) implies that the iteration n should be sufficiently large to guarantee
the convergence. When n is small, CRKRSL with Equation (20) cannot satisfy (34), resulting in
fluctuations at the initial update stage. Therefore, it is reasonable to use Equation (21) to replace
Equation (20) to improve the convergence speed and filtering accuracy.

4. Results and Discussion

In this section, we will show the advantages of the CRKRSL algorithm on the
filtering accuracy and computational complexity for both low-dimensional and high-
dimensional inputs. The noise model, data selection and algorithms comparison are
given as follows, respectively.

Noise model: We first consider a pure Gaussian noise to test the filtering accuracy,
i.e., Gaussian noise with vn ∼ N(0, δ2), where N(µ̄, δ̄2) denotes the Gaussian distribution
with mean µ̄ and variance δ̄2. Then, a mixed noise is considered to test the robustness of
CRKRSL. The mixed noise model under a probability process is denoted as

vn = b(n)v1(n) + (1− b(n))v2(n), (35)

where b(n) ∈ {0, 1} satisfies the binary distribution with probability P{b(n) = 0} = 0.1
and P{b(n) = 1} = 0.9. v1(n) with high probability generates the ordinary noise by a
Gaussian distribution N(0, δ2

1) and v2(n) with low probability generates a few impulsive
noise. Two types of v2(n) are considered: (a) Gaussian noise with large variance, i.e.,
v2(n) ∼ N(0, 100); (b) α-stable noise [34] with parameter function F (0.8, 0, 0.1, 0).

Data selection: The training inputs sampled from a Gaussian distribution with zero
mean and variance matrix R and 5000 samples are chosen for the simulation. The parame-
ters C, f, R are configured as the same as in [7]. Note that there exist two sets of data with
different input dimensions in [7]. The underlying dimension is either m = 7 or m = 31.
The simulated mean square deviation (MSD) is define as MSD(dB) = 10 log10(‖w̃n‖2) and
the steady-state MSD is defined as the mean of last 1000 samples. The obtained results are
averaged over 500 Monte Carlo trials. The results were run on MATLAB version R2020b
on a Windows 10 operating system, configured with an Intel(R) Core(TM) i7-8700 CPU
3.20 GHz and RAM 16 GB.

Compared algorithms: The constrained algorithms, including the CLMS [7], CMCC [21],
CLLAF [25] CRLS [9], and CRMCC [26], are chosen to be compared with the proposed CRKRSL.
For fair comparison, the kernel widths σ of CMCC, CRMCC, and CRKRSL are set by the
same value; the regularization terms of CRLS and CRMCC are set as 0.001; the initial
iterative length of CRKRSL is set as the same the input dimension, i.e., L = m.

4.1. Low-Dimensional Input

In this part, the input dimension m and constrained dimension q are set as m = 7
and q = 3, respectively. The noise considered here satisfies the following conditions, i.e.,
Gaussian noise v(n) ∼ N(0, 0.1) and mixed noise v1(n) ∼ N(0, 0.1). To reflect the influence
of risk-sensitive parameter γ on the MSD, the relations between γ and steady-state MSD
are shown in Figures 2 and 3 under different noise models. From Figure 2, one can see
that CRKRSL has a stable steady-state MSD under Gaussian noise. Therefore, γ has little
influence on the performance of CRKRSL. From Figure 3, it is observed that the CRKRSL is
sensitive to γ under mixed noise with model (a) and achieves the lowest steady-state MSD
around γ = 2.5. Therefore, we choose γ = 2.5 for the following algorithm comparison in
Figures 4 and 5. Note that ρ denotes the shape parameter in the CLLAF algorithm. All
necessary parameters are given in the figures.
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Figure 2. Steady-state MSD versus risk-sensitive parameter γ under Gaussian noise (m = 7, q = 3).
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Figure 3. Steady-state MSD versus risk-sensitive parameter γ under mixed noise with model (a)
(m = 7, q = 3).
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Figure 4. MSDs of compared algorithms under Gaussian noise (m = 7, q = 3).
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Figure 5. MSDs of compared algorithms under mixed noise with model (a) (m = 7, q = 3).

From Figure 4, one can see that CRKRSL, CRMCC and CRLS coincide and have
almost the same MSDs under Gaussian noise. This implies that the CRKRSL deals with the
Gaussian noise well by choosing a large kernel width. From Figure 5, it is observed that
CRKRSL has the best performance among all constrained algorithms since the risk-sensitive
parameter γ can avoid fluctuations caused by a small kernel width. Moreover, CRKRSL
is more stable than CRMCC at the initial stage, potentially leading to a better filtering
performance. In Table 1, we further compare the consumed time at each iteration and
steady-state MSDs of each algorithm under mixed noise with model (a). The consumed
time of CRKRSL is far less than that of CRMCC and CRLS.

Table 1. Consumed time and steady-state MSD of CLMS, CMCC, CLLAF, CRLS, CRMCC and
CRKRSL under mixed noise with model (a) based on low-dimensional input.

Algorithm Consumed Time (s) Steady-State MSD (dB)

CLMS 0.0024 −6.70
CMCC 0.0028 −10.86
CLLAF 0.0025 −18.58
CRLS 0.0324 −21.23

CRMCC 0.0327 −27.75
CRKRSL 0.0038 −34.34

To show the advantage of CRKRSL on computational complexity, Table 2 lists the
compared results of all mentioned algorithms at each iteration. One can see that CRKRSL
has a lower computational complexity than CRLS and CRMCC by avoiding calculating the
inverse matrix. Although the inverse matrix Un of CRMCC is not required to be calculated,
the inverse matrix (CTUnC)−1 is still needed to be calculated at each iteration, resulting in
a high computational complexity with a large q.

To test the performance of CRKRSL under mixed noise with model (b), Figure 6 gives
the MSD results of all mentioned algorithms. One can see from Figure 6 that CRKRSL,
CRMCC, CMCC and CLLAF show strong robustness to outliers, and CRKRSL has the
lowest MSD, whereas the CLMS and CRLS are not stable due to being sensitive to α-
stable noise.
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Table 2. Computational complexity of CLMS, CMCC, CLLAF, CRLS, CRMCC and CRKRSL at
each iteration.

Algorithms Computational Complexity

CLMS O(m2)

CMCC O(m2)

CLLAF O(m2)

CRLS O(m3 + q3)

CRMCC O(m2 + q3)

CRKRSL O(m2)
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Figure 6. MSDs of compared algorithms under mixed noise with model (b) (m = 7, q = 3).

4.2. High-Dimensional Input

In this part, the input dimension m and constrained dimension q are set as m = 31 and
q = 1, respectively. We only consider the mixed noise, since the Gaussian noise influences
the performance of CRKRSL little by selecting a large kernel width. The mixed noise
satisfies v1(n) ∼ N(0, 1).

Figures 7 and 8 show the MSDs of different algorithms under mixed noise with
model (a) and model (b), respectively. It is clear to see that CRKRSL shows the best
performance out of all the compared algorithms both under mixed noise with model (a)
and model (b). The initial iterative length L influences the convergence speed, significantly.
Therefore, the initial iterative length should be not smaller than the input dimension. In
Table 3, we further compare the consumed time at each iteration and steady-state MSDs of
each algorithm under mixed noise with model (a). One can see that the consumed time of
CRKRSL is far less than that of CRMCC. Moreover, CRKRSL has the lowest steady-state
MSD value.
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Figure 7. MSDs of compared algorithms under mixed noise with model (a) (m = 31, q = 1).
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Figure 8. MSDs of compared algorithms under mixed noise with model (b) (m = 31, q = 1).

Table 3. Consumed time and steady-state MSD of CLMS, CMCC, CLLAF, CRLS, CRMCC and
CRKRSL under mixed noise with model (a) based on high-dimensional input.

Algorithm Consumed Time (s) Steady-State MSD (dB)

CLMS 0.0035 2.98
CMCC 0.0034 −2.21
CLLAF 0.0034 −3.13
CRLS 0.0112 −11.02

CRMCC 0.0114 −15.45
CRKRSL 0.0063 −19.72

5. Conclusions

By introducing the linear constraints to the kernel risk-sensitive loss (KRSL), a low-
complexity constrained recursive KRSL (CRKRSL) algorithm is presented with the help of
average approximation. Since the risk-sensitive parameter is able to control the smooth-
ness of the performance surface, CRKRSL achieves higher accuracy than some existing
constrained recursive algorithms. Due to the inaccuracy of the average approximation
with a few inputs, a fixed step-size gradient method is adopted to avoid the instability of
CRKRSL at the initial update stage. Moreover, mean square analysis indicates that itera-
tion times influence the stability of CRKRSL significantly and simulation results confirm
the advantages of CRKRSL. The effectiveness of CRKRSL highly relies on the average
approximation method, which has limits when coping with nonstationary signals. In the
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future, we focus on finding a novel approximation method to process both stationary and
nonstationary signals and further improve the computational efficiency and accuracy of
constrained recursive algorithms.
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