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Abstract: In this paper, a five-parameter distribution, Khalil’s new generalized Weibull distribution,
is defined and studied in detail. Some mathematical and statistical functions are studied. The effects
of shape parameters on skewness and kurtosis are studied. Extensions for density and distribution
functions are provided. Estimation of the intended model parameters based on ranked samples
is investigated. The behavior of the maximum likelihood estimators is examined using a Monte
Carlo simulation. In order to predict unique symmetric and asymmetric patterns and illustrate
the applicability and potential of the intended distribution, a COVID-19 dataset is analyzed. The
goodness-of-fit results of the new generalized Weibull model of Khalil are compared with some other
models. Finally, we make some concluding remarks.
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1. Introduction

In order to achieve the goals that the researcher has set for his or her research, the
researcher must collect data and information about that research. Since some data may be
difficult to obtain or unacceptable due to cost, labor, and time constraints, he must choose
the sampling method that will guarantee that he will achieve the research objectives with
the least amount of time and expense—or, in many practical cases, it is not possible to
obtain true measurements of the variables of interest, which is expensive and therefore
a waste of time. To solve these problems, it is necessary to use a sampling method that
ensures that time, effort, and cost are reduced in obtaining data.

The Ranked Set Sampling (RSS) method was proposed by McIntyre [1] as an inexpen-
sive and effective method for estimating pasture yield. Although the RSS method is not
parametric, many authors have used it to estimate parameters for many distributions and
have demonstrated that its estimates are more effective than estimates based on simple
random sampling and the same sample size. More detailed information can be found
in [2–5]. Therefore, the aim of this work was to estimate the parameters of the Khalil new
generalized Family-Weibull Distribution (KHGWD) considering ordered groups.

We now briefly introduce the RSS strategy used in the supplements. Consider an
absolutely continuous random variable χ with the cumulative distribution function (CDF)
and the probability density function (PDF). Then, a simple random sample of size n derived
from the random variable χ is denoted by χ = {χi:n, i = 1, . . . , n}. Suppose further that
a random sample of size n2 is selected and randomly divided into n groups of equal size.
Then, RSS is observed according to the following pattern:
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(1) χ(1:n)1 χ(2:n)1 . . . χ(n:n)1 → χ1,1 = χ(1:n)1

(2) χ(1:n)2 χ(2:n)2 . . . χ(n:n)2 → χ2,2 = χ(2:n)2

. . . . .

. . . . .

. . . . .

(n) χ(1:n)n χ(2:n)n . . . χ(n:n)r → χn,n = χ(n:n)n

The RSS vector of observations is given by χj,i, i = 1, . . . , n, j = 1, . . . , n, where χj,i is the
statistic of order ith in the group jth based on a given simple random sample of size n.
Then, as is well known, the PDF of χj,i is

f j,i(x) =
n!

(i− 1)!(n− i)!
f (x)(F(x))i−1(1− F(x))n−i, j, i = 1, . . . , n. (1)

For more details, see Arnold et al. [6].
Next, Najma et al. [7] proposes a new method to extend the family of lifetime distribu-

tions. The method is called Khalil new generalized family of distributions. For any baseline
CDF G(x) and a PDF g(x), the CDF and the PDF of the new generalized family of Khalil
distributions are respectively given by

F(x; α, β) =
e−αG(x)β − 1

e−α − 1
, x ∈ R; α, β > 0, (2)

and

f (x; α, β) =
αβe−G(x)βαg(x)G(x)β−1

1− e−α
, x ∈ R; α, β > 0, (3)

where α and β are the scale and shape parameters, respectively.
In 1939, Swedish scientist Waloddi Weibull established the Weibull distribution in

a study of the breaking strength of instruments. The Weibull distribution is one of the
most commonly used failure models. The Weibull distribution is used to simulate many
probabilistic applications; this is due to its unique symmetric and asymmetric patterns.
The distribution has several desirable properties, acceptable physical interpretations, and
the ability to fit the failure rates of various systems, whether those rates are high, low,
or constant.

Let X be a random variable (R.V.) that follows the Weibull distribution with three
parameters (λ, µ, ν), then its CDF, denoted by G(x; λ, µ, ν), is given by

G(x; λ, µ, ν) = 1− e−
(

x−ν
µ

)λ

, x ≥ ν; λ, µ, ν > 0. (4)

Here, ν > 0 is the location parameter, x ≥ ν, λ > 0, and µ > 0 are the shape and the scale
parameter, respectively. The corresponding PDF, denoted by g(x; λ, µ, ν), is given by

g(x; λ, µ, ν) =
λ

µ

(
x− ν

µ

)λ−1
e−
(

x−ν
µ

)λ

, x ≥ ν; λ, µ, ν > 0. (5)
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2. The Khalil New Generalized Family-Weibull Distribution (KHGWD)

Take G(x) and g(x) in Equations (2) and (3) as G(x; λ, µ, ν) of Equation (4) and
g(x; λ, µ, ν) of Equation (5), respectively. The CDF and the PDF of KHGWD are respectively
given by

F(x; α, β, λ, µ, ν) =
1− e

−α

(
1−e−(

x−ν
µ )

λ
)β

1− e−α
, (6)

and

f (x; α, β, λ, µ, ν) =

αβλ
(

x−ν
µ

)λ−1
(

1− e−
(

x−ν
µ

)λ
)β−1

e
−
(

x−ν
µ

)λ
−α

(
1−e−(

x−ν
µ )

λ
)β

µ(1− e−α)
, (7)

where x ≥ ν, α > 0, and µ > 0 are two scale parameters, β > 0 and λ > 0 are two shape
parameters, and ν > 0 is a location parameter.

The survival function and hazard rate function of time t via KHGWD are, respectively,
given be

S(t; α, β, λ, µ, ν) = 1− 1− e
−α

(
1−e−(

t−ν
µ )

λ
)β

1− e−α
, (8)

and

H(t; α, β, λ, µ, ν) =

αβλ
(

t−ν
µ

)λ−1
(

1− e−
(

t−ν
µ

)λ
)β−1

e
−
(

t−ν
µ

)λ
−α

(
1−e−(

t−ν
µ )

λ
)β

µ(1− e−α)

1− 1−e
−α

1−e
−( t−ν

µ )
λ
β

1−e−α


. (9)

In what follows, an R.V. X with the KHGWD (7) is denoted by X ∼ KHGWD(α, β, λ, µ, ν).
Figures 1–3 show various survival functions (SF), PDF, and hazard rate functions (HRF)
for the KHGWD(α, β, λ, µ , ν). The right panel for KHGWD(1.10, 2.80, 0.50, 1.40, 0.20),
KHGWD(0.30, 0.80, 0.60, 2.90, 0.12), KHGWD(9.02, 6.90, 0.50, 1.90, 0.20), KHGWD(1.2,
3.90, 0.65, 0.90, 0.20), and KHGWD(0.20, 3.90, 0.30, 1.10, 0.01), while the left panel for
KHGWD(5.10, 0.50, 6.50, 1.40, 1.20) and KHGWD(0.10, 0.50, 6.50, 1.40, 1.20), KHGWD(5.10,
0.80, 6.50, 1.40, 1.20), KHGWD(5.10, 0.50, 2.80, 1.40, 1.20), and KHGWD(5.10, 0.50, 6.50,
2.40, 1.20).

The model is sometimes very flexible. It seems to approach the bell curve with some
torsion, as seen in the right panel of Figure 2. At other times, it seems to have strong
tails, as seen in the left panel of Figure 2, which depends on the particular values of the
parameters. The left panel of Figure 2 also shows that the proposed model has heavy tails
when the parameters are increased. Based on the behavior of the proposed model shown
in Figure 2, it is a good candidate for modeling semi-normal data (right part) and data with
heavy tails (left part) in various financial, industrial, medical, and global epidemiological
applications which have the same behavior. However, from the plots in Figure 3, it is
clear that the KHGWD has unimodal and increasing failure rate functions. The unimodal
and increasing failure rate functions are another superiority of the proposed model along
with the heavy-tailed behavior. Therefore, the proposed model is suitable for modeling
COVID-19.
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Figure 1. Different SF for the KHGWD(α, β, λ, µ, ν).
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Figure 2. Different PDF for the KHGWD(α, β, λ, µ, ν).
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Figure 3. Different HRF for the KHGWD(α, β, λ, µ, ν).

3. Mathematical Properties

This section is devoted to deriving some mathematical properties of the
KHGWD(α, β, λ, µ, ν).

3.1. Quantile Function

To generate random variables by Monte Carlo simulation, the quantile function of the
distribution is required. Assuming p ∼ Uni f orm(0, 1), we solved the following equation
for the quantile function Λ(p):

p =
1− e−α(F(Λ(p)))β

1− e−α
. (10)
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Letting y = F(Λ(p)), we have

p =
1− e−α(y)β

1− e−α
. (11)

By solving for y, we have

F(Λ(p)) =
(
− log[1− p(1− e−α)]

α

) 1
β

. (12)

Thus,

Λ(p) = F−1{
(
− log[1− p(1− e−α)]

α

) 1
β

}, (13)

where F−1 is the quantile of the baseline distribution KHGWD(α, β, λ, µ, ν). Inverting
F(x) = p in (6), we can write

ΛKHGWD(x, α, β, λ, µ, ν) = ν + µ

− log

1−
(
− log[1− (1− e−α)x]

α

) 1
β

 1
λ

. (14)

By setting x as a uniform R.V. in the unit interval (0, 1), we can also use (14) for sim-
ulating KHGWD(α, β, λ, µ, ν) R.V.s. Figure 4 plots different quantile functions for the
KHGWD(α, β, λ, µ, ν), and particularly for (1) β = 2.3; λ = 0.2, µ = 0.2, ν = 3.2. (2) α = 4.3,
λ = 0.2, µ = 0.2, ν = 3.2. (3) α = 4.3, β = 0.3, µ = 0.2, ν = 3.2. (4) α = 4.3, β = 0.3,
λ = 0.2, ν = 3.2. (5) α = 0.3, β = 0.3, λ = 1.2, µ = 0.2, respectively. Some numerical values
of the quantile measure are provided in Table 1.

Table 1. Some quantile values for α = 1.3, β = 5.3, λ = 0.2, µ = 0.2, and ν = 3.2.

x Λ(x)

0.1 3.30459
0.2 3.54091
0.3 3.97569
0.4 4.74677
0.5 6.13344
0.6 8.75958
0.7 14.2517
0.8 28.0657
0.9 80.4795

In addition, the effects of shape parameters on skewness and kurtosis can be deter-
mined using quantile measures. We obtain skewness and kurtosis measures of
KHGWD(α, β, λ, µ, ν). The skewness (SK) (see Bowley [8]) of X is given by

SK(α, β, λ, µ, ν) =
2Λ(1/2)−Λ(3/4)−Λ(1/4)

Λ(1/4)−Λ(3/4)
,

and the Kurtosis (K) (see Moor [9]) is given by

K(α, β, λ, µ, ν) =
Λ(1/8)−Λ(3/8) + Λ(5/8)−Λ(7/8)

Λ(2/8)−Λ(6/8)
.

Figure 5 shows SK(α, β, 0.2, 0.2, 3.2) and K(α, β, 0.2, 0.2, 3.2) for different values of α
and β. Figure 6, on the other hand, shows SK(1.3, 5.3, λ, µ, 3.2) and K(1.3, 5.3, λ, µ, 3.2) for
different values of λ and µ.
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Figure 4. Different quantile functions for the KHGWD(α, β, λ, µ, ν).

Figure 5. Plots for the SK(α, β, 0.2, 0.2, 3.2) and K(α, β, 0.2, 0.2, 3.2).

Figure 6. Plots for the SK(1.3, 5.3, λ, µ, 3.2) and K(1.3, 5.3, λ, µ, 3.2).
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3.2. The Expansion for KHGWD Density Function

Using the general binomial and the power series expansion, we have(
1− e−

(
x−ν

µ

)λ
)β−1

=
∞

∑
κ=0

(
β− 1

κ

)
(−1)κe−κ

(
x−ν

µ

)λ

=
∞

∑
κ=0

(
β− 1

κ

)
(−1)κ

∞

∑
h=0

(−1)h

h!

(
x− ν

µ

)λh
. (15)

Next, we can also write

e
−
(

x−ν
µ

)λ
−α

(
1−e−(

x−ν
µ )

λ
)β

=
∞

∑
ρ=0

(−1)ρ

ρ!

( x− ν

µ

)λ

+ α

(
1− e−

(
x−ν

µ

)λ
)β
ρ

=
∞

∑
ρ=0

(−1)ρ

ρ!

∞

∑
q=0

(
ρ

q

)(
x− ν

µ

)λq
αρ−q

(
1− e−

(
x−ν

µ

)λ
)β(ρ−q)

, (16)

Using (15) and (16), the PDF of the expanded KHGWD(α, β, λ, µ, ν) is given by

f (x; α, β, λ, µ, ν) =
αβλ

µ(1− e−α)

∞

∑
κ=0

(
β− 1

κ

) ∞

∑
h=0

∞

∑
ρ=0

∞

∑
q=0

αρ−q

×
∞

∑
τ=0

∞

∑
δ=0

Ψκ,h,ρ,q,τ,δ

(
x− ν

µ

)λ(h+q+δ+1)−1
, (17)

where

Ψκ,h,ρ,q,τ,δ =

(
ρ

q

)(
β(ρ− q)

τ

)
(−1)κ+h+ρ+τ+δτδ

h!ρ!δ!
.

3.3. The Expansion for the KHGWD Distribution Function

The CDF (15) of the expanded KHGWD(α, β, λ, µ, ν) can be written as

F(x; α, β, λ, µ, ν) =

1−
∞

∑
h=0

(−1)h

h!
αh

(
1− e−

(
x−ν

µ

)λ
)hβ

(1− e−α
)−1

=

(
1−

∞

∑
h=0

αh
∞

∑
τ=0

(
hβ

τ

) ∞

∑
ρ=0

Ψh,τ,ρ

(
x− ν

µ

)λρ
)(

1− e−α
)−1, (18)

where

Ψh,τ,ρ =
(−1)h+τ+ρτρ

h!ρ!
.

4. Estimation of the Parameters Based on the Ranked Set Samples

Let {Xj,i, i = 1, . . . , m, j = 1, . . . , r} be the observed sample, where Xj,i is the ith order
statistic in the jth group. The likelihood function based on the KHGWD(α, β, λ, µ, ν), is
given by
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l =
(

m!αβ

1− e−α

)rm r

∏
j=1

m

∏
i=1

e−αGβ
j,i

(
e
−αGβ

j,i−1
e−α−1

)i−1(
1− e

−αGβ
j,i−1

e−α−1

)m−i

gj,iG
β−1
j,i

(i− 1)!(m− i)!
, (19)

where Gj,i = Gj,i(xj,i, λ, µ, ν) and gj,i = gj,i(xj,i, λ, µ, ν) are the baseline CDF (6) and PDF (7),
respectively. The corresponding log-likelihood function is given by

L = K1 + rm log[αβ]− n log
[
1− e−α

]
−

r

∑
j=1

m

∑
i=1

αGβ
j,i

+
r

∑
j=1

m

∑
i=1

(i− 1) log

 e−αGβ
j,i − 1

e−α − 1

+ (m− i) log

1− e−αGβ
j,i − 1

e−α − 1


+

r

∑
j=1

m

∑
i=1

log
[
gj,i
]
+ (β− 1) log

[
Gj,i
]
, (20)

where K1 is constant. The first partial derivatives of log-likelihood (20) with respect to
α, β, λ, µ, ν, respectively, are given by

∂L
∂α

= n
(

1
α
− e−α

1− e−α

)
−

r

∑
j=1

m

∑
i=1

Gβ
j,i

+
r

∑
j=1

m

∑
i=1

(
(i− 1)

e−αGβ
j,i − 1

− (m− i)

e−α − e−αGβ
j,i

) e−α

(
e−αGβ

j,i − 1
)

(e−α − 1)
− e−αGβ

j,i Gβ
j,i

, (21)

∂L
∂β

=
n
β

+ α
r

∑
j=1

m

∑
i=1

Gβ
j,i

(
1− log

[
Gj,i
](

1 +

(
m− i

e−α − e−αGβ
j,i

− i− 1

e−αGβ
j,i − 1

)
e−αGβ

j,i

))
, (22)

∂L
∂λ

=
r

∑
j=1

m

∑
i=1

g(λ)j,i

gj,i
+ G(λ)

j,i

(
β− 1
Gj,i

− αβGβ−1
j,i

)

− αβ
r

∑
j=1

m

∑
i=1

Gβ−1
j,i G(λ)

j,i e−αGβ
j,i

(
i− 1

e−αGβ
j,i − 1

+
m− i

e−α − e−αGβ
j,i

)
, (23)

∂L
∂µ

=
r

∑
j=1

m

∑
i=1

g(µ)j,i

gj,i
+ G(µ)

j,i

(
β− 1
Gj,i

− αβGβ−1
j,i

)

− αβ
r

∑
j=1

m

∑
i=1

Gβ−1
j,i G(µ)

j,i e−αGβ
j,i

(
i− 1

e−αGβ
j,i − 1

+
m− i

e−α − e−αGβ
j,i

)
, (24)

and

∂L
∂ν

=
r

∑
j=1

m

∑
i=1

g(ν)j,i

gj,i
+ G(ν)

j,i

(
β− 1
Gj,i

− αβGβ−1
j,i

)

− αβ
r

∑
j=1

m

∑
i=1

Gβ−1
j,i G(ν)

j,i e−αGβ
j,i

(
i− 1

e−αGβ
j,i − 1

+
m− i

e−α − e−αGβ
j,i

)
, (25)
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where

G(λ)
j,i =

∂Gj,i

∂λ
=

( xj,i − ν

µ

)λ

e
−
(

xj,i−ν

µ

)λ

log
[ xj,i − ν

µ

]
, (26)

G(µ)
j,i =

∂Gj,i

∂µ
= −λ

µ

( xj,i − ν

µ

)λ

e
−
(

xj,i−ν

µ

)λ

, (27)

G(ν)
j,i =

∂Gj,i

∂ν
= −λ

µ

( xj,i − ν

µ

)λ−1
e
−
(

xj,i−ν

µ

)λ

, (28)

g(λ)j,i =
∂gj,i

∂λ
= µ

(
xj,i − ν

µ

)λ−1
(
−1 + λ log

[
xj,i − ν

µ

]((
xj,i − ν

µ

)λ

− 1

))
e
−
(

xj,i−ν

µ

)λ

, (29)

g(µ)j,i =
∂gj,i

∂µ
= −

(
λ

µ

)2( xj,i − ν

µ

)λ−1
(( xj,i − ν

µ

)λ

− 1

)
e
−
(

xj,i−ν

µ

)λ

, (30)

and

g(ν)j,i =
∂gj,i

∂ν
= λµ2

( xj,i − ν

µ

)λ−2
(

1 + λ

(( xj,i − ν

µ

)λ

− 1

))
e
−
(

xj,i−ν

µ

)λ

. (31)

The maximum likelihood estimators α̂ML, β̂ML, λ̂ML, µ̂ML, and ν̂ML of the KHGWD
parameters are the solutions of the nonlinear Equations (21)–(25) for r = m = n. Character-
istically, they can be solved by fixed-point iteration methods or the Newtonian approach.

5. Monte Carlo Simulation Study

This section is concerned with evaluating the performance of the maximum likelihood
estimators of KHGWD(α, β, λ, µ, ν) through a Monte Carlo simulation study. The R pro-
gram through the optimum function can used to compute the simulation and application
results. The Weibull location parameter ν was set to zero to simplify the calculations.

The simulation of the KHGWD model is performed for two parameter sets:

1. Set 1: α = 3.2, β = 1.5, λ = 3.8, µ = 2.1, ν = 0.
2. Set 2: α = 4.3, β = 1.6, λ = 3.5, µ = 1.8, ν = 0.

The simulation study is performed as follows.

1. Random samples of sizes n = 25, 100, 225, 400, 625, 900 are generated from KHGWD
and are randomly divided into r groups of equal size m, where r = m = 5, 10, 15, 20, 25,
and 30, respectively.

2. The model parameters have been estimated via the maximum likelihood method.
3. Five-thousand repetitions are made to calculate these estimators’ biases, absolute

biases, and mean square errors (MSEs).
4. The formulas for obtaining the estimate, biases, and MSEs are given respectively, by

α̂ =
1

5000

5000

∑
i=1

α̂i,

Bias(α̂) =
1

5000

5000

∑
i=1

(α̂i − α),

and

MSE(α̂) =
1

5000

5000

∑
i=1

(α̂i − α)2,
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respectively.
5. Step (4) is also repeated for the parameters β, λ, and µ.

The simulation results of the KHGWD for Set 1 and Set 2 are presented in Tables 2 and 3,
respectively. Figures 7 and 8 displays graphically the results provided in Tables 2 and 3,
respectively.

Table 2. Simulation results of the KHGWD for Set 1.

n α̂ β̂ λ̂ µ̂

2.07 2.551 4.044 1.805
25 4.087 4.598 2.946 0.255

−1.13 1.051 0.244 −0.295

2.586 2.104 3.787 1.917
100 3.3 2.076 1.692 0.165

−0.614 0.604 −0.013 −0.183

2.838 1.9 3.675 1.973
225 2.949 1.01 1.019 0.12

−0.361 0.4 −0.124 −0.127

2.988 1.792 3.645 2.007
400 2.523 0.54 0.681 0.089

−0.212 0.292 −0.155 −0.093

3.053 1.722 3.645 2.028
625 2.199 0.317 0.469 0.069

−0.147 0.222 −0.155 −0.072

3.115 1.702 3.64 2.04
900 2.053 0.271 0.397 0.061

−0.085 0.202 −0.16 −0.06
The first, second, and third rows represent the estimate, MSE, and Bias, respectively.

Table 3. Simulation results of the KHGWD for Set 2.

n α̂ β̂ λ̂ µ̂

3.476 2.514 4.396 1.609
25 6.169 4.551 5.554 0.26

−0.824 0.914 0.895 −0.1907

3.182 2.182 3.799 1.606
100 4.908 2.272 2.602 0.155

−1.118 0.582 0.299 −0.194

3.511 1.941 3.614 1.663
225 3.812 1.072 1.324 0.095

−0.789 0.341 0.114 −0.137

3.712 1.844 3.512 1.693
400 3.257 0.578 0.768 0.066

−0.588 0.244 0.012 −0.107

3.883 1.799 3.453 1.716
625 2.644 0.361 0.471 0.047

−0.417 0.199 −0.047 −0.084

4.054 1.765 3.443 1.737
900 2.274 0.27 0.386 0.035

−0.246 0.165 −0.057 −0.063
The first, second, and third rows represent the estimate, MSE, and Bias, respectively.
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Figures 7 and 8 illustrate the simulation results for the above measures. These plots
show that increasing the sample size n leads to a reduction in the estimated biases. In
addition, increasing the sample size n leads to a decrease in the estimated MSEs, which ap-
proaches zero as n increases. These results demonstrate both the efficiency and consistency
properties of the MLEs.

6. COVID-19 Data

The COVID-19 dataset of Hong and Li [10] is considered an application of the KHGWD
model and is randomly divided into seven groups of similar seven observations. Table 4
shows the descriptive statistics of the proposed COVID-19 data. The boxplot and Q-
Q plot are shown in Figure 9. By performing the maximum likelihood estimators of
KHGWD(α, β, λ, µ, ν) by Monte Carlo simulation study for ν = 0, the estimated parameters
are α̂ = 2.4222994, β̂ = 0.1311977, λ̂ = 5.3593414, and µ̂ = 20.1015298. Figure 10: Plots of
the fitted PDF of KHGWD and CDF. Figure 11: PP plot and Kaplan–Meier survival function
of KHGWD.

Table 4. Descriptive statistics of the COVID-19 data.

Min. 1st Qu. Median Mean 3rd Qu. Max

0.054 0.704 3.079 4.787 6.743 20.083
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Figure 9. The boxplot and Q-Q plot of the COVID-19 data.
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Figure 10. The fitted PDF and CDF of the KHGWD.
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Figure 11. The PP plot and the Kaplan–Meier survival function of the KHGWD.

Table 5 compares the KHGWD based on one-sample Kolmogorov–Smirnov test. The
goodness-of-fit results of the KHGWD model are compared with some other models,
including the Khalil generalized exponential distribution (KHGEXP), the Khalil generalized
gamma distribution (KHGGamma), and Weibull distribution. The distribution functions of
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these competitive distributions are given by
(1) KHGEXP distribution:

F(x; α, β, µ) =
1− e

−α

(
1−e−(

x
µ )
)β

1− e−α
, x ≥ 0, α, β, µ > 0. (32)

(2) KHGGamma distribution:

F(x; α, β, λ, µ) =
e−α( 1

Γλ γ(λ,µx))
β

− 1
e−α − 1

, x ≥ 0, α, β, λ, µ > 0, (33)

where γ(λ, µx) is the lower incomplete gamma function.
(3) Weibull distribution:

F(x; λ, µ) = 1− e−
(

x
µ

)λ

, x ≥ 0; λ, µ > 0. (34)

Table 5. Relative quality of the KHGWD vs. competing models.

Model p-Value

KHGWD 0.4347
KHGEXP 0.3776
KHGGamma 0.4056
Weibull 0.3776

Based on the results presented in Table 5, we see that KHGWD is a good competitor
among the competing models for modeling the COVID-19 data.

7. Conclusions

We introduced the new generalized Weibull distribution of Khalil with five parameters.
The model has a high degree of flexibility to fit the appropriate data. The model is unimodal,
has a strong tail-heavy behavior, and exhibits increasing failure rate functions. We have
studied some mathematical and statistical functions and the effects of shape parameters on
skewness and kurtosis. We have provided density and distribution functions in an extended
form. Based on ranked samples, the maximum likelihood estimators for the intended model
parameters and a Monte Carlo simulation study are provided. A COVID-19 dataset is
analyzed to illustrate the applicability and potential of the intended distribution. The
biases and mean square errors decrease as the sample size increases. It is clear that the
proposed model fits the estimated PDF and CDF plots well. The COVID-19 dataset has
a strong deflection that is skewed to the right in the boxplot. The proposed model fits
the Kaplan–Meier survival plot very well. The new generalized Weibull distribution of
Khalil, based on the Kolmogorov–Smirnov one-sample test, provides a better fit than other
competing models. The results show that the model is considered ideal for modeling
COVID-19.
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