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Abstract: Federated learning (FL) can tackle the problem of data silos of asymmetric information
and privacy leakage; however, it still has shortcomings, such as data heterogeneity, high com-
munication cost and uneven distribution of performance. To overcome these issues and achieve
parameter optimization of FL on non-Independent Identically Distributed (non-IID) data, a multi-
objective FL parameter optimization method based on hierarchical clustering and the third-generation
non-dominated sorted genetic algorithm III (NSGA-III) algorithm is proposed, which aims to si-
multaneously minimize the global model error rate, global model accuracy distribution variance
and communication cost. The introduction of a hierarchical clustering algorithm on non-IID data
can accelerate convergence so that FL can employ an evolutionary algorithm with a low FL client
participation ratio, reducing the overall communication cost of the NSGA-III algorithm. Meanwhile,
the NSGA-III algorithm, with fast greedy initialization and a strategy of discarding low-quality
individuals (named NSGA-III-FD), is proposed to improve the convergence efficiency and the quality
of Pareto-optimal solutions. Under two non-IID data settings, the CNN experiments on both MNIST
and CIFAR-10 datasets show that our approach can obtain better Pareto-optimal solutions than
classical evolutionary algorithms, and the selected solutions with an optimized model can achieve
better multi-objective equilibrium than the standard federated averaging (FedAvg) algorithm and the
Clustering-based FedAvg algorithm.

Keywords: federated learning; multi-objective optimization; NSGA-III; parameter optimization

1. Introduction

While the rapid development of artificial intelligence has brought great convenience to
society [1], such as smart healthcare [2] and intelligent transportation [3], its development
is facing new difficulties and challenges [4], such as data silos [5] and privacy leaks.
Traditional, centralized machine learning needs to gather scattered data before training,
but in fact, it is difficult to aggregate data in many fields. For example, due to privacy
considerations, hospitals cannot share data for machine learning, resulting in asymmetric
information and data silos that put a limit on sharing data between different organizations.
In addition, as people’s awareness of privacy protection has gradually increased, countries
around the world have also issued privacy protection laws and regulations, such as the
General Data Protection Regulation (GDPR) [6] in the European Union and the Personal
Data Protection Act (PDPA) [7] in Singapore, which place severe restrictions on the sharing
of sensitive data.

Therefore, federated learning (FL) [8] has emerged as a viable solution to the problems
of data silos of asymmetric information and privacy leaks. FL can train a global model
without extracting data from a client’s local dataset. After downloading the current global
model from the server, each client trains the global model on the local data, and then
uploads the trained local model to the server to aggregate as the latest global model. After
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iterations, FL can finally obtain a global model while effectively protecting the user’s
privacy by avoiding sharing locally private data. In addition, the federated averaging
algorithm (FedAvg) is a classical algorithm of federated learning, which is used to update
the global model on the server by obtaining the average values of the parameters collected
from clients.

The research on federated learning continues to deepen, but it still faces the challenges
of data heterogeneity, high communication cost and structural heterogeneity [9]. Each
client’s data is usually non-independent and identically distributed (non-IID), that is,
the number of data labels and data size between clients are asymmetric, which may
damage the accuracy of FL. The parameter transmission between the server and clients
consumes massive communication resources. Meanwhile, due to different computing,
storage capabilities and network environments between clients, some clients may be offline,
causing a loss of model parameters, which will affect the efficiency, accuracy and fairness
of FL.

In order to solve the problem of non-IID data in federated learning, Yue Zhao et al. [10]
created global shared data in the central server to improve the training accuracy of non-IID
data, but this sharing of data essentially violates the principle of data privacy protection in
FL. Jiang [11] first built a global model in a collaborative way, and then used the private
data to personalize the global model for each client. Muhammad et al. [12] combined
federated learning with a recommendation system and proposed an algorithm that uses a
k-means method to cluster the similarity of different nodes, then randomly selects a certain
number of nodes in different clusters to participate in training.

It is necessary to consider reducing the communication overhead of FL. In this regard,
Chen [13] proposed a layered asynchronous update algorithm. The author layered the
parameters into shallow parameters and deep parameters according to the structural
characteristics of the deep neural network model. In the early global communication
iteration process, only the shallow parameters are transmitted between the server and local
clients, and the deep parameters of the global model are transmitted and aggregated in the
last few rounds of communication. This algorithm reduces the communication overhead
by reducing the size of the transmission model parameters and the update frequency of
the deep parameters in the neural network. The disadvantage of this algorithm is that
the accuracy of the model would be affected. Zhu [14] introduced the sparse evolution
algorithm (SET) [15] into federated learning. By controlling the sparsity parameter between
the fully connected layers of the neural network, the SET algorithm is able to control the
connection sparsity between fully connected networks. In this way, the parameter size of
the transmission model is reduced, and the communication cost is effectively reduced, but
it may affect the global model accuracy.

Another challenge of federated learning is structural heterogeneity. Due to different
computing, storage capabilities and asymmetric network environments between clients,
some clients will possibly be offline and lose model parameters during transmission. In
order to enhance the robustness of federated learning, scholars have conducted various
studies on structural heterogeneity. Hao et al. [16] designed a secure aggregation protocol
that allows clients to withdraw at any time, as long as the number of remaining clients can
meet the FL update, which improves the fault tolerance and robustness of the system. Other
scholars have studied how to rationally allocate heterogeneous equipment resources. Kang
et al. [17] considered the differences in the costs of clients to encourage more high-quality
clients to carry out FL training. Li et al. [18] used the variance of the global model accuracy
distribution as a fairness measure and designed a q-FFL optimization algorithm, which
increased the model aggregation weight of high-loss clients. Experiments show that the
algorithm can improve the accuracy of low-accuracy participation, and the global model
accuracy distribution between clients is more balanced, promoting fair resource allocation
of federated learning.

The above-mentioned studies have been carried out on a certain aspect of communica-
tion cost or structural heterogeneity, but few studies address comprehensive considerations
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on these issues. However, the application of FL often requires model accuracy, fairness
and communication cost at the same time. To achieve the balance of multiple objectives
and parameter optimization under the FL framework, some scholars have tried to combine
intelligent optimization algorithms with federated learning. Zhu et al. [14] defined FL
as a bi-objective optimization model with the goal of minimizing model error rate and
communication cost, and used the NSGA-II algorithm to optimize the neural network
structure parameters of FL. The Pareto-optimal solution evolved by the algorithm improves
model performance and communication efficiency to a certain extent compared with the
standard FedAvg algorithm. However, the algorithm does not consider the instability of the
communication environment caused by the structural heterogeneity of federated learning
or the imbalance of accuracy distribution among clients. Basheer et al. [19] used the particle
swarm algorithm to update the number of hidden layers, the number of neurons and the
global communication rounds of the neural network, but its optimization goal is a single
goal without comprehensive consideration of the other goals of federated learning.

In response to the above problem, aiming at realizing multi-objective equilibrium and
hyperparameter optimization of FL on non-IID data, this paper proposes a framework for
optimizing the structure of neural network models in FL. Therefore, we first define FL as
a three-objective optimization model, which aims to simultaneously minimize the global
model error rate, the global model accuracy distribution variance and communication
cost, and takes the learning rate, batch size and neural network structure parameters as
decision variables. Before using an evolutionary algorithm to optimize FL, a hierarchical
clustering algorithm is introduced to divide the clients into different clusters, and the
clusters are proportionally sampled for the FL evaluation process of the evolutionary
algorithm. Then, based on the characteristics of FL, this paper proposes an improved NSGA-
III algorithm, namely NSGA-III-FD, with improves NSGA-III with Fast greedy initialization
and Discarding strategy of abandoning low-quality individuals of the population in the
late iterations. The experimental results show that the proposed NSGA-III-FD algorithm
can achieve the balance of three objectives, improve the training efficiency and obtain an
appropriate parameter for FL training, as it can effectively reduce the communication cost
and the variance of the accuracy distribution while maintaining the overall performance of
the FL model without serious loss. The contributions of this paper are as follows:

1. In the case of non-IID data, which can be regarded as an asymmetric data distribu-
tion, we construct a multi-objective FL optimization model and comprehensively
consider the three minimization objectives of global model error rate, global model ac-
curacy distribution variance and communication cost, which aims to achieve FL
parameter optimization and realize the balance of model accuracy, fairness and
communication cost.

2. Using a hierarchical clustering algorithm on non-IID data can accelerate convergence
and improve the accuracy of the global model so that FL can carry out NSGA-III with
a low FL client participation ratio without a serious loss of accuracy. It can reduce
communication cost and improve the efficiency of the evolutionary algorithm, which
would be more feasible in a practical application.

3. We propose the NSGA-III-FD algorithm. In order to quickly converge and obtain
high-quality Pareto solutions, a fast greedy initialization for multi-objective FL and
the strategy of discarding low-quality individuals in the late iterations are proposed
to speed up NSGA-III evolutionary efficiency and to improve the applicability of
individual solutions to the population.

4. Through CNN experiments on MNIST and CIFAR-10 datasets, it is verified that
using a hierarchical clustering algorithm can accelerate convergence and improve
FL accuracy on non-IID data. The Pareto solutions obtained by the proposed NSGA-
III-FD algorithm are better than that of the NSGA-III algorithm and other classical
evolutionary algorithms, such as MOEAD, NSGA-II and SPEA2. The results show
that the Pareto solutions obtained by the NSGA-III-FD algorithm are of higher quality.
Moreover, some Pareto solutions are selected for FL experiments. The optimized
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neural network model can effectively reduce the communication cost and the variance
of the global model accuracy while maintaining the accuracy of the federated learning
global model.

The remainder of this paper is organized as follows: The Section 2 proposes a multi-
objective optimization model of federated learning and discusses the proposed NSGA-III-
FD algorithm in detail, the Section 3 presents a comparative analysis and summary of the
experiments, finally, the Section 4 makes a conclusion.

2. Proposed Algorithm
2.1. Preliminaries
2.1.1. Federated Learning

Federated learning is a distributed privacy protection machine learning technology
that allows clients to jointly train a global model without uploading local private data to
the server. Suppose there are K clients with local datasets {D1, D2, · · · , DK}; the traditional
centralized learning puts all the data together as D = D1 ∪D2 · · ·DK and uses D to train the
model. In the training process of federated learning, federated learning aims to minimize
the global loss function in a distributed scheme, that is, to minimize the weighted average
of the local client loss function. The loss function of the k-th client with the local dataset Dk
is shown below:

Lk(w) =
1
nk

∑
i∈Dk

li(w) (1)

where k is the serial number of the clients, w is the global model parameters, Lk(w) is the
loss function of the k-th client, li(w) is the loss function of data sample i in local dataset Dk,
and nk is equal to the local dataset’s size as nk = |Dk|.

In addition, the global goal of federated learning is to minimize the global loss function
L(w):

min
w

L(w) = min
w

∑
i∈∪k Dk

li(w)

|∪kDk|
= min

w

K

∑
k=1

nk
n

Lk(w) (2)

where n is the total data sample size of K clients. The goal of federated learning is to
optimize the global loss function L(w) by minimizing the weighted average of the client
loss function Lk(w). Federated learning is a collaborative process, as shown in Figure 1.
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At t round of training, each client receives a global model wt from the server and trains
model wt with local data. After training, the k-th client can obtain an updated local model
wk

t and then upload it to the server. The server aggregates the models with certain rules to
obtain a new global model wt+1 for the next round of iterative training.
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2.1.2. NSGA-III Algorithm

There are many studies on multi-objective optimization algorithms based on genetic
algorithms and Pareto-optimal solutions, such as the second-generation non-dominated
ranking genetic algorithm [20] (NSGA-II), the decomposition-based multi-objective evo-
lutionary algorithm [21] (MOEA based on decomposition, MOEA/D), SPEA2 [22] and
PAES [23] (Pareto archived evolution strategy). NSGA-II is a powerful and robust multi-
objective evolutionary algorithm for problems with two or three objectives. If the number
of objectives is greater than three, newer evolutionary algorithms can be used, such as the
third generation of the reference-point-based non-dominated ranking genetic algorithm [24]
(NSGA-III); NSGA-III outperforms NSGA-II for optimization problems with four or more
objectives. In this paper, FL is defined as a three-objective optimization problem model. To
ensure scalability, when the objectives of FL are extended to four and more, the NSGA-III
algorithm is adopted in this paper.

2.2. Multi-Objective Federated Learning Optimization Model

We construct a three-objective optimization model of FL, and explain its objectives,
decision variables and coding of decision variables. The three-objective optimization model
of FL can be summarized as follows:

minF(v) = min( f1(v), f2(v), f3(v))
T

s.t.
η ∈

[
1, Maxη

]
, B ∈ [1, MaxB]

Conv ∈ [1, Maxconv], kc ∈ [1, Maxkc], ks ∈ (3or5)
L ∈ [1, MaxL], Fc ∈ [1, MaxFc]

(3)

where F(v) is the objective function of the model, v represents decision variables and
v = {η, B, Conv, kc, ks, L, Fc}; constraints are the value range of each variable. The details
of the objective function and decision variables are defined as follows:

1. Objective function

The model has three objective functions, including minimizing the global model test
error f1, the global model accuracy distribution variance f2 and the communication cost
f3. The three minimization functions comprehensively consider the balance between the
accuracy, fairness and communication cost of the FL model.

Accuracy is an important goal of the FL model. Since the objective function is a
minimization function, the goal of maximizing accuracy is transformed into the goal of
minimizing the global model test error rate. Traditional FL tends to lean toward some
clients, resulting in a large accuracy gap between clients, especially on non-IID data.
Therefore, the introduction of a fairness objective into the FL optimization model could lead
to a more balanced distribution of accuracy among clients. In this paper, the fairness goal
is represented by the global model accuracy distribution variance used in [18]. The third
objective function is to minimize communication cost, as low cost means the feasibility
and sustainability of FL. In FL, the communication cost is directly related to the model
parameters transmitted by clients. Based on human experience, it is difficult to find a model
with low model complexity and high accuracy. Therefore, the three objective functions
form a large space, and there is no exact correlation among the three functions.

In this paper, the specific evaluation process of the three objectives of individuals in the
evolutionary algorithm uses the clustering-based FedAvg algorithm. After FL training, we
could test the trained global model w to obtain the accuracy of each client {a1, a2, · · · , aK}.
The average test accuracy of the global model is calculated A = ∑K

k=1 ak
K , from which the

target global model test error rate can be calculated as f1 = 1− A.

The goal f2 is the variance of the global model accuracy distribution f2 = ∑K
k=1(ak−A)2

K ,
which is also obtained based on the accuracy distribution of each client. Variance can be
considered as one of the measures of fairness.
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The goal f3 is defined as the communication cost of the individual in the population.
Generally, the communication cost of each client is only related to the size of the model
parameters it transmits. A complex model means a higher communication cost. In this
paper, the communication cost of the FL training with an evolutionary algorithm is related
to the size of the model parameters, the proportion of clients participating in the training
and the communication rounds. However, only the size of the model parameters is different
among the individuals of the evolutionary algorithm, so the target communication cost f3
can ignore the other two factors and only be expressed by the size of the model parameters
σ, that is, f3 = σ.

2. Model decision variables

Decision variables are represented by v; since FL is a process of collaborative training
with a machine learning model, the optimized parameters in this paper include the learning
rate η, batch size B, and neural network structure parameters. Among them, the neural
network structure parameters directly determine the model complexity of FL and affect the
three objective functions of communication cost, accuracy and variance of FL.

The neural network chosen for this article is the convolutional neural network (CNN).
CNN parameters include the number of convolutional layers Conv, the number of kernel
channels kc, kernel size ks, the number of fully connected layers L and the number of
neurons in the fully connected layer Fc. That is, v = {η, B, Conv, kc, ks, L, Fc}; the value
range of each variable is set in the experimental part.

3. Decision variables coding

We use the NSGA-III-FD algorithm to optimize the learning rate, batch size and
neural network structure parameters of FL. Chromosomes are the main body of algorithm
operation. There are two types of decision variables: integer and real. All integers use
binary encoding, and real numbers use real-value encoding. The number of convolution
layers, number of convolution kernels, size of the convolution kernel, number of fully
connected layers, number of neurons per layer and batch size of CNN are binary encoding,
and the learning rate uses real-value encoding. An example of CNN encoding is shown in
Figure 2.
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The decoding process is to automatically increase by 1 during binary decoding. For
example, B = 001001 is decoded as 9, but the actual value is B = 10. For convenience, the
size of the convolution kernel in CNN is only selected between 3 and 5, and the convolution
output is always kept unchanged. In the neural network structure of CNN, only a pooling
layer is added at the end of the convolution layer.

2.3. Modified NSGA-III-Based Multi-Objective FL Parameter Optimization Algorithm with
Hierarchical Clustering
2.3.1. Federated Learning with Hierarchical Clustering

In this paper, FL is set with non-IID data. Before the evolutionary algorithm, the
clients are clustered into clusters by hierarchical clustering. There are two parameters in a
hierarchical clustering algorithm. The first is the distance measurement of cluster similarity,
and the second is the link mechanism parameter. Since there may be outliers in the data
setting of this paper, and both single linkage and complete linkage are easily affected by
outliers, Euclidean distance and Ward’s linkage are finally selected in this paper based
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on experimental results in the literature [25]. Euclidean distance is a common measure to
judge the similarity of vectors. Ward’s linkage (which can only be combined with Euclidean
distance measure) seeks to minimize the variance in the cluster when merging two clusters.

In this process, we refer to the literature [25] to conduct N rounds of FL global commu-
nication before clustering, and then conduct a round of global communication involving
all clients to obtain the model parameters uploaded by all clients. The model parameters
are transformed into vectors, and then the hierarchical clustering algorithm is used to
iteratively merge the most similar clusters until the given distance threshold T to obtain
the clustering results. The pseudo code is shown in Algorithm 1.

Algorithm 1: Hierarchical clustering-based FedAvg

Server:
Initialize w0
For t = 1, 2, . . . , N + 1 do

if t == N + 1:
for each k ∈ K in parallel do

wk
t←upload from ClientUpdate(k, wt)
→
wk ← wk to vector

end for
C = {c1, c2, · · · cM}←HierarchicalClusteringAlgorithm (

→
w, PHC )

else:
Select m = max(α · K, 1) clients as St
for each k ∈ St in parallel do

wk
t←upload from ClientUpdate(k, wt)

end for
wt+1 = ∑K

k=1
nk
n wk

t
End for
ClientUpdate(k, wt):
Download wt as wk

For e = 1, 2, . . . , Ec do
for b ∈ B do

wk = wk − η∇Lk

(
wk, b

)
end for

End for
Upload wk to server

In Algorithm 1, N is pre-rounds before hierarchical clustering, K is the total number of
clients, w0 is the initial global model parameter, wk

t is the parameter of the k-th transmission

model at t round of training,
→
wk is the vector transformed from k-th model parameter,

→
w is

vectors of all clients, the client’s fraction α is a random number between 0 and 1, and St
is the selected m clients to participate at t round of FL training. PHC is parameters of the
hierarchical clustering algorithm, such as distance threshold T; C = {c1, c2, · · · cM} is the
clusters result, and M is the number of clusters. Within the ClientUpdate(k, wt) algorithm,
Ec is the iteration round of the client’s local training, B is the mini-batch size of the client’s
local training, and η is the learning rate of the mini-batch SGD.

2.3.2. Modified NSGA-III for Multi-Objective FL Parameter Optimization

In order to ensure the scalability of the algorithm objectives, this paper adopts the
NSGA-III algorithm and names the improved NSGA-III as NSGA-III-FD.

The search space of decision variables in FL is large, and better initial solutions can
accelerate the NSGA-III convergence speed and improve the quality of Pareto solutions.
This paper improves the random initialization of NSGA-III to fast greedy initialization and
appropriately discards the low-quality individuals in the population at the late iterations.
For example, when the error rate is higher than a certain value, such as f1 > 85%, the
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individual is deleted and the reserved solution of fast greedy initialization is used, so as to
ensure the accuracy of individuals in final Pareto-optimal solutions.

The fast greedy initialization process is briefly described as follows: Firstly, randomly
generate l-fold initial solutions, where l is the multiple of the initial solution. After ran-
domly dividing all clients into groups of the same size based on clustering results, the FL
evaluation process of the initial solutions is performed simultaneously within each group.
In addition, each training parameter of FL is reduced for quick evaluation. Then, select
the optimal population solution for each of the three objectives, respectively; After mixing
and removing duplicate solutions, the solutions with the specified population number are
randomly selected as P0, and the remaining solutions are recorded as the initial reserved
solutions RS0.

The flow chart of the NSGA-III-FD algorithm based on hierarchical clustering results
is shown in Figure 3.
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NSGA-III-FD first uses fast greedy initialization to generate the first-generation parent
population and encodes the corresponding variables into binary and real-value chromo-
somes. The iterative process is mainly to select two parent individuals using a binary
tournament to generate two offspring individuals. The crossover and mutation algorithm
adopts single-point crossover and flip mutation on the binary chromosomes, simulated
binary crossover (SBX) and polynomial mutation of the real-value chromosomes. This
process is repeated until offspring population Qt are produced.

Then, calculate the three objectives of the offspring population Qt. Mix parent pop-
ulation and offspring population Rt = Pt + Qt, and conduct non-dominated sorting of
the mixed population Rt. Select the next generation Pt+1. Repeat these steps until the
late iterations, for example, where t ≥ 4/5Genmax and Genmax is the maximum number
of generations, drop the low-quality individuals in the obtained population, such as the
individuals with f1 > 85%, and randomly select new individuals to supplement the popu-
lation from RS0. Then, continue until meeting the maximum number Genmax, and a set of
Pareto-optimal solutions are obtained.

The specific evaluation process of the three objectives of an individual in the NSGA-III-
FD algorithm is to conduct the FedAvg algorithm with clustering results C = {c1, c2, · · · cM}.
The pseudo code is shown in Algorithm 2.
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Algorithm 2: Clustering-based FedAvg evaluation algorithm of an individual

Input: Decision variable parameters corresponding to individual i, hierarchical clustering results
C = {c1, c2, · · · cM}
Output: Three objectives value of individual i
Use parameters of individual i to initialize the neural network weight wi

0
For t = 1, 2, . . . do

for c ∈ C do
Select mc = max(α · Kc, 1) clients

end for
St = ∪mc ←proportionally sampling from clusters C
for each k ∈ St in parallel do

wk
t←upload from ClientUpdate(k, wt)

end for
wt+1 = ∑K

k=1
nk
n wk

t
End for
Use the trained wi to calculate the global model test accuracy A and model parameter size

σi = f
(

wi
)

Calculate objective f i
1 global model test error E = 1− A

Calculate objective f i
2 global model accuracy distribution variance V

Calculate objective f i
3 communication cost Cost = σi

In Algorithm 2, i is an individual of the population in the NSGA-III-FD algorithm, c
is the index of clustering results C, and Kc is the set of clients in cluster c. After the i-th
individual is decoded, the relevant parameter of FL is obtained. First, use the parameters
to initialize the global model used in the clustering-based FedAvg algorithm. In each round
of training, the model uses mini-batch SGD to train local data. After a certain number of
rounds, three goals are calculated: the test error of the global model, the variance of the
global model accuracy distribution and the communication cost.

3. Experiments
3.1. Experimental Setting

This section describes the experimental setting of this paper. It mainly includes the
following parts:

1. Experimental environment and experimental dataset

The experimental environment was based on an Intel (R) core (TM) i9-9900KF CPU
@ 3.60 ghz × 16 Ubuntu system. Training and testing on MNIST dataset [26] and CIFAR-
10 dataset [27]: the MNIST dataset consisted of 28 × 28-pixel handwritten digital im-
ages, with 60,000 training images and 10,000 test images; the CIFAR-10 dataset con-
sisted of 32 × 32-pixel images from 10 classes, and it had 50,000 training images and
10,000 test images.

2. Neural network model parameters

We chose the convolutional neural network (CNN) as the neural network model for
FL training in this paper, and the standard CNN parameters were set empirically [8]. The
CNN model was set with two 5 × 5 convolutional layers (the first with 32 channels and
the second with 64 channels), followed by a 2 × 2 Max pool layer, a full connected layer of
128 neurons, and finally a 10 class SoftMax output layer (with a total of 1,659,146 parameters
on the MNIST dataset, and 2,152,266 parameters on the CIFAR-10 dataset). The mini-batch
SGD algorithm had a learning rate η of 0.05 and batch size B of 10.

3. Federated learning parameters setting

In FL, we set the total number of clients K = 100 and the client participation ratio
α = 0.1, that is, there were 100× 0.1 = 10 clients in each round of communication. For
client-local model training, the local iteration round was set to 3.
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Since the data between clients are usually heterogeneous in size and distribution,
we studied the following two non-IID data settings. The first was the extreme uneven
data distribution (extreme non-IID). Each client had approximately only one label of data,
but the data size of each node was the same, so the data skewness, which measures the
asymmetry of data probability distribution, was high. The second was unbalanced non-IID.
The number of labels and data size of each client were unbalanced, and only the upper and
lower limits of client data size were set.

The above parameter settings were used as the standard FedAvg settings in the
experiments of this paper.

4. NSGA-III-FD Parameters Setting

Next, we set the parameters for NSGA-III-FD with 20 iterations, where the population
size was set to 20. The individual operators adopted the relevant setting in the literature [14].
The selection operator used a two-round tournament, and the crossover and mutation
operators were empirically set to use a single-point crossover with probability 0.9 and a bit-
flip mutation with probability 0.1 in the binary chromosome. In addition, a simulated binary
crossover with probability 0.9 and nc = 2 and a polynomial mutation with probability 0.1
and nm = 20 were used in the real-value chromosomes.

3.2. Performance Analysis of Federated Learning with Hierarchical Clustering

The data distribution of FL was set as non-IID in this paper. In order to improve the
accuracy on non-IID data and reduce communication cost, we carried out hierarchical
clustering on FL to divide all clients into clusters before NSGA-III-FD, which made it
possible to start the NSGA-III-FD algorithm with a low FL participation ratio without
serious loss of accuracy.

We selected Euclidean distance and Ward’s linkage parameters to use in the hierarchi-
cal clustering algorithm. Before clustering, we performed N global communication rounds
of FL training, and after obtaining model parameter vectors of all clients, the hierarchical
clustering algorithm iteratively merged the clients until the given distance threshold T
to obtain the clustering results. The experiments were carried out on two non-IID data
distributions on the MNIST and CIFAR-10 datasets. The hierarchical clustering parameters
differed in different datasets and different non-IID settings. The selected parameters after a
series of experiments are shown in Table 1.

Table 1. Related parameter settings of federated learning with hierarchical clustering.

MNIST CIFAR-10

Extreme non-IID N = 5, T = 6 N = 5, T = 5
Unbalanced non-IID N = 1, T = 11 N = 1, T = 5

Clients from the clusters were proportionally sampled to FL training, and the clustering-
based FL (CFL) was compared with the traditional FL. In addition, the FL global communi-
cation round was set E = 50 and the client participation ratio was set α = 0.1. In addition,
it was reasonable to choose a low client participation ratio, such as α = 0.1, to take FL
training on non-IID data, especially on extreme non-IID data, as the literature [25] proves
that varying the client fraction seems to have only a small effect on test set accuracy on
non-IID data. The experimental results on the MNIST and CIFAR-10 datasets with the
CNN model under two non-IID data settings are shown in Figure 4.
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Overall, it is clearly seen that the global test accuracy of the CFL is higher than that
of the FL in all situations, and CFL can speed up the convergence speed. Under extreme
non-IID, CFL can significantly improve the accuracy. In the case of unbalanced non-IID,
the accuracy of CFL is improved less, but it can at least accelerate the convergence speed
under the condition of ensuring the accuracy.

Therefore, it is feasible to employ the multi-objective federated learning evolutionary
algorithm with a low client participation ratio α = 0.1 using clustering results, which can
not only reduce the impact of non-IID data distribution, but also reduce the communication
cost of the whole evolutionary algorithm.

3.3. Multi-Objective Federated Learning Evolutionary Algorithm Performance Analysis
3.3.1. Performance Analysis of NSGA-III-FD Algorithm

We employed NSGA-III-FD to optimize the parameters of FL, so as to achieve balance
between the global model test error rate, global model accuracy distribution variance and
communication cost. According to the above analysis, we conducted the FL evaluation
process of NSGA-III-FD based on the hierarchical clustering results, and other compared
evolutionary algorithms did the same, so as to verify the effectiveness of the proposed
NSGA-III-FD.

Firstly, we compared the proposed NSGA-III-FD with NSGA-III to explore the ef-
fectiveness of the proposed fast greedy initialization method and the drop strategy in
the NSGA-III-FD algorithm. A summary of the NSGA-III-FD algorithm experimental
parameter settings is given in Table 2.



Symmetry 2022, 14, 1070 12 of 19

Table 2. Related parameter settings of the NSGA-III-FD algorithm.

Parameter CNN

Population size 20
Generations 20

Learning rate 0.01–0.2
Batch size 1–64

Number of conv layers 1–3
Kernel channels 1–128

Kernel size 3 or 5
Number of fully connected layers 1–3

Number of Fc neurons 1–256

We set the population size to 20 and the generations to 20, and the number of com-
munication rounds for each individual in the FL evaluation process was E = 10. We set
the client participation ratio α = 0.1 and the maximum batch size to 64. The range of the
learning rate η was between 0.01 and 0.2, because a learning rate that is too large will harm
the convergence of FL.

In the parameter settings of the CNN neural network, the maximum number of
convolution layers was 3, the maximum number of kernel channels was 128, the maximum
number of fully connected layers was 3, the maximum number of neurons in the fully
connected layer was 256, and the size of the convolution kernel size was 3 or 5.

We used the NSGA-III-FD and NSGA-III algorithms to evolve the final Pareto solutions
on the MNIST and CIFAR-10 datasets under extreme non-IID and unbalanced non-IID data.
The result is presented in Figure 5, where each point represents a solution corresponding to
a specific structural parameter in FL. The red points represent the Pareto-optimal solutions
obtained by the proposed NSGA-III-FD algorithm, and the blue points represent the Pareto-
optimal solutions obtained by the NSGA-III algorithm.

From Figure 5, we can see that the red solutions are basically better than the blue
solutions, that is, the Pareto solutions obtained by the proposed NSGA-III-FD algorithm
are better than the Pareto solutions of the NSGA-III algorithm. Moreover, it can be found
that the red solutions of NSGA-III-FD converge more at the inflection point. The solution
at the inflection point is characterized by small target values and higher solution quality.
Moreover, due to the strategy of discarding low-quality individuals, the red solutions have
fewer high error rate points. The blue solutions are more dispersed, and there are more
and higher test error rate solutions.

In addition, Table 3 shows the relevant evaluation index results of the Pareto solutions
finally obtained by NSGA-III-FD and NSGA-III, and we discuss the Pareto solutions of the
two algorithms from multiple dimensions.

Hypervolume index [28] (HV), which calculates the sum of the hypervolume of the
hypercube formed by all non-dominated solutions and reference points, is a comprehensive
index for evaluating Pareto solutions. Generally speaking, the greater the HV value, the
better the quality of the evaluated Pareto solution. It can be seen from Table 3 that the
HV value of the NSGA-III-FD algorithm is always better than NSGA-III, showing better
quality. In addition, by observing the hypervolume of generations, we can determine that
the NSGA-III-FD algorithm can converge before the 20th generation.

The NSGA-III-FD algorithm obtains more Pareto non-dominated solutions and is
more robust than the NSGA-III algorithm in terms of the number of solutions.

Coverage rate C (A, B) [29] calculates the proportion of solution set B that are domi-
nated by at least one solution in A and measures the degree of overlap between the two
solution sets. The larger the index C is, the better the quality of solution set A is versus that
of solution set B. In Table 3, FD in C (FD, N) represents the solution set of NSGA-III-FD,
and N represents the solution set of NSGA-III; C (FD, N) measures are basically greater
than C (N, FD). In terms of coverage C, the solution of NSGA-III-FD is better than that of
the NSGA-III algorithm.



Symmetry 2022, 14, 1070 13 of 19

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 20 
 

 

We set the population size to 20 and the generations to 20, and the number of com-
munication rounds for each individual in the FL evaluation process was 10=E . We set 
the client participation ratio 0.1α =  and the maximum batch size to 64. The range of the 
learning rate η  was between 0.01 and 0.2, because a learning rate that is too large will 
harm the convergence of FL. 

In the parameter settings of the CNN neural network, the maximum number of con-
volution layers was 3, the maximum number of kernel channels was 128, the maximum 
number of fully connected layers was 3, the maximum number of neurons in the fully 
connected layer was 256, and the size of the convolution kernel size was 3 or 5. 

We used the NSGA-III-FD and NSGA-III algorithms to evolve the final Pareto solu-
tions on the MNIST and CIFAR-10 datasets under extreme non-IID and unbalanced non-
IID data. The result is presented in Figure 5, where each point represents a solution corre-
sponding to a specific structural parameter in FL. The red points represent the Pareto-
optimal solutions obtained by the proposed NSGA-III-FD algorithm, and the blue points 
represent the Pareto-optimal solutions obtained by the NSGA-III algorithm. 

  
(a) (b) 

  
(c) (d) 

Figure 5. Pareto-optimal solutions distribution diagram of NSGA-III-FD and NSGA-III. (a) MNIST, 
extreme non-IID; (b) MNIST, unbalanced non-IID; (c) CIFAR-10, extreme non-IID; (d) CIFAR-10, 
unbalanced non-IID. 

From Figure 5, we can see that the red solutions are basically better than the blue 
solutions, that is, the Pareto solutions obtained by the proposed NSGA-III-FD algorithm 

Figure 5. Pareto-optimal solutions distribution diagram of NSGA-III-FD and NSGA-III. (a) MNIST,
extreme non-IID; (b) MNIST, unbalanced non-IID; (c) CIFAR-10, extreme non-IID; (d) CIFAR-10,
unbalanced non-IID.

Table 3. Analysis of indicators of NSGA-III-FD algorithm and NSGA-III algorithm.

MNIST CIFAR-10

Extreme Non-IID Unbalanced
Non-IID Extreme Non-IID Unbalanced

Non-IID

Hypervolume NSGA-III-FD 2,175,452,092 2,223,543 742,307,751 189,679,984
NSGA-III 1,042,304,455 1,496,982 573,310,061 168,263,685

Number of Pareto
Solutions

NSGA-III-FD 18 20 20 20
NSGA-III 13 15 17 18

Coverage, C/% C (FD, N) 100 80 76.47 66.67
C (N, FD) 0 5 0 0

Minimum Error
Rate/%

NSGA-III-FD 16.97 1.42 68.71 42.32
NSGA-III 35.67 1.86 74.08 43.3

Minimum Variance
NSGA-III-FD 102.13 2.39 133.03 74.91

NSGA-III 498.51 6.47 243.63 74.88

Minimum Cost
NSGA-III-FD 1971 50,683 3560 88,633

NSGA-III 49,977 40,738 22,259 242,717
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The minimum value of a single objective reflects the extreme value of each objective
function and reflects the optimization ability of the algorithm. It can be seen from Table
that the minimum global model test error rate obtained by NSGA-III-FD is smaller than
that of NSGA-III. In terms of minimum variance and minimum communication cost, there
are a few cases where the minimum value of NSGA-III is better than that of NSGA-III-FD,
but there is little difference between the two minimum values.

Based on the above analysis of the HV index, the number of non-dominated solutions,
C index and the single objective minimum value, we can conclude that the Pareto-optimal
solutions obtained by the proposed NSGA-III-FD algorithm are better-quality solutions
than those obtained by the NSGA-III algorithm.

3.3.2. Comparison between NSGA-III-FD Algorithm and Classical Evolutionary Algorithms

In addition, we compared the proposed NSGA-III-FD with NSGA-II, MOEAD and
SPEA2, from the index of HV, the number of Pareto solutions, coverage rate C, single-
objective optimal value, etc. The experimental results are shown in Figure 6 and Table 4.
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Table 4. Analysis of various indicators of the NSGA-III-FD algorithm and other evolutionary
algorithms.

HV Number of
Pareto Solutions

Coverage,
C/%

Min Error
Rate/%

Min
Variance Min Cost

MNIST,
extreme
non-IID

NSGA-III-FD 4,548,688,737 18 16.97 102.13 1971
MOEAD 1,292,750,316 16 100/0 39.62 748.23 6806
NSGA-II 1,085,050,947 17 82.35/0 60.49 601.4 4591
SPEA2 3,103,427,927 18 100/0 26 320.81 68,688

MNIST,
unbalanced

non-IID

NSGA-III-FD 1,789,828 20 1.42 2.38 50,683
MOEAD 357,216 3 100/0 1.89 4.41 995,112
NSGA-II 1,705,197 16 62.5/45 1.61 2.62 21,448
SPEA2 1,491,010 14 57.14/0 2 2.49 36,027

CIFAR-10,
extreme
non-IID

NSGA-III-FD 1,100,617,191 20 68.71 133.03 3560
MOEAD 347,349,691 16 75/0 81.02 296.82 15,019
NSGA-II 293,673,388 18 44.44/0 81.37 376.6 4451
SPEA2 224,484,016 20 95/0 81.3 590.25 17,185

CIFAR-10,
unbalanced

non-IID

NSGA-III-FD 520,407,254 20 42.32 74.91 88,633
MOEAD 417,464,425 17 41.18/0 44.19 100.69 43,715
NSGA-II 293,334,515 11 72.73/0 48.21 153.95 20,102
SPEA2 370,646,715 19 89.47/0 46.84 101.58 63,912

A simple analysis is shown in Table 4 and Figure 6. In Table 4, all indicators of the
NSGA-III-FD algorithm are basically better than those of MOEAD, NSGA-II and SPEA2,
except for the minimum communication cost. In Figure 6, the red solutions of the NSGA-
III-FD algorithm are basically better than other algorithms. Except for MNIST, unbalanced
non-IID, the results are slightly mixed with the solutions of other algorithms, but in terms
of data indicators, the solution quality of the NSGA-III-FD algorithm is better.

In summary, the proposed NSGA-III-FD algorithm is better than the NSGA-III, MOEAD,
NSGA-II and SPEA2 evolutionary algorithms, and the Pareto solution obtained by NSGA-
III-FD has a higher quality.

3.3.3. NSGA-III-FD Pareto Solutions for FL Experiment

Since the communication rounds setting E = 10 in the FL evaluation process of NSGA-
III-FD is very small, the FL accuracy performance has not been fully explored. Therefore,
the solution obtained by the NSGA-III-FD algorithm was selected for an FL enhancement
experiment to verify whether the algorithm realizes the multi-objective equilibrium and
parameter optimization of FL.

For the Pareto-optimal solutions obtained by the NSGA-III-FD algorithm, two so-
lutions were selected, one of which was the solution with the smallest global test error,
and the other one was the inflection point solution. We performed CFL training on these
two solutions and compared them with the Standard FL and CFL. The communication
rounds were set to 100 rounds on MNIST, 500 rounds on CIFAR-10 (extreme non-IID) and
200 rounds on CIFAR-10 (unbalanced non-IID), and the client participation ratio was set
to α = 0.1. All results are listed in Table 5, and the global test accuracy is also listed in
Figure 7.

From the results shown in Figure 7 and Table 5, we can observe the evolution of the
selected solutions as follows. It can be seen from Figure 7 that, in general, CFL high of
NSGA-III-FD works best, especially on CIFAR-10, extreme non-IID. We verified in the first
experiment that CFL is superior to the standard federated learning algorithm.
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Table 5. Experiment data of solutions obtained by NSGA-III-FD.

Parameter Solution η B Conv Layers Kernel
Size Fc Layers Test

Accuracy/% Variance Cost

MNIST,
extreme
non-IID

CFL high 0.0167 60 [4, 90] 5 [82] 97.04 10.25 1,456,586
CFL random 0.064 8 [9] 5 [85] 94.68 19.76 151,119
Standard CFL 0.05 10 [32, 64] 5 [128] 95.64 15.52 1,659,146
Standard FL 0.05 10 [32, 64] 5 [128] 95.64 20.52 1,659,146

MNIST,
unbal-
anced

non-IID

CFL high 0.0163 8 [19, 40, 99] 5 [78, 221] 99.33 0.93 1,651,902
CFL random 0.0158 13 [18, 40, 99] 5 [16, 214] 99.13 1.31 433,875
Standard CFL 0.05 10 [32, 64] 5 [128] 98.97 1.14 1,659,146
Standard FL 0.05 10 [32, 64] 5 [128] 98.82 1.71 1,659,146

CIFAR-10,
extreme
non-IID

CFL high 0.0472 40 [20] 5 [169] 55.14 224.02 86,869
CFL random 0.0247 39 [49] 5 [165] 52.82 143.39 2,075,309
Standard CFL 0.05 10 [32, 64] 5 [128] 51.68 262.72 2,152,266
Standard FL 0.05 10 [32, 64] 5 [128] 34.04 981.65 2,152,266

CIFAR-10,
unbal-
anced

non-IID

CFL high 0.011 10 [13, 125] 3 [55, 210] 65.87 88.92 1,789,039
CFL random 0.013 20 [85, 107, 124] 3 [15, 241] 65.58 137.74 662,371
Standard CFL 0.05 10 [32, 64] 5 [128] 64.66 100.79 2,152,266
Standard FL 0.05 10 [32, 64] 5 [128] 64.31 106.62 2,152,266
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The solutions of the NSGA-III-FD algorithm in the figure may be superior to the
standard FL and CFL for two reasons: one is the function of the federated learning algorithm
based on clustering results, and the other is the function of the optimized model of the
NSGA-III-FD algorithm. Through specific analysis, we can find that the lowest error rate
solution from CFL high and the randomly selected inflection point solution from CFL
random are basically above CFL, except for the CFL random on CIFAR-10, extreme non-IID,
which is obviously inferior to CFL. It can be determined that the NSGA-III-FD evolutionary
algorithm is effective for model optimization in terms of accuracy. The inflection point
solution is inferior to CFL, perhaps because the positioning of the inflection point solution
sacrifices accuracy in exchange for low communication cost.

From the data in Table 5, the communication cost of the CFL high solution of NSGA-III-
FD is higher than the inflection solution (CFL random) and slightly lower than the standard
FL, but the accuracy is higher. The inflection solution shows that the communication cost is
significantly reduced, but the accuracy will be partially lower than the CFL. This reflects
the multi-objective balance of federated learning. When the complexity of the model is
reduced, it may be at the cost of accuracy or fairness. The target of the NSGA-III-FD
evolutionary algorithm is to find the solution with a low cost and, as much as possible, to
find the parameters solution with a low communication cost, high accuracy, high fairness
and stable iteration. Through analysis, the NSGA-III-FD algorithm can basically realize
multi-objective equalization of federated learning and parameter optimization.

4. Discussion

We have conducted hierarchical clustering experiments to verify the feasibility of
federated learning with a low client participation ratio and compared the proposed NSGA-
III-FD with NSGA-III and other classical evolutionary algorithms to verify the effectiveness
of the proposed algorithm. The optimized model was tested to verify the effectiveness of
the whole algorithm in multi-objective equilibrium and parameter optimization. Then, the
practical implications and shortcomings of this work are discussed below.

4.1. Practical Implications

It can be considered from three aspects. The first is that the NSGA-III algorithm can
ensure scalability when the objectives of FL are extended to four and more. Second, this
paper carried out experiments on two non-IID data settings, as there are more non-IID
data in real life. Thirdly, compared with the method referred to in the literature [14,19],
which uses all clients to train, our method can reduce the cost of the whole evolutionary
algorithm, as it can carry out the NSGA-III algorithm with a low client participation ratio
while ensuring the accuracy of federated learning and training. Therefore, the algorithm in
this paper has practical significance with the characteristics of low cost and high scalability.

4.2. Limitations

First, when the optimized network expands from a lower to a higher dimension,
additional operations may be required, such as adding a PCA algorithm before clustering.

Second, there is room for further optimization of the communication costs. In general,
the method proposed in this paper has certain advantages in communication cost. How-
ever, when data are expanded or a high-dimensional CNN neural network is used, the
communication cost will still be very large. Therefore, it is necessary to consider how to
reduce the communication cost in the process of federated learning training and to further
enhance the scalability of the algorithm.

5. Conclusions and Future Work

This paper studies multi-objective equilibrium and parameter optimization of fed-
erated learning under a non-IID data setting. We first constructed a three-objective opti-
mization model of federated learning, and the optimization objective was to minimize the
distribution variance of the global model test error rate, communication cost and global
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model test error rate. The decision variable was the parameter of the federated learning
neural network (CNN in this paper). By introducing a hierarchical clustering algorithm
to FL to solve the non-IID data skew problem, the FL accuracy was improved and made
it feasible to carry out an FL evaluation process of an evolutionary algorithm with a low
client participation ratio. Then, we improved NSGA-III with a fast greedy initialization and
a strategy of discarding low-quality individuals to speed up the convergence and obtain
high-quality solutions. The experimental results show that the improved NSGA-III-FD
algorithm is better than the original NSGA-III algorithm and other classical evolutionary
algorithms. Compared with the standard FL and clustering-based FL, the selected Pareto-
optimal solutions optimized by the NSGA-III-FD algorithm can achieve balance between
three objectives, which can effectively reduce the distribution variance of the accuracy of
the global model and the communication cost without deteriorating the accuracy of the
global model.

The multi-objective federated learning evolutionary algorithm implemented in this pa-
per can achieve the balance between different objectives, reduce the overall communication
cost of the evolutionary algorithm and improve operation efficiency. However, there is still
a lot of work to be done in the future. It is necessary to further consider the problems of
structural heterogeneity, such as intermittent availability of clients, communication loss, etc.
Future work may focus on how to improve the fault tolerance and computational efficiency
of multi-objective federated learning.
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