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Abstract: The existence of man is dependent on nature, and this existence can be disturbed by either
man-made devastations or by natural disasters. As a universal phenomenon in nature, symmetry has
attracted the attention of scholars. The study of symmetry provides insights into physics, chemistry,
biology, and mathematics. One of the most important characteristics in the expressive assessment
and development of computational design techniques is symmetry. Yet, mathematical models are an
important method of studying real-world systems. The symmetry reflected by such a mathematical
model reveals the inherent symmetry of real-world systems. This study focuses on the contagious
model of pine wilt disease and symmetry, employing the q-HATM (q-Homotopy Analysis Transform
Method) to the leading fractional operator Atangana–Baleanu (AB) to arrive at better understanding.
The outgrowths are exhibited in the forms of figures and tables. Finally, the paper helps to analyze
the practical theory, assisting the prediction of its manner that corresponds to the guidelines when
contemplating the replica.

Keywords: Atangana–Baleanu Derivative; pine wilt disease; epidemic model; non-linear differential
equations; mathematical models; q-homotopy analysis transform method

1. Introduction

Forests play pivotal roles in human life. Its importance cannot be expressed by words
because a forest alone can rejuvenate the Earth entirely. As such, it is important to protect
trees. Trees are not only a spreading green carpet on Earth, but they provide fresh air
to breathe, and give basic amenities. Unfortunately, pine wilt disease (PWD), although
exquisite in its majestic appearance, causes the death of the tree within a few weeks after
showing the symptoms. There are several diseases that infect the vascular system of plants
that are regarded as wilt diseases. Fungi, bacteria, and nematodes can attack plants and
lead to their instant elimination. Plants also can possess viruses. In woody plants, wilt
diseases can be categorized into two parts: those that begin at the branches and those
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that begin with the roots. The ones that begin at the branches are likely to begin with the
pathogens that feed on leaves or bark, and the others initiate infection by lesioning or by
pathogens paving their way directly into the roots, although few spread to other plants
through the root scion. PWD is a wild and perilous disease among pine wood. Pine wilt
disease can damage the economy, subsequently disrupting social development. Hence,
there no way to save the pine trees after they are infected; preventing infection is the
only way to protect the pine forest. Pine wilt disease is caused by a pinewood nematode.
It ruins the affected trees within a few weeks. This dangerous disease destroys trees in
both eastern and western countries. PWD is a serious pest among pine woods. Several
researchers have scrutinized the different aspects of PWD. Mamiya [1,2] discussed the
history and pathology of PWD, which is caused by Bursaphelenchus xylophilus. In the year
1997, Fukuda [3] explored conceptual functions related to the progress or inhibition of
PWD using pathological experiments. Proenca et al. [4] gave an explanation regarding
the characteristics of the bacteria that are carried by the pinewood nematode for a better
understanding of PWD. Ozair et al. [5] deliberated the Bio-stimulated analytical heuristics
to examine a PWD model. In the past few decades, several investigators discussed a
stability analysis of PWD, as well as its causes, in their studies [6–8].

The terminology mathematical modelling is used when demarcating a system using
mathematical notions and language and producing a hypothetical mathematic depiction
based on the evolving mathematical model. Mathematical modelling can be utilized in
numerous fields to convert real world scenarios into just numbers and mathematical data.
Mathematical modelling in epidemiology heightens our understanding of the system
underlying the spread of pandemic diseases. The application of mathematical modelling
knowledge can aid in understanding plant disease trends and develop, as well as assay,
strategies to combat these trends, thus helping to avoid global food shortages and fulfilling
the basic need for food. Mathematical modelling is a convenient theory to observe a disease
and its proliferation. Such a model explores the non-faced measurement statistics that are
generated for the microorganism. Numerous models have been developed to analyze the
disease. Diverse techniques can be utilized to analyze the disease evolution. In this view,
several researchers have discussed the epidemic model of pine wilt and other diseases
caused by different viruses by using diverse numerical and analytical methods [9–15].

Leibnitz grasped a fraction in derivative, revealing that fractional calculus is far more
applicable to modern, real-world problems than classical calculus. Fractional calculus
interprets nature’s authenticity in the most elegant and orderly way possible. The fractional
differential equations, and its remarkable application, have undergone significant im-
provements in a number of fields such as liquid machinery, chemistry, hydrology, ecology,
and manufacturing.

The fractional-order differential equations have found a reputation of modeling prob-
lems in the propagation of seismic waves, finances, viscoelastic materials, permeable media,
and many other physical processes. The kernel Atangana-Baleanu fractional derivative
(ABFD) relies on the standard operation of Mittag–Leffler without locality and singular-
ity. The ABFD is well-suited to define the corporal and material realities of the world.
Differences in kernel unity provide a better definition of memory within a structure at a
different level. In addition, the Atangana–Baleanu operators satisfy all mathematical rules
underneath the fractional calculus range. The numerous concepts of ABFD and fractional
derivatives were discussed by several researchers [16–28].

Finding exact solutions to fractional differential equations appears to be far more
challenging than finding accurate solutions to their integer-order counterparts. As a result,
great emphasis has been placed on the development of effective analytical and numerical
techniques for approximating solutions to this type of issue. The Homotopy perturbation
method, Laplace decomposition technique, Homotopy analysis method, and Adomian
decomposition method are some of these methods. The q-homotopy analysis transform
approach is another really effective technique. When q ∈

[
0, 1

n

]
, this q-homotopy analysis

transform method combines the Laplace transform method (LTM) with the Homotopy
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analysis method (HAM). The presence of the term
(

1
n

)r
in the q-HATM solution ensures

that it converges faster than the traditional HAM [29]. To discover an appropriate solution
for this wild illness, we used the q-homotopy analysis transform method (q-HATM) to
solve a system of non-linear equations. The Atangana–Baleanu operator was contracted
with the Mittag–Liffler function in order to consider the new fractional operator called
Atangana–Baleanu operator [30].

2. Mathematical Optimization and Miniature

The idea of generalization of fractional calculus is the chief motto of this current
study. To understand the disease and its spread, we consider mathematical modeling as an
excellent factor. Such kinds of models need to unify to maintain the volumes of data that is
produced on host–pathogen communication. Many factors such as the conceptual study of
an inhabitant’s growth of infections on vulnerable plants and animals are affected by this
problem. Various methods can be adopted to analyze the spread of a disease and several
models have been developed on pest–tree dynamics [10,24].

In order to capture the proper solution for the disease, the q-homotopy analysis
transform method is applied to the system of nonlinear equations in this study. The new
fractional operator, called Atangana–Baleanu, has been considered to produce better results.

In the current study, we deliberate the epidemiology model developed by Kamal
Shah and Manar A. Alqudah for observing the transmission of the virus and obtained
some results for the considered epidemic model. This extensive model is classified into
non-linear equations. The susceptible class of pine trees is symbolized by S(t), the exposed
pinetrees are denoted as E(t), the infected class of pine trees is symbolized by I(t), and the
susceptible beetle class is referred to as R(t). In addition, the infective class of beetles are
symbolized by Q(t) [6,8,12–14].

dS
dt = θ − δS(t)Q(t)(1 + εQ(t))− ψS(t),
dE
dt = δS(t)Q(t)(1 + εQ(t))− (τ + ψ)E(t),
dI
dt = τE(t)− ψI(t),
dR
dt = λ− aI(t)R(t)(1 + κ I(t))− γR(t),
dQ
dt = aI(t)R(t)(1 + κ I(t))− γQ(t)

(1)

where the denoted θ is the new trees entering induction, λ denotes the new beetles entering
induction, and ψ is the death ratio of trees. Moreover, γ indicates the death ratio of beetles, a
denotes the rate of grow of nematodes, ε stands for the infection saturation in trees, κ is the
infection saturation in beetles, δ is the contact rate of trees, and τ represents the contact rate of
beetles. The parametric quantity and their corresponding values are θ = 0.009041; δ = 0.00166;
ε = 0.01; ψ = 0.0000301; τ = 0.002691; λ = 0.057142; a = 0.00305; κ = 0.02; γ = 0.01176,
and S(0) = 300, E(0) = 30, I(0) = 20, R(0) = 65 and Q(0) = 20 are the initial condi-
tions. Hence, the AB derivative model is reviewed for a fractional order of Equation (1) as
follows [26,29]:

ABC
0

Dα
t S(t) = θ − δS(t)Q(t)(1 + εQ(t))− ψS(t),

ABC
0

Dα
t E(t) = δS(t)Q(t)(1 + εQ(t))− (τ + ψ)E(t),

ABC
0

Dα
t I(t) = τE(t)− ψI(t),

ABC
0

Dα
t R(t) = λ− aI(t)R(t)(1 + κ I(t))− γR(t),

ABC
0

Dα
t Q(t) = aI(t)R(t)(1 + κ I(t))− γQ(t).

(2)

3. Preliminaries

The essential fractional calculus and Laplace transform resolutions and theorems are
presented in this segment.
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Definition 1. The Fractional Atangana–Baleanu–Caputo derivative is as follows for a function
h ∈ H1(a, b), b > a [16–19,21]:

ABC
0

Dα
t (h(t)) =

K[α]
1− α

∫ t

a
h′(ν)Eα

[
α
(t− ν)α

α− 1

]
dν, (3)

where K(α) is a normalising function such that K(0) = K(1) = 1.

Definition 2. The fractional AB integral equation is classified as:

ABC
0

Iα
t (h(t)) =

1− α

K[α]
h(t) +

α

K[α]Γ(α)

∫ t

a
h(ν)(t− ν)α−1dν, (4)

where K(α) is a normalizing function such that K(0) = K(1) = 1.

Definition 3. The Laplace Transform, which is analogous to the AB operator, is written as:

L
[

ABC
0

Dα
t (h(t))

]
=

K[α]
1− α

(
sαL[h(t)]− sα−1h(0)

sα +
(

α
1−α

) )
, (5)

where K(α) is a normalising function such that K(0) = K(1) = 1.

Theorem 1. The following Lipschitz criteria are satisfied for the Riemann–Liouville and AB
derivatives, respectively [16,22,23]:

‖ ABC
a

Dα
t h1(t)−ABC

a
Dα

t h2(t) ‖< K1 ‖ h1(x)− h2(x) ‖, (6)

and
‖ ABC

a
Dα

t h1(t)−ABC
a

Dα
t h2(t) ‖< K2 ‖ h1(x)− h2(x) ‖, (7)

Theorem 2. The solution to a fractional differential equation ABC
a

Dα
t h1(t) = s(t) is given as [16]:

h(t) =
1− α

K[α]
s(t) +

α

K[α]Γ(α)

∫ t

a
s(ζ)(t− ζ)α−1dζ, (8)

where K(α) is a normalising function such that K(0) = K(1) = 1.

4. The Fundamental Aspect of the q-Homotopy Analysis Transform Method

Consider the nonlinear, non-homogeneous partial differential equation of a fractional
order to emphasize the basic notion of the suggested technique:

ABC
0

Dα
t v(ξ, t) + Rv(ξ, t) + Nv(ξ, t) = g(ξ, t), n− 1 < α < n, (9)

where Dα
t v(ξ, t) signifies the function ABC derivative of the function v(ξ, t), where R

designates the bounded linear differential operator in ξ and t, N indicates the operator for
nonlinear differential equations, and g(ξ, t) is a concept that comes from a source.

Using the Laplace transform of Equation (9), we get the following equation:

K[α]
1− α

(
sαL[v(ξ, t)]− sα−1v(ξ, 0)

sα +
(

α
1−α

) )
+ L[Rv(ξ, t)] + L[Nv(ξ, t)] = L[g(ξ, t)]. (10)
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In order to illustrate Equation (10), we have:

L[v(ξ, t)]− v(ξ, 0)
s

+

(
1− α + α

sα

)
K[α]

L{[Rv(ξ, t)] + L[Nv(ξ, t)]− L[g(ξ, t)]} = 0. (11)

The procedure for constructing a homotopy for a non-zero primary function is as follows:

N[φ(ξ, t; q)] = L[φ(ξ, t; q)]− v(ξ,0)
s

+
(1−α+ α

sα )
K[α] {L[Rφ(ξ, t; q)] + L[Nφ(ξ, t; q)]− L[g(ξ, t)]}

(12)

where q ∈
[
0, 1

n

]
and a real function of ξ, t and q is φ(ξ, t; q).

For non-zero primary functions, we create a homotopy as follows:

(1− nq)L{φ(ξ, t; q)− v(ξ, 0)} = hqN{φ(ξ, t; q)}, (13)

where L is the Laplace Transform symbol, and q ∈
[
0, 1

n

]
, (n ≥ 1) appears to be the constant

parameter. In fact, h 6= 0 is an auxiliary variable, φ(ξ, t; q) is an unspecified function, and
v0(ξ, t) is an initial estimation of v(ξ, t; q). For q = 0 and q = 1

n , respectively, the following
results are acceptable:

φ(ξ, t; 0) = v0(ξ, t), φ

(
ξ, t;

1
n

)
= v(ξ, t) . (14)

The result φ(ξ, t; q) converges from v0(ξ, t) to v(ξ, t) by expanding q from 0 to 1
n .

Using Taylor’s theorem near q to expand the component φ(ξ, t; q) in series structure:

φ(ξ, t; q) = v0(ξ, t) +
∞

∑
r=1

vr(ξ, t)qr, (15)

where

vr(ξ, t) =
1
r!

∂rφ(ξ, t; q)
∂qr |q=0. (16)

We may have one of the outcomes for Equation (9) by using the fundamental linear
operators v0(ξ, t), nandh. At q = 1

n , the series φ(ξ, t; q) converges:

v(ξ, t) = v0(ξ, t) +
∞

∑
r=1

vr(ξ, t)
(

1
n

)r
. (17)

Divide by r! and compute for q = 0 by differentiating the zeroth order deformation
equation r-times with respect to q, which affords:

L[vr(ξ, t)− Krvr−1(ξ, t)] = h<r

(→
v r−1

)
, (18)

where
→
v r = [v0(ξ, t), v1(ξ, t), · · · v2(ξ, t)]. (19)

Inverting the equation Transform of Laplace:

vr(ξ, t) = Krvr−1(ξ, t) + hL−1
[
<r

(→
v r−1

)]
, (20)

where

<r

(→
v r−1

)
= L[vr−1(ξ, t)]−

(
1− kr

n

)(
v(ξ,0)

s − (1−α+ α
sα )

K(α) L[g(ξ, t)]
)

+
(1−α+ α

sα )
K(α) L[Rvr−1(ξ, t) + Hr−1],

(21)
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and

kr =

{
0 ifr ≤ 1
n ifr > 1

, Hr =
1
r!

[
∂rφ(ξ, t; q)

∂qr

]
q=0

; φ(ξ, t; q) = φ0 + qφ1 + q2φ2 + · · · ,

We have:

vr(ξ, t) = (kr + h)vr−1(ξ, t)−
(

1− kr
n

)
L−1

(
n−1
∑

k=0
sα−k−1v(k)(ξ, 0) + 1

sα L[g(ξ, t)]
)

+ hL−1 1
sα (L[Rvr−1(ξ, t)] + Hr−1

(22)

Hence, we can obtain the vr(ξ, t) iterative term by solving the above. The q–homotopy
analysis transform method’s series solution is symbolized by:

v(ξ, t) = v0(ξ, t) +
∞

∑
r=1

vr(ξ, t)
(

1
n

)r
. (23)

5. q-HATM Solution for the Prediction Phase

In this segment, we will discuss the model proposed by Sing et al. [30], who developed
the q-HATM solution technique using q-HAM and the Laplace Transform. As a result,
several researchers have improved the technique for solving nonlinear differential equations
of various kinds. Particularly when compared to other modified methodologies, it has
demonstrated outstanding outcomes in a variety of circumstances such as human disease,
fluid mechanics, corporal models, budget growth, optics, and others [25,29,31].

To demonstrate the behavior in Equation (2), we employed a Fractional—Order system
of equations:

ABC
0

Dα
t S(t) = θ − δS(t)Q(t)(1 + εQ(t))− ψS(t),

ABC
0

Dα
t E(t) = δS(t)Q(t)(1 + εQ(t))− (τ + ψ)E(t),

ABC
0

Dα
t I(t) = τE(t)− ψI(t),

ABC
0

Dα
t R(t) = λ− aI(t)R(t)(1 + κ I(t))− γR(t),

ABC
0

Dα
t Q(t) = aI(t)R(t)(1 + κ I(t))− γQ(t).

(24)

With initial conditions:

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0, Q(0) = Q0 (25)

We acquire Equation (25) by applying the Laplace Transform to Equation (24):

L{S(t)} − 1
s S0 +

1
K[α]

(
1− α + α

sα

)
L{θ − δS(t)Q(t)(1 + εQ(t))− ψS(t)} = 0

L{S(t)} − 1
s S0 +

1
K[α]

(
1− α + α

sα

)
L{δS(t)Q(t)(1 + εQ(t))− (τ + ψ)E(t)} = 0

L{I(t)} − 1
s I0 +

1
K[α]

(
1− α + α

sα

)
L{τE(t)− ψI(t)} = 0

L{R(t)} − 1
s R0 +

1
K[α]

(
1− α + α

sα

)
L{λ− aI(t)R(t)(1 + κ I(t))− γR(t)} = 0

L{Q(t)} − 1
s Q0 +

1
K[α]

(
1− α + α

sα

)
L{aI(t)R(t)(1 + κ I(t))− γQ(t)} = 0

(26)



Symmetry 2022, 14, 1067 7 of 15

Now, the non-linear operator is projected as:

N1[φ1, φ2, φ3, φ4] = L{φ1(t; q)} − 1
s S0 − 1

K[α]

(
1− α + α

sα

)
×L{θ − δ φ1(t; q)φ5(t; q)(1 + εφ5(t; q))− ψφ1(t; q)},

N2[φ1, φ2, φ3, φ4] = L{φ2(t; q)} − 1
s E0 − 1

K[α]

(
1− α + α

sα

)
×L{δ φ1(t; q)φ5(t; q)(1 + εφ5(t; q))− (τ + ψ)φ2(t; q)},

N3[φ1, φ2, φ3, φ4] = L{φ3(t; q)} − 1
s I0 − 1

K[α]

(
1− α + α

sα

)
×L{τφ2(t; q)− ψφ3(t; q)},

N4[φ1, φ2, φ3, φ4] = L{φ4(t; q)} − 1
s R0 − 1

K[α]

(
1− α + α

sα

)
×L{λ− aφ3(t; q)φ4(t; q)(1 + κφ3(t; q))− γφ4(t; q)},

N5[φ1, φ2, φ3, φ4] = L{φ5(t; q)} − 1
s Q0 − 1

K[α]

(
1− α + α

sα

)
×L{aφ3(t; q)φ4(t; q)(1 + κφ3(t; q))− γφ5(t; q)}.

(27)

The rth order deformation equation is given by expressing the given scheme and for
H(x, t) = 1 :

L[Sr(t)− KrSr−1(t)] = h<1,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]
,

L[Er(t)− KrEr−1(t)] = h<2,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]
,

L[Ir(t)− Kr Ir−1(t)] = h<3,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]
,

L[Rr(t)− KrRr−1(t)] = h<4,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]
,

L[Qr(t)− KrQr−1(t)] = h<5,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]
(28)

where

<1,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]
= L{Sr−1(t)} −

(
1− Kr

n

)
S0
s −

1
K[α]

(
1− α + α

sα

)
×L

{
−δ

(
r−1
∑

i=0
SiQr−1−i + ε

r−1
∑

i=0

(
i

∑
j=0

SjQi−j

)
Qr−1−i

)
− ψSr−1(t)

}
,

<2,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]
= L{Er−1(t)} −

(
1− Kr

n

)
E0
s −

1
K[α]

(
1− α + α

sα

)
×L

{
δ

(
r−1
∑

i=0
SiQr−1−i + ε

r−1
∑

i=0

(
i

∑
j=0

SjQi−j

)
Qr−1−i

)
− (τ + ψ)Er−1(t)

}
,

<3,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]
= L{Ir−1(t)} −

(
1− Kr

n

)
I0
s −

1
K[α]

(
1− α + α

sα

)
×L{τEr−1(t)− ψIr−1(t)},

<4,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]
= L{Rr−1(t)} −

(
1− Kr

n

)
R0
s −

1
K[α]

(
1− α + α

sα

)
×L

{
−a

(
r−1
∑

i=0
IiRr−1−i + κ

r−1
∑

i=0

(
i

∑
j=0

Rj Ii−j

)
Ir−1−i

)
− γRr−1(t)

}
,

<5,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]
= L{Qr−1(t)} −

(
1− Kr

n

)
Q0
s −

1
K[α]

(
1− α + α

sα

)
×L

{
a

(
r−1
∑

i=0
IiRr−1−i + aκ

r−1
∑

i=0

(
i

∑
j=0

Rj Ii−j

)
Ir−1−i

)
− γQr−1(t)

}
.

(29)
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We simplify the preceding equations using the Inverse Laplace Transform as follows:

Sr(t) = KrSr−1(t) + hL−1
{
<1,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]}
,

Er(t) = KrEr−1(t) + hL−1
{
<2,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]}
,

Ir(t) = Kr Ir−1(t) + hL−1
{
<3,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]}
,

Rr(t) = KrRr−1(t) + hL−1
{
<4,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]}
,

Qr(t) = KrQr−1(t) + hL−1
{
<5,r

[→
S r−1,

→
E r−1,

→
I r−1,

→
Rr−1,

→
Qr−1

]}
.

(30)

We have arrived the equations by solving the above:

S0(t) = 300,

E0(t) = 30,

I0(t) = 20,

R0(t) = 65,

Q0(t) = 20,

S1(t) =
11.9519890h

K[α]

{
1− α + αtα

Γ(α+1)

}
,

E1(t) = − 11.8703670h
K[α]

{
1− α + αtα

Γ(α+1)

}
,

I1(t) = − 0.0801280h
K[α]

{
1− α + αtα

Γ(α+1)

}
,

R1(t) =
6.2585180h

K[α]

{
1− α + αtα

Γ(α+1)

}
,

Q1(t) = − 5.3157200h
K[α]

{
1− α + αtα

Γ(α+1)

}
,

S2(t) =
11.9519890h(n+h)

K[α]

{
1− α + αtα

Γ(α+1)

}
− 3.2295929h2

[K[α]]2

{
1− 2α + α2 + 2α(1−α)tα

Γ(α+1) + α2t2α

Γ(2α+1)

}
,

E2(t) = − 11.8703670h(n+h)
K[α]

{
1− α + αtα

Γ(α+1)

}
+ 3.1976522h2

[K[α]]2

{
1− 2α + α2 + 2α(1−α)tα

Γ(α+1) + α2t2α

Γ(2α+1)

}
,

I2(t) = − 0.0801280h(n+h)
K[α]

{
1− α + αtα

Γ(α+1)

}
.

+ 0.0319407h2

[K[α]]2

{
1− 2α + α2 + 2α(1−α)tα

Γ(α+1) + α2t2α

Γ(2α+1)

}
,

R2(t) =
6.2585180h(n+h)

K[α]

{
1− α + αtα

Γ(α+1)

}
+ 0.57950890h2

[K[α]]2

{
1− 2α + α2 + 2α(1−α)tα

Γ(α+1) + α2t2α

Γ(2α+1)

}
,

Q2(t) = − 5.3157200h(n+h)
K[α]

{
1− α + αtα

Γ(α+1)

}
− 0.5684178h2

[K[α]]2

{
1− 2α + α2 + 2α(1−α)tα

Γ(α+1) + α2t2α

Γ(2α+1)

}
.

(31)
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By simplifying the preceding equations, the provided values can be obtained. As
specified by the q-HATM series solution,

S(t) = S0(t) +
∞
∑

r=1
Sr(t)

(
1
n

)r
,

E(t) = E0(t) +
∞
∑

r=1
Er(t)

(
1
n

)r
,

I(t) = I0(t) +
∞
∑

r=1
Ir(t)

(
1
n

)r
,

R(t) = R0(t) +
∞
∑

r=1
Rr(t)

(
1
n

)r
,

Q(t) = Q0(t) +
∞
∑

r=1
Qr(t)

(
1
n

)r
.

(32)

6. Results and Discussion

Generally, present world issues are not determinable, but rather incorporate stochastic
impact, which provides a supplementary sensible method of demonstrating the viral
dynamics. In this study, we used the q-homotopy analysis transform technique (q-HATM)
to solve a system of non-linear equations and find an appropriate solution for an epidemic
pine wilt disease model. The initial conditions for the provided model in this work are
S(0) = S0 = 300, E(0) = E0 = 30, I(0) = I0 = 20, R(0) = R0 = 65, Q(0) = Q0 = 20.
A series solution has been assessed to understand the behavior of the model. We prove
and find a solution method for S(t); E(t); I(t); R(t); and Q(t) utilising different fractional
orders (α) with respect to time (t) with the help of tables. From the diagram, it can be seen
that the estimated model relates to the order and provides higher comfortability. As a result,
using the fractional operator to anticipate the future model yields a satisfactory outcome.
We can see from the diagram that the estimated model is strongly influenced by the order
and provides more flexibility. In this section, we evaluated the tabular values and figures
obtained by q-HATM. Tables 1–5 show the solution for S(t); E(t); I(t); R(t); and Q(t),
respectively, for various fractional orders (α) with respect to time (t) obtained by q-HAT.
We designate a solution for S(t); E(t); I(t); R(t); and Q(t) in Figures 1–5 correspondingly.

Table 1. Table of the susceptible class of pine trees S(t) at various values of α.

t α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1
0.2 290.8332821 292.5215509 294.2312730 295.9169066 297.5450103
0.4 288.7183111 290.1361784 291.6812730 293.3045941 294.9608370
0.6 286.9466815 288.0170780 289.2823904 290.7063195 292.2474799
0.8 285.3574883 286.0385706 286.9528908 288.0843841 289.4049390
1 283.8864707 284.1493328 284.6590141 285.4232667 286.4332145

Table 2. Table of the exposed class of pine trees E(t) at various values of α.

t α= 0.6 α= 0.7 α= 0.8 α= 0.9 α= 1
0.2 39.10004523 37.42459719 35.72766190 34.05441224 32.43802645
0.4 41.19892275 39.79208318 38.25886843 36.64785418 35.00395898
0.6 42.95693540 41.89509617 40.63981065 39.22704104 37.69779761
0.8 44.53381791 43.85843328 42.95167533 41.82943376 40.51954233
1 45.99336551 45.73306211 45.22800285 44.47046140 43.46919314
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Table 3. Table of the infective class of pine trees I(t) at various values of α.

t α= 0.6 α= 0.7 α= 0.8 α= 0.9 α= 1
0.2 20.06569309 20.05303066 20.04041223 20.02820332 20.01666441
0.4 20.08158972 20.07068416 20.05894326 20.04678947 20.03460646
0.6 20.09504715 20.08657271 20.07664739 20.06560725 20.05382613
0.8 20.10721869 20.10156349 20.09406166 20.08488908 20.07432344
1 20.11856300 20.11600600 20.11140109 20.10472442 20.09609837

Table 4. Table of the susceptible class of beetles R(t) at various values of α.

t α= 0.6 α= 0.7 α= 0.8 α= 0.9 α= 1
0.2 61.13521917 61.72265599 62.36277835 63.04502340 63.75988658
0.4 60.40677303 60.84027518 61.34428024 61.91386799 62.54295352
0.6 59.82779844 60.10177564 60.44600834 60.86194973 61.34920081
0.8 59.33049050 59.44677866 59.62275299 59.86504614 60.17862847
1 58.88735002 58.84960935 58.85433742 58.91180471 59.03123648

Table 5. Table of the infective class of beetles Q(t) at various values of α.

t α= 0.6 α= 0.7 α= 0.8 α= 0.9 α= 1
0.2 23.25119176 22.76220249 22.22707314 21.65432952 21.05177564
0.4 23.85718191 23.49935245 23.08151053 22.60713914 22.08081457
0.6 24.33723469 24.11414638 23.83245361 23.49023543 23.08711678
0.8 24.74838860 24.65768508 24.51838248 24.32434237 24.07068228
1 25.11379385 25.15173547 25.15651828 25.11921053 25.03151105
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Tables 1–5 illustrate the answer to S(t); E(t); I(t); R(t); and Q(t), respectively, acquired
by q-HATM. We have chosen inclined values for α to discuss the spread of disease and
growth in diseased beetles. One can observe from Table 1 that enhancing values of α with
respect to t increases the numerical value of the susceptible class of pine trees. Table 2
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depicts the difference in exposed pine trees for varied values of α. The exposed pine tree
population gradually declines with rising values of α with respect to time. The variation in
the infected class of pine trees for diverse values of fractional order changes according to
its time, as depicted in Table 3. One can detect from Table 3 that I(t) gradually or slightly
increases with a fixed value of α with respect to a rise in t. However, a rise in values of α
for a fixed time t declines I(t). Table 4 is tabulated to discuss the variation in the numerical
value of the population of the susceptible class of beetles for distinct values of α. It is
detected from the table that R(t) gradually increases for inclined values of α with respect
to fixed. The variation in the population of the infective class of beetles for rising values
of α with respect to time is tabulated in Table 5. One can observe from the table that an
increase in α with respect to a fixed time reduces the numerical value of the population of
the infected class of beetles. From the table, we can conclude that the fractional derivative
method applied to hypothetical models allows for a noteworthy augmentation in the fitting
of genuine information when compared to old-style models.

We interpret the solution by q-HATM for S(t), E(t), I(t), R(t), and Q(t) in Figures 1–5,
correspondingly. Figure 1 displays the pictural illustration of the exact simulation for sus-
ceptible pine trees S(t) in a time t for diverse values of α at h = −1 and n = 1. One can
observe from the plotted figure that the susceptible population of pine wilt trees increases
for a rise in values of α with respect to time t. Here, S(t) acts as an increasing function of t.
The visual appearance of the analytical scheme for the exposed class of pine tree in a time t
for changed α at h = −1 and n = 1 is displayed in Figure 2. It is evident from the plotted
graph that an increase in α with respect to time decreases the exposed class of pine trees.
Further, E(t) acts as increasing function of t for a fixed α. Figure 3 shows a visual depiction
of the numerical solution for the infective class of pine tree I(t) in time t for different values
of α at h = −1 and n = 1. One can detect from the plotted graph that a rise in values of α
increases the infective class of pine trees. Here, I(t) acts as increasing function of t for a
fixed α. To verify the characteristic feature of susceptible pine trees at various fractional
orders at h = −1 and n = 1, Figure 4 is portrayed. For an inclined fractional order, it is
observed that the population of susceptible pine trees grows. Furthermore, R(t) acts as
a deceasing function of t for a fixed α. One can observe that the fractional differential
co-efficient order at h = −1 and n = 1 enhances the rate of growth in the infective class of
beetles, as revealed in Figure 5. Here, Q(t) acts as an increasing function of t for a fixed α.

7. Conclusions

The productive model of pine wilt disease inside the complicated structure of fractional
calculus is analyzed using the q-Homotopy Analysis Transform Method. The results of
the model analysis revealed that the approach and fractional operator are particularly
useful in analyzing real-world scenarios. Furthermore, the current method saves time and
does not require any deviation while solving nonlinear models. It is concluded that the
considered nonlinear model can be used to derive results for existent, non-existent, and
other phenomenal factors.
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