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Abstract: A new accelerated algorithm for approximating the common fixed points of a countable
family of G-nonexpansive mappings is proposed, and the weak convergence theorem based on our
main results is established in the setting of Hilbert spaces with a symmetric directed graph G. As an
application, we apply our results for solving classification and convex minimization problems. We
also apply our proposed algorithm to estimate the weight connecting the hidden layer and output
layer in a regularized extreme learning machine. For numerical experiments, the proposed algorithm
gives a higher performance of accuracy of the testing set than that of FISTA-S, FISTA, and nAGA.
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algorithm; G-nonexpansive

1. Introduction

Let H be a real Hilbert space with the norm ‖ · ‖ and C be a nonempty closed convex
subset of H. A mapping T : C → C is said to be nonexpansive if it satisfies the following
symmetric contractive-type condition:

‖Tx− Ty‖ ≤ ‖x− y‖,

for all x, y ∈ C; see [1].
The element x ∈ C is a fixed point of T if Tx = x and F(T) := {x ∈ C : x = Tx}

stands for the set of all fixed points of T.
Fixed point theory, i.e., the study of the conditions under which a map admits a fixed

point, is an extensive area of research due to its numerous applications in many fields.
It started with Banach’s work, which established the existence of a unique fixed point
for a contraction using a classical theorem known as the Banach contraction principle;
see [2]. The contraction principle of Banach has been expanded and generalized in various
directions due to its applications in mathematics and other fields. One of the more recent
generalizations is due to Jachymski.

Jachymski [3] introduced the structure of the graph on metric spaces using fixed point
theory and obtained certain conditions for self-mapping to be a Picard operator. Several
authors [4–7] proved fixed point theorems for a new type of contraction on a metric space
endowed with graphs. Aleomraninejad et al. [8] used the idea of Reich et al. [9] and
proved a strong convergence theorem for G-contractive and G-nonexpansive mappings.
On hyperbolic metric spaces, Alfuraidan and Khamsi [10] gave a definition of G-monotone
nonexpansive multivalued mappings and proved the existence of a fixed point for mul-
tivalued contraction and monotone single-valued mappings. Later on, Alfuraidan [11]
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presented and study the existence of fixed points for G-monotone nonexpansive and ex-
tended the results of Jachymski [3]. For approximating common fixed points of a finite
family of G-nonexpansive mappings, Suantai et al. [12] used the shrinking projection
with the parallel monotone hybrid method. They also used a graph to prove a strong
convergence theorem in Hilbert spaces under specific conditions, and they then applied
their iterative scheme to signal recovery.

In the past decade, algorithms for approximating fixed points of G-nonexpansive map-
pings without inertial techniques have been proposed by many researchers; see [3,8,10–18].
We require more efficient algorithms for solving such problems. As a result, some accel-
erated fixed-point algorithms using inertial techniques have been proposed to improve
convergence behavior; see [19–27]. Recently, Janngam et al. [28] proved the weak con-
vergence theorem for a countable family of G-nonexpansive mappings in a Hilbert space
by using a coordinate affine structure with an inertial technique. They also applied their
method to image recovery.

Inspired by previous research described above, we introduce a new accelerated algo-
rithm based on the concept of the inertial technique for finding a common fixed point of
a family of G-nonexpansive mappings in Hilbert spaces. We employ our result to solve
data classification and convex minimization problems and also compare our algorithm
efficiency to that of FISTA-S, FISTA, and nAGA.

This paper is classified as follows: in Section 2, we give certain terminology as well as
some facts that will be useful in later sections. We investigate and prove our algorithm’s
weak convergence in Section 3. For application, we apply our method for solving convex
minimization and data classification problems in Section 4 and provide numerical exper-
iments of classification problems in Section 5. The last section of our paper, Section 6, is
a summary.

2. Preliminaries

Let C be a nonempty subset of a real Banach space X. Let4 = {(u, u) : u ∈ C}, where
4 stands for the diagonal of the Cartesian product C× C. Consider a directed graph G in
which the set V(G) of its vertices corresponds to C, and the set E(G) of its edges contains
all loops. A directed graph G is said to have parallel edges if two or more edges with both
the same tail vertex and the same head vertex.

Assume that G does not have parallel edges. Then, G = (V(G), E(G)). The conversion
of a graph G is denoted by G−1. Thus, we have

E(G−1) = {(u, v) ∈ C× C : (v, u) ∈ E(G)}.

Let us give some definitions of basic graph properties which are used in this paper
(see [29] for more details).

Definition 1. A graph G is said to be

(i) symmetric if for all (x, y) ∈ E(G); we have (y, x) ∈ E(G);
(ii) transitive if for any u, v, w ∈ V(G) with (u, v), (v, w) ∈ E(G); then, (u, w) ∈ E(G);
(iii) connected if there is a path between any two vertices of the graph G.

The definition of G-contraction [3] and G-nonexpansive mappings [13] are given
as follows.

Definition 2. A mapping T : C → C is said to be

(i) G-contraction if

(a) T is edge-preserving, i.e., (Tu, Tv) ∈ E(G) for all (u, v) ∈ E(G).
(b) There exists ρ ∈ [0, 1) such that ‖Tu − Tv‖ ≤ ρ‖u − v‖ for all (u, v) ∈ E(G),

where ρ is called a contraction factor.

(ii) G-nonexpansive if
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(a) T is edge-preserving.
(b) ‖Tu− Tv‖ ≤ ‖u− v‖ for all (u, v) ∈ E(G).

Example 1. Let C = [0, 2] ⊂ R. Suppose that (u, v) ∈ E(G) if and only if 0.4 ≤ u, v ≤ 1.6 or
u = v, where u, v ∈ R. Let S, T : C → C be defined by

Su = cos(tan(u− 1))sin(
π

2
) and Tu = 1 +

ln(u)
3

,

for all u ∈ C. Then, both S and T are G-nonexpansive but not nonexpansive (see [30] for
more details).

Definition 3. A mapping T : C → C is called G-demiclosed at 0 if un ⇀ u and Tun → 0, then
Tu = 0 for all sequence {un} ⊆ C with (un, un+1) ∈ E(G).

To prove our main result, we need the definition of the coordinate affine of the graph
G as follows.

Definition 4 ([28]). Assume that Λ := ∩∞
n=1F(Tn) 6= ∅ and Λ×Λ ⊆ E(G). Then, E(G) is

said to be

(i) left coordinate affine if α(x, y) + β(u, y) ∈ E(G) for all (x, y), (u, y) ∈ E(G) and all α,
β ∈ R with α + β = 1.

(ii) right coordinate affine if α(x, y) + β(x, z) ∈ E(G) for all (x, y), (x, z) ∈ E(G) and all α,
β ∈ R with α + β = 1.

We say that E(G) is coordinate affine if E(G) is both left and right coordinate affine.

The results of the following lemmas can be used to prove our main theorem; see
also [19,31,32].

Lemma 1 ([31]). Let {ηn}, {νn} and {ϑn} be sequences of nonnegative real numbers such that
∑∞

n=1 ϑn < ∞ and ∑∞
n=1 νn < ∞. Suppose that

ηn+1 ≤ (1 + ϑn)ηn + νn for all n ≥ 1.

Then, limn→∞ ηn exists.

Lemma 2 ([32]). For a real Hilbert space H, the following results hold:
(i) For any u, υ ∈ H and γ ∈ [0, 1],

‖γu + (1− γ)υ‖2 = γ‖u‖2 + (1− γ)‖υ‖2 − γ(1− γ)‖u− υ‖2.

(ii) For any u, υ ∈ H,
‖u± υ‖2 = ‖u‖2 ± 2〈u, υ〉+ ‖υ‖2.

Lemma 3 ([19]). Let {υn} and {µn} be sequences of nonnegative real numbers such that

υn+1 ≤ (1 + µn)υn + µnυn−1 for all n ≥ 1.

Then,

υn+1 ≤ M ·
n

∏
j=1

(1 + 2µj),

where M = max{υ1, υ2}. If ∑∞
n=1 µn < ∞, then {υn} is bounded.

Let {un} be a sequence in X. We write un ⇀ u to indicate that a sequence {un} con-
verges weakly to a point u ∈ H. Similarly, un → u will symbolize the strong convergence.
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For v ∈ C, if there is a subsequence {unk} of {un} such that unk ⇀ v, then v is called a
weak cluster point of {un}. The set of all weak cluster points of {un} is denoted by ωw(un).

The following lemma was proved by Moudafi and Al-Shemas; see [33].

Lemma 4 ([33]). Let {un} be a sequence in a real Hilbert space H such that there exists ∅ 6= Λ ⊂
H satisfying:
(i) For any p ∈ Λ, limn→∞ ‖un − p‖ exists.
(ii) Any weak cluster point of {un} ∈ Λ.

Then, there exists x∗ ∈ Λ such that un ⇀ x∗.

Let {Tn} and ψ be families of nonexpansive mappings of C into itself such that
∅ 6= F(ψ) ⊂ ∩∞

n=1F(Tn), where F(ψ) is the set of all common fixed points of each T ∈ ψ.
A sequence {Tn} satisfies the NST-condition (I) with ψ if, for any bounded sequence {un}
in C,

lim
n→∞

‖Tnun − un‖ = 0 implies lim
n→∞

‖Tun − un‖ = 0,

for all T ∈ ψ; see [34]. If ψ = {T}, then {Tn} satisfies the NST-condition (I) with T.

Example 2 ([30]). Let T ∈ ψ. Define Tn = βn I + (1− βn)T, where 0 < s ≤ βn ≤ t < 1 for all
n ∈ N. Therefore, {Tn} is a family of G-nonexpansive mappings and satisfies the NST-condition.

Let A : H → 2H be a maximal monotone operator and c > 0. The resolvent of A is
defined by JcA = (I + cA)−1, where I is an identity operator. If A = ∂ f for some f ∈ Γ0(H),
where Γ0(H) stands for the set of proper lower semicontinuous convex functions from
H → (−∞,+∞], then JcA = proxc f . The forward-backward operator of lower semi-
continuous and convex functions of f , g : Rn → (−∞,+∞] has the following definition:

A forward-backward operator T is defined by T := proxλg(I − λ∇ f ) for λ > 0, where

∇ f is the gradient operator of function f and proxλgx := argminy∈H

{
g(y) + 1

2λ‖y− x‖2
}

(see [35,36]). Moreau [37] defined the operator proxλg as the proximity operator with
respect to λ and g. If λ ∈ (0, 2/L), then T is nonexpansive and L is a Lipschitz constant
of ∇ f .

We have the following remark for the definition of the proximity operator; see [38].

Remark 1. Let g : Rn → R be given by g(x) = λ‖x‖1. The proximity operator of g is evaluated
by the following formula

proxλ‖·‖1
(x) = (sign(xi)max(|xi| − λ, 0))n

i=1,

where x = (x1, x2, . . . , xn) and ‖x‖1 = ∑n
i=1 |xi|.

The following lemma was proved by Bussaban et al.; see [20].

Lemma 5. Let H be a real Hilbert space and T be the forward-backward operator of f and g, where
g is a proper lower semi-continuous convex function from H into R ∪ {∞}, and f is a convex
differentiable function from H into R with gradient ∇ f being L-Lipschitz constant for some L > 0.
If {Tn} is the forward-backward operator of f and g such that an → a with a, an ∈ (0, 2/L), then
{Tn} satisfies the NST-condition (I) with T.

3. Main Results

Let C be a nonempty closed and convex subset of a real Hilbert space H with a directed
graph G = (V(G), E(G)) such that V(G) = C. Let {Tn} be a family of G-nonexpansive
mappings of C into itself such that ∅ 6= ∩∞

n=1F(Tn).
The following proposition is useful for our main theorem.
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Proposition 1. Let x∗ ∈ ∩∞
n=1F(Tn) and y0, x1 ∈ C be such that (x∗, y0), (x∗, x1) ∈ E(G). Let

{xn} be a sequence generated by Algorithm 1. Suppose E(G) is symmetric, transitive, and a right
coordinate affine. Then, (x∗, xn), (x∗, yn), (x∗, zn) and (xn, xn+1) ∈ E(G) for all n ∈ N.

Algorithm 1 (ASA) An Accelerated S-algorithm

1: Initial. Take y0, x1 ∈ C are arbitrary, n = 1, βn ∈ [a, b] ⊂ (0, 1), θn ≥ 0 and ∑∞
n=1 θn <

∞ and αn → 1.
2: Step 1. Compute yn, zn and xn+1 by

zn = (1− βn)xn + βnTnxn,
yn = (1− αn)Tnxn + αnTnzn,
xn+1 = yn + θn(yn − yn−1).

Then, n := n + 1 and go to Step 1.

Proof. We shall prove the results by using strong mathematical induction. From Algorithm 1,
we obtain

(x∗, z1) =
(
x∗, (1− β1)x1 + β1T1x1

)
= (1− β1)(x∗, x1) + β1(x∗, T1x1).

Since (x∗, x1) ∈ E(G) and Tn is edge preserving, we obtain (x∗, z1) ∈ E(G). Again, by
Algorithm 1, we obtain

(x∗, y1) = (x∗, (1− α1)T1x1 + α1T1z1))

= (1− α1)(x∗, T1x1) + α1(x∗, T1z1).

Since (x∗, z1) ∈ E(G) and Tn is edge preserving, we obtain (x∗, y1) ∈ E(G). Next, we
assume that (x∗, zk), (x∗, yk) and (x∗, xk) ∈ E(G) for all k < n. By Algorithm 1, we obtain

(x∗, zk+1) = (x∗, (1− βk+1)xk+1 + βk+1(Tk+1xk+1))

= (1− βk+1)(xk, xk+1) + βk+1(x∗, Tk+1xk+1), (1)

(x∗, yk+1) = (x∗, (1− αk+1)Tk+1yk+1 + αk+1Tk+1zk+1

= (1− αk+1)(x∗, Tk+1yk+1 + αk+1(x∗, Tk+1zk+1) (2)

and

(x∗, xk+1) = (x∗, yk + θk(yk − yk+1))

= (x∗, (1 + θk)yk − θkyk−1)

= (1 + θk)(x∗, yk)− θk(x∗, yk−1). (3)

By (1)–(3) and since E(G) is right coordinate affine and Tn is edge preserving, we
obtain (x∗, xk+1), (x∗, yk+1) and (x∗, zk+1) are in E(G). By strong mathematical induction,
we conclude that (x∗, xn), (x∗, yn), (x∗, zn) ∈ E(G) for all n ∈ N. Since E(G) is symmetric,
we obtain (xn, x∗) ∈ E(G). Since (xn, x∗), (x∗, xn+1) ∈ E(G) and E(G) is transitive, we
obtain (xn, xn+1) ∈ E(G) as required.

We now prove the weak convergence of G-nonexpansive mapping in a real Hilbert
space by using Algorithm 1.

Theorem 1. Let C be a nonempty closed and convex subset of a real Hilbert space H with a directed
graph G = (V(G), E(G)) with V(G) = C and E(G) is symmetric, transitive, and right coordinate
affine. Let y0, x1 ∈ C and {xn} be a sequence in H defined by Algorithm 1. Suppose {Tn} satisfies
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NST-condition (I) with T such that ∅ 6= F(T) ⊂ ∩∞
n=1F(Tn) and (x∗, y0), (x∗, x1) ∈ E(G) for

all x∗ ∈ ∩∞
n=1F(Tn). Then, xn ⇀ x∗ ∈ F(T).

Proof. Let x∗ ∈ ∩∞
n=1F(Tn). By the definition of zn and yn, we obtain

‖x∗ − zn‖ ≤ (1− βn)‖x∗ − xn‖+ βn‖x∗ − Tnxn‖
= ‖x∗ − xn‖ (4)

and

‖x∗ − yn‖ ≤ (1− αn)‖x∗ − Tnxn‖+ αn‖x∗ − Tnzn‖
≤ (1− αn)‖x∗ − xn‖+ αn‖x∗ − zn‖ (5)

which implies that

‖x∗ − yn‖ ≤ ‖x∗ − xn‖. (6)

By the definition of xn, we obtain

‖x∗ − xn‖ ≤ ‖x∗ − yn−1‖+ θn−1‖yn−2 − yn−1‖. (7)

From (6) and (7), we obtain

‖x∗ − yn‖ ≤ ‖x∗ − yn−1‖+ θn−1‖yn−2 − yn−1‖. (8)

It follows from (8) that

‖x∗ − yn‖ ≤ (1 + θn−1)‖x∗ − yn−1‖+ θn−1‖x∗ − yn−2‖. (9)

Applying Lemma 3, we obtain ‖x∗− yn‖ ≤ M ·∏n
j=1(1+ 2θj), where M = max{‖x∗−

y1‖, ‖x∗ − y2‖}. Since ∑∞
n=1 θn < ∞, we obtain that {yn} is bounded and so are {zn} and

{xn}. Thus,

∞

∑
n=1

θn‖yn − yn−1‖ < ∞ (10)

By Lemma 1 and (9), we obtain limn→∞ ‖x∗ − yn‖ exists. By Lemma 2(i) and the
definition of zn, we obtain

‖x∗ − zn‖2 = ‖(1− βn)(x∗ − xn) + βn(x∗ − Tnxn)‖2

= (1− βn)‖x∗ − xn‖2 + βn‖x∗ − Tnxn‖2 − (1− βn)βn‖Tnxn − xn‖2

≤ ‖x∗ − xn‖2 − (1− βn)βn‖Tnxn − xn‖2. (11)

Let limn→∞ ‖x∗ − yn‖ = a. From the boundedness of {xn} and (6), we obtain

lim inf
n→∞

‖x∗ − xn‖ ≥ a. (12)

Since ‖x∗ − xn−1‖ ≤ ‖x∗ − yn‖+ θn‖yn − yn−1‖ and (10), we obtain

lim sup
n→∞

‖x∗ − xn‖ ≤ a. (13)

It follows from (12) and (13) that

lim
n→∞

‖x∗ − xn‖ = a. (14)
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From (4), one can easily see that lim supn→∞ ‖x∗ − zn‖ ≤ a. By (5) with αn → 1, we
obtain that a ≤ lim infn→∞ ‖x∗ − zn‖. Thus,

lim
n→∞

‖x∗ − zn‖ = a. (15)

Use the facts that (11), (14), and (15) yield

‖Tnxn − xn‖ → 0.

According to {Tn} satisfying the NST-condition (I) with T, we obtain that ‖Txn −
xn‖ → 0 as n→ ∞. Let ωw(xn) be the set of all weak cluster point of {xn}. Thus, ωw(xn) ⊂
F(T) by demicloseness of I − T at 0. From Lemma 4, we conclude that xn ⇀ x∗ with
x∗ ∈ F(T) as required.

Corollary 1. Let C be a nonempty closed and convex subset of a real Hilbert space H and let {Tn}
be a family of nonexpansive mappings of C into itself. Let y0, x1 ∈ C, and {xn} be a sequence
in H defined by Algorithm 1. Suppose that {Tn} satisfies NST-condition (I) with T such that
∅ 6= F(T) ⊂ ∩∞

n=1F(Tn). Then, {xn} converges weakly to a point in F(T).

4. Applications

In the past decade, extreme learning machine (ELM) [39], a new learning algorithm
for single-hidden layer feedforward networks (SLFNs), has been extensively studied in
various research topics for machine learning and artificial intelligence such as face clas-
sification, image segmentation, regression, and data classification problems. ELM was
theoretically proven to have extremely fast learning speed and good performance better
than the gradient-based learning such as backpropagation in most of the cases. The target
of this model is to find the parameter β that solves the following minimization problem,
called ordinary least square (OLS),

min
β
‖Hβ− T‖, (16)

where ‖ · ‖ is the l2-norm defined by ‖x‖2 =
√

∑n
i=1 |xi|2, T ∈ RN×m is the target of data,

β ∈ RM×m is a weight which connects hidden layer and output layer, and H ∈ RN×M is the
hidden layer output matrix. In general mathematical modeling, there are several methods
to estimate the solution of (16); in this case, the solution β obtained by β = H†T, where H†

is the Moore–Penrose generalized inverse of H. However, in a real situation, the number of
unknown variable M is much more than the number of training data N, which causes the
network to possibly lead to overfitting. On the other hand, the accuracy is low while the
number of hidden nodes M is small. Thus, in order to improve (16), several regularization
methods were introduced. The classical two standard techniques for improving (16) are
subset selection and ridge regression (sometimes called Tikhonov regularization) [40].

In this paper, we focus on the following problem, called least absolute shrinkage and
selection operator (LASSO) [41],

min
β
‖Hβ− T‖2

2 + λ‖β‖1, (17)

where λ is a regularization parameter. LASSO tries to retain the good features of both
subset selection and ridge regression [41]. After the regularization methods and the original
ELM were introduced for improving performance of OLS, five years later, the regularized
extreme learning machine [42] was proposed and applied to solve regression problems. In
general, the (17) can be rewritten as minimization of f + g, that is,

min
x

F(x) := f (x) + g(x), (18)



Symmetry 2022, 14, 1059 8 of 13

where f is a smooth convex function with gradient having Lipschitz constant L and g is a
convex smooth (or possible non-smooth) function. The solution of (18) can be rewritten into
x̃ is a minimizer of ( f + g) if and only if 0 ∈ ∇ f (x̃) + ∂g(x̃), where ∇ f (x̃) is the gradient
of f and ∂g(x̃) is a subdifferential of g by using Fermat’s rule (see [35] for more details). In
fixed point theory, Parikh et al. [43] characterized (18) as follows: x̃ is a minimizer of f + g
if and only if

x̃ = proxλg(I − λ∇ f )(x̃) = Jλ∂g(I − λ∇ f )(x̃), (19)

where proxλg is the proximity operator of λg, λ > 0 and J∂g is defined by J∂g = (I + ∂g)−1,
J∂g is the resolvent of ∂g and I is an identity operator. The problem (18) can be rewritten into
a general problem, called a zero of sum of two operators problem, by finding x̃ such that

x̃ ∈ zer(A + B),

where A, B : H → 2H are two set-valued operators and zer(A + B) := {x : 0 ∈ Ax + Bx}.
In this case, we assume that A : H → 2H is a maximal monotone operator and B : H → H
is an L-Lipschitz operator. For convenience, (19) also can be rewritten as:

x̃ = Tx̃,

where T = proxλg(I − λ∇ f ). It is also known that T is nonexpansive if λ ∈ (0, 2/L) when
L is a Lipschitz constant of ∇ f .

We are interested in applying our proposed method for solving a convex minimization
problem and compared the convergence behavior of our proposed algorithm with the others
and give some applications to solve classification problems. Our proposed method will be
used to solve (18). Over the past two decades, several algorithms have been introduced
for solving the problem (18). A simple and classical algorithm is the forward-backward
algorithm (FBA), which was introduced by Lions and Mercier [21].

The forward-backward algorithm (FBA) is defined by{
yn = xn − γ∇ f xn,
xn+1 = xn + ρn(Jγ∂gyn − xn),

(20)

where n ≥ 1, x0 ∈ H and L is a Lipschitz constant of∇ f , γ ∈ (0, 2/L), δ = 2− (γL/2) and
{ρn} is a sequence in [0, δ] such that ∑n∈N ρn(δ− ρn) = +∞. A technique for improving
speed and giving a better convergence behavior of the algorithms was introduced firstly by
Polyak [44] by adding an inertial step called inertial techniques. Since then, many authors
have employed the inertial technique to accelerate their algorithms for various kinds of
problems; see [19,20,22–26]. The performance of FBA can be improved using an iterative
method with the inertial steps described below.

A fast iterative shrinkage-thresholding algorithm (FISTA) [25] is defined by
yn = Txn,

sn+1 =
1+
√

1+4s2
n

2 ,
µn = sn−1

sn+1
,

xn+1 = yn + µn(yn − yn−1),

(21)

where n ≥ 1, s1 = 1, x1 = y0 ∈ Rn, T := prox 1
L g(I − 1

L∇ f ) and µn is the inertial step size.
Beck and Teboulle [25] solved the image recovery and proved the convergence rate using
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FISTA. The inertial step size µn of the FISTA was firstly introduced by Nesterov [45].
A fast iterative shrinkage-thresholding algorithm-Siteration (FISTA-S) [27] is defined by

sn+1 =
1+
√

1+4s2
n

2 , µn = sn−1
sn+1

,
yn = xn + µn(xn − xn−1),
zn = (1− βn)yn + βnTnyn,
xn+1 = (1− αn)Tnyn + αnTnzn,

(22)

where x0, x1 ∈ H, αn, βn ∈ [a, b] ⊂ (0, 1) Tn = proxcng(I− cn∇ f ) and T = proxcg(I− c∇ f ).
Bussaban et al. [27] solved the image recovery and proved the weak convergence theorem
using FISTA-S.

A new accelerated proximal gradient algorithm (nAGA) [26] is defined by{
yn = xn + µn(xn − xn−1),
xn+1 = Tn[(1− ρn)yn + ρnTnyn],

(23)

where n ≥ 1, Tn = proxang(I − an∇ f ) with an ∈ (0, 2/L) and {µn}, {ρn} are sequences in

(0, 1) and ‖xn−xn−1‖2
µn

→ 0. The nAGA was introduced for proving a convergence theorem
by Verma and Shukla [26]. The nonsmooth convex minimization problem with sparsity,
including regularizers, was solved using this method for the multitask learning framework.

Theorem 2. Let H be a Hilbert space, A : H → 2H be maximal monotone operator and B : H → H
be an L-Lipschitz operator. Let a ∈ (0, 2/L) and {an} ⊂ (0, 2/L) such that an → a. Define
Tn = Jcn A(I− cnB) and T = JcA(I− cB). Suppose that zer(A+ B) 6= ∅. Let {xn} be a sequence
in H defined by Algorithm 1. Then, {xn} converges weakly to a point in zer(A + B).

Proof. Using Proposition 26.1(iv) (see [35]), we have {Tn} and T are nonexpansive map-
pings such that F(T) = F(Tn) = zer(A + B). Then, the proof is completed by Theorem 1
and Lemma 5.

The convergence of Algorithm 2 is obtained by using our main result.

Algorithm 2 (FBASA) A forward-backward accelerated S-algorithm

1: Initial. Take y0, x1 ∈ C are arbitary, n = 1, βn ∈ [a, b] ⊂ (0, 1), θn ≥ 0, ∑∞
n=1 θn < ∞

and αn → 1.
2: Step 1. Compute yn, zn and xn+1 by using

zn = (1− βn)xn + βn proxang(I − an∇ f )yn,
yn = (1− αn)proxang(I − an∇ f ) + αn proxang(I − an∇ f )zn,
xn+1 = yn + θn(yn − yn−1).

Then, n := n + 1 and go to Step 1.

Theorem 3. For f , g : Rn → (−∞, ∞], f is a smooth convex function with a gradient having a
Lipschitz constant L and g is a convex function. Let an ∈ (0, 2/L) be such that {an} converges
to a and let T := proxag(I − a∇ f ) and Tn := proxang(I − an∇ f ) and let {xn} be a sequence
generated by Algorithm 2, where βn, αn and θn are the same as in Algorithm 1. Then,

(i) ‖x∗ − xn+1‖ ≤ M · ∏n
j=1(2θj + 1), where M = max{‖x∗ − x1‖, ‖x∗ − x2‖} and

x∗ ∈ Argmin( f + g);
(ii) {xn} converges weakly to a point in Argmin( f + g).

Proof. We know that T and {Tn} are nonexpansive operators, and F(T) = ∩∞
n=1F(Tn) =

Argmin( f + g) for all n; see [35]. Then, {Tn} satisfies the NST-condition (I) with T by using
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Lemma 5. We get the desired result immediately from Theorem 1 by putting G = Rn ×Rn,
the complete graph, on Rn.

5. Numerical Experiments

The classification problem is one of the most important problems in the convex mini-
mization problem. We illustrate the process of reformulating the data classification problem
in machine learning.

We first present a basic idea of extreme learning machines for data classification prob-
lem, and use our algorithm to find this problem through numerical experiments. Moreover,
the performance of Algorithm 2, FISTA-S, FISTA, and nAGA are compared.

Extreme learning machine (ELM). Let R := {(xk, tk) : xk ∈ Rn, tk ∈ Rm, k =
1, 2, . . . , N} be a training set of different samples N, where xk is input data and tk is a
target. A standard SLFNs with activation function Ψ(x) (for instance sigmoid), and M
hidden nodes can be rewritten as

M

∑
j=1

β jΨ(〈wj, xi〉+ cj) = oi, i = 1, . . . , N,

where β j is the weight vector connecting the j-th the output node and hidden node, wj
is the weight vector connecting the j-th the input node and hidden node, and cj is the
threshold of the j-th hidden node. The objective of standard SLFNs is to estimate these N
different samples with ∑N

i=1 ‖ti − oi‖ = 0, that is, there exist β j, wj, cj such that

M

∑
j=1

β jΨ(〈wj, xi〉+ cj) = ti, i = 1, . . . , N.

We can derive a simple equation from the above N equations as follows:

Hβ = T,

H =

Ψ(〈w1, x1〉+ c1) · · · Ψ(〈wM, x1〉+ cM)
...

. . .
...

Ψ(〈wj, xN〉+ c1) · · · Ψ(〈wN , xN〉+ cM)

,

β = [βT
1 , . . . , βT

m×M]Tm×M, T = [tT
1 , . . . , tT

N ]
T
m×N .

A standard SLFN goal is to estimate β j, wj, and cj to solve (18), whereas an ELM goal
is to find only β j with wj and cj chosen at random.

In an experiment on classification problems, we employ the model (17) to solve the
convex minimization problem. We set f (x) = ‖Hβ− T‖2

2 and g(x) = λ‖β‖1. Next, we use
the Iris dataset to classify iris plant types, and the Heart Disease UCI dataset to identify
heart patients which are detailed as follows:

Iris dataset [46]. This dataset has three classes of 50 examples, each of which represents
a different variety of iris plant. The purpose is to identify each iris plant species based on
the length of its sepals and petals.

Heart Disease UCI dataset [47]. Although there are 76 attributes in the original
dataset, all published experiments only use 14 of them. Data on patients with heart
disease are provided in this dataset. We divide the data into two classes based on the
predicted attributes.

The dataset was graciously provided by https://archive.ics.uci.edu (accessed on
April 2020).

All control parameters are set to the values shown in Table 1, L = 2‖H1‖2, where
H1 is a hidden layer output matrix of a training matrix, M = 100, and Ψ(x) is sigmoid.

https://archive.ics.uci.edu
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Each dataset is given a training set, as indicated in Table 2. We evaluated the output data’s
accuracy by

accuracy =
correct predicted data

all data
× 100

Table 1. Parameters of each methods.

Methods Setting

Algorithm 2 αn = βn = 0.5, c = 1/L, θn = 0.9 if
1 ≤ n ≤ 400, and 1/2n otherwise

FISTA-S
αn = βn = 0.5, c = 1/L, s1 = 1,

sn+1 = (1 +
√

1 + 4s2
n)/2, $n = (sn − 1)/sn+1

if 1 ≤ n ≤ 400, and 1/2n otherwise

FISTA s1 = 1, sn+1 = (1 +
√

1 + 4s2
n)/2,

$n = (sn − 1)/sn+1

nAGA
ρn = 0.9, γ = 1/L, s1 = 1,

sn+1 = (1 +
√

1 + 4s2
n)/2, $n = (sn − 1)/sn+1

Table 2. Training and testing sets of the Iris and Heart Disease UCI datasets.

Dataset Attributes
Sample

Train Test

Heart Disease UCI 14 213 90
Iris 4 105 45

From the results in Table 3, we conclude that the proposed learning algorithm under
selection with the identical number of hidden nodes M has high performance in terms of
the accuracy. The weight computed by Algorithm 2 converges faster to the optimal weight
and performs accuracy better than those computed by FISTA-S, FISTA, and nAGA.

Table 3. Performance comparison using different methods at the 400th iteration.

Dataset
Algorithm 2 FISTA-S FISTA nAGA

Train Test Train Test Train Test Train Test

Heart Disease UCI 68.26 62.37 39.96 37.63 53.76 50.50 67.83 60.22
Iris 100 98.10 95.56 94.29 95.56 94.29 94.29 93.33

6. Conclusions

We generate and study an algorithm for approximating the common fixed points of
a countable family of G-nonexpansive mappings and prove the weak convergence of our
algorithm. In addition, we give an application of our result for solving data classification
and convex minimization problems. Finally, our numerical experiments assert that our
proposed algorithm provides more accuracy than FISTA-S, FISTA, and nAGA.

In future work, we aim to find new models and methods for data prediction and
classification of real datasets in medical science and create new innovations for health
care service.
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